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ABSTRACT

Aims. Observational data show that the observed luminous matter is not sufficient to explain several features of the present universe,
from gravitational structure formation to the rotational velocities in galaxies and clusters. The mainstream explanation is that the
missing mass, although gravitationally active, interacts very weakly with ordinary matter. Competing explanations involve changing
the laws of gravity at low accelerations, as in MOdified Newtonian Dynamics (MOND). Here, we suggest that the Dirac-Milne
cosmology, a matter-antimatter symmetric cosmology where the two components repel each other, is capable of accounting for such
an apparent modification of the Newtonian law, without invoking dark matter.
Methods. Using a simple analytical approximation and 1D and 3D simulations, we study rotation curves and virial velocities and
compare the mass observed in the simulations to the mass derived assuming Newtonian gravity. Using a modified version of the
RAMSES code, we study the Faber-Jackson scaling relation and the intensity of the additional gravitational field created by antimatter
clouds.
Results. We show that, in the Dirac-Milne universe, rotation curves are generically flat beyond a characteristic distance of ≈2.5 virial
radii , and that the Tully-Fisher and Faber-Jackson scaling relations with an exponent ≈3 are satisfied. We show that the mass derived
from the rotation curves assuming Newtonian gravity is systematically overestimated compared to the mass really present. In addition,
the Dirac-Milne universe, featuring a polarization between its matter and antimatter components, presents a behavior similar to that
of MOND, characterized by an additional surface gravity compared to the Newtonian case. We show that in the Dirac-Milne universe,
at the present epoch, the intensity of the additional gravitational field gam due to the presence of clouds of antimatter is on the order of
a few 10−11 m s−2, similar to the characteristic acceleration of MOND. We study the evolution of this additional acceleration gam and
show that it depends on the redshift, and it is therefore not a fundamental constant.
Conclusions. Combined with its known concordance properties on the SNIa luminosity distance, age, nucleosynthesis, and structure
formation, the Dirac-Milne cosmology may then represent an interesting alternative to the standard cosmological model ΛCDM ,
MOND, and other scenarios for explaining the dark matter (or missing gravity) and dark energy conundrum.

Key words. cosmology: miscellaneous – dark matter – dark energy – gravitation

1. Introduction

The dark matter enigma found its first expression in the 1930s
after the observation by Fritz Zwicky (Zwicky 1933) that pecu-
liar velocities in the Coma cluster were far too large, by more
than two orders of magnitude according to Zwicky’s analysis,
to account for the bound behavior of the cluster components
if only the visible mass was taken into account. Following this
initial and remarkably prescient observation and analysis, a long
dormant period followed where the dark matter question was
mostly forgotten (however, see Kahn & Woltjer 1959). In the
1970s, Vera Rubin and collaborators (Rubin et al. 1980) and
Albert Bosma (Bosma 1981), measuring galactic rotation curves,
noticed that they generally had a rather flat behavior at large
distances from the core, and their analysis contributed very
significantly to the revival of the dark matter enigma. The accu-
mulation of galactic rotation curves then led to the gradual real-
ization (Bertone & Hooper 2018) that, quite generally, observed

galaxy rotation curves are flat at large distances from the galaxy
core, which is at odds with theoretical predictions based on the
assumption of dominating mass related to luminous matter.

Two main lines of hypotheses were proposed as tentative
solutions to this enigma. The first was to conjecture that there
really exists a large part of the matter component of our Universe
that is dark and interacts very weakly, apart from its gravitational
interactions. This conjecture was the dominant hypothesis for a
long time, under the implementation of weakly interacting mas-
sive particles (WIMPs), and later cold dark matter (CDM), after
the findings that both massive neutrinos (Drukier & Stodolsky
1984) and supersymmetric particles (Goodman & Witten 1985)
provided candidates that naturally suited the existing constraints,
in terms of mass and interaction cross-sections, to solve the dark
matter problem – the so-called WIMP miracle. This hypothe-
sis seemed indeed almost necessary since the then mainstream
Einstein-de-Sitter (EdS) universe featured a critical density: dark
matter suggested an elegant way to fill the gap between the small
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baryonic component, with a density derived and constrained by
nucleosynthesis to less than 5% of the critical density, and the
critical density of the EdS universe.

But despite extensive experimental searches, both in direct
detection experiments and at the Large Hadron Collider at
CERN, no such dark matter candidates have been found. Mean-
while, the tensions between the age of an Einstein-de Sitter and
the age of the oldest structures in the Universe (Bolte & Hogan
1995) grew to a point in the mid-1990s where a cosmologi-
cal constant or some other repulsive component was considered
compulsory, a few years before the discovery in 1998 of what
is now called dark energy, through the SNIa flux measurements
(Riess et al. 1998; Perlmutter et al. 1999).

The standard cosmological model, ΛCDM, although an
impressive fit to diverse sets of data, does in fact present some
tensions: probably the highest tension originates from the local
measurements of the Hubble constant H0 on the one hand,
and the determinations of this same parameter deduced from
the cosmic microwave background (CMB) and baryonic acous-
tic oscillations (BAO) on the other (Riess 2020; Di Valentino
2021). But even on the dark matter side, additional tensions
exist: there is for example no evidence for the cusped den-
sity profiles predicted by the dark matter simulations (Flores
& Primack 1994), and many galaxies apparently have no need
for dark matter in their central regions. For some galaxies,
there is even no apparent need for dark matter altogether,
requiring to explain how the dominant dark matter compo-
nent may have been almost entirely ejected from these galax-
ies (see e.g., Guo et al. 2020, and references therein). This sce-
nario also suffers from the fact that its two main ingredients,
dark energy and dark matter, supposed to represent 95% of its
content, have not been identified despite extensive investiga-
tions. The extremely rare coplanarity of the satellites around
Andromeda (Ibata et al. 2013), Centaurus A (Müller et al. 2018),
and the Milky Way (Pawlowski & Kroupa 2020), at present the
only three galaxies with well-known satellite distributions, is an
indication of additional tension in the ΛCDM scenario. Finally,
we note the too-big-to-fail problem (Boylan-Kolchin et al. 2011),
possibly addressed by baryonic back-reaction (Governato et al.
2012; Teyssier et al. 2013; Wetzel et al. 2016).

The second line of explanation rests on a modification of
the laws of gravitation, MOdified Newtonian Dynamics less
(MOND; Milgrom 1983) being its most popular expression.
The MOND hypothesis was initially phenomenological, and
based on the observation that the dark matter problem seemed
mostly confined to regions with values of the gravitational field
.10−10 m s−2. Indeed, MOND proposes that the law of gravi-
tation deviates from its Newtonian expression in the following
way: a =

√
a0aN where a is the acceleration, a0 is the crossover

acceleration of MOND, and aN is the acceleration predicted by
Newton’s law. With this single hypothesis, MOND predicted the
Tully-Fisher relation (Tully & Fisher 1977) linking the mass to
the rotation velocity for structures over a wide range of mass
(at least four orders of magnitude). And although the MOND
crossover acceleration, a0, seems to differ when the analysis is
done at galactic or at cluster scales, a reappraisal of the sys-
tematic errors in the cluster mass profiles (Ettori et al. 2019),
and hybrid models with neutrinos as hot dark matter (Angus
2009; Haslbauer et al. 2020) could alleviate this tension. Look-
ing for a field-theoretical expression, initial versions proposed
for MOND, such as TeVeS (Bekenstein 2004), were recently
ruled out by the multi-messenger observations of GW170817,
but a slightly modified form passes this test (Skordis & Złośnik
2019). Possible links between MOND and cosmology include

the entropic expression of gravity (Pazy 2013), emergent grav-
ity (Verlinde 2017), mimetic gravity (Vagnozzi 2017) or some
expressions of quantum gravity (Smolin 2017). The fascinating
proximity between the values of a0 and cH0 is a suggestion of yet
another link between cosmology and this crossover acceleration.
On the other hand, we show in the following that Dirac-Milne
may provide an explanation for this coincidence. A fundamental
remark to which we come back is the fact that MOND’s law
looks akin to the effect of gravitational polarization (Blanchet
2007; Blanchet & Le Tiec 2009).

In the present paper, we study the gravitational polarization
predicted by the Dirac-Milne (D–M) cosmology (Benoit-Lévy &
Chardin 2012; Chardin & Manfredi 2018), providing an expla-
nation for this apparent modification of the Newtonian law of
gravitation. For this purpose, in Sect. 2, we recall the main char-
acteristics of the D–M universe. In Sect. 3, we study a simple
idealized analytical model, showing that in the D–M cosmology
rotation curves are indeed expected to be generically flat after
a characteristic distance, for which we provide an approximate
relation. We discuss the law obtained for the rotation velocity,
notably in relation to the shell and Birkhoff theorems (Newton
1760; Birkhoff & Langer 1923), with a more detailed analysis in
Appendix A. In Sect. 4, we present preliminary results of veloc-
ity distributions as a function of mass using a modified version of
the RAMSES 3D simulation code incorporating the gravitational
behavior of the D–M universe, as described in Manfredi et al.
(2018) and Manfredi et al. (2020). In Sect. 5, we show that D–M
follows a Faber-Jackson relation with a very small scatter and an
exponent ≈3 over a range of more than three orders of magni-
tude in mass. In Sect. 6, we discuss in more detail the MOND-
like behavior of D–M and in particular the value of the predicted
acceleration parameter a0. In the final section, we summarize
our findings, and provide some perspectives and possible lines
of development for future work.

2. The Dirac-Milne universe

The Dirac-Milne (D–M) universe, proposed recently (Benoit-
Lévy & Chardin 2012; Chardin & Manfredi 2018), suggests a
radically different paradigm for the cosmology of our universe.
It features a symmetric matter-antimatter universe, where matter
and antimatter effectively repel each other, but where antimat-
ter also repels itself. As is well-known, when the usual expres-
sion of the weak equivalence principle is respected for matter
and antimatter, such symmetric matter-antimatter cosmologies
are excluded by the non observation of a diffuse gamma-ray
flux (Omnès 1972; Cohen et al. 1998). On the other hand, the
D–M cosmology is a gravitational implementation of the Dirac
particle-hole sea, analogous to the electron-hole system in a
semiconductor. Given the fact that a repulsive and enigmatic
dark energy component represents ≈70% of the energy density
in the ΛCDM model, it seems interesting to test more exten-
sively this hypothesis of repulsion between matter and antimat-
ter. The D–M cosmology is further motivated by the remark by
Price (1993) that the usual expression of the weak equivalence
principle, stating that all particles must follow the same trajec-
tories given the same initial conditions in a gravitational field
(universality of free fall), must necessarily be modified in the
case where particles with negative mass are considered along
with particles of positive mass. Indeed, as shown by Price, two
new elements appear in such bound systems: (i) Gravitational
polarization appears between particles of positive and negative
mass whenever they are bound by non gravitational forces, and
(ii) levitation is predicted for a symmetric (+m,−m) system, a
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gross violation of the usual formulation of the weak equivalence
principle.

A fundamental feature of the D–M universe is that its expan-
sion factor varies linearly with time:

a(t) ∝ t (1)

while in D–M there is neither dark matter, nor dark energy
beyond its matter and antimatter components. Being a uni-
verse that appears gravitationally empty at large scales, the
initial phases of the D–M universe have timescales differing
rather dramatically from the ΛCDM universe: for example,
the Quark-Gluon-Plasma transition lasts for about one day,
instead of about 10 microsec in the Standard Model, while
nucleosynthesis lasts about 35 years, compared to three min-
utes in the Standard Model, and recombination occurs at an
age of about 14 million years, compared to the 380 000 years
of the ΛCDM model (Benoit-Lévy & Chardin 2012; Chardin &
Manfredi 2018).

Despite these tremendous differences in the initial
timescales, the D–M universe, with only one adjustable
parameter H0, presents several elements of concordance: its age,
equal to 1/H0, is almost equal to the age of the ΛCDM universe
for H0 ≈ 70 km s−1 Mpc−1, while the H(z) dependence of cosmic
chronometers is nicely reproduced in coasting universes (Melia
& Maier 2013), along with primordial nucleosynthesis1 and the
SNIa luminosity distance (Sethi et al. 1999; Chodorowski 2005;
Benoit-Lévy & Chardin 2012). Also, its non linear structure
formation mechanism appears to reproduce the main features
of the matter power spectrum starting from a single scale of
matter-antimatter domains at decoupling (Manfredi et al. 2018,
2020). In addition, the D–M cosmology does not suffer from the
horizon problem (Benoit-Lévy & Chardin 2012) and therefore
does not require inflation.

3. Gravitational setup in the D–M universe

It is fundamental to note that although existing in nature, the
Dirac particle-hole system has no Newtonian expression, even
when the three Newtonian mass parameters (inertial, gravita-
tional active, and gravitational passive) are used (Manfredi et al.
2018). On the other hand, as studied in Manfredi et al. (2018,
2020), the gravitational sector of matter and antimatter in the
D–M universe can be expressed with two separate gravitational
potentials, using the following coupled Poisson equations:

∇2φ+ = 4πG(ρ+ − ρ−), (2)

∇2φ− = 4πG(−ρ+ − ρ−). (3)

It should be noted that in these equations, although two
potentials φ+ and φ− are invoked, there is a single gravitational
constant G, and not two independent constants for matter and
antimatter. In particular, following Price (1993), we can derive
the gravitational field for antimatter once the gravitational field

1 It has been noted by Lewis et al. (2016) that coasting universes would
destroy almost completely deuterium and helium-3. In the D–M cos-
mology, however, secondary annihilation processes produce deuterium
(and helium-3), although the precise amount remains to be determined.
In addition, the very slow “simmering” thermal nucleosynthesis, last-
ing ≈35 years, produces small quantities of elements heavier than 4He,
7B and 7Li, notably nitrogen and carbon nuclei. It should be noted,
on the other hand, that 7Li is only produced in D–M at the level of
7Li/H≈ 3 × 10−10, alleviating in part the so-called “lithium problem”
met by ΛCDM .

Fig. 1. Slice of a matter-antimatter simulation of a small volume in the
D–M universe using a modified version of the RAMSES simulation code.
The thickness of the slice is 20% of the simulation box, of comoving
size 1 h−1 cMpc. The condensed structures (represented in light blue)
are all made of matter, while antimatter is spread in nearly homoge-
neous extended halos (represented in red) over half of the volume. The
other half of the volume is occupied by depletion zones, surround-
ing the matter galaxies and clusters, isolating them from antimatter.
These depletion zones are a consequence of the gravitational polar-
ization expected between positive mass and “negative mass” objects.
We note that antimatter clouds percolate, i.e., it is possible to roam at
infinity without leaving the antimatter cloud, and the same property is
respected for the depletion zones surrounding matter.

for matter is known (and vice-versa). For particles with equal but
opposite mass, the gravitational fields:

g+ ≡ −∇φ+ (4)

and

g− ≡ −∇φ− (5)

exerted on a particle and its antiparticle are opposite in the “New-
tonian” regime (i.e., when the gravitational field created by mat-
ter is much larger than the contribution of antimatter, which can
then be neglected), as the total force on the bound (+m,−m) sys-
tem is zero (Manfredi et al. 2018, 2020).

For further use, we also introduce the gravitational field act-
ing on a particle sourced only by matter as:

gm ≡ −∇(φ+ − φ−)/2 (6)

and the corresponding field acting on a particle sourced only by
antimatter:

gam ≡ −∇(φ+ + φ−)/2 (7)

3.1. General properties of matter, antimatter and depletion
zone

In order to introduce the properties of rotation curves and virial
velocity distributions in the D–M cosmology, let us first con-
sider the following example of cluster configuration, represented
on Fig. 1. This configuration was obtained in a 3D simulation
using a modified version of the RAMSES code (Teyssier 2002),
that we discuss more precisely in the next section. This figure
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represents a small cluster configuration in the D–M universe at
redshift z ≈ 20 for self-gravitating particles, at this stage without
dissipation. The full tomography of the matter, antimatter, and
matter+antimatter configurations can be found as supplementary
material at the following link2.

An animation of the formation of structures centered on a
massive cluster of the simulation can be found at the following
link3.

In Fig. 1, it can be seen that while matter has the usual clus-
tering properties in planes, filaments and nodes (where globular
clusters, galaxies and clusters of galaxies accumulate), and is
concentrated in relatively small regions, antimatter has a com-
pletely different distribution, occupying nearly exactly half of
the total volume, with a much more homogeneous density than
matter. In addition, a new element is apparent: empty or very
low-density depletion zones surround matter, isolating it from
antimatter and occupying also about half of the total volume.
We note that while it will be in most occasions possible to
define rather well-defined isolated matter galaxies and clusters,
this will not be the case for antimatter clouds, which are per-
colating. Strictly speaking, it is therefore incorrect to speak of
“domains" for antimatter, since there is path continuity at all dis-
tances within the antimatter clouds. The same property of per-
colation is respected by the depletion zones, which are therefore
organized more in tubes surrounding matter structures than in
spheres.

Let us now show that both these antimatter clouds and the
depletion zones between matter and antimatter lead to an addi-
tional surface gravity compared to the Newtonian expectation.
For this, we first use a simple analytical model, represented on
Fig. 2, where the D–M universe is represented as the periodic
repetition of elementary cubic cells, in which half the volume is
occupied by a galaxy (located at the center of the box) and the
surrounding almost spherical depletion zone, while the antimat-
ter cloud occupies the other half of the volume in the outer part
of the box. Although this is clearly an oversimplification, since
in this representation all structures are supposed to have the same
mass and size, it will enable us to evidence the salient features
of galactic rotation curves in the D–M universe.

More precisely, we postulate that each galactic cell is consti-
tuted by a cubic box of volume equal to the average volume per
galaxy. We represent the content of this box as the sum of three
contributions:
(a) A galaxy concentrated in a very small volume at the center

of the box, the density of the galaxy being much higher than
the average matter density (typically a factor 200 within the
virial radius);

(b) A depletion zone, mostly empty of matter and antimatter,
around the galaxy. In the galactic box, the volume of the
depletion zone is about half of the total volume of the box
when antimatter and matter in the box have equal and oppo-
site “masses”, as supposed in D–M;

(c) Surrounding this depletion zone, a region filled with antimat-
ter with nearly constant density and a volume equal to half
of the total volume of the box.

The whole space is then represented as a collection of such cubes
in a periodic geometry.

We note that although the antimatter clouds occupy half of
the volume of the box, the radius of the depletion zone extends
almost to the confines of the box. In order to show this, let us
derive, in our approximation of spherical symmetry, the extent

2 https://youtu.be/rdIOCoy8QPM
3 https://youtu.be/aqyuDYrwyBQ

Fig. 2. Schematic representation of a periodic structure of identical
galaxies and their surroundings in the D–M universe. A galaxy core
is represented by a condensed object at the center of a cubic cell, while
a depletion zone, occupying about 50% of the cell volume, surrounds
the galaxy. Antimatter is spread out beyond this depletion zone, on the
outskirts of the cell, occupying also nearly 50% of the cell volume,
although its volume appears smaller in the 2D projection.

of the depletion zone delimiting the zones of matter (mostly con-
densed) and antimatter (spread out almost uniformly). The con-
straints are the following:

– The total mass of the “galactic cell” is zero, i.e., m+ = m− ≡
m

– The depletion zone is spherical and of radius rd
– The linear size of the individual galactic cell is L, and its total

volume is therefore L3.
– The antimatter, due to its internal repulsion, has a constant

density ρ−.
The edge of the depletion zone is defined by the condition that
the total gravitational force on an antimatter particle becomes
zero. In order to express the repulsive force exerted by the anti-
matter cloud on an antiparticle at the edge of the depletion zone,
we use the fact that the force created by the antimatter cloud
of uniform density would be zero were it not for the spherical
depletion zone. On the other hand, creating the depletion zone by
removing an homogeneous sphere of antimatter creates a force
directed toward the center of the box, and its intensity can be
calculated by Newton’s shell theorem stating that the situation is
equivalent to that where the antimatter mass of the depletion vol-
ume is concentrated at the center. The spherical depletion zone
will therefore create an attractive force as it if were concentrated
at the origin and with a mass 4

3πρ−r3
d. Since we want the total

gravitational force on an antimatter particle at the edge of the
depletion zone to be zero, it means that this mass must be equal
to m+.

On the other hand, the remaining mass of antimatter, outside
the depletion zone, is:

m− = ρ−(L3 −
4
3
πr3

d) (8)

By our first condition, it must be equal to the positive mass m+

of the galaxy.
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Overall, we have therefore the conditions relating ρ− and rd:

ρ−(L3 −
4
3
πr3

d) =
4
3
πρ−r3

d = m+ = m− (9)

Therefore, in our approximation of spherical symmetry, the anti-
matter cloud occupies half the volume of a simulation cube, and
the depletion zone extends until:

rd =
3

√
3

8π
L ≈ 0.492L (10)

This means that, counterintuitively, the depletion zone
almost reaches the confines of the average individual box around
a galaxy. It is important to note that the situation that we have
represented on Fig. 2 has not a spherical symmetry, notably con-
cerning the antimatter cloud. Also, in the actual 3D equilibrium
configuration, the depletion zone of a cell connects with that of
the adjacent cells on its three axis.

3.2. Analytical approximation of the rotation velocity

We now estimate the rotation velocity for a matter test particle
as a function of the distance to the galaxy in the preceding con-
figuration. The galaxy of mass m obviously contributes, for a
test body located at the distance r from the galaxy center, to an
acceleration equal to Gm/r2, as in the Newtonian case.

For a matter particle, the gravitational force due to the con-
figuration of the antimatter cloud and the depletion zone sur-
rounding the galactic core can be estimated as follows. We first
consider the configuration where antimatter of “negative mass”
(see Manfredi et al. 2018 for a precise definition), is uniformly
distributed in the box. The gravitational force exerted by this
uniform antimatter cloud is then zero everywhere, by symmetry.
Then, we represent the depletion zone as the sum of a homo-
geneous sphere of positive density (equal and opposite to that
of antimatter) covering the volume of the depletion zone, which
will compensate the uniform background of the negative mass
fluid.

For each individual cubic cell, the situation shown in Fig. 2
can therefore be expressed as the superposition of three cubes
(Fig. 3):

(a) A cube with “negative mass” equal to −2m, i.e., twice the
mass of the galaxy, and uniform density (zero gravitational fields
g+ and g− everywhere);

(b) A cube with the mass m of the galaxy at the center, i.e.,
half of the total mass of the antimatter in the first box. This galac-
tic point-like mass will produce the classical Newton force field
g+ = −Gmr/r3 (and g− = −g+);

(c) A cube with the same positive mass +m as the galaxy,
but uniformly distributed over the spherical depletion zone. This
positive mass will compensate the negative mass −m of the
first cube contained in the same sphere, thus creating the empty
depletion zone, with a volume 50% of the box.

As is well known, the homogeneous matter sphere in the
third cube will generate a harmonic restoring force, which is
superimposed on the Newtonian force of the galaxy, supposed
to be a point galaxy. We note that the second and third cubes
have a total mass of 2m, compensating the “negative mass” −2m
of antimatter in the first cube. Space is supposed to be covered
by adjacent such cubes (see Fig. 2).

At a distance r from the center of the box (and the center of
the galaxy), the gravitational field created by this homogeneous
sphere of positive density will then be:

g+ = −
Gmr

r3
d

(11)

Fig. 3. Our approximation of a galaxy represented on Fig. 2 can be rep-
resented as the sum of three cubes: a cube (a) with uniform “negative
mass” density of total mass −2m, a cube (b) with only the galaxy of
mass +m at the center, a cube (c) with a sphere occupying half the vol-
ume of the cube and of homogeneous positive density of matter, equal
and opposite to that of the first cube, that together with (a) will create
the empty depletion zone.

where m is the positive mass added to create the depletion zone
and r is the radial distance vector to the galactic center. The total
gravitational field g+ exerted on a matter particle orbiting at a
distance r from the galaxy center is therefore:

g+ = −
Gmr

r3 −
Gmr

r3
d

(12)

while the relation between orbital velocity and this force is:

v2

r
=

Gm
r2 +

Gmr
r3

d

(13)

The orbital velocity as a function of the distance r to the center
of the galaxy can be simply deduced from the above expression,
and reads as:

v(r) =

√
Gm

r
+

Gmr2

r3
d

(14)

Remarkably, this function has a derivative that vanishes at
r = 2−1/3rd ≈ 0.79 rd, and is almost constant for all r & rd/2.
This function is represented in Fig. 4, where we also plot the
expected orbital velocity assuming there were no depletion zones
nor antimatter clouds on the outskirts. This figure shows that
for such idealized galaxies, the D–M orbital velocity reaches a
nearly constant plateau, even rising very slightly near the end of
the depletion zone in our approximation of spherical symmetry.
We note, however, that for r > rd, the spherical approximation
breaks down as we have seen in Sect. 3.3. Additionally, beyond
the depletion zone, the antimatter cloud is present.

Since the depletion zones occupy about 50% of the total vol-
ume and since the baryonic density in a D–M universe is defined
by the baryon/photon ratio η ≈ 8 × 10−9 (Sethi et al. 1999;
Benoit-Lévy & Chardin 2012), an observer assuming that the
ΛCDM cosmology is valid will interpret the depletion zone as
a halo with a density equal to the matter density of the D–M
universe, that is:

ρm

ρc
=

ηD−M

ηΛCDM
×ΩΛCDM

baryon ≈
8 × 10−9

6 × 10−10 × 0.049 ≈ 0.65 (15)

where η = nB/nγ is the number of baryons per photon in the
corresponding cosmology, and ρc is the critical density for the
ΛCDM universe at the present epoch.

Now, the precise characterization of the virial radius depends
on the cosmological model used and notably on the inflows
between the redshift of initial collapse of a structure and the
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Fig. 4. Rotation velocity predicted in the D–M universe for a point mass
located at r = 0 and surrounded by a depletion zone and the same mass
of antimatter (with opposite “sign”). Instead of the expected Newtonian
velocity (see Eq. (11)), decreasing to zero, D–M predicts that the rota-
tion velocity for a condensed object of positive mass will be nearly
constant (see Eq. (14)) above the characteristic distance approximately
equal to half the radius rd of the depletion zone, or ≈3 virial radii.

present epoch. The overdensity ∆c at the virial radius for ΛCDM
is usually approximated as ∆c ≈ 100ρc (Shull 2014), so that a
nearly constant rotation velocity will be observed for distances:

r &
rd

2
≈

1
2

3

√
∆c

ρm
rv ≈

1
2

3√
150 rv ≈ 2.6 rv (16)

where rv is the virial radius. Therefore, the flat rotation curves,
instead of being due to an invisible halo of slowly decreasing
density, are in fact due in D–M to the asymmetric configuration
of matter and antimatter that we have described above.

Indeed, the D–M universe tells us that in order to derive the
galactic rotation curves and the virial velocities in a cluster of
galaxies, it is necessary to take into account not only the mat-
ter present between us and the center of the galaxy or the clus-
ter, i.e., matter “below our feet”, but also (anti)matter “above
our heads”, which may be interpreted as an external field effect
(EFE; Chae et al. 2020). This is indeed very counterintuitive,
and may even be considered in contradiction with the Newto-
nian shell theorem (Newton 1760), stating that inside a spheri-
cal shell, spacetime must be Minkowskian, i.e., the gravitational
field must be zero. We further discuss this apparent contradiction
in Appendix A.

The approximation of spherical symmetry allowed us to
show that flat rotation curves are expected within a large fraction
of the volume of the depletion zone. Using a numerical simula-
tion, we now explore in more precision the edge effects created
by the antimatter clouds, which are in fact asymmetric.

3.3. Numerical study of the depletion zone

In this subsection, we use our modified version of RAMSES (see
Sect. 4 for details) to study numerically the spherical approxi-
mation of the previous subsection. We consider a galaxy shell
configuration following Sect. 3.1, as described in Fig. 5.

Fig. 5. Configuration studied in this simulation. A matter galaxy, located
at the center of the box, is surrounded by a depletion zone, extending
over half the volume of the box, and by an antimatter cloud (represented
in magenta), extending to the outskirts of the box over the other half of
the volume.

Fig. 6. Gravitational field gam created by antimatter on two planes
defined by their normal vector (1,0,0) for the top panel and (1,1,1)

√
3

for
the bottom panel. The color scaling indicates the strength of the field.
The confining gravitational field created by the antimatter cloud is more
symmetric and has a higher intensity in the bottom panel, which repre-
sents the field in one of the diagonal planes of the cube.

More precisely, we considered an initial configuration where
a central galaxy core, confined in a radius equal to ≈5% of the
simulation box length, presents an isothermal density and veloc-
ity profile. The same mass of antimatter is uniformly distributed
at r > rd ≈ 0.5L, (see Eq. (10)), but its initial velocity is zero.
The boundary conditions for the simulation box are periodic,
which means that the actual configuration simulated is that of
Fig. 2, repeated out to infinity.

Using RAMSES on a 1283 grid, we checked that this initial
configuration does not evolve noticeably. The gravitational field
gam created by antimatter is represented in Fig. 6. Due to the non
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spherical distribution, the antimatter field is seen to be stronger
on the diagonals of the cube for a plane with normal parallel to
one of the axes of the cube, for example with a normal vector
(1, 0, 0). In the bottom panel of the same figure, we have repre-
sented the antimatter field for a plane along one of the diagonals
of the cube, for example with a normal vector (1,1,1)

√
3

. For such
planes, the confining field created by antimatter is more symmet-
rical, in a ring configuration, and stronger than the field present
in the plane parallel to one of the faces of the cube.

In order to quantify this statement, we represent in Fig. 7 the
total gravitational field experienced by a matter particle, created
by both matter and antimatter, as a function of the gravitational
field created by matter alone. These gravitational fields are cal-
culated on a 1283 Cartesian grid (about 2 million cells), and the
quantities estimated on the matter region, as defined by the dis-
tance to the galactic center, which is the only cut applied for the
selection. A Newtonian regime can be observed in the high field
region of the figure, with a gradual transition from the Newto-
nian regime to a MOND-like regime beginning at an acceler-
ation of ≈1.0 × 10−9 m s−2. Fitting an a0 parameter according
to MOND interpolating formulas listed in Famaey & McGaugh
(2012) results in values of the a0 parameter ranging between
≈1.5 and ≈5 × 10−10 m s−2, depending on the parametrization
chosen. Using as an example the parametrization of Lelli et al.
(2017), we present in the bottom panel of Fig. 7 the ratio of the
gravitational field acting on a matter particle, g+, to the gravita-
tional field created by matter alone, i.e., the Newtonian expecta-
tion, gm. Superimposed on this 2D distribution, we have plotted
the analytical expression of Lelli et al. (2017) for values of the a0
parameter between 1.5 and 3.0× 10−10 m s−2. We have also indi-
cated the upper and lower limits of 0.11 dex (1-σ error) reported
by Lelli et al. (2017) in their analysis.

It should be noted, however, that the proximity with the value
of the MOND parameter equal to ≈1.2 × 10−10 m s−2 is coinci-
dental, as other values of the mass of the central structure in our
simulation would have changed the value of the fitted parame-
ter a0. We further discuss this crucial aspect in Sect. 6, which
is dedicated to the simulations of “clusters” of mass between
2 × 1010M� and 1 × 1016M�, and where we study the evolution
and value of the a0 parameter predicted by D–M as a function of
redshift and total mass.

3.4. Self-consistent model of the depletion zone

In the present section, in order to confirm the qualitative and
numerical analysis of the depletion zone presented in the two
preceding subsections, we extend the analysis of Manfredi et al.
(2020) to incorporate the notion of depletion zone and inhomo-
geneity of the antimatter cloud. Using the Poisson equations (2)
and (3), we consider a spherically symmetric geometry, where all
quantities depend only on the radius r and the Laplacian operator
is defined as ∇2φ = 1

r2 ∂r(r2∂rφ), where ∂r is a radial derivative.
We want to solve these Poisson equations for a typical situa-
tion where a positive high-density mass (“galaxy”) is located in
a small spatial region located near r = 0 and is described by
the distribution ρ+(r). In contrast, negative masses are supposed
to be thermalized (at low temperature T ) and described by a
Boltzmann distribution:

ρ−(r) = ρ0 exp
(
−mφ− + µ

kBT

)
, (17)

where kB is Boltzmann’s constant, ρ0 is a reference density, and
µ is a chemical potential that will be chosen so that positive and

Fig. 7. Top panel: total gravitational field acting on a matter particle as a
function of the gravitational field created by matter alone. A Newtonian
regime can be observed for the high field region of the figure, with a
gradual transition from the Newtonian regime to a MOND-like regime
at an acceleration of ≈1.0×10−9 m s−2. Middle panel: total gravitational
field acting on a matter particle as a function of the gravitational field
created by antimatter alone. The antimatter field is rather peaked, with
an average value of ≈2 × 10−10 m s−2. Bottom panel: ratio between the
total gravitational field acting on a matter particle and the Newtonian
field (created by matter only), as a function of the gravitational field
created by matter only. Almost exactly unity in the Newtonian regime
(at high values of the field), this ratio gradually increases and reaches a
factor of ≈2 at the end of the depletion zone. The MOND interpolating
function used in Lelli et al. (2019) for a value of the a0 parameter 1.85×
10−10 m s−2 has been superimposed on the simulation data, while the
two adjacent curves represent the 1-σ error of 0.11 dex found by these
authors.

negative masses are present in equal amounts in the computa-
tional box, i.e., 4π

∫
ρ+r2dr = 4π

∫
ρ−r2dr. We note that the
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Fig. 8. Matter density ρ+(r) (black dashed line), antimatter density ρ−(r)
(blue line), and pseudo-dark-matter halo density: ρhalo = 2ρ̄ − ρ− (red
line).

mass m appearing in Eq. (17) is the passive gravitational mass,
which in the D–M model is always positive (Manfredi et al.
2018). Then, Eq. (3) becomes a non linear Poisson equation for
φ−(r), which can be solved self-consistently, and the result sub-
stituted into Eq. (2) in order to obtain φ+(r).

However, as discussed at the end of Sect. 3, the external field
effects require a careful treatment of the boundary conditions.
Indeed, as they are written, the Poisson Eqs. (2)–(3) describe
an isolated system in otherwise empty space. But this is not the
case for a cosmological setting for which the positive masses are
localized in small regions, and the negative masses spread out
almost uniformly across about 50% of the available space.

We therefore solve Eqs. (2)–(3) in a spherical region between
r = 0 and r = R, using the following boundary conditions:

φ′+(R) = 2
4πG

∫ R
0 ρ+ r2dr

R2 , φ′−(R) = 0 (18)

where the apex stands for differentiation with respect to r.
For comparison, the Newtonian case is computed by solving:

∇2φNewt = 4πGρ+, with boundary condition: φNewt(R) = 0.
In this subsection, we use units in which 4πG = 1, and take

R = 20 and temperature T = 0.001. The depletion zone is clearly
seen in the simulation results shown in Fig. 8, and extends up to
rd ≈ 15.8. Thus, the ratio of the total volume to the volume of the
depletion zone is approximately R3/r3

d = 2.04 ≈ 2, as expected.
On the outer border of the depletion zone, the gravitational field
(defined as: g = −∂rφ) for matter is twice the Newtonian value,
while the antimatter field vanishes within the entire depletion
zone (see Fig. 9), justifying our hypothesis that the antimatter
cloud is both very cold and homogeneous. The rotation speeds
are defined as: v(r) =

√
r |φ′(r)|. For the D–M model, the rota-

tion curve flattens between approximately rd/2 and rd, also in
accordance with our model (see Fig. 10).

Finally, we point out that the Poisson equations (2)–(3), with
the boundary condition (18), are equivalent to adding a con-
stant density 2ρ̄ on the right-hand side of both equations (where
ρ̄ ≡ 〈ρ+〉 = 〈ρ−〉 is the average matter or antimatter density) and
using Dirichlet boundary conditions φ±(R) = 0, i.e., fixing the
value of the potentials on the sphere (r = R). The conditions on
the gradients (the fields), i.e., Eq. (18), will be automatically sat-
isfied because of Gauss’s theorem. Hence, the potential φ+ acting
on matter results from two sources: the central “galaxy" ρ+ and
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Fig. 9. Gravitational fields: g− (blue line), −g+ (black dashed line), and
−gNewt (red line) .
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Fig. 10. Rotation speeds for the D–M model (black line) and for stan-
dard Newtonian gravity (red line). The decrease of the rotation velocity
beyond r/rd = 1 is non physical, as the test particle would enter the
antimatter cloud.

the additional distribution ρhalo ≡ 2ρ̄−ρ−. The latter is analogous
to the dark matter halo postulated in the standard CDM theory.
This halo distribution is also represented in Fig. 8.

4. Simulation results

In order to validate the analytical approximations studied in
Sect. 2, we modified the Adaptive Mesh Refinement code
RAMSES (Teyssier 2002) in order to implement the gravitational
behavior of matter and antimatter present in D–M, following
Eqs. (2)–(3). We note that in most cosmological simulations, the
average density is first calculated and subtracted from the local
density in order to calculate the evolution of the scale factor a(t),
so that the Poisson equation is usually written ∇2φ = 4πGa2δρ.
In D–M, this is directly the case, since ρ̄ = 0 in this mat-
ter/antimatter symmetric universe, so that δρ ≡ ρ(t, x) − ρ(t) =
ρ(t, x). The new element introduced in this D–M cosmological
version of RAMSES is an extra set of particles with negative mass,
which in turn introduces the new aspect of a depletion zone.

The acceleration of these negative mass particles is given
by the gravitational potential of Eq. (3) (respectively, Eq. (2)
for positive mass particles). The mass density of both particle
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species are projected separately onto the mesh with a cloud-in-
cell interpolation, so that the mesh contains both the positive and
negative mass density of the corresponding positive and negative
mass particles. Once these two separate mass densities on the
mesh are obtained, the positive and negative gravitational poten-
tials are derived using the standard conjugate gradient algorithm
of RAMSES. The plus and minus accelerations are computed with
a simple finite difference and attributed to the corresponding set
of positive and negative mass particles with the cloud-in-cell
interpolation of the accelerations computed on the mesh. All par-
ticles share a common level-based timestep obtained from the
smallest Courant condition from particle velocities and free fall
time. The cosmological time is a linear function of the scale fac-
tor a(t), as in the Milne geometry (Milne 1933).

Numerical Setup. The first simulation that we present
involves a small simulation volume, of dimensions 1 h−1 cMpc,
discretized on a grid of 2563 cells. We allowed for up to two
refinement levels, therefore leading to an effective resolution of
∆x ≈ 1 h−1 ckpc. According to Benoit-Lévy & Chardin (2012),
Manfredi et al. (2020), the initial size of matter and antimatter
domains is on the order of 100 pc at z ≈ 1080 (i.e., 100 ckpc
at the present epoch). Thus the resolution will capture these
domains and their contrast at the initial times. We ran the sim-
ulation from z = 1080 to z = 0. At a redshift of z = 20, 7769
halos were identified using the AdaptaHOP algorithm (Aubert
et al. 2004), the development of structures in D–M occurring
mostly before z = 3. This allows to sample structure character-
istics such as size and velocity dispersion over a range of about
three orders of magnitude in mass (105−2 × 108 M�). The total
mass of matter present in this simulation is ≈3.3 × 1010 M� (and
the same mass of antimatter), which gives an individual equal
mass for each particle of ≈3.9 × 103 M�. For the initial condi-
tions, we used a Gaussian velocity distribution with dispersion:

vI =

√
Gm

r ≈ 2 km s−1 = O(1) km s−1.
We checked that, even when the particles are initially dis-

tributed on a uniform grid with v = 0, the qualitative behavior
of our results is not significantly modified. This is due to the
fact that the initial contrast in density in D–M is already of order
unity immediately after the CMB transition, leading to a very
efficient virialization of the first structures within typically one
Hubble time at that epoch, a few million years.

In the simulation, we use the value H0 = 70 km s−1 Mpc−1

for the Hubble parameter at the present time. We note that,
unlike standard large-scale structure simulations, we did not
impose a given initial power spectrum but rather a specific
matter/antimatter pattern. In this first simulation, the matter-
antimatter pattern for the initial condition was generated using an
Ising code (with two states per spin, used here to represent mat-
ter and antimatter), on a 2563 Cartesian grid evolved for a few
time steps starting from a random distribution, and using a tem-
perature well below the second order transition. This procedure
was used in order to create a fine-grained distribution where mat-
ter and antimatter both percolate in analogy with an emulsion.
The characteristic size of the emulsion (≈100 pc at z = 1080)
results from the annihilation and polarization of the matter and
antimatter emulsion at much higher temperatures (Benoit-Lévy
& Chardin 2012), and we do not describe this phase of the evo-
lution here. This aspect will be treated elsewhere.

Results. Analogous to observations of electrons and holes
in semiconductors (Tsidil’kovskii 1975), this small-scale sim-
ulation exhibits a nearly empty depletion zone between the
condensed clumps of matter and the extended clouds of antimat-

ter. Figure 1 illustrates this geometric distribution, asymmetric
between matter and antimatter. We also refer the reader to the
supplementary movie available at the following weblink4 show-
ing that unlike in ΛCDM, structure formation in D–M starts very
shortly after the CMB transition, as was already predicted by our
earlier 1D simulations (Manfredi et al. 2018, 2020). The config-
uration represented in Fig. 1 is due to the fact that matter and
antimatter repel each other, leading to a zone where almost no
particles or antiparticles are present. As antimatter particles repel
each other, antimatter spreads as much as it can without going
close to matter, by which it is also repelled. Matter clusters and
forms halos as in the conventional gravitational scenario. Indeed,
by looking only at the matter zones, it is difficult at first glance to
distinguish, with its planes, filaments and nodes, the matter con-
figuration in D–M compared to ΛCDM. Obviously, this qualita-
tive statement deserves a more detailed study.

On the other hand, we can look at the common features of
matter halos present in the 3D simulation. In Fig. 11, we show
the logarithmic density profile of matter and antimatter in 25
halos, with individual masses on the order of 107 M� in our sim-
ulation. These density profiles share common features such as a
bulge region where the matter density is steeply decreasing with
the distance from the center of the halo, while the density of
antimatter in the same region is zero. After a few virial radii, the
antimatter density becomes non zero and the enclosed mass of
antimatter rapidly increases and becomes of the same order as
the mass of matter present in the halo, with nearly equal aver-
age densities. These extended antimatter clouds, present beyond
the depletion zone, create an approximately harmonic restoring
gravitational field, which adds its contribution to that of mat-
ter present in the halo, and lead to nearly flat rotation curves.
This behavior is generic to most halos present in our simula-
tion, although some isolated halos can present a somewhat dif-
ferent behavior when their vicinity includes more massive struc-
tures. Depending on their antimatter environment, they might
then appear as being completely devoid of dark matter when
their close environment does not contain antimatter, with accel-
erations described by the expected Newtonian behavior or, on
the contrary, as being submitted to strongly confining fields, cre-
ated by the configuration of surrounding matter and antimatter
clouds, as in the bottom panel of Fig. 6, and appear as almost
entirely composed of dark matter.

As discussed in Manfredi et al. (2020), the highly non linear
structure formation in D–M appears to give at the present epoch
the same order of magnitude for the matter power spectrum at
the peak scale as its ΛCDM counterpart. However, at higher red-
shifts, the situation is quite different and bound structures appear
much earlier in D–M than in ΛCDM . This may indeed allevi-
ate the constraints met by ΛCDM in this regard (Kovács et al.
2019; Asencio et al. 2021; Lelli et al. 2021). It should be noted
that in the evolution for redshifts between z = 100 and z = 20,
the formation of structures in the upper range in mass may be
underestimated as the size of the simulation box is very limited.
Note also that in the present simulations, particles are dissipa-
tionless (behaving as dark matter particles), which may lead to a
modification of the power spectrum at small scales.

A few additional remarks are in order: the average velocity
of antimatter clouds is much smaller (typically by one order of
magnitude, depending on redshift) than that of matter. In addi-
tion, these peculiar velocities for antimatter correspond to nearly
global flows of cold antihydrogen (and antihelium) clouds, and
the actual temperature of the antimatter clouds is much colder

4 https://youtu.be/aqyuDYrwyBQ
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Fig. 11. Logarithmic spherical density as a function of radius for both matter and antimatter for a set of 25 halos with mass ≈107 M� in our RAMSES
simulation. While the density of matter, represented in blue, is steeply decreasing from the halo center, the density of antimatter, represented in
orange, is zero in this region. The logarithmic density is scaled to the average matter and antimatter density, equal in D–M at large scales, and
converge (equal average densities for matter and antimatter) for almost all halos. It can be seen that the antimatter density becomes non zero after
a few virial radii, and that the mass of antimatter becomes on the order of the halo matter mass after typically twice the radius at which antimatter
density becomes non zero. The distribution for 25 consecutive halos has been represented in the figure in order to show that this behavior is quite
generic in D–M, although some variations can be seen in the distribution of antimatter around the matter halos.

than that of matter. Also, as mentioned previously, antimat-
ter clouds percolate with one another, which means that it is
possible to travel continuously at infinity without leaving the
antimatter region. Similarly, the depletion zones also exhibit per-
colation, meaning that matter structures are confined in tubes
rather than in depletion spheres. In order to better apprehend the
gravitational influence of these extended antimatter clouds, we
now turn to the study of the Tully-Fisher and the Faber-Jackson
relations.

5. Tully-Fisher and Faber-Jackson relations in the
D–M universe

The Tully-Fisher relation (TFR; Tully & Fisher 1977) and Faber-
Jackson relation (FJR; Faber & Jackson 1976) are phenomeno-
logical scaling relations between the velocities inside galaxies
and clusters and the baryonic mass of the structure considered.
The scatter around a relation of the type:

m ∝ vα (19)

is surprisingly low, and seems to indicate that either there is no
dark matter, or that there is a strict correlation between the dark
matter and the baryonic matter component, which seems diffi-
cult to justify in the ΛCDM model. MOND, on the other hand,
predicts such a strict correlation and an exponent α = 4 (Famaey
& McGaugh 2012).

Let us now show that such power-law relations are a natu-
ral consequence of the D–M cosmology. We have seen that, due

to the presence of the antimatter component on the outskirts of
galaxies and clusters of galaxies, rotation curves are almost flat
beyond a characteristic distance, which, to a good approxima-
tion, is about half the size of the depletion zone (see Fig. 2), and
about 2.5rv, where rv is the virial radius as usually defined in
the ΛCDM cosmology. At distances r > rd/2 ≈ 2.5rv from a
condensed object, the D–M rotational velocity is predicted to be
almost constant and equal to vd =

√
2Gm/rd.

The effective radius of the depletion zone5 is in turn related
to the mass m of the structure considered, at least on average,
and will be approximated here by the following simple equation
between m and rd: m ≈ (4/3)πr3

d ρwhere ρ is the average density
of matter. Replacing this in the above expression for vd, one finds
that the asymptotic and nearly constant velocity is approximately
proportional to rd, and the following approximate relation holds:
m ∝ v3

d.
In this very crude approximation, where we have assumed

spherical symmetry, the exponent of the TFR preferred in D–M
is ≈3, significantly smaller than the index 4 predicted by MOND
(see e.g., McGaugh et al. 2000; Lelli et al. 2019). On the other
hand, we note that while the analysis of Lelli et al. (2019) finds a
range of exponents between 3.5 and 4, with a preferred value of
3.85±0.09, the analysis of Ponomareva et al. (2017) finds values
of the exponent close to 3.0, with slope errors between 0.11 and
0.31 (see e.g., Table 4 and Fig. 12 of Ponomareva et al. 2017). It
can also be noted that the estimate of the exponent α in the TFR

5 As noted previously, the depletion zones appear in fact more as a set
of interconnected tubes rather than isolated spheres.
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Fig. 12. FJR for halos with mass between ≈105 and ≈2 × 108 M� in the
D–M universe, using simulations of a modified version of the RAMSES
code. The mass versus virial velocity relation exhibits a power-law
behavior with a very small scatter. The exponent in the power-law rela-
tion m ∝ vα is ≈2.6 when interpolating across the whole mass range,
with α ≈ 2.45 and ≈2.85 in the lower and the upper part of the plot,
respectively. This behavior is similar to the power-law exponent of 3
favored by ΛCDM , but somewhat smaller than the exponent 4 predicted
by MOND.

relation varies rather widely depending on the photometric band
used to infer the mass, although the near-infrared band using
Spitzer photometry (Lelli et al. 2019) may help to reduce this
uncertainty.

In order to take into account more realistic situations than
the idealized “spherical” galaxy studied above, we have first
analyzed the FJR (Faber & Jackson 1976), using the RAMSES
simulation described in the preceding section. Using the set of
7769 halos identified by the AdaptaHOP algorithm (Aubert et al.
2004), we calculated the velocity dispersion within the virial
radius. We plot this quantity as a function of the halo mass within
the same radius. The resulting scatter plot is shown in Fig. 12,
where the scatter beyond the power-law relation appears to be
very small.

We consider this first analysis to be very encouraging, but we
note that the FJR can be obtained also in the context of ΛCDM ,
with a similar exponent. An important difference lies in the fact
that in D–M, there is no dark matter, and that therefore the scal-
ing relation between baryonic mass and virial velocity is tighter.
On the other hand, we clearly need more realistic simulations,
in particular regarding hydrodynamics and feedback, which will
allow us to test the TFR for spiral galaxies, in addition to the
FJR.

6. MOND-like behavior in the D–M universe

As mentioned previously, the MOND phenomenology can be
justified if there exists gravitational polarization (Blanchet 2007;
Blanchet & Le Tiec 2009), while D–M predicts such a polar-
ization. We have indeed seen in Sect. 4 that the D–M universe
exhibits a MOND-like behavior for idealized, “spherical” galax-
ies. On the other hand, the question remains open whether the
value of the additional field created by antimatter and predicted
by D–M can justify the characteristic acceleration a0 ≈ 1.2 ×
10−10 m s−2 that seems to best fit the MOND behavior. In the

present section, we study the value of this additional gravita-
tional acceleration and show that this value cannot be reduced
in D–M to a constant and that, in particular, it depends on the
redshift at which it is measured.

In order to study the intensity of the additional gravitational
field created by the antimatter clouds on the outskirts of galaxies
and clusters, we compare the modulus |gm| of the gravitational
field produced by matter alone given in Eq. (6) to |g+|, the total
gravitational field acting on matter, and produced both by mat-
ter and antimatter as in Eq. (4). Similarly, we use the gravita-
tional field produced by antimatter alone |gam| to quantify the
additional gravitational field present in D–M, due to the gravita-
tional polarization between matter and antimatter, mimicking a
MOND acceleration transition.

In the top panel of Fig. 13, the total gravitational field |g+|

acting on a matter particle, created by both matter and antimatter,
is plotted as a function of the gravitational field |gm| that would be
created by matter if it were alone. These gravitational fields are
calculated on a Cartesian 2563 grid (about 16 million cells), and
the quantities estimated on the matter region (occupying ≈50%
of the grid volume), which is the only cut applied for the selec-
tion. The figure clearly shows two regimes: the high field part on
the right part of the figure shows the Newtonian regime, where
the gravitational field |g+| matches almost exactly the expected
Newtonian gravitational field |gm| created by matter. It can be
seen that for accelerations smaller than ≈3 × 10−11 m s2, a non
Newtonian behavior appears, with a flattening of the observed
acceleration, similar to the MOND behavior (but, on this figure,
for a different value of the acceleration parameter a0). Although
the dispersion increases at low accelerations, it can be seen that,
in this situation where the halo mass range exceeds three orders
of magnitude, the vast majority of the points lie above the diago-
nal, indicating that the antimatter field |gam| reinforces quite gen-
erally the matter field |gm|, mimicking a MOND behavior.

In the bottom panel of Fig. 13, we represent the modulus of
the total gravitational field |g+| acting on a matter particle, cre-
ated by both matter and antimatter, as a function of the gravi-
tational field |gam| that would be created by antimatter if it were
alone. We can see that the additional acceleration created by anti-
matter in the matter and depletion zones is significantly smaller
on average than the matter gravitational field observed in the
Newtonian regime, and has a relatively peaked distribution, at
≈5 × 10−12 m s−2 in the cluster simulation presented.

Clearly, the MOND-like transition observed in Fig. 13 at an
acceleration of ≈3×10−11 m s−2 is here significantly smaller than
the value of ≈1.2 × 10−10 m s−2 of the fundamental acceleration
a0 favored by MOND. Therefore, one may ask whether the D–M
matter-antimatter scenario has any relevance as a possible expla-
nation of MOND. In order to answer this question, we note that
the average modulus of the gravitational field created by antimat-
ter depends on the redshift and on the largest scale of structure
at this redshift. Fundamentally, the additional confining gravita-
tional field created by antimatter, acting most of the time coher-
ently with the matter field (see Fig. 13), is almost independent
of the mass of the individual galaxy considered, and equal to the
antimatter field created at the scale of the largest structures.

In order to emphasize this fundamental aspect, we have plot-
ted in Fig. 14 the evolution as a function of the scale factor a(t) of
the distribution of the gravitational field |gam| created by antimat-
ter for two simulations, the first one of “galactic” size and total
matter mass of about 2.2 × 1010 M�, the second one of “cluster”
size and total matter mass of about 1016 M�. These two figures
present the following features: the distribution of the antimat-
ter additional field is rather peaked at all redshifts. But although
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Fig. 13. Top panel: scatter diagram showing the relation between the
gravitational field |gm| that would be created by matter if it were alone,
on the x-axis, as a function of the total gravitational field |g+| acting
on a matter particle, created by both matter and antimatter, on the
y-axis. While the high field part on the right part of the figure shows
the expected Newtonian behavior, it can be seen that for accelerations
smaller than ≈3 × 10−11 m s−2, a non Newtonian behavior appears, with
a flattening of the acceleration observed, in a behavior analogous to
the MOND behavior. The MOND interpolating function used in Lelli
et al. (2019) with a value of the a0 parameter equal to 0.4 × 10−11 m s−2

has been superimposed on the simulation data, and the two adjacent
curves represent the 1-σ error of 0.11 dex found by these authors.
Bottom panel: scatter diagram showing the relation between the grav-
itational field |gam| that would be created by antimatter if it were alone,
on the x-axis, and the total gravitational field |g+| acting on a matter par-
ticle, created by both matter and antimatter, on the y-axis. It can be seen
on this figure that the gravitational field created by antimatter is much
more uniform, with values smaller by typically one order of magnitude,
than the Newtonian regime of the previous figure, created for the most
part by matter.

its overall shape is almost independent of redshift, reflecting the
hierarchical build-up of gravitational structures, it is clear that
the value of the peak depends not only on the redshift, but also,
surprisingly, on the size of the simulation box, as long as it is
smaller than a few homogeneity scales.

The latter implies that the value of the extra gravitational
field due to antimatter in our Universe, much higher than in
these two simulations, is still not numerically converged. We are

Fig. 14. Evolution as a function of the scale factor a(t) of the distribu-
tion of the modulus of the gravitational field |gam| created by antimatter
for two simulations. In the first simulation, on the top panel, the total
mass of the simulation is of galactic size, ≈2.2 × 1010 M�. The second
simulation, on the bottom panel, is of cluster size and has a total mass
of ≈1016 M�. Both distributions are rather peaked at all redshifts, and
with an overall shape and width largely independent of redshift. On the
other hand, the numerical value of the peak of the distribution clearly
depends on the redshift. For both simulations, of limited size and mass,
the peak value of the antimatter field differs from the fundamental con-
stant postulated by MOND, a0 ≈ 1.2 × 10−10 m s−2.

currently designing a larger simulation with a 40963 resolution
and linear comoving dimensions of ≈1 Gpc, which is expected to
sample the homogeneity scale in D–M, and therefore to estimate
more precisely the antimatter confining field predicted by D–M
in our Universe. Ideally, the simulation volume would extend
over a distance of a few gigaparsecs, which is inaccessible at
present.

Using the non linear structure formation of D–M as a func-
tion of redshift shown in Fig. 4 of Manfredi et al. (2020), we
provide at this stage an estimate of the evolution of the average
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Fig. 15. Evolution as a function of the scale factor a(t) of the average
modulus of the gravitational field created by antimatter in the D–M uni-
verse. The scale factor is normalized such that at the present epoch the
scale factor a = 1. At our epoch, the value of the average modulus of the
antimatter gravitational field is of a few 10−11 m s−2, leading to a value
of the a0 acceleration parameter similar to that postulated by MOND.

modulus |gam| of the gravitational field created by antimatter as
a function of redshift for a simulation of a region of a D–M uni-
verse of cosmological dimensions, extending much beyond the
homogeneity scale of ≈200 Mpc.

The quantity:

|gam| ≈
4πG2ρ(z)

3
π

kpeak(z)
(20)

where ρ(z) is the average density at redshift z, and π/kpeak(z)
is the scale of the largest structures at redshift z, provides an
estimate of the gravitational field created by antimatter at this
redshift z. It should be noted that the density contrast between
matter and antimatter regions is on the order of unity, and for
this reason ρ enters directly in the above formula.

The evolution of this quantity is represented in Fig. 15. This
figure shows two striking features: the modulus of the addi-
tional gravitational field created by antimatter is on the order of
2 × 10−11 m s−2 at the present epoch (z ≈ 0). The conversion of
this antimatter gravitational field to the a0 parameter of MOND
(using the parametrizations of Famaey & McGaugh 2012) and
the present uncertainty on the size of the initial domains of mat-
ter and antimatter results in a range of values of a0 between
≈4 × 10−11 m s−2 and ≈2 × 10−10 m s−2, a rather striking simi-
larity with MOND. It should be noted that this quantity clearly
depends on the redshift, with a decreasing trend in the future,
reflecting the fact that the hierarchical formation of large-scale
structures has almost completely stopped at the present epoch
in the D–M universe, while the adiabatic expansion continues.
The prediction on the variation of this transition acceleration,
which can be extracted from Fig. 15, might be used in obser-
vations of high-redshift galaxies to discriminate between the
MOND and D–M scenarios. More precisely, once averaged over
the range a = [0.1, 1.0], the scale dependence of the antimat-
ter gravitational field seems well approximated by a power-law
gam ∝ a−1.8. This might be tested by rotation curve data at rel-
atively high redshifts, for example using the data from Genzel
et al. (2017).

7. Conclusions and perspectives

The present study has evidenced new elements of concordance
between our Universe and the D–M universe. In particular, it pro-
poses an explanation for the observation of flat rotation curves in
galaxies, which is usually attributed to the presence of dark mat-
ter or to a modification of the laws of gravitation akin to MOND.
We have seen in particular that, due to the combined influence of
the depletion zone and the antimatter clouds, flat rotation curves
are generic in the D–M universe, leading to a systematic overes-
timate of the mass present in galaxies and clusters beyond a few
('2.5) virial radii.

The additional force experienced in D–M differs both from
the interpretation of MOND, with its modified expression for the
gravitational field using a fundamental acceleration constant a0,
or from the local expression of the Λ cosmological term conjec-
tured by Gurzadyan (1985) and Gurzadyan & Stepanian (2019).
On the other hand, in the same spirit as Gurzadyan, we propose a
common explanation to the tentative dark energy and dark mat-
ter components of ΛCDM, using in D–M a single constant G,
instead of two constants G and Λ. This provides an explanation
for the otherwise rather extraordinary and fine-tuned coincidence
of the dark energy and dark matter densities by linking them
to the dynamical evolution of the matter and antimatter compo-
nents, leading in D–M to a coasting universe, with a(t) ∝ t (cf.
Eq. (1)).

We have also noted that the gravitational polarization
between the positive and negative mass components (Price 1993)
is at the origin of a MOND-like behavior. Blanchet (2007) and
Blanchet & Le Tiec (2009) have indeed shown that gravita-
tional polarization could explain the MOND phenomenology,
although these authors did not have in mind that this gravita-
tional polarization could be due to antimatter. On the other hand,
our analysis differs significantly from that of Hajdukovic (2011,
2014, 2020), which seems to lead to unobserved effects in the
Solar system (Banik & Kroupa 2020) and from the analysis by
Penner (2016), who conjectured that MOND could be justified
by the gravitational polarization of the vacuum, without taking
into account the gravitational polarization of matter and antimat-
ter structures.

Additionally, using both a simple analytical model and
RAMSES simulations, we showed that the D–M cosmology pre-
dicts a rather well-defined power law between mass on the one
hand, and rotation or virialized velocity, on the other, in a large
mass range of gravitational structures. This may provide an
explanation for the impressive correlation evidenced in the TFR
and FJR in galaxies and clusters, although the exponent α in the
relation m ∝ vα was shown to be closer to 3, rather smaller than
the preferred value of 3.85±0.09 found by Lelli et al. (2019), and
the value of 4 predicted by MOND (see also McGaugh (2012)
for an earlier work focusing on gas-rich galaxies).

In future studies, we intend to realize a more realistic treat-
ment of structure formation by including hydrodynamics and
feedback in our RAMSES simulations, that will allow us to study
the TFR, in addition to the FJR. We intend also to study larger
simulation volumes, extending beyond the homogeneity scale
(&200 Mpc) predicted by D–M, and observed in our Universe
(see, however, Keenan et al. 2013 and Haslbauer et al. 2020 for
an example of inhomogeneity extending somewhat beyond this
scale). Such large-scale simulations are a challenge for the D–M
cosmology, as the “domains” of matter and antimatter assem-
bled at decoupling, which initiate the formation of larger struc-
tures, are of limited geometrical extension (on the order of 100
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parsec at z = 1080, i.e., ≈100 ckpc). It is important to note
that the domains are in the non linear regime (density contrast
of order unity) almost immediately after the CMB transition,
which we will study in a forthcoming publication. This requires
a very high resolution compared to the usual cosmological sim-
ulations. These simulations at scales larger than a few hundred
Mpc will allow us to test the deviations from local to large-
scale measurements of the Hubble parameter H0, a question of
paramount interest in the present context, where the tensions
on this parameter seem to reach or even exceed the 5σ level
between “local” and cosmological measurements (Riess 2020;
Di Valentino 2021).

Concerning the average value of the additional gravitational
field created by the antimatter clouds, we have shown that the
estimate of the transition acceleration a0 at our epoch (z = 0) is
on the order of 10−10 m s−2, a striking similarity with the MOND
formalism. Fundamentally, we note that the value of this addi-
tional “MOND-like” gravitational field is determined by the anti-
matter field created at the largest structure scale, on the order of
200 Mpc. Also, we have shown that the modulus of this param-
eter depends on the redshift and is therefore not a fundamental
constant, differing fundamentally from the MOND formalism.

Finally, we note that both nucleosynthesis and the almost
purely non linear structure formation in the D–M universe
(Benoit-Lévy & Chardin 2012; Manfredi et al. 2018, 2020) set
strong constraints on the size of initial “domains” of matter
and on the later hierarchical (largely bottom-up) development
of structures. A complementary way to test our hypothesis will
be to predict the mass distribution of stars and black holes result-
ing from the very early collapse of such matter domains. Com-
pared to the black hole mass distribution derived by the LIGO
and Virgo collaborations (The LIGO Scientific Collaboration &
The Virgo Collaboration 2021), now in possession of about 70
candidate events (mostly binary black holes), this could repre-
sent an important additional test of the D–M scenario.

Acknowledgements. We are indebted to the anonymous referee and to Benoit
Famaey, James Rich and Yves Sacquin for their thorough reading of the
manuscript and their insightful comments. Needless to say, they are not respon-
sible for the errors and approximations remaining in this paper. This work has
made use of the Horizon Cluster hosted by the Institut d’Astrophysique de Paris.
The work of the YT (Turk et al. 2010), IPython (Perez & Granger 2007), Mat-
plotlib (Hunter 2007), NumPy (van der Walt et al. 2011) and SciPy (Virtanen
et al. 2020) development teams is also gratefully acknowledged. The halo cat-
alogs have been computed using the AdaptaHOP algorithm (Aubert et al. 2004).

References
Angus, G. W. 2009, MNRAS, 394, 527
Asencio, E., Banik, I., & Kroupa, P. 2021, MNRAS, 500, 5249
Aubert, D., Pichon, C., & Colombi, S. 2004, MNRAS, 352, 376
Banik, I., & Kroupa, P. 2020, MNRAS, 495, 3974
Bekenstein, J. D. 2004, Phys. Rev. D, 70, 083509
Benoit-Lévy, A., & Chardin, G. 2012, A&A, 537, A78
Bertone, G., & Hooper, D. 2018, Rev. Mod. Phys., 90, 045002
Birkhoff, G. D., & Langer, R. E. 1923, Proc. Am. Acad. Arts Sci., 58, 51
Blanchet, L. 2007, Classical Quantum Gravity, 24, 3529
Blanchet, L., & Le Tiec, A. 2009, Phys. Rev. D, 80, 023524
Bolte, M., & Hogan, C. J. 1995, Nature, 376, 399
Bosma, A. 1981, ApJ, 86, 1825
Boylan-Kolchin, M., Bullock, J. S., & Kaplinghat, M. 2011, MNRAS, 415, L40
Chae, K.-H., Lelli, F., Desmond, H., et al. 2020, ApJ, 877, 18
Chardin, G., & Manfredi, G. 2018, Hyperfine Interact., 239, 45
Chodorowski, M. J. 2005, PASA, 22, 287
Cohen, A. G., Rújula, A. D., & Glashow, S. L. 1998, ApJ, 495, 539
Di Valentino, E. 2021, MNRAS, 502, 2065

Drukier, A., & Stodolsky, L. 1984, Phys. Rev. D, 30, 2295
Dubinski, J., da Costa, L. N., Goldwirth, D. S., Lecar, M., & Piran, T. 1993, ApJ,

410, 458
Ettori, S., Ghirardini, V., Eckert, D., et al. 2019, A&A, 621, A39
Faber, S. M., & Jackson, R. E. 1976, ApJ, 204, 668
Famaey, B., & McGaugh, S. 2012, Liv. Rev. Relativ., 15, 10
Flores, R. A., & Primack, J. R. 1994, ApJ, 427, L1
Genzel, R., Schreiber, N. M. F., Ubler, H., et al. 2017, Nature, 543, 397
Goodman, M. W., & Witten, E. 1985, Phys. Rev. D, 31, 3059
Governato, F., Zolotov, A., Pontzen, A., et al. 2012, MNRAS, 422, 1231
Guo, Q., Hu, H., Zheng, Z., et al. 2020, Nat. Astron., 4, 246
Gurzadyan, V. G. 1985, The Observatory, 105, 42
Gurzadyan, V. G., & Stepanian, A. 2019, Eur. Phys. J. C, 79, 568
Hajdukovic, D. S. 2011, Astrophys. Space Sci., 334, 215
Hajdukovic, D. S. 2014, Phys. Dark Univ., 3, 34
Hajdukovic, D. S. 2020, MNRAS, 491, 4816
Haslbauer, M., Banik, I., & Kroupa, P. 2020, MNRAS, 499, 2845
Hunter, J. D. 2007, Comput. Sci. Eng., 9, 90
Ibata, R. A., Lewis, G. F., Conn, A. R., et al. 2013, Nature, 493, 62
Kahn, F. D., & Woltjer, L. 1959, ApJ, 130, 705
Keenan, R. C., Barger, A. J., & Cowie, L. L. 2013, ApJ, 775, 62
Kovács, A., Sánchez, C., García-Bellido, J., et al. 2019, MNRAS, 484, 5267
Lelli, F., McGaugh, S. S., Schombert, J. M., & Pawlowski, M. S. 2017, ApJ, 836,

152
Lelli, F., McGaugh, S. S., Schombert, J. M., Desmond, H., & Katz, H. 2019,

MNRAS, 484, 3267
Lelli, F., di Teodoro, E., Fraternali, F., et al. 2021, Science, 371, 713
Lewis, G. F., Barnes, L. A., & Kaushik, R. 2016, MNRAS, 460, 291
Manfredi, G., Rouet, J.-L., Miller, B., & Chardin, G. 2018, Phys. Rev. D, 98,

023514
Manfredi, G., Rouet, J.-L., Miller, B., & Chardin, G. 2020, Phys. Rev. D, 102,

103518
McGaugh, S. S. 2012, AJ (New York N.Y. Online), 143
McGaugh, S., Schombert, J. M., Bothun, G. D., & de Blok, W. J. G. 2000, ApJ,

533, L99
Melia, F., & Maier, R. S. 2013, MNRAS, 432, 2669
Milgrom, M. 1983, ApJ, 270, 365
Milne, E. A. 1933, Z. Astrophys., 6, 1
Müller, O., Pawlowski, M. S., Jerjen, H., & Lelli, F. 2018, Science, 359, 534
Newton, I. 1760, Philosophiae Naturalis Principia Mathematica Vol. 1-4
Omnès, R. 1972, Phys. Rep., 3, 1
Pawlowski, M. S., & Kroupa, P. 2020, MNRAS, 491, 3042
Pazy, E. 2013, Phys. Rev. D, 87, 084063
Penner, A. R. 2016, Astrophys. Space Sci., 361
Perez, F., & Granger, B. E. 2007, Comput. Sci. Eng., 9, 21
Perlmutter, S., Aldering, G., Goldhaber, G., et al. 1999, ApJ, 517, 565
Piran, T. 1997, Gen. Relativ. Gravitation, 29, 1363
Pisani, A., Massara, E., Spergel, D. N., et al. 2019, Bull. Am. Astron. Soc., 51,

40
Ponomareva, A. A., Verheijen, M. A. W., Papastergis, E., Bosma, A., & Peletier,

R. F. 2017, MNRAS, 474, 4366
Price, R. H. 1993, Am. J. Phys., 61, 216
Riess, A. G. 2020, Nat. Rev. Phys., 2, 10
Riess, A. G., Filippenko, A. V., Challis, P., et al. 1998, AJ, 116, 1009
Rubin, V. C., Ford, W. K., Jr, & Thonnard, N. 1980, ApJ, 238, 471
Seeliger, H. 1895, Astron. Nachr., 137, 129
Sethi, M., Batra, A., & Lohiya, D. 1999, Phys. Rev. D, 60, 108301
Sheth, R. K., & Van De Weygaert, R. 2004, MNRAS, 350, 517
Shull, J. M. 2014, ApJ, 784, 142
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Appendix A: Are there external field effects (EFE) in
the D–M cosmology

The previous discussion on the rotation curves and the virial
velocity distributions in the D–M universe has evidenced the sur-
prising property that in this cosmology, to a good approximation,
around a central massive object, a harmonic restoring force is
felt in addition to the usual Gm/r2 Newtonian force, leading to
nearly flat rotation curves. At distances comparable to the radius
of the depletion zone, this additional harmonic restoring force
is far from negligible since it is on average equal to the force
of the central galaxy (see Fig. 7). It may seem that this violates
blatantly the shell theorem of Newton (1760) and, in General
Relativity, the Birkhoff theorem (Birkhoff & Langer 1923). In
the present appendix, we discuss this question, which presents
interesting features.

The first element of answer comes from noticing that, in
order to describe the gravitational behavior of matter and anti-
matter in the D–M universe, two coupled Poisson equations are
required:

∇2φ+ = 4πG(ρ+ − ρ−), (A.1)

∇2φ− = 4πG(−ρ+ − ρ−) . (A.2)

The possibility to express the D–M gravitational behav-
ior with coupled equations using Laplacian operators implies,
through the Gauss theorem, that in a situation of spherical sym-
metry, the gravitational field in an empty region must be zero,
since the mass enclosed is zero and spacetime in this region
should be Minkowskian. However, there is a caveat to this
assertion, related to the boundary conditions of the mass con-
figuration. The previous statement on the shell theorem being
respected may indeed seem at odds with our decomposition in
terms of three spheres (see Fig. 3) of the average galaxy envi-
ronment in the D–M universe, where a harmonic restoring force
is observed in addition to the usual Newtonian force within the
depletion zone. The short answer to this apparent contradiction
is that the situation lacks spherical symmetry and that the har-
monic restoring force that we have derived just approximates this
asymmetric configuration of the antimatter cloud surrounding a
spherical depletion zone (see in particular Fig. 2). Note in par-
ticular that in actual configurations, the depletion zones are not
spherical, but percolate with surrounding depletion zones, with a
similar percolation property for the antimatter clouds. Also, the
approximation used is valid only at distances smaller than rd,
where rd is the approximate size of the depletion zone surround-
ing the massive structure, and becomes increasingly inaccurate
when we exceed radial distances larger than ≈rd/2.

Although this asymmetry correctly answers the question on
the violation of the shell theorem in galactic configurations in
the D–M universe, it may hide some interesting elements of dis-
cussion, which we summarize in the following.

The first element comes from considering the situation
resulting from the superposition of only the two cubes (a) and
(c) of Fig. 3, that is the cube with uniform repulsive background
and the cube containing a sphere with uniform positive mass
density compensating, within the volume of the sphere, the neg-
ative mass background of the first cube. As soon as we have
accepted the property that the gravitational field created by cube
(a) with uniform density is necessarily zero everywhere, which
seems unavoidable by symmetry, it is also clear that the contri-
bution of the second cube will create a harmonic restoring force,
although the inner sphere, in the superposition of the two cubes,
is now empty.

The situation is even stranger when we consider the configu-
ration with complete spherical symmetry, where the whole space
is filled with a uniform negative background, to which we super-
impose a sphere centered on the origin with a positive uniform
density, compensating the negative mass fluid inside the sphere
(and only there). This time we cannot invoke the asymmetry of
the situation and it seems that we have a gross violation of the
shell and Birkhoff theorems (Newton 1760; Birkhoff & Langer
1923) since the gravitational field appears to be nonzero in an
empty region with exact spherically symmetry.

However, the expression of Birkhoff’s theorem (Birkhoff &
Langer 1923) only states that any spherically symmetric solution
of the vacuum field equations must be static and asymptotically
flat, and represented by a Schwarzschild metric. We must then
note that we have in fact filled out the entire space with a neg-
ative mass fluid of constant density, and therefore with infinite
negative global mass. This configuration is necessarily not static,
so the “cosmological” aspects must now be taken into account
in the dynamical situation. Our decomposition into three cubes
with respective masses −2m, +m and +m, on the other hand,
restores a total mass zero, and has not a diverging mass and
potential at infinity (Seeliger 1895), but involves a configuration
without spherical symmetry.

Two important additional comments can be made. The first
comment is based on the remarkable analysis by Gurzadyan as
early as 1985 (Gurzadyan 1985), in the early days of dark matter
searches, which in several respects reaches conclusions similar
to those of the present analysis6.

In his first publication on this topic (Gurzadyan 1985),
Gurzadyan notes that the Newtonian 1/r2 force law could be
extended by requiring the property, realized in the Newtonian
case, that for a configuration with spherical symmetry, the gravi-
tational action of a mass can be reduced to the situation where all
the mass is concentrated at the origin. Remarkably, this require-
ment leads not only to the Newtonian potential, but also to an
additional harmonic force, attractive or repulsive depending on
the sign of Λ, which appears as the fluid analog of the cosmo-
logical constant, and we reproduce here, with a slight change of
notation, Eq. (5) of Gurzadyan (1985):

F(r) = Ar−2 + Λr. (A.3)

In this sense, the introduction of a cosmological constant in
Newtonian cosmology finds a natural justification in the Milne
cosmology (Milne 1933). Gurzadyan notes that this second com-
ponent has the property that the shell theorem (zero gravita-
tional field inside an empty spherical shell) is not respected.
More importantly, in recent publications, (see e.g., Gurzadyan
& Stepanian 2019, and references therein), Gurzadyan conjec-
tures that the flat rotation curves observed in galaxies can be
explained by the same (local) expression as the cosmological
repulsive term. However, with his expression of a generalized
gravitational potential using two gravitational constants G and
Λ, Gurzadyan does not consider the possibility that these two
terms could be expressed with a single constant G but with a

6 The last sentence of this paper is particularly noticeable: “The small-
ness of the cosmological constant evidently excludes the checking of
Eq. (5) by means of any experimental methods; however, the contribu-
tion of the second member in (5) can be evaluated from the analysis of
the structure of galaxy clusters, their haloes, etc. The possibility of the
existence of a long-range force of the above type may affect in a certain
way the ideas concerning the future of the open Universe”
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sign reversal. For example, the potential term in the GR metric
in Eq. (1) of Gurzadyan & Stepanian (2019) leads directly in
Eq. (3) to the two components, Newtonian and harmonic restor-
ing force, of the gravitational field that we have derived previ-
ously for D–M.

The second comment is related to the fact that, as mentioned
previously, cosmological simulations of self-gravitating struc-
tures routinely use effective negative mass without explicitly
stating it. Indeed, as mentioned previously, cosmological sim-
ulations first calculate the average density in order to derive the
average cosmological expansion of a(t), the cosmological scale
parameter. After subtraction of this average density, a symmet-
ric (in terms of sign of mass) mass distribution is then obtained,
usually with symmetrical overdensity and underdensity distribu-
tions. Piran indeed remarked (Piran 1997), following previous
numerical simulations of gravitational structures with Dubinski
and collaborators (Dubinski et al. 1993), that while we are used
to representing gravitational structures in terms of (collapsing)
positive mass, it is also possible and useful to consider the prob-
lem in terms of (expanding) voids of negative mass. In their
expansion, these voids will effectively develop into the largest
structures in the universe. As studied later by Sheth & Van De
Weygaert (2004), now followed by the work of several authors
(for a review, see for example Pisani et al. 2019 and references
therein), the study of voids constitutes today a powerful test of
the cosmology at play in our Universe. Indeed, the characteris-
tics of the KBC void (Keenan et al. 2013) appear to rule out the
ΛCDM cosmology at the 6σ level (Haslbauer et al. 2020).

We further note, following Piran, that the matter surround-
ing an underdense region will create in its expansion a high
density ridge along the rim of the underdense region, and den-
sity even diverging at shell crossing (see e.g., Figs. 1 and 2 of
Dubinski et al. 1993). A region nearly empty, or even totally
empty, will therefore, in a cosmological context, effectively
“repel” the surrounding matter, due to its faster expansion com-
pared to its surroundings. Indeed, the Hubble tension might be

resolved by taking into account the outflow from the KBC void
(Haslbauer et al. 2020).

Piran goes as far as to suppose that there could exist a species
of matter with negative gravitational mass and positive inertial
mass, violating the usual expression of the weak equivalence
principle. But curiously, Piran describes the interactions of this
new species endowed with negative gravitational mass and pos-
itive inertial mass as attractive between themselves. We note
that this is not the behavior actually observed in “voids” as the
negative density (underdensity) flattens out instead of becoming
more negative. Of course, under the ordinary assumption that
only positive mass particles exist, the maximum “negative” mass
(underdense) region is limited by the condition of zero matter
density. This leads to the fundamental new element introduced
by the introduction of “negative” mass particles: a depletion zone
develops, and we have seen the fundamental role that it plays in
terms of mimicking the behavior of extended dark matter clouds
or, alternatively, providing a MOND-like behavior. As we have
studied in detail in Manfredi et al. (2018), if we want to describe
the behavior of the repulsive underdense regions using a sec-
ond species of “negative” mass, this is not possible in a New-
tonian description, even with the three parameters of inertial,
passive gravitational and active gravitational mass. In order to
implement the gravitational behavior of the Dirac particle-hole
system, let us stress again that it is necessary to use a bimetric
description (Manfredi et al. 2018).

In conclusion, the harmonic restoring force predicted by
the D–M model, adding its contribution to the usual Newto-
nian force term, is an unavoidable consequence of the com-
bined influence of the antimatter cloud and empty depletion zone
developing in the D–M universe around a localized structure
of positive mass. But unlike the additional Λ term conjectured
by Gurzadyan, this harmonic restoring force does not violate
the shell theorem. This unexpected restoring force is simply
explained in terms of the asymmetric distribution of the positive
and negative mass components in the D–M cosmology.
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