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Introduction

Pathology is the gold standard for the diagnostic evaluation and the understanding of many of the underlying biological and pathophysiological mecha-nisms. This typically involves visual evaluation by pathologists of a sample of cells under a microscope, to identify structural tissue properties. Currently, visual evaluation of microscopic specimens is largely an unassisted process, and pathologist's accuracy is established through long training, standardization and benchmarking, quality control by peer reviews, and personal experience. But this field has experienced several technological revolutions in recent years with the advent of virtual microscopy (conversion of glass slides into high-resolution images i.e. digital slides), often referred to as Digital Pathology (DP). In this domain, important efforts have been made to design image analysis tools, to identify for example basic biological structures (e.g. stroma, immune cells), in order to facilitate the task of biologists for (semi-) automated digital slide interpretation. Digital Pathology is currently regarded as one of the most promising avenues of diagnostic medicine in order to achieve better and faster diagnosis, prognosis and prediction of important diseases. With the recent advent of Whole-Slide Imaging (WSI) i.e. the scanning of entire slides, the field of digital pathology produces daily a massive amount of images with related metadata (e.g. patient information, diagnosis, treatment).

At the same time, automatic image analysis algorithms have recently made extraordinary progress, particularly with the advent of the Deep Learning (DL) methods introduced by Lecun et al. [START_REF] Lecun | Deep learning[END_REF]. Indeed, the performance of these methods has exploded in recent years, in particular allowing the detection, classification and segmentation of objects of interest in images with very high precision [START_REF] He | Mask r-cnn[END_REF]. Although the technical progress holds great promise for digitization and improvements regarding standardization and increasing efficiency, the majority of institutes for pathology still prefer the conventional microscopy approach and only few hospitals are moving towards a totally digital pathology service [START_REF] Stathonikos | Going fully digital: Perspective of a dutch academic pathology lab[END_REF]. Apart from the huge investment cost for the hospital and the difficulty of changing the daily practices of an entire department, there are also many challenges to overcome in order to integrate WSI in routine diagnostic workflows. Indeed, these images contain billion of pixels and are highly heterogeneous (Fig. 1), in terms of signal (acquisition devices, inter-centric variability [START_REF] Rousselet | Sources of variability in histological scoring of chronic viral hepatitis[END_REF]), and of semantics (e.g. multiple types of cells), causing practical difficulties for the processing/visualization by conventional algorithms. As pointed out in [START_REF] Komura | Machine learning methods for histopathological image analysis[END_REF], the main difficulties to analyze histopathological images are their huge size, the lack of sufficient labeled data, the different levels of magnification resulting in different levels of details, the nature itself of WSI (which are more like texture images), the color variations and presence of artifacts.

The rest of the chapter is organized as follows: In section 2, we first present current existing DL models for WSI analysis and explain their strength and limits. In section 3, all the challenges and opportunities, induced by this emerging domain, are discussed. Finally in the last section, we conclude that even if DL has proven its efficiency in the field of histological images analysis, its broad use and acceptance in clinical routine remains challenging. 

Current deep learning models for digital pathology

Numerous DL approaches have been proposed in the last years [START_REF] Janowczyk | Deep learning for digital pathology image analysis: A comprehensive tutorial with selected use cases[END_REF][START_REF] Madabhushi | Image analysis and machine learning in digital pathology: Challenges and opportunities[END_REF]. In this section, we present the most popular ones and analyze their strengths and weaknesses after having introduced what is DL and how it can be applied to solve two major tasks in histopathological image analysis: classification and segmentation.

What is deep learning?

DL methods are a family of Machine Learning (ML) methods that are based on a representation of a model to be estimated in the form of a so-called deep Artificial Neural Networks (ANN). The concept of learning from an ANN is not new and dates back to the 1960s with Rosenblatt's definition [START_REF] Rosenblatt | The perceptron: a probabilistic model for information storage and organization in the brain[END_REF] of the perceptron (Fig. 2). The learned model is a function of the form:

y = f ( n i=1 Φ i x i ).
Subsequently, the 1980s saw the emergence of multilayer ANNs [START_REF] James L Mcclelland | Parallel distributed processing[END_REF]. Each neuron is an elementary processing unit and the entire ANN allows a representation of a non-linear model. The learning is based on the gradient backpropagation method [START_REF] David E Rumelhart | Learning internal representations by error propagation[END_REF], which remains very computationally intensive (Fig. 3).

(a) Original schema given by Rosenblatt. It is in the 2010's, following the democratization of Graphics Processing Units (GPU) cards allowing to have very important computing powers, that this technology got popular, with ANNs containing many layers and offering exceptional performances on many problems. In particular, in the field of image analysis (object detection, classification, segmentation, etc.), the so-called Convolutional Neural Networks (CNN) make it possible to achieve unprecedented levels of efficiency. An example of this type of architecture is given in Fig. 4.

x 1 … x n y = f ( ∑ n i=1 Φ i x i ) Φ 1 Φ n (b) Perceptron definition
To train the model f Θ (x) → y, the algorithm needs a training set composed of labeled samples: (x 1 , y 1 ), . . . , (x n , y n ). Then, the training of the ANN consists in an optimization problem of a loss function ∆(ŷ, y) ∈ R + as follows:

Θ * = arg min Θ 1 n ∆(f Θ (x i ), y i )

Deep learning for classification

The classification task is the classical task for ANNs, in digital pathology application it aims to label patches extracted from WSIs. For this purpose, CNNs are the most effective and most widely used ANNs today. They have a similar methodology to traditional supervised image classification methods: they receive input images, extract features of each of them, and then train a classifier (fully connected multi-layer perceptron like in Fig. 3) on them. However, features are automatically learned by the ANN. Indeed, during the training phase, the classification error is minimized in order to optimize the classifier parameters and the features to be extracted from the image (in the form of convolutions applied at different levels of image resolution). The first architecture developed was the LeNet ANN (Fig. 4) by LeCun et al. [START_REF] Lecun | Gradient-based learning applied to document recognition[END_REF]. Soon, more convolution layers were added to achieve deeper architectures, allowing better results like VGG16 proposed in [START_REF] Simonyan | Very deep convolutional networks for large-scale image recognition[END_REF] (Fig. 5).

This type of architecture has been widely applied to histopathological image analysis for different tasks mainly in cancer: detection of particular cells or regions of interest, tissue classification, scoring.

Detection Mitosis detection is an important topic in cancer diagnostic, in [START_REF] Saha | Efficient deep learning model for mitosis detection using breast histopathology images[END_REF] the authors proposed an interesting approach which uses both DL and handcrafted features. The idea is to train a CNN, composed of five convolutional layers and two fully connected layers to classify mitosis image patches and non mitosis image patches and to combine it with 55 hand-crafted features plugged to the first fully connected layer. Adding hand-crafted features greatly improves the DL approach results.

In [START_REF] Alfonso Cruz-Roa | A deep learning architecture for image representation, visual interpretability and automated basal-cell carcinoma cancer detection[END_REF], the authors compared the efficiency of classical pre-defined features and features learned from a DL architecture, more precisely an autoencoder CNN [START_REF] Bengio | Representation learning: A review and new perspectives[END_REF], for basal-cell carcinoma cancer detection. The learned representations performs better than the the pre-defined and allows better cancer prediction.

Scoring Tumor Proportional Scoring (TPS) plays an important role in the identification of non-small-cell-lung-cancer, as it represents the level of the Programmed Death-Ligand 1 (PD-L1) expression [START_REF] Udall | Pd-l1 diagnostic tests: a systematic literature review of scoring algorithms and test-validation metrics[END_REF]. In [START_REF] Kapil | Deep semi supervised generative learning for automated tumor proportion scoring on nsclc tissue needle biopsies[END_REF], the authors propose to use an Auxiliary Classifier -Generative Adversarial Network (AC-GAN) [START_REF] Odena | Conditional image synthesis with auxiliary classifier gans[END_REF] which works as a classical Generative Adversarial Network (GAN) [START_REF] Goodfellow | Generative adversarial nets[END_REF] but instead of just using noise as input for the generator also use hot-encoded desired class information. To be able to produce TPS score, discriminator not only indicates if the input patch is fake or real but also predict it class (positive tumor cell region or negative tumor cell region) which is further used to compute the TPS score. The performance of this network are good and allows to quickly obtain the TPS score in seconds.

In [START_REF] Saltz | Spatial organization and molecular correlation of tumor-infiltrating lymphocytes using deep learning on pathology images[END_REF] used DL classification to estimate the spatial organization of immune cells in the tumor microenvironment. For this, they generate maps of Tumor-Infiltrating Lymphocytes (TILs) using CNNs enabling to evaluate a prognostic factors, like the Immunoscore [START_REF] Galon | Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[END_REF], that quantify such spatial TILs densities in different tumor regions.

Tissue classification Gecer et al. [START_REF] Gecer | Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks[END_REF] proposes a cascade architecture, first four fully CNNs aims to detect salient regions of interest which are then classified by a CNN into five different type of diagnostics.

Alternatively, in [START_REF] Coudray | Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[END_REF], the authors aims to classify tissue between adenocarcinoma, squamous cell carcinoma and normal tissues using inception-v3 [START_REF] Szegedy | Rethinking the inception architecture for computer vision[END_REF] ANN. Moreover, their ANN is able to predict six of the ten most commonly mutated genes in adenocarcinoma which could have a great impact on treatments.

In [START_REF] Xia | Patch-level tumor classification in digital histopathology images with domain adapted deep learning[END_REF], the authors deal with the problem of not having enough annotated histological data for a specific tissue type. To tackle this problem, they propose to train a GoogLeNet architecture [START_REF] Szegedy | Going deeper with convolutions[END_REF] on a different annotated dataset (with other tissue type) and then fine-tuning it on their dataset with less annotations.

Deep Multiple Instance Learning [START_REF] Quellec | Multiple-instance learning for medical image and video analysis[END_REF] is a rising topic in biomedical ML. The basic idea is to use multiple labels to annotate an area, with multiple examples, the network will learn which structure belongs to which labels. It is useful for WSI classification. It has been used for classification of breast histopathology [START_REF] Das | Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification[END_REF] and precursor lesions of esophageal adenocarcinoma [START_REF] Jakub M Tomczak | Histopathological classification of precursor lesions of esophageal adenocarcinoma: A deep multiple instance learning approach[END_REF].

Deep learning for segmentation

While CNNs have proven their efficiency for classification tasks, by splitting images into small patches to be classified, specific architectures have quickly emerged to obtain more accurate detection of objects of interest with their outlines [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF][START_REF] Badrinarayanan | Segnet: A deep convolutional encoder-decoder architecture for image segmentation[END_REF].

These architectures consist of two parts (Fig. 6), one for encoding the information contained in the image given to the input layer (composed of a succession of encoder layers) and the other for decoding (composed of a succession of decoder layers). Each encoder layer applies convolution, batch normalization and non-linearity, then applies a max pooling on the result. Decoders are similar to encoders, but they oversample their input, using indices stored from the encoding step. After the final decoder, the output is sent to a classifier which gives the final prediction corresponding to the segmentation of the image given as input (each channel of the prediction corresponds to a class of objects to segment). [START_REF] Tang | Segnet-based gland segmentation from colon cancer histology images[END_REF] 
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Fig. 6: Example of CNN for segmentation, the UNet architecture [START_REF] Ronneberger | U-net: Convolutional networks for biomedical image segmentation[END_REF].

More recently, He et al. [START_REF] He | Mask r-cnn[END_REF] proposed a novel approach (Mask-R-CNN) to detect objects in an image while simultaneously generating a high-quality segmentation mask for each instance. The architecture of this ANN is presented on Fig. 7. It is based on the Faster-R-CNN network proposed in [START_REF] Shaoqing Ren | Faster r-cnn: Towards real-time object detection with region proposal networks[END_REF]. The Mask-R-CNN network is composed of the classical R-CNN performing the classification and bounding box regression and of a branch for predicting segmentation masks on each instance extracted.

All these methods have been applied to histopathological data mainly for two types of applications: the segmentation of cell nuclei to go beyond an estimation of cell density by colorimetric deconvolution of images, and the segmentation of larger or composite objects of interest (tumor, glomeruli, lobules, etc.).

Cell segmentation The analysis of histopathological images and the resulting diagnosis are mainly done by quantifying the immune or cancerous cells present in the biopsy or by observing the morphology of the cells. To go beyond simply estimating the density of cells or to analyze the morphology of the cell nucleus, Fig. 7: The Mask-R-CNN architecture for instance segmentation [START_REF] He | Mask r-cnn[END_REF].

it is important to segment each cell precisely and individually. This is why a lot of work is being conducted on cell segmentation in WSI of any type (brightfield or immunofluorescence).

Naylor et al. [START_REF] Naylor | Nuclei segmentation in histopathology images using deep neural networks[END_REF] studied multiple DL segmentation methods on a same dataset (publicly available1 ). Three different approaches were compared: FCN [START_REF] Long | Fully convolutional networks for semantic segmentation[END_REF], PangNet [START_REF] Pang | Cell nucleus segmentation in color histopathological imagery using convolutional networks[END_REF] and DeconvNet [START_REF] Noh | Learning deconvolution network for semantic segmentation[END_REF]. The authors proposed a post-processing of the probability map which resulted in a F-score of around 0.8 for the individual cell segmentation.

Many recent work have been proposed based on new architectures dedicated to this specific problem [START_REF] Saha | Her2net: A deep framework for semantic segmentation and classification of cell membranes and nuclei in breast cancer evaluation[END_REF][START_REF] Naylor | Segmentation of nuclei in histopathology images by deep regression of the distance map[END_REF][START_REF] Song | Multi-layer boosting sparse convolutional model for generalized nuclear segmentation from histopathology images[END_REF], using adversarial ANN [START_REF] Arbelle | Microscopy cell segmentation via adversarial neural networks[END_REF] or Mask-R-CNN [START_REF] Xie | Robust segmentation of nucleus in histopathology images via mask r-cnn[END_REF].

Large regions of interest or composite objects segmentation

The ANNs presented in the previous section have also been applied to larger objects segmentation. Indeed, they are very efficient at capturing the texture and shape of composite or complex objects, since they are based on convolutional layers at several levels of resolution (encoder part of the ANN).

For example, they were successfully applied many times in breast cancer for region of interest segmentation (stroma, tumor area, etc.) [START_REF] Su | Region in histopathological breast cancer images using deep convolutional neural network[END_REF][START_REF] Kovalev | Deep learning in big image data: Histology image classification for breast cancer diagnosis[END_REF][START_REF] Xu | A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images[END_REF] or for objects segmentation like lobules [START_REF] Apou | Detection of lobular structures in normal breast tissue[END_REF] or glands [START_REF] Hao Chen | Dcan: deep contouraware networks for accurate gland segmentation[END_REF]. Other organs or pathologies were also investigated like, for example, colon cancer [START_REF] Hao Chen | Dcan: Deep contour-aware networks for object instance segmentation from histology images[END_REF][START_REF] Kainz | Segmentation and classification of colon glands with deep convolutional neural networks and total variation regularization[END_REF][START_REF] Van Eycke | Segmentation of glandular epithelium in colorectal tumours to automatically compartmentalise ihc biomarker quantification: A deep learning approach[END_REF][START_REF] Tang | Segnet-based gland segmentation from colon cancer histology images[END_REF][START_REF] Sirinukunwattana | Gland segmentation in colon histology images: The glas challenge contest[END_REF], brain cancer [START_REF] Xu | Deep convolutional activation features for large scale brain tumor histopathology image classification and segmentation[END_REF][START_REF] Swiderska-Chadaj | Deep learning for damaged tissue detection and segmentation in ki-67 brain tumor specimens based on the u-net model[END_REF] or glomeruli segmentation in renal pathology [START_REF] Temerinac-Ott | Detection of glomeruli in renal pathology by mutual comparison of multiple staining modalities[END_REF][START_REF] De | Automatic segmentation of histopathological slides of renal tissue using deep learning[END_REF][START_REF] Shruti Kannan | Segmentation of glomeruli within trichrome images using deep learning[END_REF].

Challenges and opportunities

As seen before, artificial learning methods, notably ANNs, have demonstrated their interest in the field of computer vision and more specifically in the analysis of histopathological images. However, there remains many challenges to be overcome before seeing the emergence of tools in clinical routine that are sufficiently reliable, generic and whose diagnostic proposals are explicable. The main challenge, far more important than the definition of new learning or image analysis algorithms, concerns the data themselves. In fact, the majority of new methods that are emerging in computer vision and that could be applied to medical images come up against a problem of access to data, the creation of a sufficiently large learning set (annotations) and/or data quality (heterogeneity of data, etc.) in the majority of projects.

Annotations

Acquiring annotated data is difficult and time consuming in all ML project. While large databases of annotated simple objects (e.g. car, dog, car, bridge, etc.) are now available through public datasets like ImageNet [START_REF] Deng | Imagenet: A large-scale hierarchical image database[END_REF] or COCO [START_REF] Lin | Microsoft coco: Common objects in context[END_REF], large repositories of annotated biomedical images are still rare. This is probably due to the high degree of qualification required to discriminate between pathology from images compared to annotating a dog or a cat in an image.

This problem is particularly present in DL where ANN models generally require thousands of images to be trained efficiently. Furthermore, medical images are sensitive data, and they also requires a carefully data privacy policy to be able to share and distribute the images. In addition, expensive hardware is often required to capture the images compared to everyday objects that can be obtained using a simple smart-phone. However, despite these limitations, some current projects are now available and contain medical images, like The Cancer Genome Atlas Program (TCGA) [START_REF] John N Weinstein | The cancer genome atlas pan-cancer analysis project[END_REF].

However, the data are rarely annotated and only the raw images are available. Another point concerns the high degree of class unbalancing that can appear in medical image applications. For example, for many tasks, (e.g. mitosis detection), a negative label ("no mitosis") is much more frequent than the positive label ("mitosis"). This can disturb the training of an ANN that will naturally over-fit the most present class.

Multiple solutions are currently developed by the ML community to try to cope with these limitations. For example, data augmentation [START_REF] Perez | The effectiveness of data augmentation in image classification using deep learning[END_REF] which consists in creating synthetic data from real data is most of the time used in current DL model. Performing data augmentation allows to perform an explicit regularization of the ANN. An alternative to obtain more annotated data is to use crowdsourcing [START_REF] Grote | Crowdsourcing of histological image labeling and object delineation by medical students[END_REF], which consists in using a population of annotators to perform annotations manually. It has been shown that the level of expertise of the annotators can be limited [START_REF] Grote | Crowdsourcing of histological image labeling and object delineation by medical students[END_REF] and reliable annotation can be obtained by merging of combining multiple "weak" annotations of the same image (i.e. the power of the crowd [START_REF] Albarqouni | Aggnet: deep learning from crowds for mitosis detection in breast cancer histology images[END_REF]). Finally, domain adaptation or transfer learning [START_REF] Shin | Deep convolutional neural networks for computer-aided detection: Cnn architectures, dataset characteristics and transfer learning[END_REF] consists in using a pretrained ANN instead of using a brand new, randomly initialized model. This is particularly promising as it allows to avoid starting "from scratch" every time a new task has to be performed. It has been shown in [START_REF] Kieffer | Convolutional neural networks for histopathology image classification: Training vs. using pre-trained networks[END_REF] that results ob-tained using pretrained ANNs are quite competitive compared to newly trained ones.

Finally, recent results [START_REF] Song | Adapting fisher vectors for histopathology image classification[END_REF][START_REF] Chang | A method for classifying medical images using transfer learning: a pilot study on histopathology of breast cancer[END_REF] have demonstrated that models can be transferred and adapted to solve different, but related, tasks.

Multiple stainings

An important part of digital pathology is the analysis of multiple digitized WSI from differently stained tissue sections. It is common practice to mount consecutive sections containing corresponding microscopic structures on glass slides, and to stain them differently to highlight specific tissue components. These multiple staining modalities result in very different images but include a significant amount of consistent image information. DL approaches have recently been proposed to analyze these images in order to automatically identify objects of interest for pathologists.

The analysis and integration of information from different stainings is usually performed with reference to a specific organ, structure, or pattern observed in the tissue. For example, to diagnose pathologies such as breast cancer or kidney allograft rejection it is necessary to study the inflammatory microenvironment of the organ. In these cases, the relevant information is the distribution of immune cells (e.g. macrophages or lymphocytes) in relation to important structures of the organ, such as glomeruli for the kidney, or lobules for the breast.

To automatically perform such an analysis, the structure of interest (glomeruli, lobules, etc.) should be detected in each section irrespective of the individual staining modality. In order to avoid having to annotate each staining, strategies have been proposed in [START_REF] Lampert | Strategies for training stain invariant cnns[END_REF] to build an ANN that is robust to color variations between the WSI.

Another source of heterogeneity comes from slides originating from different hospital or centers. Indeed, depending of the operator preparing the slide, section thickness, chemical formulations, lab protocols etc. two images, even using the same staining, can look very different [START_REF] Marée | Collaborative analysis of multi-gigapixel imaging data using cytomine[END_REF]. In order to address this problem of inter-centric heterogeneity, several teams proposed approaches based on domain adaptation [START_REF] Gadermayr | Domain adaptive classification for compensating variability in histopathological whole slide images[END_REF][START_REF] Maxime W Lafarge | Domain-adversarial neural networks to address the appearance variability of histopathology images[END_REF].

Generative Adversarial Network

A Generative Adversarial Network (GAN) is a class of ML systems invented by Ian Goodfellow [START_REF] Goodfellow | Generative adversarial nets[END_REF]. These models are composed of a generative ANN that generates candidates and a discriminate network that evaluates them. The generative ANN learns to map from a latent space to a data distribution, while the discriminative ANN distinguishes candidates produced by the generator from the true data. GAN is use extensively in computer vision and are starting to be used in DP too. For example, Neslihan et al. [START_REF] Bayramoglu | Towards virtual h&e staining of hyperspectral lung histology images using conditional generative adversarial networks[END_REF] proposed a method that uses dimension reduction and conditional adversarial generative ANNs to transform unstained hyperspectral tissue image to their Haematoxylin&Eosin (H&E) equivalent. The goal is to create a virtual digital H&E staining that could automate some of the tasks in the diagnostic pathology workflow.

Zanjani et al. [START_REF] Farhad Ghazvinian Zanjani | Stain normalization of histopathology images using generative adversarial networks[END_REF] also explored how GAN could be used to normalize stainings. By replacing the latent representation of a source image with those extracted from a template image in the trained model, the proposed model can generate a new color copy of the source image while preserving the important tissue structures.

Alternatively, Burlingame et al. [START_REF] Burlingame | Shift: speedy histopathological-to-immunofluorescent translation of whole slide images using conditional generative adversarial networks[END_REF] proposed the SHIFT method that uses GAN to translate histopathological images to immunofluorescent images. This method has the potential to improve our understanding of the mapping of histological and morphological profiles into protein expression profiles. decisionmaking.

GAN can also be used to cope with the lack of annotated data (see section 3.1). For example, Hou et al. [START_REF] Hou | Unsupervised histopathology image synthesis[END_REF] used GAN to synthesize histopathological images, in order to train supervised CNN with the generated data. The synthetic images are generated with the mask corresponding to the expected segmentation and adapted to the reference style. This enables to boost the performance of the trained CNN by using onthe-fly generated adversarial examples.

Conclusion

Thanks to the recent advent and increasing cost-effectiveness of digital scanners, tissue histopathology slides can now be completely digitized and stored as digital images. With the availability and analysis of a much larger set of variables combined with sophisticated imaging and analytic techniques, the traditional paradigm of pathology and microscopy could quickly be complemented and potentially also partially replaced by digital pathology, based on a screen-based visualization of digital tissue sections and an analysis combining a pathologist and a computer-based diagnostic aid system. In this chapter, we presented challenges and opportunities of using DL techniques to process these data. We discussed current DL models for digital pathology and discussed the problems related to the acquisition of annotations and the heterogeneity of the data (e.g. slides coming from multiples centers, different types of stainings, etc.). With the broad access to state-of-art of DL models and the availability of efficient computation systems, DL for digital pathology will continue to make progress in the coming years.
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 1 Fig. 1: Example of digitized WSI of a breast cancer surgical resection after previous diagnostic biopsy and subsequent neoadjuvant chemotherapy stained with Haematoxylin&Eosin (18000 × 15000 pixels).
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 2 Fig. 2: The perceptron proposed by Rosenblatt in 1958.
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 3 Fig.3: A multilayer perceptron with multiple layers of neurons, p neurons in the input layer and K neurons in the output layer.
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 45 Fig. 4: Example of CNN, the LeNet architecture[33].
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