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7 Abstract Equilibrium chemistry computations and reactive 

8 transport modelling require the intensive use of a linear 

9 solver under very specific conditions. The systems to be 

10 solved are small or very small (4 ×4 to 20 ×20, occasionally 

11 larger) and are very ill-conditioned (condition number up to 

12 10100). These specific conditions have never been investi- 

13 gated in terms of the robustness, accuracy, and efficiency of 

14 the linear solver. In this work, we present the specificity of 

15 the linear system to be solved. Several direct and iterative 

16 solvers are compared using a panel of chemical systems, 

17 including or excluding the formation of mineral species. We 

18 show that direct and iterative solvers can be used for these 

19 problems and propose computational keys to improve the 

20 chemical solvers. 

 

21 Keywords Geochemical modelling ·Instantaneous 

to address this issue. One of these tools, reactive trans- 28 

port models, was first limited to laboratory experiments 29and 

was then extended to field problem comprehension. In 30 recent 

decades, reactive transport models have increased in 31 

complexity and efficiency, and they are now used in many 32 

fields. Reactive transport models have been used to study 33 the 

transport of contaminants, such as heavy metals [1, 2] 34 and 

radioelements [3–5]. Because of the increasing inter- 35 est in 

questions related to climate change, many studies 36on reactive 

transport have been conducted to examine the 37 possibility of 

geologic CO2 sequestration [6–10]. 38 

Under the wide variety of models and cases lies a com-    39 

mon mathematical description [11–13]. Transport is usually 40 

described by an advection-dispersion equation, and the 41 

chemistry is formulated under thermodynamic equilibrium. 42 

A widely used approach to solve these reactive transport 43 

22 equilibrium chemistry ·Linear system inversion ·Linear problems is the operator splitting approach [14]. Using this 44 

23 solver ·Small matrix ·Ill-conditioned matrix · approach, the transport and chemical operators are solved 45 

24 Newton-Raphson algorithm 

 

 

25 1 Introduction 

 
26 The problem of groundwater management is receiving 

27 increasing attention, and many tools have been developed 

 

 
   Jérôme Carrayrou 

jerome.carrayrou@unistra.fr 

 
1 CNRS, ENGEES, LHyGeS UMR 7517, Universite´ de 

Strasbourg, 67000 Strasbourg, France 

 

Q1 
2 Ecole  Supérieure  des  Ingénieur  de  l’Equipement  Rural  de 

Medjez el Bab, University of Jendouba, Jendouba, Tunisia 

separately at each time step and iteratively for some for- 46 

mulations. As a consequence, the chemistry operator has to 47 

be solved at least once per mesh cell per time step. This 48 

is one reason for the high computational cost of reactive 49 

transport modelling. Some authors have reported that 80 50 

to 90 % of the computation time is dedicated to chem- 51 

ical computation. Many studies have been conducted to 52 

reduce the computation time required by reactive transport 53 

modelling [15]. Some works have explored paralleliza- 54 

tion [16], while others have focused on the methods used 55 

to solve the transport operator. Nevertheless, improving 56 

the resolution of the chemistry operator has been iden- 57 

tified as a key point. Some authors have attempted to 58 

improve the classic Newton-Raphson method [17], while 59 

others have tested other methods, such as Newton-Krylov 60 

[16, 18]. 61 
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62 In this work, we focus on a specific element of the 

63 problem, improving the resolution of the linearized sys- 

64 tem provided by the Newton-Raphson method. Looking to 

65 numerical methods to solve linear systems is not currently 

66 a common practice. Indeed, these methods are actually well 

67 known [19–23], and all mathematical packages for scien- 

68 tific computation propose several routines for this task. The 

69 motivation of this work comes from the specificity of lin- 

70 ear systems that have to be solved for equilibrium chemistry 

71 computations. Classic tests for the resolution of linear sys- 

72 tems [24–30] are performed using systems provided by 

73 finite element or finite volume discretization, leading to 

74 matrices that  are large  (at  least 10,000 unknowns) and 

75 sparse. Moreover, even when ill-conditioned systems have 

76 been studied [25, 30, 31], the conditioning of the matrix 

77 coming from the chemical system is specific, as under- 

78 lined by Hoffmann et al. [32]. For example, Soleymani [33] 

79 worked with an ill-conditioned system constructed from 10 

80 ×10 to 20 ×20 Hilbert matrices. The condition numbers then 
81 range from 3.5 ×1013 to 6.2 ×1028. In this work, we present 

by comparing the calculated solution to a reference 114 

solution. 115 

Because we utilize a markedly small matrix, we did not test 116 

parallelization. All the computations were performed on a 117 

PC running Windows with 64-bit Fortran 95. Real variables 118 

are defined as double-precision real. We prefer double- 119 

precision computations because all the chemical codes are, 120 

to the best of our knowledge, written as double-precision 121 

real and because quadruple-precision computation is much 122 

more time consuming. Nevertheless, we have tested one 123 

method using quadruple-precision real to determine whether 124 

this development could be useful. Reference solutions are 125 

also computed using quadruple precision. 126 

We first present the formulation of the equations describ- 127 

ing equilibrium reactions and how they are solved using the 128 

Newton-Raphson method. This point defines the Jacobian 129 

linear system, which is the object of this work. A second 130 

part is devoted to the presentation of the chemical tests and 131 
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82 chemical tests leading to a 7 ×7 matrix with a condition 
83 number of approximately 10180. 
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We expect to find a method to increase the efficiency of a 

speciation or reactive transport code. Several properties are 

required for such a method: 

(i) This method should be fast, as the linear system will 

be solved very often. In the case of reactive transport 

modelling, the system will be solved at least once per 

mesh cell per time step. 

(ii) The method should be very robust. It should be able to 

solve the linear system even if it is very poorly condi- 

tioned. Because the resolution of the linear system is 

only part of an iterative Newton step, an accurate solu- 

tion is not absolutely needed. Thus , some advanced 

codes (e.g. Linear Algebra Package (LAPACK) rou- 

tine) that check the accuracy of the solution and return 

an error flag instead of an inaccurate solution are, in 

this work, less robust than the more rustic routines. 

(iii) The method should be able to detect failure and return 

an error flag to the main program so that a recov- 

ery procedure can be initiated. In the case of reac- tive 

transport modelling, this procedure could involve 

rejecting the current time step and recomputing with 

a smaller one. 

(iv) In the initial analysis, the precision of the method is 

not the key point. Because the linear system resolu- 

tion is only a part of the Newton-Raphson iterative 

procedure, reasonable error is acceptable for the lin- 

ear system inversion. If this error is too large, it will 

slow the convergence speed for the Newton-Raphson 

method and decrease the efficiency of the reactive 

transport code. In this work, errors are estimated 

135 

discussed. Based on this analysis, we propose an algorithm 136 to 

optimize the chemical computation in terms of robust- 137 ness, 

accuracy, and efficiency. This algorithm is evaluated 138 on the 

most selective test. By expanding the limits of the 139 currently 

used methods, we believe that our new algorithm 140 will 

contribute to enlarging the field of application of reac- 141 tive 

transport modelling. As a conclusion, we underline the 142 main 

advances of this work, the new perspectives and the 143 remaining 

obstacles. 144 

2 Material and methods 145 

2.1 Geochemical modelling 146 

One efficient formulation for the computation of thermody- 147 

namic equilibrium is based on the tableau concept, referred 148 

to as Morel’s table [34, 35]. NX  components (Xj ) are cho- 149 

sen from the NC   species (Ci) and are used to write the 150 

formation of each species as a combination of the com- 151 

ponents. The mass action law for the formation of the Ci 152 

species is written with the equilibrium constant (Ki) and the 153 

stoichiometric coefficients (ai,k) for each component (Xk) 154 

 

.Nx 

{Ci } = Ki {Xk }ai,k (1) 

k=1 

where  {Ci } and  {Xk } are  the  activities  of  species  Ci   and  155 

component Xk, respectively. In this work, we define Xj as a 156 

subset of Ci; then, NX is NC minus the number of reactions. 157 
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ric coefficients (api,k). The saturation index (SIi) of Cpi is 

equal to its activity, which is unity for a pure solid phase 

 

 

 

 
{Ci } = γi  [Ci ] and X 

 
 
 

} 
j j j 

 
 
 

 
(4) 

 

 

 

 
163 

.Nx 

SIi  = Kpi {Xk}api,k  = 1 (2) 

k=1 

The conservation of the total concentration [Tj ] of the j th 

By substituting the mass action law (1) into the mass conser- 175 

vation equation (3), the following relationship, which only 176 

depends on the components and the precipitated species 177 

concentrations, is obtained: 178 

164 component in the system is then written as NC Ki    
NX NCP 

Tj = 

 
NC 

ai,j · [Ci] + 
i=1 

 
NCP 

 

i=1 

 

api,j  · [Cpi] (3) 

Tj = 
 
 
i=1 

ai,j · · 
γi     

k=1 

(γk [Xk])ai,k   + api,j ·[Cpi ] 

i=1 

(5) 

+ 

165 

166 

167 

168 

169 

170 

171 

where [Ci] is the concentration of species (Ci) and [Cpi] is 

the amount of precipitated species (Cpi) per liquid volume 

unit. 

A classic algorithm [17, 36–41] to describe mineral pre- 

cipitation or dissolution makes an a priori hypothesis about 

the existence or non-existence of minerals. In this work, we 

assume that this hypothesis is proposed. The relationships 

Combining Eqs. 2 and 5 leads to a set of (NX NCP ) non- 179 linear 

algebraic equations, which can be numerically solved 180through 

iterative methods. The concentrations of component 181[Xk] and 

precipitated species [Cpi] at equilibrium are then 182 determined 

when the (NX         NCP ) objective functions (Yj )     183 are zero184 

+ 

 
NC 

i 

Y = −T + 
. 

· K
γi

 
.X 

· N [ ] a + 
N.CP 

· [ ]  for = 1 to 

 
i=1 

ai,j  
NX

 

. 
 

k=1 

(γk Xk ) i,k i=1 api,j Cpi j NX (6) 

Yj=NX +i  = −1 + Kpi  · (γk [Xk])api,k for i = 1 to NCP 

k=1 
 

 
185 Using this method, it is possible to include many chemi- 

 
According to the criteria typically used for this method 

 

189 
190 

186 cal phenomena, including activity corrections, sorption on a [17, 34, 40, 42], the convergence of the Newton-Raphson 191 

187 surface using different means (such as ion exchange or sur- method is not checked with respect to the norm of the 192 

188 face complexation), and dissolution of gaseous compounds. objective function ||Y ||, but the relative error defined as 193 

 

⎡⎛ 

NRrelative error = max ⎢ 

⎞ 
  . .  

. . 

 
,  .Yj . ≤ εN−R with εN−R  = 10−12 (7) 

⎢⎜  
. . 

Yj 
. 
⎟ . . 

⎥ 

⎣⎝ 

.Tj . + 

.N c  . 

.ai,j [Ci]. 
i=1 

⎠ 

 

 
j =1,Nx 

j =Nx+1,Nx+NcP  
⎦
 

 
 

200 

194 The value of the convergence criterion (εN−R   = 10−12) is formulation has some weaknesses that are explained later 201 Q4 
 

195 

 

196 

 

197 

198 

199 

set according to usual practice. 

 
2.2 The Newton-Raphson method 

 
The historical approach [12, 34, 37, 40, 42–47] involvesthe resolution 

 

158 If NCP -precipitated species (Cpi) are taken into account, 

 

between the activity and concentration are given by activity 
 

172 

159 the mass action law for the precipitation of Cpi is written coefficients (γi) calculated using specific models (Davies, 173 

160 with the precipitation constant (Kpi) and the stoichiomet- Debye-Hückel, etc.) 174 
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using 

[Xk] 

and 

[Cpi] 

as 

prim 

ary 

unkn 

owns 

. 

This 

(see Section 

3.1). 

 
202 

However, many authors [18, 32, 38, 39, 48] have 

pro- 203 posed an alternative approach. Instead of 

using the com- 204 ponent concentrations   Xj    as 

the primary variables, they 205 

use the logarithm of the component activities ( } 
ln   Xj    ). According to this convention, the objective 
func-  207 

tions defined by Eq. 8 become conservation 

equations 

 
208 

Comput Geosci 

 

 

 

 

 

 

 

 

ξ = 206j 

 

 
 

 

Q3 

Yj  = − Tj 

NC 

+ 

i=1 

Ki 

ai,j · γi
 

 

· exp 

Nx 

k=1 

ai,k · ξk 

NCP 

+ 

i=1 

 

api,j  · [Cpi]  for  j = 1 to NX (8) 
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j 

. 

 

209 In the case of the objective function describing precipitation, 

210 it is more interesting to rewrite the mass action law (2) in 

211 log form and then define the objective function 

 
Nx 

YNx+i   = ln (SIi) =ln (Kpi) + api,k · ξkfor i = 1to NCP 

k=1 

(9) 

212 Equations 8 and 9 are solved at the nth iteration with the 

213 Jacobian matrix (Zn) of the objective functions 

. Zn   .j  = 1, N   + N 
∂Yn = [    n        

 

(i) The gallic acid test case was presented by Bras- 240sard 

and Bodurtha [49]. It has been recognized as a 
j,k X CP 

k = 1, NX 

∂ ξk ] 

n (10) 

241 

challenging test for speciation computation [17] (see 242 

 

Zn . = 
∂Yj Appendix 1 (1)). 243 

j,k j  = 1, NX + NCP 
∂ Cpk−N 

n 

(ii)   The Valocchi test is from Valocchi et al. [11]. It 
244 

X 

 
 

214  

 

215  

216  

k  = NX  + 1, NX  + NCP 

Zn can be calculated in two ways. 

(i) Using an analytical computation, we obtain the (NX + 

NCP ) ×(NX + NCP ) values of Zn by 

involves calcium and magnesium ion exchange (see 245 

Appendix 1 (2)). 246 

(iii) The pyrite test case describes the dissolution of a 247 

pyrite rock in pure water. It has been used to test spe- 248 

ciation algorithms [17]. Because it involves redox 249 

reactions, the stoichiometric coefficients cover a 250 
wide range, and the equilibrium constants vary over 251 

Zn . j,k j =, NX 

NC 

= ai,j · ai,k · [Ci ] n several orders of magnitude. This test is used under 252 

1j,k . k  = 1, NX 
i=1 = ap k−NX,j 

Appendix 1 (3)). 254 
the assumption that no mineral phase is present (see 253 

(iv) The MoMaS easy test is the chemical system used 255 

Zn 

n 
j,k 

j  = 1, NX 

 

k  = NX  + 1, NX  + NCP 

. 
j  = NX  + 1, NX  + NCP 

 
 
 

= apk,j −NX 

 
 

(11) for the reactive transport benchmark of MoMaS at 256 

the easy level [50]. It has been specifically developed 257 
to magnify numerical difficulties in a small system 

 

n . Z j = N 

 
k = 1, NX 

+ 1 

258 

(see Appendix 1 (4)). 259 
(v) The Morel-Morgan test is the first large chemical 260 

217  

j,k 

229 

X , NX  + NCP    = 0 

k  = NX  + 1, NX  + NCP 

Even   if   the   activity   coefficients   depend   on the compo- nent 

218  230 concentrations, they are assumed to be constant during the Newton- 

219 Raphson procedure. These activity coefficientsare usually actualized by a 

220 fixed-point algorithm at each Newton-Raphson loop. 

221 The progress step of the method (∆ξ n, ∆Cpn) is achieved by assuming 

222 that the objective function Yn+1 inEq. 12 is equal to zero at the (n 1)th 

223 + iteration. This pro-duces the key equation of this article, the linear system 

224 

225 

226 

 

 

 
227 

(12) ,which must be solved to obtain the progress step 

Zn ·  ∆ξn, ∆Cpn   = Yn+1 − Yn = −Yn (12) 

This system yields the values of the component activitiesand 

precipitate concentrations at the (n + 1)th iteration 

ξn+1 = ξn + ∆ξn 
228 

[Cp]n+1 = [Cp]n + ∆Cpn 
(13)  

To simplify the notations, ξ is used to denote the full vectorof unknowns, 

Z 

2.3 Chemical test cases 231  

We choose chemical test cases with various numbers of 
 

232 
 

components. Some of these chemical systems allow the for- 233  

mation of mineral species. Although it is not realistic from 234  

a chemical point of view, we test them without minerals and 235  

with the maximal possible number of minerals to obtain the 236  

largest matrix size. Appendix 1 presents the stoichiometric 237 Q5 

coefficients, equilibrium constants, and concentrations for 238  

these tests. 239  
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mine 

ral 

Cp if 
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nt. 

Istyste2m61 reported  in  the  computational  literature. 

was used by F. Morel and M. Morgan in 

1972 to 262 present the capacities of the 

computational method 263 they had just 

developed (and which we still use 264 

today). This test includes 52 components 

(H+, 20 265 

metals, and 31 ligands), leading to 781 aqueous 
266 

species (see Appendix 1 

(5)). 

 
267 

(vi) The MoMaS medium test is the chemical system for 
268 

the medium level of the MoMaS reactive transport 
269 

benchmark [50] (see Appendix 1 

(6)). 

 
270 

(vii) The Fe-Cr test is an additional redox test that 
271 

describes the redox reactions between iron and 
272 

chromium. These types of reactions occur when 
273 

iron reactive barriers are used to treat 

chromium- 274 contaminated sites [51, 52]. 

In this case, we con- 275 sider only the 

aqueous phase without minerals (see 276 

Appendix 1 

(7)). 

 
277 

(viii) The pyrite mineral test describes the dissolution 

of 278 

a pyrite rock in pure water. We assume that three 

Comput Geosci 

27 
9 

possible mineral phases are present (see Appendix 1 
28 

0 

(8)). 
28 

1 
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1 RT {O } H 

 

 

282 (ix) The MoMaS hard test is the equilibrium part of the 

 

The condition number of Z is defined [23] as the product of 
 

323 

283 chemical system described in the hard level of the the norm of the matrix per the norm of the inverse matrix 324 

284 MoMaS reactive transport benchmark. It allows for (17) 325 
 

285 

286 

the formation of two mineral species (see Appendix 

1 (9)). 
cond (Z) = ǁZǁ1 × ¨Z−1¨ (17) 

1 

287 

288 

289 

290 

(x) The Fe-Cr mineral test describes the redox reaction 

between iron and chromium. We assume the forma- 

tion of three different mineral phases (see Appendix 

1 (10)). 

To test the numerical methods, we first evaluate the compu- 326 

tation time (CPU time) required to solve the linear system. 327 

Because we work with a very small matrix, the computa- 328 tions 

are very fast and we run the same calculation several 329 times to 

obtain a total computing time of approximately 1 330 

291 2.4 Test procedure s. The CPU time is given in this work in units of seconds 331 

 per computation (by dividing the total computing time by 332 

292 Equation 11 shows that we can obtain multiple linear sys- the number of runs). According to this method, the global 333 

293 tems from one chemical problem by changing the activity computing time for one test case is approximately 6 days. 334 

294 values of the components. For each chemical system, we Many numerical methods, including a failure indicator, 335 

295 select three components and vary their values over a wide which indicates the success or failure of the resolution, have 336 

296 range. The concentrations of all minerals are arbitrarily set been developed. If needed, we include a failure indicator. 337 

297 to 10−3 mol L−1. The activity of component H+ is varied As failure, we include the crash of the method, underflow 338 

298 from 10−12 to 10−2 mol L−1 (pH = 12 to pH = 2), while or overflow, non-convergence within the maximum number 339 

299 

300 

301 

that of component e− is varied from 10−19 to 1012, corre- 

sponding to Eh 
=

0
−
.7 to 1.1 V computed using Eq. 14 at25 

◦C 

of iterations (for iterative methods), or excessive inaccu- 340 racy 

for some advanced methods (LAPACK routines) that 341 estimate 
the accuracy of the proposed solution. 342 

Solving a linear system (13) using a numerical method 343 

Eh = ln   e−
} RT 

(14) produces an approximate solution ( 
F 

dξmethod ), and the ref- 344 

 
 

302 

303 

304 

305 

306 

307 

308 

 
where T is the temperature (Kelvin), R is the gas constant 

(8.314 J K mol−1), and F is the Faraday constant (96,487 

C mol−1). This range of electrical potential corresponds to 

the stability of water at pH values between 2 and 12. For the 

O2 component, it is not possible to cover the same poten- 

tial range as e− because of the computation of the reference 

solution. The activity is varied from 10−70 to 104, as com- 

erence method gives (dξref) with accuracy on the same 345 order 

as the roundoff error. To evaluate the accuracy of the 346 

approximate solution, two quantities can be calculated: 347 

1.   The relative error on the norm, ErrNorm, is obtained by 348 

computing the norm of the approximate and reference 349 

solution (18) 350 

309 

310 

puted using Eq. 15 at 25 ◦C with E0 = 1.23 V and pH 

varying from 2 to 12. The potential is then varied from −0.5 
Err Norm = 

|ǁdξmethodǁ − ǁdξrefǁ| 
ǁdξrefǁ 

(18) 

 
311 to 1.1 V 

+
}4 

Eh = E0 + × ln 2
 

 

 

 
(15) 

 
1. The error on the direction is given by anglemethod , the 351 angle 

(degrees) between the reference and the approx- 352 imate 

solution calculated using the scalar product of 353 

4 F {H2O} these two vectors 354 

312 

313 

The activities of the other components vary from 10−12 to 

10−1 mol L−1. For each of the three selected components, angle = 360 Arc cos dξmethod · dξref  (19) 

314 we compute 30 values equally distributed on a log scale over method 2π ǁdξmethodǁ · ǁdξrefǁ 

the chosen range, leading to 29,791 different linear systems for each 

chemical test case. For each of these 29,791 tests, we make only one linear 

solver (or one Newton step) (exceptin the last section, Section 4, where the 

iterative Newton method is performed to solve the non-linear system given 

315 319 

316 320 

317 321 

318 322 
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norm 

used 

in 
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work 

is the 

1 

norm 

, 

defin 

ed as 

[23] 

All of these quantities, namely the failure indicator, 

relative 355error on the norm, anglemethod, and CPU 

time, are calculated 356for the 29,791 linear systems 

built from each chemical test 357 case for all the 

tested methods. This enormous amount of  35|8|−da||ta 

is aggregated in two 

ways: 

 
359 

(i) For each chemical system and each method, we 

com- 
360 

pute the mean of each 

quantity. 

 
361 

(ii) For each chemical system and each method, the 

inter- 
362 

val of the condition number is discretized into 

100 

Comput Geosci 

 

363 . . ǁZǁ1 =n max Zi,j (16) 

.
reg1≤ulja≤rnsubintervals. For each subinterval, we compute 364 

the mean of each quantity. 365 

. 

i=1 
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 ̃
with Z 

 

 

 

 

 

 

 

 

 
k be the equilibrated Jacobian matrix at iteration k, 

= Z. 

 

 

 

 

 

 

 

 

 
actual developments in speciation codes involve the use of 414 

large chemical databases [39, 58, 59], leading to an increase 415in 

375 These authors defined rk as the vector formed by the ith the size of the chemical systems. The use of iterative 416 

k 
i 

methods is also studied in this work. 417 

376 row of Z̃   and ck  as the vector formed by the ith column. We  select  some  direct  and  iterative  solvers  according  418 

377 The preconditioning matrices Rk and Ck are then defined by 
to the properties of the linear systems and the speciation

 

⎛ 

Rk = diag⎜ 

⎞ 

   1 
⎟

 

⎛ 

and Ck = diag ⎜ 

⎞ 

   1 
⎟

 
 

 

419 

computation methods currently in use (Table 1). 420 Q6 

For the direct method, we select LU decomposition [60] 421 

 

 

 
378  

⎝,  ⎠ 
¨rk ̈   

i=1,Nx+NcP 

⎝ , ⎠ 
¨ k¨ 

i   ∞    i=1,Nx+NcP 

(20) 

because it was originally used for speciation computa- 422 tions 

by Westall [40] and Westall et al. [42]. The UMF 423 method [55] 

has been implemented in the speciation code 424 SPECY [48] in 

place of the LU approach [17]. After show- 425 

 

 

379 The equilibrated matrix is defined at iteration k + 1 by ing that the Jacobian matrix is symmetric, we test the 426 
 

Z̃k+1 = Rk  · ̃Zk · Ck 
 

¨  ¨ ¨ ¨ 
(21) 

DSYTRS subroutine from LAPACK [61], which is based 427 

on a UDU decomposition. Because the Jacobian matrix is 428 

i   ∞ i   ∞ 

381 

 
380  
382 
383 

 

 

384 

385 

386 

387 

388 

equal to 1 or after 50 iterations. Let R and C 

This procedure is repeated until all ̈ rk¨    and ¨ck¨ are 

 
403 

404 

˜ 4̃05 

˜ =̃ · 
= · 

DPOTRS subroutine [61] based on the Cholesky method.    430 

often positive definite, as shown in Table 3, we test the    429 

ing preconditioning matrices and Z the equilibrated matrix. be the result- 

Instead of solving the linear system (12), we solve 

Z · x = −Y (22) 

where x C−1   (∆ξ, ∆Cp) and Y   R   Y . These proce- dures are coded 

using quadruple-precision reals. The linearsystem (22) is solved by LU 

decomposition coded with quadruple-precision real. 

Even if the condition numbers of the Jacobian matrices 

(Z) are very high (10213.9 for the Fe-Cr mineral test case), the condition 
389 numbers of the equilibrated matrices (Z) are much lower: the maximum 
390 

391 

392 

393 

394 

395 

396 

397 

398 

399 

400 

 

 

 

 

 
= − = 

condition number obtained afterequilibration is 1013.4. According to Golub 

and van Loan [54], if the unit roundoff is approximately 10−d and the 

condition number is approximately 10q , then the Gaussian elimination 

gives a solution with approximately d q cor- rect digits. Because we use 
– quadruple precision, we obtain d 32, leading to 32 14 18 correct digits. 

One can thenassume that the reference solution is exact if we compare it 

to the solutions produced by the tested methods (computed using double- 

precision real). 

 

2.6 Selected numerical methods for solving linearsystems 

 
Studies on linear algebra [19, 23] present methods for solving linear 

401 systems as direct or iterative methods. Histor- ically, speciation codes 

402 solved linear systems using direct 

366 2.5 Reference solution methods, such as Gaussian elimination [34] or LU decom- 406 

 position [17, 40, 42]. In its actual form, the speciation code 407 

367 Because of the very high condition numbers, it is not pos- SPECY [48] uses unsymmetric multifrontal (UMF) [55] as 408 

368 sible to directly obtain an exact solution. We equilibrate the the linear solver. To the best of our knowledge, no speciation 409 

369 rows and columns of the Jacobian matrices to reduce their code uses iterative methods to solve linear systems. This 410 

370 condition number using the iterative algorithm proposed by point is in accordance with the existing literature, which 411 

371 Knight et al. [53] because it preserves the symmetry of the reports the use of iterative methods for solving large, sparse 412 

372 Jacobian matrix. linear systems [20–22, 24, 26, 28, 29, 56, 57]. Nevertheless, 413 
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[23, 

 
434 

62], Gauss-Seidel [23, 62], and successive over- 

relaxation 

 
435 

(SOR) [23, 62] methods. Barrett et al. [21] proposed 

an 

 
436 

algorithm to select an iterative solver depending on 

the 

 
437 

matrix properties. GMRES was presented as the least 

selec- 

 
438 

tive algorithm. We use a GMRES method developed 

by 

 
439 

HSL [63]. If the matrix is symmetric, Barrett et al. [21] 

rec- 

 
440 

ommend the use of conjugate gradient squared (CGS) 

or 

 
441 

biconjugate gradient stabilized (BiCGStab) methods. 

CGS 

 
442 

and BiCGStab subroutines have been developed by 

HSL. 443 We test two additional methods devoted 

to symmetric matri- 444ces: SYMMBK [63] and an 

incomplete Cholesky (Inc. 445 CHOLESKY) 

factorization 

[63]. 

 
446 

We use the same parameters for all iterative methods: 

a 447 

maximum of 500 iterations and a stopping criterion of 10−8. 
448 

To determine the influence of the stopping criterion, we 

test 

 
449 

the GMRES method using 50,000 maximum iterations 

and 

 
450 

10−12 as the stopping criterion, denoted by GMRES 10−12 
451 

in this study. A critical point of the GMRES algorithm is 

the 

 
452 

size of the Hessenberg matrix. In this work, we set it to 

the 453 

max of 8 (Nx + NcP). 454 

The results obtained using the Jacobi and SOR methods 455 

are not detailed here. As previously reported [19], the Jacobi 456 

method is inefficient, leading to a very high failure ratio 457 

(close to 100 %) even for the easiest test cases. For the SOR 458 
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Table 1 List of the selected 

solvers 

 

Name 

 

Source 

 

Method 

 

Matrix properties 

 Direct    

 LU [58] LU decomposition – 

 DGETRS [59] LU decomposition – 

 UMF [53] Direct multifrontal – 

 DSYTRS [59] UDU-factored symmetric matrix Symmetric 

 DPOTRS [59] Cholesky A = U T ×U Definite positive 

 DGELS [59] QR decomposition  

 LU QUAD [58] LU decomposition quadruple precision – 

 Iterative    

 SYMMBK [61] Iterative SYMMBK HLS MI02 Symmetric 

 Inc. CHOLESKY [61] Incomplete Cholesky HSL MI28 Symmetric 

 CGS [61] Conjugate gradient squared HLS MI23 – 

 BiCGStab [61] Biconjugate gradient squared stabilized HLS MI26 –  

 GMRES [61] Flexible GMRES HLS MI15 – 

 Gauss-Seidel [58] Gauss-Seidel method – 

 Preconditioned    

 LU Equil [51–58] LU and matrix equilibration – 

 DGESVX [59] LU and optional preconditioning – 

 GMRES Equil [51–61] GMRES and matrix equilibration – 

 GMRES 1.d-15 [61] GMRES convergence criteria 1.d-15 – 
 
 

 
459 method [23, 26, 56, 62], the over-relaxation parameter is the 

 
to suppose that this trade-off would not be advantageous. 

 

470 

460 key factor. Unfortunately, we did not find any efficient rela- Nevertheless, an easy way to test preconditioners is pro- 471 

461 tionships to define it. For the same chemical system, the best posed by the LAPACK routine DGESVX, which performs 472 

462 value varies from 0.097 to 1.91 without apparent order. LU decomposition and matrix equilibration depending on 473 

463 We do not extensively test the possibility of using a pre- the estimated condition number. We implement matrix equi- 474 

464 conditioner. As stated by Barrett et al. [21]: “Since using a libration according to Knight et al. [53] to obtain a reference 475 

465 preconditioner in an iterative method incurs some extra cost, solution. We test this preconditioning technique associated 476 

466 both initially for the setup, and per iteration for applying with LU decomposition and the GMRES method, denoted 477 

467 it, there is a trade-off between the cost of constructing and by LU Equil and GMRES Equil in this study. The maximum 478 

468 applying the preconditioner, and the gain in convergence iterations allowed for the equilibration procedure is fixed to 479 

469 speed”. In our case, the matrices are very small, leading us 5, according to the recommendations of Knight et al. 480 

 

Table 2 Structure of the 

Jacobian matrix 
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Table 3 Properties of the 10 chemical test cases ranked by increasing the maximal condition number 
 

 
Nx Nc NcP Z size cond(Z) min cond(Z) max cond(Z) 

max after 

20 equili- 

bration 

%Z diag- 

onal domi- 

nant 

%Z positive 

definite 

Gallic acid 3 17 0 3 100.61 1012.6 100.95 18.4 100 

Valocchi 5 7 0 5 100.49 1015.3 100.65 67.7 100 

Pyrite 4 40 0 4 104.06 1024.9 100.95 0.00 100 

MoMaS easy 5 12 0 5 103.44 1037.7 101.05 0.00 71.1 

Morel-Morgan 52 781 0 52 1043.4 1060.7 101.13 0.00 35.9 

MoMaS medium 5 14 0 5 105.88 10103.9 100.95 0.00 78.8 

Fe-Cr 7 39 0 7 109.46 10113.6 101.05 0.00 68.9 

Pyrite mineral 4 43 3 7 101.71 1033.1 103.19 0.00 0.00 

MoMaS hard 6 15 2 8 105.45 10123.9 103.02 0.00 0.00 

Fe-Cr mineral 7 43 3 10 108.67 10213.9 1013.4 0.00 0.00 

 
481 Finally, we test an LU decomposition method compiled test procedure. Some matrices in the gallic acid and 509 

482 as quadruple precision, denoted by LU QUAD. The source Valocchi cases are diagonal dominant, but none of the 510 

483 of this method is the LU double-precision real of numer- matrices from the other cases are diagonal dominant. 511 

484 ical recipes [60], and we adapt it to quadruple precision. By plotting the ratio of diagonal dominant matrices 512 

485 Because the usual computations are performed using dou- depending on the condition number (see Appendix 2 513 

486 ble precision, the quadruple precision (dξQUAD) should be (B-1)), it appears that only matrices with very low 514 

487 translated in double-precision real. To avoid overflow, we condition numbers can be diagonal dominant. 515 

488 rescale dξQUAD to ensure its validity. If huge (1.d0) is the (iv) Because the Jacobian matrix is real, symmetric, 516 

489 highest double-precision real represented by the machine, and sometimes diagonal dominant, the question of 517 

490 we rescale dξQUAD to obtain the double-precision solution whether it is positive definite may be posed. In the 518 

491 dξLU QUAD: case of no precipitation, Eq. 11 can be written in 519 

dξ=LU QUAD 
huge (1.d0) 

· dξ (23) 

max . . QUAD 

matrix form, leading to Eq. 24 520 

 

 

492 

493 

 

 

494 

 

495 

 

496 

497 

 

498 

499 

500 

501 

502 

503 

504 

505 

506 

507 

508 

dξQUAD i() 
 

In this way, we conserve the direction of the Newton step, 

even if its norm is changed. 

 
 

3 Results and discussion 

 
3.1 Properties of the Jacobian matrices 

 
As defined by Eq. 11, the Jacobian matrix has several 

properties: 

(i) The matrix is block-structured, as presented in Table 

2. A four-block structure is present if precipitation 

occurs. 

(ii) The matrix is symmetric, as shown in Table 2. 

(iii) In the case of no precipitation, all the diagonal terms 

of the matrix are strictly positive because they are the 

sum of a2 [Ci]. It is then possible for the matrix to 

be diagonal dominant. We examine this possibility for 

the selected test case. Table 3 shows the ratio of diag- 

onal dominant Jacobian matrices for all the chemical 

tests performed according to the previously defined 

Z = AT · diag (C) · A (24) 

 
Because the concentrations are positive, the Jacobian matrix 521is 

analytically positive definite. Nevertheless, this may not 522 be 

true numerically. We are not able to propose a gen- 523eral 

framework, but we can compute the eigenvalues of the 524 

Jacobian matrix and test whether they are positive for all 525 test 

cases. Table 3 shows that for the gallic acid, Valoc- 526chi, 

pyrite, and Morel-Morgan test cases, all the Jacobian 527 matrices 

are positive definite. For the MoMaS easy, MoMaS 528medium, 

and Fe-Cr test cases, a large proportion (66.4 to 529 

74.1 %) of the Jacobian matrices are positive definite. For 530 

cases including minerals (pyrite mineral, MoMaS hard, and 531 Fe- 

Cr), essentially none of the matrices are positive defi- 532 nite 

(only 0.1 % for the MoMaS hard test). Plotting the ratio 533of 

positive definite matrices as a function of the condition 534 number 

(see Appendix 2 (B-2)) shows that the chemical 535 conditions are 

more important than the condition number 536 when determining 

whether the Jacobian matrix is diagonal 537 dominant. 538 

(v)   According to the test procedure presented previously,    539 

we plot, on the same graph, the logarithm of the norm 540 
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and the results are noisier if cond(Z) and ||Y || are 
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541 of |Y|  |a|nd the logarithm of the condition number of the 

542 matrix Z (Fig. 1). There is a strong linear relation-ship 

small. The evolution of this relation for low |Y|  ||can be seen 

Appendix 7 (G-11). Therefore, Eq. 25 should not be used 

555in 

556for 

543 between these   parameters.   Moreover,   the   linear Y ||les||s than 1010. 557 

544 relationship does not depend on the chemical test, only Several of these properties are obtained using the loga- 558 

545 on the existence of minerals. According to our results, rithm of the component activities as the primary unknown 559 

546 the conditioning of the Z matrix can be evaluated using in Eq. 8. The historical approach [34] uses the component 560 

547 the following empirical formulas: concentrations as the primary variable and leads to a less 561 

 interesting Jacobian matrix. Even if the structure presented 562 

cond (Z)no mineral = 105.30±0.03 × ǁY ǁ0.9374±0.0008 in Table 2 exists, the matrix is not symmetric. Moreover, 563 the 

cond (Z) 
 
mineral = 10−3.23±0.08 × ǁY ǁ1.706±0.002 (25) matrix is worse conditioned (condition number from 564 1011.2 to 

1049.4 rather than 104.06 to 1024.9 for the pyrite 565 
548 

549 

550 

551 

552 

553 

554 

The value and uncertainties are obtained through the least 

squares method over all cond(Z) and||Y |.| In this way, we 

propose an estimation of cond(Z) with no computation time 

cost because the objective function is evaluated during the 

Newton-Raphson procedure. As shown in Fig. 1, cond(Z) 

and ||Y || are strongly correlated for large condition num- bers, 

case). Finally, no specific relation exists between cond(Z) 566 

and ||Y|| for the historical formulation. 567 

As an example, we show one linear system from the Fe- 568 

Cr mineral test, corresponding to a condition number of 569 

10187. One can observe the structure of the matrix and the 570 

specificity of the linear system (26). 571 

 

 
⎛   

−3.03 · 1093    
⎞

 

⎜   −1.82 · 1094    ⎟ 
— · 

1.05 10−13
 

⎜   8.99 · 10−3     ⎟ 
(dξ) ⎜ −6.06 · 1094    ⎟ (26) 

= 2 25 10−2
 

— · 

⎜ −1.37 · 1086 
⎟ 

−27.6 

180 
⎟

 

3.84 

 
 

572 3.2 Robustness of the methods 

 
Some other methods (DGETRS, DSYTRS, DGELS, and 

 
 

592 

 DGESVX) present a substantial failure ratio, mainly for 593 

573 Figure 2 presents the failure ratio for each method and each high condition number tests (MoMaS easy and Fe-Cr min- 594 

574 test case. The presence of minerals prevents the DPOTRS, eral). UMF, SYMMBK, and CGS are robust for the Fe-Cr 595 

575 Inc. CHOLESKY, and Gauss-Seidel methods from solving mineral test but present significant failure ratios for lower- 596 

576 the system. If there are minerals present in the chemical conditioned tests, such as MoMaS easy or pyrite mineral. 597 

577 system, a zero-value block appears in the Jacobian matrix, Some methods adapted to symmetric matrices (DSYTRS 598 

578 as shown in Table 2 and Eq. 26. This block makes the 
579 Inc. CHOLESKY factorization unappropriated. Because the 

and SYMMBK) are included in this class of weak methods. 

The BiCGStab method has a very low failure ratio and 

599 

600 

580 Gauss-Seidel method requires division by each diagonal fails only in the two difficult tests (MoMaS easy and Fe-Cr 601 

581 term, this zero-value block makes the method unadapted. mineral). GMRES is the only successful iterative method. 602 

582 The failure of the DPOTRS routine is explained by the Figure 2 shows that some methods are successful for all 603 

583 properties of the Jacobian matrix. As shown in Table 3, the test cases. The most successful direct method is LU, 604 

584 there is no positive definite matrix in the presence of min- while the most successful iterative methods are GMRES 605 

585 erals. In the case of the DPOTRS, Inc. CHOLESKY, and and GMRES 10−12. The quadruple-precision method LU 606 

586 Gauss-Seidel methods, the term failure is ambiguous. These QUAD is also successful, which is expected because the 607 

587 methods are expected to fail and should not be used on double-precision LU method is also successful. The use of 608 

588 systems with minerals. If there are no minerals, some matri- an equilibration method as a preconditioner makes LU Equil 609 

589 ces are not positive definite in the MoMaS easy, MoMaS and GMRES Equil successful. 610 

590 medium, Morel-Morgan, and Fe-Cr tests. This explains the As stated previously, we focus on the capacity of a 611 

⎟ 
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Fig. 1 Relationship between the 

condition number of Z and the 

norm of the objective function 

plotted on a log-log scale 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
613 For some advanced methods (e.g. LAPACK methods), a failure ratio than for the more rustic methods (LU or Gauss- 617 

614 posteriori estimation of the residual and estimation of the Seidel). Because the key point of this work—the resolution 618 

615 condition numbers are performed. If the solution is not suf- of a linear system—is included in the iterative Newton pro- 619 

616 ficiently accurate, no solution is given, leading to a higher cedure, it is preferable to obtain an inaccurate solution (so 620 

 
 

Fig. 2 Mean of the failure ratio for each method and each test case 
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621 the iterative procedure can be continued) than no solution 

 
For other iterative methods, the success does not depend 

 
646 

622 (the iterative procedure will be aborted). on the condition number but on the nature of the matrix 647 

623 Appendix 3 presents the evolution of the failure ratio for and the presence (Appendix 3 (C-18 to C-20)) or absence 648 

624 each test case and each method depending on the condition (Appendix 3 (C-11 to C-17)) of minerals. 649 

625 number.   

626 For the direct methods (Appendix 3 (C-1 to C-5)), for 3.3 Accuracy of the methods 650 

627 small condition numbers corresponding to the test cases gal-   

628 lic acid, Valocchi, and pyrite, no failure occurs. As the con- The accuracy of the methods is evaluated in two ways: (i) 651 

629 dition number increases, the failure ratio also increases for the relative error on the norm (18) and (ii) the angle between 652 

630 some methods. MoMaS easy (Appendix 3 (C-4)), MoMaS 
631 medium (Appendix 3 (C-6)), and Fe-Cr (Appendix 3 (C- 

the reference and the calculated solution (19). 653 

632 

633 

634 

635 

7)) show that for condition numbers greater than 1020, the 

failure ratio increases greatly for some of the methods. 

These methods are DOPTRS and DSYTRS for MoMaS 

medium and Fe-Cr. DGETRS, UMF, DSYTRS, DOPTRS, 

(i) By plotting the mean of the logs of the relative error 654on 

the norm of each test case (Fig. 3), some general 655 

tendencies are identified. The relative residual tends to 656 

increase with the condition number of the system. For 657 

636 and DGELS present some failure for condition numbers direct methods and small condition numbers, the rel- 658 

637 greater than 1015 for the MoMaS easy case. In the presence ative residual is small (10−10 to 10−3) for the gallic 659 

638 of minerals (Appendix 3 (C-8 and C-9)), for low condition acid, Valocchi, and pyrite test cases. For the itera- 660 

639 numbers (the pyrite mineral case), the methods are either tive methods, the relative residual corresponding to an 661 

640 successful (UMF, LU, DSYTRS, DGETRS) or completely accurate resolution for tests with small condition num- 662 

641 unsuccessful (DPOTRS). For very high condition numbers bers is approximately 10−4. This value corresponds to 663 

642 (Fe-Cr mineral case), the success of the method does not the value of the convergence criteria of the iterative 664 

643 depend on the condition number. We suppose that the con- methods. Iterative methods are more sensitive to the 665 

644 dition numbers (see Table 3) are too high to exhibit any condition number than direct methods. Only the Val- 666 

645 ordering. occhi test case is accurately solved by almost all the 667 

 

 

 

 

Fig. 3 Mean of the logs of the relative error on norm for each method and each test case 
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668 iterative methods, whereas the first three tests are accu- for the direct methods, but the result is more case-dependent 
 

692 

669 rately solved by all the direct methods. Even in the case for GMRES. The use of preconditioning usually leads to 693 

670 of successful resolution (CGS and BiCGStab methods), lower relative error on the norm, except for the Morel- 694 

671 the relative errors on the norm are high for intermediate Morgan, Fe-Cr, and MoMaS hard cases. 695 

672 cases (pyrite, MoMaS easy, and Morel-Morgan). Nev- Increasing the maximum number of iterations and reduc- 696 

673 ertheless, the results are better for the iterative meth- ing the convergence criteria of GMRES leads to less relative 697 

674 ods than for the direct methods for the difficult tests error on the norm, but this reduction is not significant. 698 

675 (MoMaS easy, MoMaS medium, MoMaS hard, Fe- Nevertheless, the global means of the logs of relative 699 

676 Cr mineral). The GMRES and Gauss-Seidel methods errors on the norm hide the influence of the increasing 700 

677 have mostly constant mean relative error on the norm, condition number. Appendix 4 presents the evolution of 701 

678 with the same accuracy for all test cases. GMRES and the relative error on the norm for each test case and each 702 

679 Gauss-Seidel are less efficient than the other methods method depending on the condition number. The theoreti- 703 

680 for the easy tests, but more ill-conditioned tests are cal behaviour is verified for the direct methods and for all 704 

681 better solved by these two methods. the test cases (except for the Valocchi one, Appendix 4 (D- 705 

 

682 

683 

684 

685 

The condition numbers are so high that even LU QUAD 

cannot provide accurate resolution. For the MoMaS medium 

and Fe-Cr mineral tests, many of the solutions calculated by 

the LU QUAD method are rescaled using Eq. 23, leading to 

2)). The relative error on the norm increases regularly with 706 the 

condition number. It is close to 10−16 when the con- 707 dition 

number is close to 1 and increases to 1 when the 708 condition 

number is close to 1016, in accordance with the 709 computation 

theory presented by Golub and van Loan [54]. 710 
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Fig. 4 Mean of the angles between reference and computed solution for each method and each test case 

686 excessively high relative error on the norm. For condition numbers greater than 1016, the evolution of 711 

687 Comparison of the relative error on the norm given by the relative error on the norm with the condition number is 712 

688 the non-preconditioned (LU, DGETRS, and GMRES) and much noisier. The use of the quadruple-precision LU QUAD 713 

689 preconditioned (LU Equil, DGESVX, and GMRES Equil) method leads to an accurate resolution of a large portion 714 

690 methods shows that the preconditioned methods lead to of the tested systems. As expected by computation theory, 715 

691 lower relative error than the non-preconditioned methods all the systems with condition numbers less than 1032 are 716 
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Fig. 5 CPU time (s) for each 

method and each test case 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

717 solved with a relative error on the norm of approximately pyrite (Appendix 4 (D-13)), the MoMaS medium (Appendix 744 

718 10−15. In some cases (MoMaS medium (Appendix 4 (D- 4 (D-16)), and MoMaS hard (Appendix 4 (D-19)) tests. 745 

719 6)), Fe-Cr (Appendix 4 (D-7)), MoMaS hard (Appendix 4 Using low convergence criteria (GMRES 1.d-12) leads to 746 

720 (D-9))), LU QUAD produces an increasing relative error lower relative error on the norm for low condition numbers 747 

721 with increasing condition number (if higher than 1032) but (Appendix 4 (D-21 to D-23, D-26 to D-29)), but no sig- 748 

722 not systematically. LU QUAD produces a very low rela- nificant improvements are obtained if the condition number 749 

723 tive error on the norm even if the condition number is very increases, as shown in Appendix 4 (D-24 to D-30). 750 

724 high (Appendix 4 (D-9)). This behaviour can be explained Using preconditioning methods reduces the relative error 751 

725 by the fact that the LU QUAD method and/or the reference on the norm for intermediate condition numbers. No gain is 752 

726 method is unable to exactly solve such ill-conditioned sys- obtained for low condition numbers (Appendix 4 (D-21 and 753 

727 tems. LU QUAD produces a very high relative error on the D-22)), but the errors given by LU Equil, DGESVX, and 754 

728 norm, one point with 10290 error for the MoMaS medium GMRES Equil are less than the LU and GMRES errors for 755 

729 (Appendix 4 (D-6)), and all the values at condition numbers higher condition numbers (Appendix 4 (D-24 to D-26)). For 756 

730 greater than 1090 for the Fe-Cr mineral (Appendix 4 (D-10)) very high condition number tests (Appendix 4 (D-27, D-29, 757 

731 test case. These points correspond to the rescaling of the and D-30)), the errors given by the preconditioned methods 758 

732 computed quadruple-precision solution to maintain it on the are equivalent to the errors given by the non-preconditioned 759 

733 double-precision scale (using Eq. (23)). methods. 760 
 

734 

735 

736 

Iterative methods present similar behaviour to direct 

methods, giving very low relative error on the norm 

(between 10−15 and 10−8) when the condition number is 

(ii) By plotting the angle between the reference solu- 761 tion 

and the calculated solution, we can compare the 762 methods 

according to the computed direction (Fig. 4). 763 

737 less than a critical value. This critical value depends on the Because the resolution of the linear system (13) repre- 764 
Q8

 

738 743 method and the test case. It can be set to 108 for SYMMBKCGS, 
739 BiCGStab, and GMRES for the gallic acid (Appendix4 (D-11)) and 

740 MoMaS easy (Appendix 4 (D-14)) cases.It can be set to 1012 or 

741 1015 for Inc. CHOLESKY forthe gallic acid and MoMaS easy cases 

742 and for SYMMBK, Inc.   CHOLESKY,   CGS,   BiCGStab,   and 
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step  in the iterative  Newton procedure, 

this 765 information is much more important than 

the norm 766of the step. A wrong norm can be 

corrected using 767 line search methods [64], 

whereas modifying a wrong 768 direction leads to 

additional iterations. Small condition 769 number 

tests (gallic acid, Valocchi, pyrite, and pyrite 770 
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810 

mineral) are solved using direct methods with the right 

direction. If the condition number increases, the direc- 

tions given by the direct methods become inaccurate, 

but the condition number is not the only govern- ing 

parameter. Morel-Morgan leads to worse directionthan 

MoMaS medium and Fe-Cr, and MoMaS hard leads to 

a higher angle than the Fe-Cr mineral test. Iter-ative 

methods result in a worse direction than direct 

methods, and only the Valocchi test case is solved with 

an accurate direction by all the iterative meth- ods. 

Imposing lower convergence criteria (10−12) on 

GMRES leads to a worse direction than using the usual 

criteria (10−8). Using preconditioning methods leads to 

a better direction when associated with a direct method 

(LU Equil and DGESVX), but the conclusionis less 

clear for the iterative GMRES Equil method. 

Depending on the test case, the direction can be worse 

(Valocchi, MoMaS easy, MoMaS medium) or better 

(gallic acid, pyrite, MoMaS hard, Fe-Cr mineral) 

The influence of the condition number on the angle (see 

Appendix 5) indicates that the direction is correct for direct 

methods when the condition number is less than 1015. For 

 

iterative methods, the limit to obtain an accurate direction is 

a condition number less than 108, excepted for the Gauss- 

 

Seidel method, which produces wrong directions for low 

condition numbers. If the condition number increases, the 

behaviour of the direction becomes noisy. Since the rela- 

tive error on the norm increases regularly until the condition 

number reaches the limit of 108 or 1015, the angle is accu- 

rately defined until this condition number limit is reached. 

Using preconditioned methods leads to a better direction for 

the LU Equil and the GMRES Equil methods when the con- 

dition number is higher than 1015 for some cases (Appendix 
 

5 (E-21, E-23 to E-25, and E-30)) but to a worse direction 

for other cases (Appendix 5 (E-26 and E-29)). 

We present two successful direct methods, LU and LU 

QUAD; one iterative method, GMRES (both tested ver- 
sions, GMRES and GMRES 10−12); and two precondi- 

tioned methods, LU Equil and the GMRES Equil. By com- 
paring the relative error on the norm (Appendix 4 (D-21 to 

more complicated. For all the tests cases (Appendix 5 (E-    815 

21 to E-25, E-27, E-28, and E-30)), LU QUAD gives the    816 

best direction, followed by LU Equil, LU, GMRES Equil, 817 and 

GMRES 10−12. The MoMaS medium (Appendix 5 (E- 818 26)) and 

MoMaS hard (Appendix 5 (E-29)) test cases lead 819 to the same 

conclusion, except GMRES Equil which gives 820 the worst 

direction. 821 

3.4 Efficiency of the methods 822 

The speed of the methods is studied by recording the com- 823 

putation time for each test case and plotting the mean CPU 824 

time for each test case and each method (see Fig. 5). As 825 

expected, the computation times are very short (less than 1 826 

ms) because the systems to solve are small. 827 

Figure 5 shows the influence of the system size. For all 828 

methods, the computation time increases with the number 829 

of unknowns. The results show that the iterative methods 830 

are less sensitive to the system size than the direct meth- 831 

ods. For the iterative methods, the number of iterations is 832 

important and depends on the first guess and other fac- 833 
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837 

the reference solution, which requires more time. 838 

The UMF method is the slowest double-precision direct 839 

method, but its multifrontal block strategy becomes interest- 840 
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the MoMaS easy test for the UMF method, whereas it takes 843 

190 times more time for the LU method. 844 
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846 

method. The two most robust iterative methods, BiCGStab 847 and 

GMRES, are rapid, sometimes more so than the direct 848 robust 

methods, LU and UMF, especially for large systems 849 (Morel- 

Morgan test case). GMRES is less case-dependent 850 than 

BiCGStab, leading to similar computing time, regard- 

10 cond(Z)  >10    LU Nx NcP <10 GMRES Nx NcP 10 
104 >cond(Z) LU 

811 D-30)), the successful methods can be ranked from the low-    

812      est to highest error: LU QUAD, GMRES 10−12, GMRES 

813 Equil, LU Equil, and LU. Ranking these methods according 

814 to the angle between the reference and computed solution is 

Table 4 Algorithm for equilibrium computation 

cond(Z) Inversion method 

>1030 LU QUAD Equil 

1030 ≥ cond(Z) >1014 LU QUAD 
14 ≥ 4 + + ≥ 
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(LU Equil, DGESVX, and GMRES Equil) or decreasing 854  

the convergence criteria for an iterative method (GMRES 855  

10−12) leads to increased computing time. The computing 856  

time for preconditioning does not depend only on the sys- 857  

tem’s size: the Valocchi, MoMaS easy, and MoMaS medium 858  

test cases (system size of 5 ×5) are solved with the same 859  

computing time for all the direct methods, but their resolu- 860  

tion when using LU QUAD Equil, LU Equil, and GMRES 861  

Equil is faster. 862  

Appendix 6 shows the computation time (log scale) for 863 Q9 

each test case and each method depending on the condition 864  

number. Appendix 6 (F-1 to F-10) shows that, as expected, 865  
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866 the computation time of the direct methods does not depend number is greater than the critical value (see Appendix 5). 895 

867 on the condition number of the system. The LU method is The critical condition number is 108 for GMRES, 1016 for 896 

868 usually 10 times faster than the UMF method, except for the the double-precision direct methods, 1032 for LU QUAD, 897 

869 Morel-Morgan test case, in which LU is only 1.5 times faster. and case-dependent for preconditioned methods (1020 to 898 

870 In Appendix 6 (F-11 to F-20), the general tendency for 1060). Gauss-Seidel leads to wrong directions for very low 899 

871 the iterative methods is to require the same computation condition numbers (Appendix 5 (E-11 and E-12)). 900 

872 time, independent of the condition number. The oscilla- In terms of efficiency, the most rapid method is Gauss- 901 

873 tions presented by the curves seem to be not related to Seidel when it is available. The second most efficient 902 

874 the condition number. For the test case without minerals, method is LU for  small systems (less than 10  ×10) or 903 

875 the Gauss-Seidel method is efficient. The two most robust GMRES for larger systems (more than 10 ×10), and the 904 

876 methods, BiCGStab and GMRES, are often the third and slowest method is LU QUAD. For small systems (less than 905 

877 fourth fastest methods (Gauss-Seidel and SYMMBK are the 5 ×5), LU Equil is as fast as GMRES but becomes slower as 906 

878 fastest). the system size increases. 907 

 We recommend using LU, LU QUAD, GMRES, and the 908 

 reference method LU QUAD Equil. Gauss-Seidel should be 909 

879 4 Proposal of a new algorithm rejected because of its wrong direction, and equilibration 910 

 does not sufficiently improve the behaviour of double- 911 

880 Based on our results, we propose an algorithm to opti- precision routines. 912 

881 mize the resolution of a chemical system using a Newton- Using Eq. 25, it is possible to estimate the condition 913 

882 Raphson-like method. number of the system without additional computation. This 914 

883 Examining the failure ratio results, seven methods are estimation enables the selection of the best-adapted method 915 

884 eligible: LU and LU QUAD as direct methods, GMRES depending on the system size and condition number. 916 

885 and Gauss-Seidel (if no minerals) as iterative methods, LU The goal is to use the most robust method (LU QUAD 917 

886 Equil and GMRES Equil as preconditioned methods, and with preconditioning) for high condition number systems 918 

887 the reference method (LU QUAD Equil). (more than 1032) in the first Newton-Raphson iterations. 919 

888 Because these methods are included in a Newton mini- When the condition number is sufficiently decreased, the 920 

889 mization procedure, the most important accuracy criterion preconditioning becomes useless and LU QUAD can be 921 

890 is the direction of the minimization, i.e. the angle between used until the condition number is less than 1016. Then, a 922 

891 the reference and the calculated solution. The behaviour of faster method is used to obtain a coarse approximation of 923 

892 this direction is strongly correlated with the condition num- the solution, LU for small systems and GMRES for large 924 

893 ber of the system and is correct if the condition number systems (more than 10 ×10). To find the exact solution, the 925 

894 is less than the critical value and wrong if the condition LU direct method is used. 926 
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927 We propose the algorithm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
933 

 
928 compare it with several inversion methods in a Newton- iterations 934 

929 Raphson algorithm. The 10 chemical test cases are solved Figure 6 shows that all the methods are equivalent for 935 

930 using the combined algorithm or one of the selected meth- easy test cases (see Appendix 7 (G-1 to G-3)). Nevertheless, 936 

931 ods: LU QUAD Equil (used as the reference solution), LU the use of LU inversion leads to non-convergence, even if 937 

932 QUAD, LU, and GMRES. Appendix 7 shows the evolution 

 
Fig. 8 Computation time (s) as 

a function of test case and 

algorithm 

the test is easy, as observed for the Valocchi test (Appendix 938 

presented in Table 4 and of the NRrelativeerror (7) as a function of the Newton-Raphson 
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7 (G-2)). If the difficulty of the test increases, the lower 

accuracy of GMRES (compared to the quadruple-precision 

routine used in LU QUAD Equil, LU QUAD, and the 

combined algorithm) leads to a greater number of Newton 

iterations, as shown in Fig. 7 for the MoMaS hard case. This 

point is confirmed for other cases (see Appendix 7 (G-4 to 

G-9)). For the Fe-Cr mineral case (see Appendix 7 (G-10)), 

only LU QUAD Equil and the combined algorithm can solve 

the problem. Other methods lead to non-convergence, due 

to overflow for the GMRES algorithm (overflow appears in 

the Newton algorithm and is not due to GMRES itself) and 

because LU QUAD and LU are unable to give an accurate 

descent direction. 

Appendix 7 (G-11) shows the evolution of the rela-tion 

between the norm of Y and the condition number ofthe 

Jacobian matrix during the minimization process. This 

figure is similar to Fig. 1, confirming the empirical relation 

(25). This relation cannot be used close to the solution, and 

the condition number tends to be a case-dependent limit for 

very low |Y| .|| 
Nevertheless, the number of iterations is not the critical 

point. Because the time required by one iteration changes 

depending on the method used, we have to consider the total 

computation time. By plotting the total computation time 

required to solve each test case depending on the algorithm 

used (see Fig. 8), we can see that 

(i) LU QUAD Equil, as expected, is the slowest. Nev- 

ertheless, this method allows the convergence of the 

Newton-Raphson method for all test cases. 

(ii) LU QUAD is slightly faster. The difference between 

LU QUAD Equil and LU QUAD gives an indica- tion 

of the time used for matrix equilibration. This time is 

greater for pyrite, MoMaS easy, pyrite mineral, 

MoMaS hard, and Fe-Cr mineral than for the other 

test cases. 

(iii) LU is fast when it leads to convergence, but this 

method results in a very weak Newton-Raphson algo- 

rithm. 

(iv) GMRES always results in the fastest Newton-Raphson 

algorithm. It has been shown (Fig. 7, Appendix 7 (G- 

8)) that the number of required iterations can be twice 

the number for other methods, but we show (Fig. 5) 

that the GMRES method is faster than the other 

methods. 

(v) The proposed combined algorithm leads to interme- 

diate computing times, equivalent to those of LU 

QUAD Equil and LU QUAD, depending on the case. 

According to our results, GMRES should be systematically 

used because it is fast and usually leads to convergence of 

the Newton-Raphson algorithm. The combined algorithm 

should be used for very high condition numbers or for 

recomputing a failed run. 

5 Conclusion 991 

In this work, we focus on the resolution of small linear 992 

systems generated using the Newton-Raphson algorithm to 993 

solve equilibrium chemistry problems. For the first time, we 994 

propose a study of the condition number of such linear sys- 995 

tems and find that the range of values covered is unusually 996 

large. This characteristic leads to specific numerical prob- 997 

lems, with matrices that are quite small (approximately 10 998 

×10) but very badly conditioned (up to 10100). Ten different 999 

chemical systems are studied. 1000 

There is a strong linear relationship between the log- 1001 

arithm of the condition number of the matrix and the 1002 

logarithm of the norm of the objective function. This factor 1003 

can be exploited to create efficient algorithms. This rela- 1004 

tion is strictly an empirical one and is not valuable for low 1005 

condition numbers. 1006 

A wide variety of linear solvers have been tested, and sev- 1007 

eral direct and iterative solvers are selected. Some of these 1008 

solvers are specific for a class of matrix, symmetric or pos- 1009 

itive definite, while others are generic. A preconditioning 1010 

method (matrix equilibration) has also been tested to reduce 1011 

the conditioning of the systems. 1012 

According to our selected test cases, only the LU and LU 1013 

QUAD direct methods, the GMRES iterative method, and 1014 

LU Equil and GMRES Equil preconditioned methods are 1015 

sufficiently robust to solve all the tests. 1016 

According to the size of the chemical tests, the LU 1017 

method is faster than the GMRES method. However, our 1018 

results for the Fe-Cr mineral and Morel-Morgan cases show 1019 

that GMRES is preferable for larger chemical systems 1020 

(more than 10 components). Chemical systems with more 1021 

than 10 components have not been frequently modelled in 1022 

the past decade. However, the use of geochemical databases 1023 

makes the construction of large geochemical systems easier, 1024 

and the increase in computation capacities makes it possi- 1025 

ble. For very large geochemical systems, we recommend the 1026 

GMRES method. 1027 

We also propose using the linear relationship between the 1028 

condition number of the Jacobian matrix and the norm of 1029 

the objective function to develop an efficient algorithm. 1030 

The classic LU method is not a good choice. Its weakness 1031 

is its low robustness for challenging test cases. We recom- 1032 

mend using the GMRES method, which is fast and usually 1033 

leads to convergence of the Newton-Raphson algorithm. For 1034 

very high condition numbers (more than 10100), we recom- 1035 

mend the most robust LU QUAD Equil method. When the 1036 

Newton-Raphson method is sufficiently near the solution to 1037 

decrease the condition number, the faster GMRES method 1038 

can be used. By using the linear relationship between 1039 

cond(Z) and ||Y ||, the transition between the two methods 1040 

can be achieved without computing the condition number 1041 

(which is very expensive). 1042 
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1043 

1044 

1045 

This work explores a new research field by studying geo- 

chemical computation from a condition number point of 

view. We attempted to benchmark a wide variety of lin- 

for high condition numbers. Some methods, such as 1095 

simulated annealing and particle swarm optimization, 1096 

could be used in future research. 1097 

These factors should be explored in light of the results pre- 1098 

sented in this study. We proposed a large set of chemical 1099 

tests, a criterion to determine the difficulty of these tests (the 1100 

condition number), and a panel of numerical methods that 1101 

should be studied preferentially. 1102 

As a more general consideration, the reader should pay 1103 

particular attention to the old Morel-Morgan test case and 1104 

the more realistic pyrite test case. The Morel-Morgan test 1105 
uses Fe2+ and Fe3+, Co2+ and Co3+, and SO2− and S2− 1106 

4 2+ 
as components whereas the pyrite case uses O2, Fe    ,    1107 

and SO2−. The first studies on geochemical computation 1108 

avoided redox problems. We show that redox problems 1109 lead 

to higher condition numbers because the stoichiomet- 1110 ric 

coefficients and equilibrium constants cover a wider 1111 range. 

Several geochemical databases avoid the introduc- 1112 tion of 

redox reactions. There is sometimes a good reason to 1113 

not write redox reactions as equilibria (slow reaction rates, 1114 

irreversible reactions) as done in Arora et al. [2]. However, 1115 the 

reason is sometimes numeric, and redox reactions are 1116 avoided 

because they lead to non-convergence. 1117 

We propose the use of quadruple-precision real for chal-    1118 

lenging chemical systems. In this work, the core of the    1119 

geochemical code is conserved as double-precision real,    1120 

and only the linear system tool is set as quadruple preci- 1121 sion. 

Rewriting an entire geochemical code in a quadruple- 1122 precision 

format will result in robust code but at the cost 1123 

of an important and rebarbative work as well as efficiency. 1124 

In this stage of our research, we do not recommend such 1125 

an effort because implementing LU decomposition using 1126 

quadruple-precision real is very efficient, requiring only 1127 

a minor modification of existing code and reducing the 1128 

computation time. 1129 
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1046 ear solvers, but it was not possible to explore the flexibility 

1047 of all the tested solvers. This study will help us to elimi- 

1048 nate some solvers so that our future work can focus on the 

1049 most promising: LU, LU QUAD, GMRES, LU Equil, and 

1050 GMRES Equil. Some points for future exploration are as 

1051 follows: 

 

1052 (i) We did not extensively test the robustness and the 

1053 efficiency of the Newton-Raphson algorithm. Fur- 

1054 ther work should examine the influence of the ini- 

1055 tial Newton-Raphson guess to confirm our con- 

1056 clusions about the high efficiency of the GMRES 

1057 method. 

1058 (ii) The accuracy of iterative methods depends on the 

1059 value of the convergence criterion (which we set to 

1060 10−8) and on the method used to check the conver- 

1061 gence (we used the default method). Moreover, the 

1062 efficiency can vary depending on the initial guess 

1063 provided by the user. In this work, we used the eas- 

1064 iest initial guess: the residual for the tests from the 

1065 Newton-Raphson method and the previous Newton- 

1066 Raphson step for the test in a Newton-Raphson algo- 

1067 rithm. We believe that it is possible to make a better 

1068 choice, markedly enhancing the efficiency of the 

1069 iterative methods. 

1070 (iii) The GMRES method allows the use of left and/or 

1071 right preconditioners. These preconditioners can 

1072 increase the robustness, accuracy, and efficiency of 

1073 the method. More generally, several classes of precon- 

1074 ditioners that may reduce the condition number of the 

1075 linear system can be used [65, 66]. In this work, we 

1076 explored the use of one preconditioner: matrix equi- 

1077 libration. However, other classes of preconditioners 

1078 may be more efficient. 

1079 (iv) Previous works have addressed the use of methods to 

1080 solve geochemical equilibria other than the Newton- 

1081 Raphson method [17, 44, 49, 67]. It has been shown 

1082 [17] that an efficient algorithm can be obtained by 

1083 combining a zero-order method  with the Newton- 

1084 Raphson approach. 

1085 (v) The size of the chemical tests presented here is repre- 

1086 sentative of the sizes actually used in environmental 

1087 studies. We have shown that the GMRES method may 

1088 be efficient for large systems. In anticipation of future 

1089 needs, it may be useful to test chemical systems larger 

1090 than the Morel-Morgan system. 

1091 (vi) Part of the Newton minimization related to very large 

1092 condition numbers (far from the solution) can be 

1093 performed using random methods; GMRES is effi- 

1094 cient even though its descent direction is not accurate 
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Appendix 1 

 

 
1143 

1144 

 
Morel’s table of chemical test cases 

 
 

   X1 X2 X3 X4 X5 S Log (K) 

 1 X1 1 0 0 0 0 0 0.00 

 2 X2 0 1 0 0 0 0 0.00 
 3 X3 0 0 1 0 0 0 0.00 

 4 X4 0 0 0 1 0 0 0.00 
 5 X5 0 0 0 0 1 0 0.00 
 6 C1 0 −1 0 0 0 0 −12.00 

7 C2 0 1 1 0 0 0 0.00 

8 C3 0 −1 0 1 0 0 0.00 

9 C4 0 −4 1 3 0 0 −1.00 

 10 C5 0 4 3 1 0 0 35.00 
 11 C6 0 10 3 0 0 0 32.00 

1145 12 C7 0 −8 0 2 0 0 −4.00 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1146 

 

1147 

1148 

1149 

1150 

Appendix 2 

 
Jacobian matrix properties 

B-1 Ratio of diagonal dominant matrices as a function of 

the condition number for the 10 chemical test cases 

B-2 Ratio of positive definite matrices as a function of 

C-21–C-27: Preconditioned methods, chemical cases 1162 

without minerals 1163 

C-28–C-30: Preconditioned methods, chemical cases 1164 

with minerals 1165 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

1151 the condition number for the 10 chemical test cases Appendix 4 1166 

  
Evolution for the relative residual on norm of the 16 selected 

 

1167 

1152 Appendix 3 methods as a function of the condition number for the 10 1168 

  chemical test cases 1169 

1153 Evolution of the failure ratio of the 16 selected methods as D-1–D-7: Direct methods, chemical cases without minerals 1170 

1154 a function of the condition number for the 10 chemical test D-8–D-10: Direct methods, chemical cases with minerals 1171 

1155 cases D-11–D-17: Iterative methods, chemical cases without 1172 

1156 C-1–C-7: Direct methods, chemical cases without minerals minerals 1173 

1157 C-8–C-10: Direct methods, chemical cases with minerals D-18–D-20: Iterative methods, chemical cases with minerals 1174 

1158 C-11–C-17: Iterative methods, chemical cases without D-31–D-37: Preconditioned methods, chemical cases 1175 Q12 

1159 minerals without minerals 1176 

1160 C-18–C-20: Iterative methods, chemical cases with D-38–D-40: Preconditioned methods, chemical cases 1177 

1161 minerals with minerals 1178 

 

13 S 0 0 0 0 0 1 0.00 

14 CS1 0 3 1 0 0 1 6.00 

15 CS2 0 —3 0 1 0 2 −1.00 

16 CP1 mineral 0 1 3 0 0 0 10.90 

17 CP2 mineral 0 1 0 0 1 0 1.30 
 Total (M) 0.3 0.3 0.3 2 0.3 10  

 X value 

Min value 

0.1 Variable 

1.00E−1

5 

Variable 

1.00E−1

5 

Variable 

1.00E−1

5 

1.00E−03 1.00E−03  

 Max value 

X initial value 

 
0.1 

1.00E−02 

1.00E−07 

1.00E−02 

1.00E−07 

1.00E−02 

1.00E−03 

 

1.00E−03 

 

1.00E−03 

 

 for Newton-        

 Raphson        

 iteration        
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1188 

1189 

1190 

1191 

1192 

 

 

1193 

 

1194 

1195 

1196 

1197 

1198 

1199 

1200 

1201 

1202 

1203 

1204 

1205 

1206 

 

 

1207 

 

1208 

1209 

1210 

1211 

1212 

1213 

1214 

1215 

 

 

1216 

 

1217 

1218 

1219 

1220 

Appendix 5 

 
Evolution for the angle between the reference and computed 

solution of the 16 selected methods as a function of the 

condition number for the 10 chemical test cases 

E-1–E-7: Direct methods, chemical cases without minerals 

E-8–E-10: Direct methods, chemical cases with minerals 

E-11–E-17: Iterative methods, chemical cases without 

minerals 

E-18–E-20: Iterative methods, chemical cases with 

minerals 

E-21–E-27: Preconditioned methods, chemical cases 

without minerals 

E-28–E-30: Preconditioned methods, chemical cases 

with minerals 

 
 

Appendix 6 

 
Evolution for the computation time of the 16 selected meth- 

ods as a function of the condition number for the 10 

chemical test cases 

F-1–F-7: Direct methods, chemical cases without minerals 

F-8–F-10: Direct methods, chemical cases with minerals 

F-11–F-17: Iterative methods, chemical cases without 

minerals 

F-18–F-20: Iterative methods, chemical cases with 

minerals 

F-21–F-27: Preconditioned methods, chemical cases 

without minerals 

F-28–F-30: Preconditioned methods, chemical cases 

with minerals 

 
 

Appendix 7 

 
Evolution of the Newton-Raphson residual as a function of 

the number of iterations for the 10 chemical test cases and 

the 5 tested algorithms 

G-1–G-7: Chemical test without mineral 

G-8–G-10: Chemical test with minerals 

G-11: Evolution of the relation between Y|| ||and the 

condition number of the Jacobian matrix Z during 

minimization 
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