
HAL Id: hal-03321669
https://hal.science/hal-03321669v1

Submitted on 17 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Data Aggregation for Privacy Protection of Data
Streams Between Autonomous IoT Networks

Renato Caminha Juaçaba Neto, Pascal Merindol, Fabrice Theoleyre

To cite this version:
Renato Caminha Juaçaba Neto, Pascal Merindol, Fabrice Theoleyre. Data Aggregation for Privacy
Protection of Data Streams Between Autonomous IoT Networks. Symposium on Computers and
Communications (ISCC), Sep 2021, Athènes, Greece. �hal-03321669�

https://hal.science/hal-03321669v1
https://hal.archives-ouvertes.fr

Data Aggregation for Privacy Protection of Data
Streams Between Autonomous IoT Networks

Renato Caminha Juacaba Neto, Pascal Merindol, Fabrice Theoleyre
ICube Laboratory

CNRS / University of Strasbourg
Email: caminha,merindol,theoleyre@unistra.fr

Abstract—Many IoT applications rely on data streams, flowing
from producers to consumers. Typically, Named Data Networking
has been designed to manipulate directly data chunks, and
is particularly relevant in IoT networks. However, in multi-
tenant networks, privacy is a major concern, and producers may
refuse to share the personal data they generate with non trusted
stakeholders. To guarantee k-anonymity, producers can require
their data to be aggregated with the one of other producers. We
propose here a routing scheme based on aggregation, relying on
a pub-sub approach. By appropriately constructing and querying
the set of offers, i.e. the list of data streams that are collected,
aggregated and transformed together, our routing aggregation
scheme provides a privacy aware large-scale interconnection,
where the consumer does not access directly to individual mea-
surements. Our performance evaluation highlights the flexibility
of our solution to accommodate a large set of queries, while still
respecting privacy.

I. INTRODUCTION

Applications like smart buildings typically involve a large
collection of sensors, possibly in a multi-owner environment.
Moreover, several applications may co-exist in the same build-
ing [1] or city, e.g., HVAC regulation, fire detection, intrusion
detection and so on.

Designing such systems in isolation leads to redundant
deployments which are not scalable as multiplying devices
increases deployment costs and reduces available radio band-
width for the network. For instance, occupancy sensors may
both be used to reduce heating in unoccupied rooms but also
to trigger an intruder alarm if no presence is expected. In
complex environment, we may envision splitting large-scale
infrastructures into small Internet of Things (IoT) networks
that share data with each other according to their own rules.

Adopting a data centric approach is common for such appli-
cations [2]. We have three distinct kinds of actors: consumers,
producers and brokers, each having possibly orthogonal inter-
ests with data at play. Producers create data by sensing the
environment, e.g., a smart home sensing temperature indoor,
room occupation and luminosity. Brokers are data forwarders
interconnecting the two former entities. For instance, an elec-
tricity provider may serve as broker between electricity sub-
scribers and big data companies, respecting privacy concerns
by anonymizing electricity measurements.

In complex scenarios, brokers will collect data from other
brokers, forming large chains of domains between consumers
and producers [3]. Smart Cities applications heavily rely on
data exchange: a company of taxis will for instance collect

the billing information, may use a real-time tracking system
to identify the congested areas in the city, and will share its
data with local authorities for urban planning [4].

We focus here on data exchanged in the form of data-
streams: a consumer subscribes to a flow of information, that
may transmitted either periodically or after a given event.
Streams include descriptive meta-data, such as geolocation,
location type and type of measurement, which consumers can
use to construct queries for data of interest [5]. For instance, a
big data company may subscribe to the electricity production
of smart homes that host a solar panel, to compute real-time
statistics for a specific region.

Aggregation functions may aid in saving bandwidth and
protecting sensitive data. For instance, averaging a group
of values will prevent the reconstruction of original values,
guaranteeing the k-anonymity property [6]. In particular, we
assume in this paper that each data producer specifies a
minimum level of aggregation for the data it produces. It forces
brokers to aggregate data-streams from several producers to
respect their privacy requirements.

However, in practice, the same data-stream may be adver-
tised via several paths. In a privacy aware framework, the
individual measurements are by definition aggregated together,
and it must be impossible to aggregate two streams that
have data in common. Thus, any forwarding node must be
able to detect overlapping streams, and should prevent their
aggregation. In this paper, we propose the set of principles
and rules to design such a framework: brokers construct and
aggregate streams from different producers while respecting
both a minimum aggregation requirement and the absence of
data overlaps; this leads to a difficult challenge.

The contributions of our paper are threefold:

1) Each router is able to publish aggregated data streams
among different IoT domains, creating novel privacy-
aware aggregated data-streams;

2) We rely on a pub/sub approach, and thus provide the
mechanisms to construct a reply, compliant with the
privacy requirements (e.g., k-anonymity);

3) We compare the aggregation capabilities of the proposed
scheme with a (naive) unsecured strategy (having no
in-network data processing for enabling privacy), that
collects data individually from producers and aggregates
it at the consumer.

1

II. RELATED WORK

Content Centric Networking approaches [2] are popular in
IoT: routers directly manipulate data interests, and adopt a
publish-subscribe approach. More recently, Named Function
Networking [7] was proposed to directly modify data inside
the network. Such paradigm could be extended to address data
aggregation in IoT networks.

To efficiently aggregate data from multiple producers and
consumers, while maximizing data reusability, Abbasian et
al. [8] propose to rely on a hierarchical structure. Data is
aggregated as close as possible to producers, at the first router
in common with two consumers.

Clustering is a popular technique: devices elect another
nearby device as cluster head (e.g., based on an energy metric),
that will act as a broker [8]. By reducing the number of
devices, the authors improve the scalability. Alternatively, we
may construct a global spanning tree, but unfortunately, such
structures often assume a centralized entity (or at least view),
requiring a global knowledge of the whole network [9]. This
single point of failure makes this option neither reliable nor
efficient enough for large scale deployment.

When data is exchanged in large-scale topologies, privacy
represents a major concern. In particular, relying on a cloud
infrastructure represents a single point of failure, and pushes
the control on an external entity. Homomorphic encryption
helps to not disclose private data [10], but is computationally
intensive, and some operations still require to download data
for local computations. Edge computing helps also to not
rely on a cloud [11], but data exchange is still an open
challenge in multi-owner topologies, without any direct trust
relationship. We aim rather to rely on a processing pipeline of
data streams [12], while still guaranteeing privacy.

III. PROBLEM STATEMENT & OBJECTIVE

We model relations between IoT domains using a directed
graph G(V,E), where V denotes the set of vertices (IoT
domains), and E the directed edges. An edge u → v exists
if domain u provides data to its peer v. Some vertices are
producers: they accept to send their measurements to their
peers (e.g., a group of electricity meters). Inversely, consumers
are interested in a set of measurements (e.g., the distribution of
electricity production from buildings in a given region). In the
middle, peers are brokers, and may forward data they receive
from their neighbors.

We model aggregated data as a multiset, denoted M =
(A,m) with A being its set of distinct elements and m the
multiplicity function (describing the number of occurrences of
each element). In the following, we define the sum operator
to aggregate data, such that (A1,m1)+(A2,m2) = (A′,m′)
with A′ = A1 ∪A2 and ∀x ∈ A′,m′(x) = m1(x) +m2(x).

Summing data enables anonymization. Using a transforma-
tion function f :M −→M allows for reducing data resolu-
tion and extracts relevant statistics with in-network processing
– increasing network efficiency and data confidentiality by
performing data manipulation within the network. We say that
f preserves the sum of bags if it holds: f(f(M1)+f(M2)) =

3

2

1

{1,2,3},2
11

{5},1
5

{4},2 4

{1,2,3},2
{4,5},2
{5},1

10

12

Broker

Producer

{1},2

{2},2

{3},2

{7,8},1

Peering link

{aggregation set}, min requirement

{1,2,3,6},4
{1,2,3},2
{4,5},2
{5},1

6
{6},4

Fig. 1: Announcements of data in a simple network topology.

f(M1+M2). Thus, whatever the order or the decomposition
of a sum, applying f first to the accumulated inputs or not has
no incidence on the output when applying f a second time.
This means that transformations and aggregation operations
can be executed (anywhere in the network and in any order)
without changing the final result.

In this work, we focus on privacy preserving aggregation
functions. Simplest examples are min, max or average, that
are basic statistical functions where the output, f((A,m)) =
(A′,m′), verifies |A′| = 1, i.e. f returns a single value v
with m′(v) =

∑
∀x∈A m(x). Note that it also works with any

discretization function relying on an arbitrary grain k ≥ 1 such
that |A′| = k.

Finally, producers specify its minimum requirement level
for its privacy [13]. Thus, the producer can be certain that its
individual measurements are not divulged to hosts apart from
its direct peers, and enables k-anonymity.

With all these elements, let us now expose the main chal-
lenge. Since the topology is meshed, multiple directed paths
may exist between any pair of vertices. Thus, a peer may
receive the same data through more than one path, leading to
intersecting offers. Since, by construction, such offers cannot
be dis-aggregated, this means that, the same data would be
exploited several times in the aggregation function if handled
blindly. Thus, our goal is here to propose a routing aggregation
scheme able to efficiently aggregate data offers, without
overlaps.

We adopt a data centric paradigm: producers announce the
data they produce, and consumers send interests to receive
relevant data [2]. Let us consider figure 1 illustrating the
announcement, or the so called offer. We represent producers,
generating data, and their peer brokers, forwarding their data
after aggregation.

IV. PUB-SUB BASED AGGREGATION

Our proposal revolves around connecting producers to
consumers via brokers verifying privacy requirements. Each
producer is in charge of announcing the streams it aims to
export, while brokers re-advertise such data-streams, after

2

aggregating them with as many other streams as required. We
call these advertisement ”offers”. Such an offer o consists in:

an aggregation set, AS(o), that represents the set of produc-
ers involved in the offer;

a given requirement level, r(o), that represents the mini-
mum level of aggregation required by involved producers.
An interest cannot ask for less sub-streams than this value
otherwise the specified privacy level is not enforced any-
more. It is worth noting that each individual requirement
must be verified anywhere in the data stream workflow.

In figure 1 that illustrates these principles, the producer 4 sends
an offer o to the broker 10 with the locally produced data, and
asks its peer to aggregate its measurement with at least another
value (r(o) ≥ 2) before forwarding its data.

We assume that each producer is uniquely identified by a
locally generated producer ID. These may be derived from
the hash of the network address, and the type of data. For the
sake of simplicity, we will use the vertex ID as the resulting
producer ID in the rest of the paper.

We also assume that each producer ID is associated with
some descriptive metadata. The metadata of a producer p is
denoted as meta(p). In the remaining of this paper we will
consider that nodes include this metadata in the offers they
distribute.

We make a distinction between two kinds of offers: input
offers correspond to those collected from the direct peers.
These input offers are stored in a local cache to construct
the offers that can be exported (and also used for replying
to queries); output offers are the input offers that already
respect their requirement plus any offer constructed from the
input offers. It represents the set of queries it can answer to.

For instance, the input offers {{5}, 1} and {{4}, 2} can be
merged together to respect the privacy constraint of producer
4. Thus, 10 needs to construct the output offer {{4, 5}, 2} to
respect this requirement. However, the input offer {{5}, 1} can
also be exported alone, unmodified.

Thanks to the indirect identification of producers, in our
example, broker 11 is able to detect the potential overlap
between the input offers {{1}, 2} and {{1, 2, 3, 6}, 4}. Indeed,
the producer 1 is present in both offers, and the two offers
cannot be merged together. Only the second offer respects the
privacy requirement, and can be re-exported unmodified. The
first offer has to be merged with another input offer to be
disseminated.

The number of valid output offers to construct and expose
can increase drastically: this combination problem is known
to be intractable for large instances. Thus, we propose here an
heuristic to define how to construct these output offers from
a collection of input offers, that respect the two following
properties:

P1: Respect the minimum requirement level of the input
offers;

P2: Forbid the aggregation of the same value twice.

Our scheme is based on:

Announcement step where all the nodes construct their out-
put offers, iteratively, from the input offers they receive;

Subscription step where a consumer constructs a query from
the set of input offers it received. This query is processed
step by step in the network, so that each routing node
computes an aggregated value from the value it received
from its peers.

A. Announcement step

Discovering data-streams announced by producers along
with their requirement levels is the first action that must take
place. Initially, each producer is able to create output offers
with the locally generated data. It also defines its minimum
requirement level for each of its streams.

A node must construct the output offers it will export to its
peers. In particular, the node has to respect the properties P1
(minimum privacy level). We make a distinction between:
Complete input offers (|AS(o)| ≥ r(o)): when an input

offer contains an aggregation set that is larger or equal to
the min requirement level (i.e., the max among producer
requirements involved in AS(o)), the node can safely
forward the offer as is. Indeed, any consumer receiving
this offer can query it as it is and may aggregate it with
other non redundant offers if it needs a larger sample of
streams;

Incomplete input offers (|AS(o)| < r(o)): some producers
may send their data with a minimum requirement level
strictly larger than the cardinality of their own output
offer. While we assume that these producers trust suf-
ficiently their peers to communicate directly their indi-
vidual data to them, they are not authorized to forward
their data without performing the required aggregation (to
comply with privacy concerns).

For complete offers, a query may ask any subset of the
aggregation set of an offer, provided that the minimum re-
quirement level is respected (the queried subset needs to be
larger than this value). An offer is redundant if all the queries
it can answer to can already been satisfied by other advertised
output offers. For that purpose, we define as Cval(o) all the
valid combinations of the aggregation set associated to an offer
o: Cval(o) = {S ⊆ AS(o) | |S| ≥ r(o) ∨ S = AS(o)}.
Typically, an offer o2 is redundant with another offer o1 if:
Cval(o1) ⊆ Cval(o2)

Algorithm 1 formally describes our proposition to construct
valid output offers from input offers. Each node executes this
algorithm when it receives novel input offers (either from a
peer, or produced locally). Basically, this novel input offer
may help to generate one or several output offers (possibly
turning some incomplete offers into complete ones), that will
be cached in the output offer store.

Algorithm 1 works in the following way:
1) we drop redundant offers when they do not enable new

combinations of producers (lines 1-3). These offers are
likely to have been propagated via a circuit.

2) the set of available combinations of producers (C∗) is
updated from the novel offers (line 4). This set corre-

3

Algorithm 1: Generating output streams from input
streams

Data: Input offers store O−, Previous output offers
O+

Result: Expanded output offers O+ if this is a novel
offer

1 foreach o ∈ O− do
// the offer is not redundant

2 if ∄o′ ∈ O+ | Cval(o) ⊆ Cval(o′) then
3 O+ ← O+ ∪ {o}
// All valid producer combinations

4 C∗ ←
⋃

o∈O+ Cval(o)
// Begin expanding offers incomplete offers

5 foreach o ∈ O+ | r(o) > |AS(o)| do
// Find sets of policy-compliant disjoint

combinations with the given incomplete

offer

6 foreach
C ′ ⊆ C∗ | AS(o) ∈ C ′∧

⋂
C ′ = ∅∧|

⋃
C ′| > r(o)

do
7 U ←

⋃
C ′

// New offer for disjoint combinations

8 O+ ← O+ ∪ {(U, |U |)}
// Only announce complete offers

9 O+ ← {o ∈ O+ | r(o) ≤ |AS(o)| ∨ o is local data}
10 return O+

sponds to all combinations of producers available via
offers created and received. In practice, computing this
set may be computationally expensive but can be reused
between executions of the algorithm.

3) it identifies incomplete offers to complete them if possible
(lines 5-8). Again, it has to be done without creating any
overlap in the aggregation set and has also to satisfy the
minimum requirement level.
Let us consider the conflict graph CG(V ′, E′) where the
vertices V ′ are the available combinations (V ′ = C∗)
and an edge exists if they do not intersect (E′ =
{(C,C ′)|∀C,C ′ ∈ V ′, C∩C ′ = ∅}). This problem is thus
equivalent to finding maximal cliques: all the offers in a
clique are pairwise independent. A valid clique contains
an aggregated set with a size at least equal to r(o) to
respect the minimum requirement level.
An exhaustive exploration is too expensive for large
instances of the problem. Thus, we propose rather an
heuristic: we stop the completion as soon as we construct
a given number of valid output offers. It is worth noting
that we may not succeed to construct a complete offer, be-
cause the minimum requirement level cannot be satisfied
by construction (e.g., the requirement can be too high
according to the underlying graph density). However,
when possible, novel input offers received later can help
to complete this failed offer.

Algorithm 2: Enabling streams to answer a consumer
request
Data: Output offers O+, Interest I(nProd, criteria)
Result: Producers IDs and set of corresponding

combinations to satisfy the interest I, or two
empty sets if the interest cannot be satisfied

// Producers that match requested metadata

1 Pavail ←
⋃

o∈O+ AS(o)
2 MP ← {p ∈ Pavail | criteria ∈ meta(p)}
3 if |MP | < nProd then
4 return (∅, ∅) // Not enough producers for I

// All the combinations from available offers

5 C∗ ←
⋃

o∈O+ Cval(o)
6 foreach C ′ ⊆ C∗ do

// Extract disjoint combinations of

producers in MP that match the

requirement I
7 I ←

⋂
C ′ ∧ U ←

⋃
C ′

8 if I = ∅ ∧ U ⊆MP ∧ |U | ≥ nProd then
9 return (U,C ′)

10 return (∅, ∅) // No matching was found

4) all complete offers plus local offers are finally announced
to peers (line 9).

In figure 1, node 10 receives a complete offer from 5 (the
minimum requirement level equal to 1 is respected). So, it is
directly copied as an output offers. However, the offer from 4
is incomplete. Typically, it can be merged with the offer of 5
to form a complete offer ({{4,5}, 2}).

B. Subscription plane

After the offers have been constructed and disseminated
after the aggregation (alg. 1), consumers can start subscribing
to their interest(s). For this purpose, a consumer needs to select
the relevant producers by using their metadata. Then, it must
identify a subset of brokers and producers to ask for. More
precisely, it constructs a set of input offers that match its query,
respecting each requirement level. Finally, a consumer is able
to generate a set of interest packets to trigger the subscription:
one interest packet per input offer. It is worth noting that each
node in the network proceeds in a similar way when it receives
an interest.

Replies are constructed and aggregated hop by hop instead
of by consumers. Consumers receive the aggregated value, and
not the individual measurements.

Algorithm 2 describes how to construct an interest from a
collection of input offers:

1) the node identifies all producers (MP) that match the
metadata criteria defined in the interest I (lines 1 and 2);

2) if the number of matching producers is too low, we must
discard the interest (line 3) as we are certain that no reply
can be generated;

4

3) we compute all the available combinations of available
offers (line 5);

4) we search for a set of combinations that respects the
following conditions (line 8):

a) it results in a valid aggregation by having an empty
intersection;

b) it only uses combinations of producers that match the
metadata criteria of I;

c) the number of producers is enough to satisfy the
interest I.

Similarly to the creation of new offers in Algo 1, finding the
combination of offers that maximizes the number of producers
to answer an interest is intractable for large instances. So,
we first select offers that can be used to answer the given
request, i.e., |AS(o) ∩ MP | ≥ r(o) for complete offers
and AS(o) ⊆ MP for incomplete offers. Then, instead of
checking all combinations, we rather consider it as a starting
point and try to merge it with the complement of the others.
We finally keep the best combination of producers.

If an interest can be satisfied, the algorithm returns a set of
producers that match the interest (U) in addition to the set of
combinations to be acquired (C ′). Thus, the node can construct
one interest per peer (i.e., neighbor), to retrieve the necessary
aggregation of data from these producers. Then, each peer will
receive a novel (sub-)interest for the combinations found.

Consider that in figure 1, vertex 12 received an interest, and
its metadata matches producers 2, 3 and 4. While consumer
12 can use the offer ({1, 2, 3}, 2) received from 10 (asking
only for 2, 3), it cannot use the offer ({4, 5}, 2). Indeed, the
data produced by 4 must be aggregated with those of 5, but
producer 5 does not match the interest. Thus, 4 cannot be
retrieved alone.

V. EVALUATION

We detail here our performance evaluation: we quantify
the efficiency of our solution to aggregate offers that satisfy
queries while still respecting the privacy requirements.

A. Evaluation setup

We generate directed graphs with 65 producers and 15
brokers. The broker vertices form a core structure with random
edges among them, following the Erdos-Renyi model with
edge probability of 30%. Producers connect to the network
of brokers via 3 edges to random brokers. We generate graphs
in this manner until we reach 30 weakly connected graphs.
For the sake of simplicity, we assume that vertices exchange
offers synchronously, i.e. instantly at each round.

At each round, we execute algorithm 1 to construct the
offers iteratively. After a given number of rounds, we generate
50 interests per consumer. To model the selectivity of the
interests (their metadata of interest), we select randomly a
subset of the existing producers that match the interest. A
random vertex is picked for each interest and this vertex will
dispatch it into the network.

We evaluate the ability of our solution to reduce the network
load thanks to aggregation [13]. In particular, we rely on the

TABLE I: Evaluation parameters

Global parameters Value

Broker vertices 15
Producer vertices 65

Edge probability between brokers 30%
Number of brokers per producer 3

Number of graphs generated 30
Number of interests issued in each graph 50

Other parameters for Fig. 2 Value

Aggregation requirement 10
Producers requested per interest 40%

Other parameters for Fig. 3 Value

Number of message exchange rounds 10
Offer creation limit 10

3 5 7 10
Number of message exchange rounds

20

40

60

80

100

N
or

m
al

iz
ed

 re
pl

y
da

ta
se

t s
iz

e
(%

)

Offer creation limit
10 15 20

Fig. 2: Conversion analysis

normalized reply dataset size, that measures the number
of matching producers collectable via available offers. This
number is normalized by the number of connected producers,
i.e., those which a unaggregated naive collection scheme,
i.e. with no privacy, is able to collect. In other words, we
evaluate the cost of guaranteeing privacy via aggregation.
The unaggregated solution relies on an independent collection
of unmodified individual data streams transformed at the
consumers.

B. Result discussion

We first measure the convergence time of our algorithm
by measuring the normalized dataset size after a variable
number of rounds (fig. 2). We can note that our scheme
converges very quickly: only a few rounds are required to
reach stability. We can conclude that creating all possible
combinations of novel offers in algorithm 1 is not necessary.
It is worth noting that we don’t reach 100% since some
producers cannot be disseminated in the network because they
are in too sparse regions: no vertex can respect the minimum

5

25.0 40.0 55.0 70.0
Producers that match the interest's criteria (%)

0

20

40

60

80

100

N
or

m
al

iz
ed

 re
pl

y
da

ta
se

t s
iz

e
(%

)
Aggregation requirement

8 10 12

Fig. 3: Aggregation capacity

aggregation requirement, and the metadata of the interests are
too selective.

Then, we evaluate the ability of our proposition to deal with
complex queries, when only one part of the producers can
reply to a query (Figure 3). When most of the producers can
reply to a query (that is when a query matches 70% ore more
of the overall dataset), and if the aggregation requirement is
reasonable (8), close to 100% of such requests can be satisfied
regarding a scheme without any privacy. Even with more strict
aggregation requirements (10 or even 12), we can retrieve the
data from more than 50% of the producers.

We also measure the efficiency when the query becomes
more selective: only a subset of producers have matching
metadata. Obviously, selective queries are increasing the com-
plexity: the producers are more sparsely distributed in the
topology. In particular, the data of some of the producers
cannot be aggregated to respect the requirement level. At
worst, when the selectivity is equal to 25%, we are only able to
use the data generated by 20% of the producers. The more they
are matching producers, and the less restrictive the requests
are, the more our solution handles the privacy requirements of
offers efficiently.

VI. CONCLUSIONS

We presented here an adaptative routing scheme exposing
and collecting data streams generated by multiple IoT produc-
ers. By aggregating different data streams within the network,
our scheme guarantees privacy and anonymity. Our proposition
relies on a pub-sub paradigm: each device announces the data
streams it can export. It piggybacks the unsorted list of related
producers, as well as their metadata. We propose a heuristic
to expose novel offers that can be generated with those that
are received as input. In particular, our announcement scheme
constructs aggregations in a distributed manner while avoiding
data redundancy. On the other hand, our subscription scheme
tries to identify the offers matching a given interest. Our
performance evaluation illustrates the efficiency and the limits
of our solution to aggregate different offers within the network

in order to enable privacy, i.e., consumers do not have direct
access to raw individual measurements.

For future work, we expect to propose security mechanisms
such that producers can verify that their data is correctly
aggregated. Indeed, a consumer may currently attack the in-
frastructure by generating different interests, with data coming
from overlapping producers. Then, the attacker may apply
the Gauss-Jordan elimination method to recover individual
measurements. Thus, we need a method to detect overlapping
interests to keep on providing globally privacy efficient data-
streams. We wish to also explore heuristics based on differen-
tial privacy [14].

ACKNOWLEDGMENT

This work was supported by the French National Research
Agency (ANR) project Nano-Net under contract ANR-18-
CE25-0003.

REFERENCES
[1] C. K. Metallidou, K. E. Psannis, and E. A. Egyptiadou, “Energy

efficiency in smart buildings: Iot approaches,” IEEE Access, vol. 8, pp.
63 679–63 699, 2020.

[2] L. Zhang, A. Afanasyev, J. Burke, V. Jacobson, K. Claffy, P. Crowley,
C. Papadopoulos, L. Wang, and B. Zhang, “Named data networking,”
ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, pp.
66–73, jul 2014.

[3] D. Eckhoff and I. Wagner, “Privacy in the Smart City—Applications,
Technologies, Challenges, and Solutions,” IEEE Communications Sur-
veys & Tutorials, vol. 20, no. 1, pp. 489–516, 2018.

[4] R. Caminha Juaçaba Neto, P. Merindol, A. Gallais, and F. Theoleyre,
“Scalability of LPWAN for Smart City Applications,” in International
Wireless Communications and Mobile Computing Conference (IWCMC),
2021.

[5] P. Desai, A. Sheth, and P. Anantharam, “Semantic Gateway as a Service
Architecture for IoT Interoperability,” in IEEE ICMS, vol. 32, no. 2.
IEEE, jun 2015, pp. 313–319.

[6] L. Sweeney, “k-Anonymity: a Model for Protecting Privacy,” Interna-
tional Journal of Uncertainty, Fuzziness and Knowledge-Based Systems,
vol. 10, no. 05, pp. 557–570, oct 2002.

[7] M. Król and I. Psaras, “Nfaas: Named function as a service,” in ACM
ICN. Association for Computing Machinery, 2017, pp. 134–144.

[8] S. Abbasian Dehkordi, K. Farajzadeh, J. Rezazadeh, R. Farahbakhsh,
K. Sandrasegaran, and M. Abbasian Dehkordi, “A survey on data
aggregation techniques in IoT sensor networks,” Wireless Networks,
vol. 26, no. 2, pp. 1243–1263, feb 2020.

[9] S. L. Fernando and A. Sebastian, “Iot: Smart homeusing zigbee cluster-
ing minimum spanning tree and particle swarm optimization (mst-pso),”
International Journal of Information Technology (IJIT), vol. 3, no. 3,
2017.

[10] M. M. Potey, C. Dhote, and D. H. Sharma, “Homomorphic encryption
for security of cloud data,” Procedia Computer Science, vol. 79, pp.
175–181, 2016.

[11] J. Zhang, Y. Zhao, J. Wu, and B. Chen, “LVPDA: A Lightweight
and Verifiable Privacy-Preserving Data Aggregation Scheme for Edge-
Enabled IoT,” IEEE Internet of Things Journal, vol. 7, no. 5, pp. 4016–
4027, 2020.

[12] E. G. Renart, J. Diaz-Montes, and M. Parashar, “Data-driven stream
processing at the edge,” in IEEE ICFEC, 2017, pp. 31–40.

[13] R. J. Neto, P. Merindol, and F. Theoleyre, “Transformation based routing
overlay for privacy and reusability in multi-domain iot,” in NCA. IEEE,
2020.

[14] C. Dwork, “Differential privacy,” in International Colloquium on Au-
tomata, Languages, and Programming. Springer, 2006, pp. 1–12.

6

