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Introduction

A control chart is the most important tool in Statistical Process Control (SPC) to detect process shifts, in order to reduce process variability in manufacturing or service industries. The X and S charts are commonly used to ensure that the process mean and standard deviation, respectively, remain in-control at their nominal values, 0  and 0  , respectively. However, there are many Here, 1 L and 2 L are the lower limits of the CRL sub-chart (of the MGR X chart). Note that if 12 L L L  , the MGR X chart reduces to the GR X chart. On similar lines, by adding the side- sensitive feature to the GR X and MGR X charts, Gadre and Rattihalli [START_REF] Gadre | A side sensitive group runs control chart for detecting shifts in the process mean[END_REF] and Gadre et al [START_REF] Gadre | A side sensitive modified group runs control chart to detect shifts in the process mean[END_REF] introduced the side-sensitive GR (SSGR) X and the side-sensitive MGR (SSMGR) X charts, respectively. Both the SSGR and SSMGR charts signal an out-of-control if the sample means   X corresponding to the two successive CRLs that contribute to the out-of-control signal plot on the same side of the target value on the X sub-chart (of the respective SSGR X and SSMGR X charts). In terms of the effectiveness of the charts in detecting process mean shifts, Gadre et al [START_REF] Gadre | A side sensitive modified group runs control chart to detect shifts in the process mean[END_REF] showed that the SSMGR X chart outperforms the Shewhart X , synthetic X , GR X , MGR X and SSGR X charts. More recent extensions on the GR type charts include You et al, [START_REF] You | Side sensitive group runs X chart with estimated process parameters[END_REF] Khoo et al, [START_REF] Khoo | Side-sensitive group runs double sampling (SSGRDS) chart for detecting mean shifts[END_REF] Chong et al, [START_REF] Chong | Group runs revised m-of-k runs rule control chart[END_REF] Saha et al, [START_REF] Saha | A side-sensitive modified group runs double sampling (SSMGRDS) control chart for detecting mean shifts[END_REF] Chong et al, [START_REF] Chong | Optimal design of the sidesensitive modified group runs (SSMGR) chart when process parameters are estimated[END_REF] Mim et al, [START_REF] Mim | A Side-sensitive modified group runs control chart with auxiliary information to detect process mean shifts[END_REF] and Gadre and Kakade. [START_REF] Gadre | Some side sensitive group runs based control charts to detect shifts in the process median[END_REF] Note that in the Shewhart X chart, a decision about the state of the process being monitored is dependent on where the sample mean plots on the chart. If the sample mean plots beyond the limits of the X chart, the process is out-of-control, otherwise, it is in-control. On the other hand, for the X sub-chart of a GR X type chart (such as the MGR X , SSGR X and SSMGR X charts), a sample mean that plots beyond (within) the limits of the X sub-chart is considered as a non-conforming (conforming) sample, instead of an out-of-control (in-control) sample. A decision as to whether a process being monitored using a GR X type chart is in-control or out-of-control is made according to the outcome given by the conforming run length (CRL) sub-chart, where the points on the CRL sub-chart are plotted based on the information provided by the X sub-chart.

Control charts are usually designed with the assumption that the measurements on the quality characteristics are obtained without any measurement error. However, in usual practice, measurement errors often exist and affect the performances of the control charts. Linna and Woodall [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF] introduced the linear covariate error model to investigate the effect of measurement errors on the X and 2 S charts, and they recommended taking multiple measurements per item in order to reduce the effect of measurement errors. Using the same covariate error model of Linna and Woodall, [START_REF] Linna | Effect of measurement error on Shewhart control charts[END_REF] Linna et al [START_REF] Linna | The performance of multivariate control charts in the presence of measurement error[END_REF] studied the performance of multivariate control charts in the presence of measurement errors, where they found that the ability of the control charts to detect shifts in one direction is better than in the other direction due to the loss of the directional invariance property. Costa and Castagliola [START_REF] Costa | Effect of measurement error and autocorrelation on the X chart[END_REF] studied the performance of the X chart in the presence of measurement errors and autocorrelated data, and they showed that the effect of autocorrelation can be reduced by taking samples with non-neighboring items. The effects of measurement errors on the two one-sided Shewhart charts for monitoring the ratio of two normal variables were investigated by Nguyen and Tran [START_REF] Nguyen | Effect of the measurement errors on two one-sided Shewhart control charts for monitoring the ratio of two normal variables[END_REF] , where it was found that the two one-sided charts are more advantageous than the two-sided Shewhart chart for the ratio. Additionally, Tran et al [START_REF] Tran | A Synthetic median control chart for monitoring the process mean with measurement errors[END_REF] proposed the synthetic median chart to improve the efficiency of the Shewhart median chart in detecting small and moderate mean shifts, followed by conducting an investigation of the effects of measurement errors on the synthetic median chart. Additional researches that investigated the effect of measurement errors on different types of control charts were made by Maravelakis, [START_REF] Maravelakis | Measurement error effect on the CUSUM control chart[END_REF] Hu et al, [START_REF] Hu | The effect of measurement errors on the synthetic chart[END_REF] Noorossana and Zerehsaz, [START_REF] Noorossana | Effect of measurement error on phase II monitoring of simple linear profiles[END_REF] Tran et al, [START_REF] Tran | The performance of the Shewhart-RZ control chart in the presence of measurement error[END_REF] Tran et al, [START_REF] Tran | On the performance of Shewhart median chart in the presence of measurement errors[END_REF] Yeong et al [START_REF] Yeong | Monitoring the coefficient of variation using a variable sampling interval EWMA chart[END_REF] and Tran et al. [START_REF] Tran | On the performance of coefficient of variation charts in the presence of measurement errors[END_REF] Due to the sensitivity of the SSMGR chart towards process shifts and the widespread use of 

Basic properties of CV

Let X be a random variable having mean  and standard deviation , then the CV of X is

    . ( 1 
)
Let   12 , ,..., n X X X be a random sample of size n from the normal   2 , N  distribution, i.e.

 

~,

i XN  for i = 1, 2, …, n. The sample mean X and sample standard deviation S computed from this sample are 1

1 n i i XX n    (2) 
and

  2 1 1 1 n i i S X X n     , (3) 
respectively. Based on X and S, the sample CV  

 is computed as ˆ. S X   (4) 
In the literature, the probability distribution of  has been investigated by numerous researchers, such as McKay, [START_REF] Mckay | Distribution of the Coefficient of Variation and the Extended "t" Distribution[END_REF] Iglewicz et al [START_REF] Iglewicz | On the percentage points of the sample coefficient of variation[END_REF] and Iglewicz and Myers, [START_REF] Iglewicz | Comparisons of Approximations to the Percentage Points of the Sample Coefficient of Variation[END_REF] to name a few. Iglewicz et al [START_REF] Iglewicz | On the percentage points of the sample coefficient of variation[END_REF] showed that n  follows the non-central t distribution with n -1 degrees of freedom with the non-centrality parameter n  . Following this result, Castagliola et al [START_REF] Castagliola | Monitoring the coefficient of variation using EWMA charts[END_REF] showed that the

cumulative distribution function (cdf) of  is   ˆ| , 1 1, t nn F x n F n x           , (5) 
where

1, t n F n          
is the cdf of the non-central t distribution with n -1 degrees of freedom and non-centrality parameter n  . The inverse cdf of  is given by (Castagliola et al [START_REF] Castagliola | Monitoring the coefficient of variation using EWMA charts[END_REF] )

  1 ˆ1 , 1 1, t n F x n n F x n            . ( 6 
)

The SSMGR CV chart

The SSMGR CV chart consists of the CV sub-chart and an extended version of the CRL sub-chart.

The upper and lower control limits (UCL and LCL) of the CV sub-chart of the SSMGR CV chart are

1 ˆ0 UCL 1 , 2 k Fn        (7a) and 1 ˆ0 LCL , 2 k Fn        , (7b) 
respectively, where k is the limits' constant that is used to adjust the limits in order to attain the desired in-control performance of the chart, while 0  is the target value of the process CV.

If the charting statistic of the SSMGR CV chart, i.e.  , computed using Equation ( 4), falls beyond the UCL/LCL limits, the current sample CV is declared as non-conforming. Let CRL r represent the number of conforming  samples, inspected between the (r  1) th and r th non- conforming  samples, including the r th non-conforming  sample. The implementation of the SSMGR CV chart is as follows:

Step 1. Take a sample of size n and compute  .

Step

2. If   ˆLCL,UCL  
, the sample is classified as conforming, then return to Step 1. Otherwise, the sample is non-conforming and proceed to Step 3.

Step 3. Compute CRL r , for r = 1, 2, .... If Let P denote the probability of  falling beyond the UCL/LCL limits of the SSMGR CV chart. Then

  1 Pr LCL UCL P          ˆ1 UCL , LCL , F n F n      . ( 8 
)
As the SSMGR CV chart considers the side-sensitive feature, it is necessary to consider the conditional probability

    ˆPr UCL LCL,UCL               ˆPr UCL LCL,UCL Pr LCL,UCL          1 UCL , Fn P     . (9) 
The Markov chain approach, similar to that in Gadre et al [START_REF] Gadre | A side sensitive modified group runs control chart to detect shifts in the process mean[END_REF] 

SDRL( )

v v v     , (11) 
respectively, where

  1 1 T v   1 q I R ( 12 
)
and
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)
Here, T q = (1, 0, 0, …, 0) is the initial probability vector and its dimension is     

i j k i j i j k X A BX      . ( 14 
)
Here, A and B are two known constants and ,,

i j k  is a normal   2 0, M N 
random error term due to measurement inaccuracy, which is supposed to be independent of , ij X .

For sample i (i = 1, 2, …), there exists m  n observations * ,, i j k X , for j = 1, 2, …, n and k = 1, 2, …, m. Then, the mean , ij X  of the characteristics   * * * , , 1 , ,2 , , , ,... 
,

i j i j i j m X X X is computed as (Tran et al 38 ) ** , , , 1 
1 m i j i j k k XX m      , , , 1 
1 m i j i j k k A BX m       , , , 1 
1 m i j i j k k A BX m       . (15) 
The mean and standard deviation of

* , ij X are (Tran et al 38 )   * 0 0 A B a       (16) and 2 * 2 2 2 0 M Bb m    , ( 17 
)
respectively. Consequently, the CV of the measured characteristic

* , ij X is obtained as   2 2 2 2 * * 0 * 00 M B b m A B a            2 2 2 0 0 1 B b m Ba      , ( 18 
)
where

0 M     , 0 A    and 0 0 0     .
Here,  is called the precision error ratio,  is the accuracy error and 0  is the nominal value of the population CV. Note that *  in Equation ( 18) no longer depends on parameter A.

Let * i
X and * i S be the sample mean and sample standard deviation of  

* * * ,1 ,2 , , ,... 
, i i i n X X X . Then (Tran et al 38 ) ** , 1 1 n i i j j XX n    (19) 
and

  2 * * * , 1 1 1 n i i j i j S X X n     . ( 20 
)
It follows that the ith sample CV of the measured characteristic

* , ij X is * * * ˆi i i S X   . ( 21 
)
The cdf and inverse cdf of *  can be obtained using Equations ( 5) and ( 6), respectively, by replacing  with   in Equation (18).

SSMGR CV chart with measurement errors

In the presence of measurement errors, the upper and lower control limits of the  is used to compute * P when the process is out- of-control.

The ARL and SDRL values of the SSMGR CV-ME chart are computed using Equations (10) and (11), respectively, by means of the Markov chain approach. Here, the computation of the tpm R is made in a similar way to that of the SSMGR CV chart discussed in Section 3, except that P and  are replaced by * P and   , respectively. Note that   is computed using Equation ( 9 , respectively.

Optimal designs

The optimal designs of the SSMGR CV and SSMGR CV-ME charts involve the computation of the charts' respective optimal parameters to minimize ARL() for   1. For the SSMGR CV chart, the step-by-step procedure in computing the chart's optimal design parameters k, 1

C and 2 C is as follows:

Step 1. Specify the values of the desired in-control ARL (say ARL(1) = ), 0  , shift size  for which a quick detection is important and sample size n. Furthermore, initialize 1 0 C  , Step 2. Set 11 1 CC  .

Step 3. Set 22 1 CC  .

Step 4. Find the value of k by numerically solving the limits UCL and LCL in Equations (7a) and (7b), respectively, so that ARL(1) = .

Step 5. Compute ARL () using Equation (10) 6).

Performance evaluation

There are two objectives of this section. In Section 7.1, the performance of the proposed SSMGR CV chart is compared with those of existing CV charts, while in Section 7.2, the performance of the SSMGR CV-ME chart is investigated in the presence of measurement errors.

Performance comparison of SSMGR CV and existing CV charts

The performances of the proposed SSMGR CV and existing EWMA CV, RS CV and SSGR CV charts are compared using the ARL() and SDRL() criteria. The 7 regions (7R) RS CV chart is considered as Teoh et al [START_REF] Teoh | Run-sum control charts for monitoring the coefficient of variation[END_REF] showed that the 7R RS CV chart is more efficient than its 4 regions counterpart. Additionally, the synthetic type CV charts are not considered in the comparison as You et al [START_REF] You | Monitoring the coefficient of variation using the side sensitive group runs chart[END_REF] already showed that the SSGR CV chart outperforms the former.

In Table 5, it is obvious that the SSMGR CV chart outperforms the SSGR CV chart for all   0 ,

 combinations as the former has a smaller ARL() value than the latter for the same   0 ,  combination. For example, when 0 5).

 = 0.
In terms of the SDRL() criterion, it is also noticeable in Table 5 that the SSMGR CV chart (lower SDRL() values) significantly prevails over the SSGR CV chart (higher SDRL() values), for all values of  (except  = 0.75). In addition, for all 0  values based on the SDRL() criterion, the SSMGR CV chart is inferior to the EWMA CV chart when 0. Table 6 shows the ARL() and SDRL() values of the SSMGR CV-ME chart for various combinations of the precision error ratios  ∈ {0, 0.1, 0.3, 0.5, 1}, 0  ∈ {0.05, 0.1, 0.15, 0.2} and  ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2} when n = 5, m = 1, B = 1 and θ = 0. Note that  = 0 represents the case without measurement error. Additionally, note that when  = θ = 0 and m = B = 1, the SSMGR CV-ME chart becomes the basic SSMGR CV chart (as in the case of Table 6). Thus, 6 that the precision error ratio () has a negative effect on the performance of the SSMGR CV-ME chart as, generally, there are slight increases in the ARL() and SDRL() values when  increases. For example, when 0  = 0.1 and  = 0.75, ARL(0.75) ∈ {52.57, 52.76, 53.31} and SDRL(0.75) ∈ {212.90, 213.80, 217.40} for  ∈ {0, 0.5, 1}, where it is found that both ARL(0.75) and SDRL(0.75) increase slightly with  (see Table 6). However, the results in Table 6 show that the precision error ratio () does not have a significant effect on the performance of the SSMGR CV-ME chart.

when  = 0 in
Table 7 presents the ARL() and SDRL() performances of the SSMGR CV-ME chart for various combinations of B ∈ {1, 2, 3, 4}, 0  ∈ {0.05, 0.1, 0.15, 0.2} and  ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2} when n = 5,  = 0.28, m = 1 and θ = 0.01. The rationale for choosing  = 0.28 is due to the assumption of an acceptable value for the signal-to-noise ratio as explained in Tran at al. [START_REF] Hu | The effect of measurement errors on the synthetic chart[END_REF] In 8 shows that increasing the number of measurements per item (m) gives some positive effect on the SSMGR CV-ME chart by slightly reducing the ARL() and SDRL() values of the chart when 0 ,  , n, , B and θ are fixed, though the reduction is not large. For example, when 0  = 0.2 and  = 0.75, ARL(0.75) = 56.62 and SDRL(0.75) = 232.77 for m = 1, while ARL(0.75) = 56.41 and SDRL(0.75) = 231.80 for m = 7 (see Table 8). It is obvious that the values of ARL(0.75) and SDRL(0.75) reduce when m increases from 1 to 7.

Table 9 shows that the ARL() and SDRL() values of the SSMGR CV-ME chart are slightly negatively influenced by the accuracy error (θ) when 0 

 , , n (=5),  (=0.

Implementations

To illustrate the implementation of the SSMGR CV and SSMGR CV-ME charts, real life data from a Tunisian company that manufactures sanitary parts from zinc alloy in a die casting hot chamber process are adopted from Castagliola et al [START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF] The quality characteristic of interest X is the weight (in grams) of scrap zinc alloy material (see Castagliola et al [START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF] for details of the process).

Table 10 gives the Phase-I and Phase-II datasets of this quality characteristic. A regression study was conducted by Castagliola et al [START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF] first out-of-control signal at sample 9 (i = 9) (see Figure 1). Following this out-of-control signal, corrective actions should be taken so that the out-of-control process returns to the in-control situation again.

Conclusions

There are many circumstances where the mean and standard deviation of a manufacturing process vary in a proportional manner. The CV is a suitable quality characteristic for monitoring the process stability of this type of process. In this research, we have introduced a new CV chart, called the SSMGR CV chart, for efficiently monitoring the CV. The SSMGR CV chart has been compared with the existing EWMA CV, RS CV and SSGR CV charts using the ARL and SDRL as performance criteria. The ARL results have shown that the SSMGR CV chart outperforms the three aforementioned existing CV charts in detecting increasing CV shifts ( > 1); while for detecting decreasing CV shifts ( < 1), the SSMGR CV-ME chart still prevails, except for  = 0.75, where the EWMA CV and RS CV charts beat the former. Based on the findings in this research, we recommend the use of the SSMGR CV chart when the process engineer is interested to monitor upward shifts ( > 1) or moderate-to-large downward shifts ( < 1), in the process CV.

When a process being monitored is in-control, ideally the ratio of the standard deviation to the mean, i.e. 0 0 0

   

should be small so that the process is operating reliably. Note that the data employed to illustrate the implementations of the CV charts in practice by Kang et al, [START_REF] Kang | A control chart for the coefficient of variation[END_REF] Khaw et al, [START_REF] Khaw | Monitoring the coefficient of variation using a variable sample size and sampling interval control chart[END_REF] and Yeong et al, [START_REF] Yeong | A control chart for the multivariate coefficient of variation[END_REF] all deal with small 0  values, namely 0.075, 0.005645 and 0.001042, respectively. Thus, small 0  values, i.e. 0   {0.05, 0.1, 0.15, 0.2} are adopted in this article.

This research has also investigated the effect of measurement errors on the SSMGR CV (referred to as the SSMGR CV-ME) chart. The findings has revealed that the increases in the precision error ratio () or accuracy error (θ) has a negative effect on the SSMGR CV-ME chart's performance by slightly increasing its ARL() and SDRL() for a similar shift size .

Furthermore, increasing the number of measurements per item (m) or the parameter B has a positive effect on the ARL() and SDRL() performances of the SSMGR CV-ME chart as their values decrease slightly when m or B increases.

In this research, the univariate SSMGR CV and SSMGR CV-ME charts have been developed

to monitor the process CV. In the future, research may be conducted to develop the multivariate SSMGR CV and SSMGR CV-ME charts. Moreover, univariate and multivariate SSMGR CV and SSMGR CV-ME charts with estimated process parameters, i.e. when the target values of the process parameters are unknown or cannot be specified, can also be proposed. 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 3 0 0 0 T 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 T 0 0 0 0 0 0 0 S 0 0 0 0 0 0 0 0 5 0 0 0 0 0 0 0 T 0 0 0 0 0 0 0 0 0 (1 )S   0 0 6 0 0 0 0 0 0 0 0 0 T 0 0 0 0
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S   0 0 0 0 0 0 0 0 0

T 0 0 0 0 16 0 0 0 0 S  (1 )S   0 0 0 0 0 0 0 0 0 0 T 0 0 0 17 0 0 0 0 S  (1 )S   T 0 0 0 0 0 0 0 0 0 0 0 0 0 18 0 0 0 0 S  (1 ) 
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T 0 19 0 0 0 0 S  (1 )S   0 0 0 0 0 0 0 0 0 0 0 0 0 T 20 0 0 0 0 S  (1 ) 
S   T 0 0 0 0 0 0 0 0 0 0 0 0 0 Table 4. Optimal parameters of the SSMGR CV chart when  = 370 and η when n = 5, m = 1, B = 1 and θ = 0 and B when n = 5, η = 0.28, m = 1 and θ = 0.01 and m when n = 5, η = 0.28, B = 1 and θ = 0.01  and θ when n = 5, η = 0.28, B = 1 and m = 1 

n = 5 n = 7 n = 10 0   k 1 C 2 C k 1 C 2 C k 1 C 2 C 0.
η = 0 η = 0.1 η = 0.3 η = 0.5 η = 1 0   ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() 0.
B = 1 B = 2 B = 3 B = 4 0   k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL()
m = 1 m = 3 m = 5 m = 7 0   k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL()
θ = 0 θ = 0.01 θ = 0.03 θ = 0.05 0   k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL() SDRL() k  1 C  2 C  ARL()

  CV in real life, the SSMGR chart for monitoring the process CV (called the SSMGR CV chart) is developed in this research. The charting statistic, optimal design and implementation procedure of the proposed chart are presented. The SSMGR CV chart is compared with the existing EWMA CV, run sum (RS) CV and SSGR CV charts, in terms of the average run length (ARL) and standard deviation of the run length (SDRL) criteria, where the results show that the SSMGR CV chart generally outperforms the existing charts. Additionally, the detection ability of the SSMGR CV chart in the presence of measurement errors (called the SSMGR CV-ME chart) is also investigated in detail. The charting statistic, optimal design and implementation procedure of the SSMGR CV-ME chart are also discussed. Moreover, a step-by-step implementation procedure of the SSMGR CV-ME chart using a real industrial dataset is given to explain the working of the proposed chart in usual practice.The rest of this paper is organized as follows: Section 2 presents the basic properties of the CV. The SSMGR CV chart is presented in Section 3. Section 4 explains the linear covariate error model for the CV. Section 5 discusses the SSMGR CV-ME chart. The optimal design procedure to minimize the out-of-control value of ARL for the SSMGR CV and SSMGR CV-ME charts are discussed in Section 6. The performances of the SSMGR CV and SSMGR CV-ME charts are evaluated in Section 7. Section 8 shows the implementation of the SSMGR CV-ME chart using a real dataset. Lastly, conclusions are drawn in Section 9.

  as out-of-control, where f C (for f = 1, 2) are the lower limits of the CRL sub-chart (of the SSMGR CV chart). Otherwise, return to Step 1. There are three design parameters of the SSMGR CV chart, i.e. k, 1 C and 2C .



  and . For example, when  = 370, n = 5, 0  = 0.05 and  = 0.5 are considered, the optimal parameter combination of the SSMGR CV chart are   12 ,, k C C = (0.0843, 1, 7), where these parameters produce the smallest value of ARL(0.25) (= 3.12) (see Table 5) among all parameter combinations   12 ,, k C C that give  = 370. The SDRL(0.25) value of the SSMGR CV chart corresponding to   12 ,, k C C = (0.0843, 1, 7) is 4.25 (see Table 5). Tables 6 -9 present the optimal combinations of parameters   *** 12 ,, k C C for the SSMGR CV-ME chart that minimize ARL(), as well as the corresponding ARL() and SDRL() values of the chart, for the specified 0  , ,  n,  , B, m and θ values. Note that, without loss of generality, b = 1 is considered in this research. For example, when the SSMGR CV-ME chart is optimally designed to minimize ARL(0.5), i.e. for  = 0.5, the optimal parameter combination   *** 12 ,, k C C = (0.0843, 1, 7) is obtained with the corresponding ARL(0.5) = 3.12 and SDRL(0.5) = 4.25, when n = 5, 0  = 0.05,  = 0.1, B = 1, m = 1 and θ = 0 (see Table

 7 . 2 .

 72 = 0.1 and  = 0.5, SDRL(0.5) of the EWMA CV, RS CV and SSMGR CV charts are 1.55, 1.51 and 4.30, respectively, where the values of SDRL() for the EWMA CV and RS CV charts are lower than those of the SSMGR CV chart. For the other values of  not discussed above, the SSMGR CV chart outperforms the EWMA CV and RS CV charts based on the SDRL() criterion. For instance, when 0  = 0.05 and  = 0.25, SDRL(0.25) = 0.39, 0.99 and 0.10 for the EWMA CV, RS CV and SSMGR CV charts, respectively, where the SSMGR CV chart has the smallest SDRL(0.25) value. Performance of the SSMGR CV-ME chart in the presence of measurement errors Tables 6 -9 present the optimal combinations of parameters   , as well as the corresponding minimum ARL() values and SDRL() values of the SSMGR CV-ME chart based on the linear covariate error model, for fixed 0 ,  ,  n,  , B, m and θ values that satisfy ARL(1)= 370.



  , , , m and θ, the value of B has some positive effects on the performance of the SSMGR CV-ME chart as, generally, the ARL() and SDRL() values decrease slightly when B increases. As an example, when 0  = 0.15,  = 0.75, ARL(0.75) = 55.14 and SDRL(0.75) = 225.91 for B = 1, while ARL(0.75) = 53.88 and SDRL(0.75) = 220.08 for B = 4 (see Table7), i.e. both ARL(0.75) and SDRL(0.75) decrease when B increases from 1 to 5.Linna and Woodall 27 noted that it is better to take multiple measurements per item in each sample to reduce the effect of measurement errors. Table8 presentsthe ARL() and SDRL() values of the SSMGR CV-ME chart for various combinations of m ∈ {1, 3, 5, 7}, 0  ∈ {0.05, 0.1, 0.15, 0.2} and  ∈ {0.25, 0.5, 0.75, 1.25, 1.5, 2} when n = 5,  = 0.28, B = 1 and θ = 0.01. Table

  28), B (= 1) and m (= 1) are fixed. For instance, when 0  = 0.2 and  = 1.25, ARL(1.25) = 9.31 and SDRL(1.25) = 17.70 for θ = 0, while ARL(1.25) = 10.24 and SDRL(1.25) = 20.30 for θ = 0.05 (see Table 9), where the values of ARL(1.25) and SDRL(1.25) increase with .

 1 C = 1 and * 2 C 1 CRL = 9  2 C = * 2 C

 121922 on the 30 Phase-I samples, each having 5 observations, where a constant proportionality ( =   ) between the process standard deviation  and the process mean  of the weight of scrap zinc alloy was found to exist. Castagliola et al[START_REF] Castagliola | Monitoring the coefficient of variation using a variable sampling interval control chart[END_REF] also showed that the Phase-I data are in-control. By adopting the root mean square method on the Phase-I samples, the estimated in-control CV   0 = 0.01. Suppose that a process engineer has decided to implement the SSMGR CV and SSMGR CV-ME charts for monitoring the Phase-II process. It is assumed that the SSMGR CV chart is optimally designed, based on ARL(1) = 370, n = 5 and 0  = 0.01 (as 0   0.01); while the SSMGR CV-ME chart is optimally designed based on ARL(1) = 370, n = 5, 0  = 0.01, η = 0.28, B = 1, m = 1 and θ = 0. An upward shift in the process CV, where a quick detection is important is set as  = 1.5, for both the charts. Consequently, the optimal parameters k = 0.0701, 1 C = 1 and 2 C = 11 are computed using the Matlab optimization program for the SSMGR CV chart, where the limits of the chart are computed to be UCL = 0.0161 and LCL = 0.0038. Similarly, the optimal parameters of the SSMGR CV-ME chart, i.e. * k = 0.0701, * = 11, are computed, which result in ME UCL = 0.0167 and ME LCL = 0.0040.From the control limits of the two charts given in the previous paragraph, it is found that the SSMGR CV chart has tighter limits (narrower width between UCL and LCL, where UCL -LCL = 0.0123) than the SSMGR CV-ME chart (wider width between 0127). Therefore, in general, it becomes easier for the SSMGR CV chart to issue an out-of-control signal, either due to the occurrence of an assignable cause or the presence of measurement errors or both, as the chart's limits have become tighter. However, for the SSMGR CV-ME chart, as its limits have become looser (compared to the SSMGR CV chart), it is in general more difficult to detect an out-of-control signal (compared to the SSMGR CV chart). Hence, when the SSMGR CV-ME chart detects an out-of-control signal, the signal is more likely due to actual process shifts, instead of measurement errors, as its limits have been computed by considering the presence of measurement errors.The 30 Phase-II sample CVs ( ˆi  , for i = 1, 2, …, 30) are plotted in Figure1. From Figure1, it is obvious that the 1 st non-conforming ˆi  occurs at sample no., i = 9, for both the SSMGR CV and SSMGR CV-ME charts. Thus, is obtained. The 2 nd , 3 rd and 4 th non-conforming samples are observed at sample nos., = 10, 12 and 13, hence, (= 11), then according to Step 3 of the implementation procedure in Section 3, the SSMGR CV and SSMGR CV-ME charts issue the

GH

  A sequence showing the nonabsorbing state, ending with the sample in the first (second) level of sample inspection being nonconforming with an upward process mean shift. G The non-conforming sample in the first level of sample inspection has a process mean shift on any side with CRL > 1 C .   GH A sequence showing the nonabsorbing state, ending with the sample in the first (second) level of sample inspection being nonconforming with a downward process mean shift. 0 ( ̃ The sample in the first (second) level of sample inspection is conforming.

Figure 1 .

 1 Figure 1. SSMGR CV and SSMGR charts for monitoring the Phase-II sample CVs ( ˆi  , for i = 1, 2, …, 30) on the weights of scrap zinc alloy material in a die casting hot chamber process

  There is only one state of this type (see state 4 in Table2).3. A sequence starting with G (or H or H ), followed by a maximum of 

	, is used to compute the ARL values of the SSMGR CV chart. The description of the Markov chain states of the samples are given in Table 1. Note that the states of the Markov chain model for the SSMGR CV chart depend on the values of the positive integers, say 1 C and 2 C . As an example, Table 2 shows the complete states of the Markov chain model for the SSMGR CV chart when 1 C = 2 C = 3. The following steps explain the procedure to obtain the states of the Markov chain model for the SSMGR CV chart: 1. A sequence starting with G (or G or G ), followed by a maximum of   2 1 C  0 ̃'s. There are 2 3C such states (see states 1 -3, 5, 6, 8 -11 in Table 2). 2. A sequence of 2 1 1 C  0's. There are 1 3C such states (see states 12 -20 in Table 2). 5. Signal (see state 21 in Table 2). The total number of states, including the absorbing state is 2 3C + 1 + 1 3C + 1 + 1 =   2 1 3 1 CC  . Table 2 presents the 21 different states of the Markov chain model for the SSMGR CV chart, based on 1 3 C  and 2 3 C  . In Table 2, states 1 -20 are non-absorbing states while state 21 is an absorbing state. Let R be the transition probability matrix (tpm) of the Markov chain model for the SSMGR CV chart without the absorbing state. Let 1 T P  and SP  , then the   , th gh entry of matrix R is obtained as follows (Gadre et al 19 ): 𝑅 g,ℎ = { 𝑇 if the gth state leads to the ℎth state and the ℎth state corresponds to the sequence ending with 0 (or 0 ̃). 𝑆 if the gth state leads to the ℎth state and the ℎth state corresponds to the sequence ending with 𝐺. 𝑆 if the gth state leads to the ℎth state and the ℎth state corresponds to the sequence ending with 𝐺 (or 𝐻). (1 -)𝑆 if the gth state leads to the ℎth state and the ℎth state corresponds to the sequence ending with 𝐺 (or 𝐻). 0 otherwise. In general, the tpm R of the SSMGR CV chart is a square matrix with a dimension of   12 3( ) 2 CC      12 3( ) 2 CC  . As an example, Table 3 presents the entries of R corresponding to the values 12 3 CC  . The ARL and SDRL of the SSMGR CV chart, for a shift size , are computed as 1 ARL( ) v   (10) and C 0 ̃'s.  4. A sequence of 1 2 C 0's. Only one state of this type is available (see state 7 in Table 2). 2 1 1

4. Linear covariate error model for the CV

  

	assumed that the quality characteristic , ij X cannot be observed directly but can only be obtained
	from the results 	X	* , ,1 i j	,	X	* , ,2 i j	,...,	X	* , , i j m		of a set of	1 m  characteristics, where each	X	* ,, i j k	satisfies
	the following linear covariate error model (Tran et al 38 ):
																, ,	,	, ,
																12 32 CC 		1,
	I is the   32 CC   12      32 CC   12		identity matrix and 1 is a   32 CC  1 column   12
	vector whose entries are all ones.
				Let 1  be the value of the out-of-control CV and	10    	be the standardized CV shift from
	0  to 1  . By definition, an upward shift in the process CV occurs when  > 1 and a downward shift
	in the process CV happens when  < 1. The process CV is said to be in the in-control state when 
	= 1.												
	Let  ,1 i X , ,2 i X ,…,	X	, in		denote the ith sample of quality characteristics, where	, ij X 
	N			0		a 	0	,	b	22 0 		, for j = 1, 2, …, n and n > 1. Here, 0  and 0  are the nominal mean and
	standard deviation, respectively. In addition, a and b denote the sizes of the standardized mean and
	standard deviation shifts, respectively. The process has shifted when a ≠ 0 or/and b ≠ 1. It is

  using the current values of 1 k ) of the SSMGR CV-ME chart. However, for this case, in addition to the values of , 0 ,   and n specified in Step 1, the values of  , B, m and θ also need to be specified in the same step. Furthermore, in the above eight step procedure, 1

	The above-mentioned step-by-step procedure can also be used to compute the optimal
	parameter combination ( * 1 C , * 2 C , C , 2 C , k, UCL
	and LCL are replaced by * 1 C , * 2 C , * k ,	ME UCL and	ME LCL , respectively.
	By adopting the above eight step procedure, optimization programs have been written in
	MATLAB to compute the optimal parameters of the SSMGR CV and SSMGR CV-ME charts that
														C , 2 C and k.
	Step 6. If ARL() <	min ARL , then let	min ARL = ARL() and return to Step 3. Otherwise, proceed
	to Step 7.									
	Step 7. If	ARL	min		ARL	opt	, then let	ARL	opt		ARL	min	and return to Step 2, while setting 2 0. C 
	Otherwise, proceed to Step 8.						
	Step 8. The minimum value of ARL(), based on the values of , 0  ,  and n specified in Step 1
	is given by	opt ARL , while the corresponding values of 1 C , 2 C and k that produce this

opt ARL value are the optimal choices of parameters for the SSMGR CV chart. * produce the minimum ARL() value (for   1), based on the desired input parameters specified in Step 1. The corresponding SDRL() values are also computed.

Table 4 presents the optimal parameter combination   12 ,, C C k that minimizes ARL() of the SSMGR CV chart for various choices of n, 0

  1 and   {0.25, 0.5, 0.75, 1.25, 1.5, 2}, ARL() ∈ {1.01, 3.14, 52.57, 8.89, 3.13, 1.53} for the SSMGR CV chart, while that for the SSGR CV chart are {1.01, 4.74, 89.66, 15.22, 4.06, 1.66}, where the ARL() values for the former are all lower than that of the latter. In comparison to the EWMA CV and RS CV charts, the SSMGR CV chart generally performs better for all  values, except for  = 0.75. For  = 0.75, the EWMA CV and For instance, when 0  ∈ {0.05, 0.1, 0.15, 0.2}, the ARL(0.75) values of the EWMA CV and RS CV charts are {17.19, 17.30, 17.49, 17.78} and {22.21, 22.30, 22.45, 22.72}, respectively, while those of the SSMGR CV chart are {51.99, 52.57, 53.50, 54.86}, where it is obvious that the ARL(0.75) values of the SSMGR CV chart are all greater than those of the EWMA CV and RS CV charts. However, for values of   0.75, the SSMGR CV chart has smaller ARL() values than those of the EWMA CV and RS CV charts (see Table

RS CV charts provide smaller ARL() values compared to the SSMGR CV chart for all values of 0  .

Table 6 ,

 6 the optimal parameters   that minimize ARL() of the SSMGR CV-ME chart are not given as they are actually similar to the optimal parameters  

	*** 12 ,, k C C 12 ,, k C C of the

Table 4 .

 4 It is obvious from Table

Table 7 ,

 7 it is noticeable that for the fixed values of n, 0

Table 1 .

 1 Descriptions of the Markov chain states of the samples for the SSMGR CV chart

	State	Description	State	Description
	G The sample at time zero is non-		
		conforming and the corresponding		
		CRL does not exceed 1 C , where		
		there is either an upward or a		
		downward process mean shift.		

Table 2 .

 2 The Markov chain states of the SSMGR CV chart for 1

	C = 2 C = 3

Table 3 .

 3 The tpm of the Markov chain model of the SSMGR CV chart for 1

	C = 2 C = 3

Table 5 .

 5 ARL() and SDRL() values of the EWMA CV, RS CV, SSGR CV and SSMGR CV charts

	05 0.25 0.1359	1	2	0.1359	1	2	0.1359	1	2
	0.5 0.0843	1	7	0.1169	1	3	0.1359	1	2
	0.75 0.0254	1	92	0.0365	1	46	0.0530	1	21
	1.25 0.0430	1	33	0.0499	1	24	0.0582	1	17
	1.5 0.0701	1	11	0.0799	1	8	0.0896	1	6
	2	0.0962	1	5	0.1049	1	4	0.1169	1	3
	0.1 0.25 0.1359	1	2	0.1359	1	2	0.1359	1	2
	0.5 0.0843	1	7	0.1169	1	3	0.1359	1	2
	0.75 0.0254	1	92	0.0361	1	47	0.0530	1	21
	1.25 0.0430	1	33	0.0499	1	24	0.0582	1	17
	1.5 0.0701	1	11	0.0799	1	8	0.0896	1	6
	2	0.0962	1	5	0.1049	1	4	0.1169	1	3
	0.15 0.25 0.1359	1	2	0.1359	1	2	0.1359	1	2
	0.5 0.0843	1	7	0.1049	1	4	0.1359	1	2
	0.75 0.0251	1	94	0.0357	1	48	0.0519	1	22
	1.25 0.0424	1	34	0.0489	1	25	0.0582	1	17
	1.5 0.0701	1	11	0.0799	1	8	0.0896	1	6
	2	0.0962	1	5	0.1049	1	4	0.1169	1	3
	0.2 0.25 0.1359	1	2	0.1359	1	2	0.1359	1	2
	0.5 0.0843	1	7	0.1049	1	4	0.1359	1	2
	0.75 0.0251	1	94	0.0350	1	50	0.0508	1	23
	1.25 0.0418	1	35	0.0489	1	25	0.0567	1	18
	1.5 0.0701	1	11	0.0799	1	8	0.0896	1	6
	2	0.0962	1	5	0.1049	1	4	0.1169	1	3

Table 6 .

 6 ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0

	

Table 7 .

 7 ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0

	

Table 8 .

 8 ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0

	

Table 9 .

 9 ARL() and SDRL() values of the SSMGR CV-ME chart in the presence of measurement errors for various values of , 0

Table 10 .

 10 Phase-I and Phase-II datasets on the weight of scrap zinc alloy material in a die casting hot chamber process

				Phase-I				Phase-II	
	i	X	i	S	i	ˆi 	X	i	S	i	ˆi 
	1	292.6	2.701	0.0092	396.4	4.037	0.0102
	2	289.0	0.707	0.0024	393.2	1.923	0.0049
	3	291.4	2.073	0.0071	404.6	3.049	0.0075
	4	288.0	3.937	0.0137	396.0	2.449	0.0062
	5	290.0	0.707	0.0024	301.4	3.049	0.0101
	6	288.2	1.303	0.0045	295.4	1.816	0.0061
	7	535.4	8.264	0.0154	293.2	1.788	0.0061
	8	518.4	7.224	0.0139	297.4	2.190	0.0074
	9	529.2	9.203	0.0174	642.8	2.280	0.0035*
	10	527.0	9.591	0.0182	640.2	1.095	0.0017
	11	533.6	4.929	0.0092	650.4	3.435	0.0053
	12	439.2	3.114	0.0071	647.8	1.643	0.0025
	13	447.2	2.774	0.0062	646.0	2.345	0.0036
	14	443.4	8.173	0.0184	549.8	3.114	0.0057
	15	434.0	2.549	0.0059	522.6	10.310	0.0197
	16	436.0	1.224	0.0028	519.8	7.259	0.0140
	17	437.6	2.408	0.0055	518.8	8.927	0.0172
	18	419.6	4.037	0.0096	515.4	11.760	0.0228
	19	422.4	4.159	0.0098	550.4	15.678	0.0285
	20	416.8	3.962	0.0095	529.0	10.440	0.0197
	21	420.4	4.979	0.0118	526.8	9.602	0.0182
	22	421.6	2.302	0.0055	529.2	7.949	0.0150
	23	418.4	4.393	0.0105	521.8	7.981	0.0153
	24	410.4	4.219	0.0103	534.0	7.681	0.0144
	25	449.0	6.204	0.0138	525.0	5.656	0.0108
	26	441.6	3.781	0.0086	533.0	5.522	0.0104
	27	393.2	6.220	0.0158	287.8	3.114	0.0108
	28	401.8	1.483	0.0037	287.2	3.271	0.0114
	29	412.6	3.049	0.0074	289.8	1.095	0.0038
	30	461.4	7.700	0.0167	288.4	3.049	0.0106
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