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Lossless Coding of Point Cloud Geometry using a
Deep Generative Model

Dat Thanh Nguyen, Maurice Quach, Student Member, IEEE, Giuseppe Valenzise, Senior Member, IEEE, Pierre
Duhamel, Life Fellow, IEEE

Abstract—This paper proposes a lossless point cloud (PC)
geometry compression method that uses neural networks to
estimate the probability distribution of voxel occupancy. First,
to take into account the PC sparsity, our method adaptively
partitions a point cloud into multiple voxel block sizes. This
partitioning is signalled via an octree. Second, we employ a
deep auto-regressive generative model to estimate the occupancy
probability of each voxel given the previously encoded ones. We
then employ the estimated probabilities to code efficiently a block
using a context-based arithmetic coder. Our context has variable
size and can expand beyond the current block to learn more
accurate probabilities. We also consider using data augmentation
techniques to increase the generalization capability of the learned
probability models, in particular in the presence of noise and
lower-density point clouds. Experimental evaluation, performed
on a variety of point clouds from four different datasets and with
diverse characteristics, demonstrates that our method reduces
significantly (by up to 37%) the rate for lossless coding compared
to the state-of-the-art MPEG codec.

Index Terms—Point Cloud Coding, Deep Learning, G-PCC,
context model, arithmetic coding.

I. INTRODUCTION

POINT clouds (PC) are becoming the most popular data
structure for many 3D applications such as augmented,

mixed or virtual reality, as they enable six degrees of free-
dom (6DoF) interaction. Typical PCs contain millions of
points, each point being represented by x, y, z coordinates,
and attributes (e.g. color, normal, etc.). This entails a high
transmission and storage cost. As a result, there is a massive
demand for efficient Point Cloud Compression (PCC) methods
to enable the practical use of this content.

The Moving Picture Expert Group (MPEG) has studied
coding solution for various categories of point clouds, includ-
ing static point clouds (category 1), dynamic point clouds
(category 2), and LiDAR sequences (category 3 – dynami-
cally acquired point clouds). As a result, two PCC standards
have been developed [1]–[3]: Video-based PCC (V-PCC) and
Geometry-based PCC (G-PCC). V-PCC focuses on dynamic
point clouds, and projects the volumetric video onto 2D
planes before encoding. The generated 2D videos are then
compressed using 2D video coding standards. This approach
benefits from efficient 2D video coding solutions which have
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been optimized over several decades. On the other hand, G-
PCC targets static content, and the geometry and attribute
information are independently encoded. Color attributes can
be encoded using methods based on the Region Adaptive
Hierarchical Transform (RAHT) [4], Predicting Transform or
Lifting Transform [3]. Coding the PC geometry is particularly
important to convey the 3D structure of the PC, but is also
challenging, as the non-regular sampling of point clouds
makes it difficult to use conventional signal processing and
compression tools. In this paper, we focus on lossless coding
of point cloud geometry.

In particular, we consider the case of voxelized point clouds.
Voxelization is the process that quantizes the coordinates of
a point cloud to integer precision prior to the coding process.
This process is common in many coding scenarios, e.g., when
dealing with dense point clouds such as those produced by
camera arrays. After voxelization, the point cloud geometry
can be represented either directly in the voxel domain or
using an octree spatial decomposition. PCs are divided into
a fixed number of cubes, which defines the resolution (e.g.,
10 bit = 1024 cubes per dimension). Each cube is called a
voxel. If a voxel contains at least one point, it is called an
occupied voxel. Usually, very few voxels are occupied and a
large part of the volume is empty. An octree representation can
be obtained by recursively splitting the volume into eight sub-
cubes until the desired precision is achieved. Then, occupied
blocks are marked by bit 1 and empty blocks are marked by bit
0. Consequently, at each level, the generated 8 bits represent
the occupancy state of an octree node (octant). Our method
operates in both the voxel and octree domain. On the one hand,
the octree representation can naturally adapt to the sparsity of
the point cloud, as empty octants do not need to be further
split; on the other hand, in the voxel domain convolutions can
be naturally expressed, and geometric information (i.e., planes,
surfaces, etc.) can be explicitly processed by a neural network.

In this work, we propose a deep-learning-based method
(named VoxelDNN) for lossless compression of static vox-
elized point cloud geometry. Our main contributions are:
• We employ for the first time a deep generative model in

the voxel domain to estimate the occupancy probabilities
sequentially using a masked 3D convolutional network.
The conditional distribution is then used to model the
context of a context-based arithmetic coder.

• We propose an optimal rate-driven partitioning and
context selection algorithm. The partitioning algorithm
adapts to the point cloud sparsity by employing a hybrid
octree/voxel representation while the context to encode
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each block is expanded to the neighboring blocks and
the expansion size is optimally selected.

• We propose specific data augmentation techniques for
3D point clouds coding, to increase its generalization
capability.

We demonstrate experimentally that the proposed solution
outperforms the state-of-the-art MPEG G-PCC lossless codec
in terms of bits per occupied voxel over a set of point clouds
with varying density and content type. The rest of the paper
is structured as follows: Section II reviews the related work;
the proposed method is described in Section III; Section
IV presents the experimental results; and finally Section V
concludes the paper.

II. RELATED WORK

Relevant work related to this paper includes state-of-the-art
PC geometry coding and learning-based methods in image and
point cloud compression.

A. MPEG G-PCC and Conventional Lossless Codecs

Most existing methods that compress point cloud geometry,
including MPEG G-PCC, use octree coding [5]–[12] and local
approximations called “triangle soups” (trisoup) [5], [13].

In the G-PCC geometry coder, points are first transformed
and voxelized into an axis-aligned bounding box before ge-
ometry analysis using trisoup or octree scheme. In the trisoup
coder, geometry can be represented by a pruned octree plus a
surface model. This model approximates the surface in each
leaf of the pruned octree using 1 to 10 triangles. In contrast,
the octree coder partitions voxelized blocks until sub-cubes of
dimension one are reached. First, the coordinates of isolated
points are independently encoded to avoid "polluting" the
octree coding (Direct Coding Mode - DCM) [14]. To encode
the occupancy pattern of each octree node, G-PCC introduces
many methods to exploit local geometry information and
obtain an accurate context for arithmetic coding, such as
Neighbour-Dependent Entropy Context [15], intra prediction
[16], planar/angular coding mode [17], [18], etc. In this paper,
we compare our method against G-PCC lossless geometry
coding with octree coding which also targets static point
clouds.

In order to deal with the irregular point space, many octree-
based lossless PCC methods have been proposed. In [5],
the authors proposed an octree-based method which aims at
reducing entropy by employing prediction techniques based
on local surface approximations to predict occupancy pat-
terns. Recently, more context modeling based approaches are
proposed [8]–[10]. For example, the intra-frame compression
method P(PNI) proposed in [10] builds a reference octree by
propagating the parent octet to all children nodes, thus provid-
ing 255 contexts to encode the current octant. Octree coding
allows for a progressive representation of point clouds since
each level of the octree is a downsampled version of the point
cloud. However, a drawback of octree representation is that,
at the first levels of the tree, it produces “blocky” scenes, and
geometry information of point clouds (i.e., curve, plane) is lost.
The authors of [19] proposed a binary tree based method which

analyzes the point cloud geometry using binary tree structure
and realizes an intra prediction via the extended Travelling
Salesman Problem (TSP) within each leaf node. Instead, in
this paper, we employ a hybrid octree/voxel representation to
better exploit the geometry information. Besides, the methods
in [8]–[10] produce frequency tables which are collected from
the coarser level or the previous frame and must be transmitted
to the decoder. Our method predicts voxel distributions in a
sequential manner at the decoder side, thus avoiding the extra
cost of transmitting large frequency tables.

B. Generative Models and Learning-based Compression

Estimating the data distribution from a training dataset is the
main objective of generative models, and is a central problem
in unsupervised learning. It has a number of applications, from
image generation [20]–[23], to image compression [24]–[26]
and denoising [27]. Among the several types of generative
models proposed in the literature [28], auto-regressive models
such as PixelCNN [22], [23] are particularly relevant for our
purpose as they allow to compute the exact likelihood of
the data and to generate realistic images, although with a
high computational cost. Specifically, PixelCNN factorizes the
likelihood of a picture by modeling the conditional distribution
of a given pixel’s color given all previously generated pixels.
These conditional distributions only depend on the possible
pixel values with respect to the scanned context, which im-
poses a causality constraint. PixelCNN models the distribution
using a neural network and the causality constraint is enforced
using masked filters in each convolutional layer. Recently,
this approach has also been employed in image compression
to yield accurate and learnable entropy models [26]. Our
paper explores the potential of this approach for point cloud
geometry compression by adopting and extending conditional
image modeling and masking filters into the 3D voxel domain.

Inspired by the success in learning-based image compres-
sion, deep learning has been widely adopted in point cloud
coding both in the octree domain [11], [12], voxel domain
[29]–[34] and point domain [35]–[37]. Recently, the authors
of [11] proposed an octree-based entropy model that models
the probability distributions of the octree symbols based on
the contextual information from octree structure. This method
only targets static LiDAR point cloud compression. The exten-
sion version for intensity-valued LiDAR streaming data using
spatio-temporal relations is proposed in [12]. However, these
methods target dynamically acquired point clouds, while in
this paper we mainly focus on dense static point clouds.

Working in the voxel domain enables to easily extend
most 2D tools, such as convolutions, to the 3D space. Many
recent 3D convolution based autoencoder approaches for lossy
coding [31]–[34] compress 3D voxelized blocks into latent
representations and cast the reconstruction as a binary classi-
fication problem. The authors of [35] proposed a pointnet-
based auto-encoder method which directly takes points as
input rather than voxelized point cloud. To handle sparse
point clouds, recent methods leverage advances in sparse
convolution [38], [39] to allow point-based approaches [36],
[37]. For example, the proposed lossy compression method
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Fig. 1: Overview of the proposed method. (a): a n bit depth point cloud is partitioned down to the n− 6 octree level, yielding
occupied blocks of size 64 × 64 × 64. (b): We encode each block of 643 voxels as a single block (b1), or divide it into 8
children blocks (b2), depending on the total number of bits of each solution (partitioning level = 2). This procedure is repeated
recursively for increasing partitioning levels up to 5. (c): For each occupied block of size d, the context model estimates the
distribution of each voxel given the previously encoded voxels.

in [37] progressively downscale the point cloud into multiple
scales using sparse convolutional transforms. Then, at the
bottleneck, the geometry of scaled point cloud is encoded
using an octree codec and the attributes are compressed using
a learning-based context model. In contrast, in this paper, we
focus on dense voxelized point clouds and losslessly encode
each voxel using the learned distribution from its 3D context.
In addition, we apply this approach in a block-based fashion,
which has been successfully employed in traditional image
and video coding.

III. PROPOSED METHOD

A. System overview

In this work, we propose a learning-based method for
lossless compression of point cloud geometry. We aim at min-
imizing the encoded rate measured by the number of bits per
occupied voxel (bpov) by exploiting the spatial redundancies
within point cloud. The general scheme of our method is
shown in Figure 1. A point cloud voxelized over a 2n×2n×2n

grid is known as an n-bit depth PC, which can be represented
by an n level octree. In this work, we represent point cloud
geometry in a hybrid manner, by combining the octree and
voxel domains. We coarsely partition an n-depth point cloud
up to level n− 6. This allows to coarsely remove most of the
empty space in the point cloud. As a result, we obtain a n−6
level octree and a number of non-empty binary blocks v of size
26 × 26 × 26 voxels, which we refer to as resolution d = 64
or simply block 64 (Figure 1(a)). Blocks 64 can be further
partitioned at resolution d = {64, 32, 16, 8, 4} correspond-
ing to maximum partitioning level maxLv = {1, 2, 3, 4, 5}

as detailed in Section III-C. Figure 1(b) shows the multi-
resolution encoder with maxLv = 2. A block of size d
can be encoded as a single block (b2) or partitioned into
8 sub-cubes (b1). We then encode each non-empty block
(blocks in blue in the figure) using the proposed method in the
voxel domain (Section III-B) and select the partitioning mode
resulting in the smallest bpov. The overview of a single block
encoder is shown in Figure 1(c). Our context model predicts
the distribution of each voxel given all encoded voxels and
pass it to an arithmetic coder to generate the final bitstream.
The context is chosen adaptively following a rate optimization
algorithm (Section III-C). The high-level octree, partitioning
signal, selected context as well as the depth of each block
are converted to bytes and signaled to the decoder as side
information. We first define a 3D raster scan order that scan
voxel by voxel in depth, height and width order. For ease of
notation, we index all voxels in block v at resolution d from
1 to d3 in raster scan order with:

vi =

{
1, if ith voxel is occupied
0, otherwise.

(1)

B. VoxelDNN

Our method losslessly encodes the voxelized point cloud
using context-adaptive binary arithmetic coding. Specifically,
we focus on estimating accurately a probability model p(v) for
the occupancy of a block v composed by d×d×d voxels. We
factorize the joint distribution p(v) as a product of conditional
distributions p(vi|vi−1, . . . , v1) over the voxel volume:

p(v) =
d3

Π
i=1
p(vi|vi−1, vi−2, . . . , v1). (2)
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(a) 3D voxel context (b) 3D type A mask

Fig. 2: (a): Example 3D context in a 5×5×5 block. Previously
scanned elements are in blue. (b): 3× 3× 3 3D type A mask.
Type B mask is obtained by changing center position (marked
red) to 1.

Each term p(vi|vi−1, . . . , v1) above is the probability of the
voxel vi being occupied given the occupancy of all previous
voxels, referred to as a context. Figure 2(a) illustrates such
a 3D context. We estimate p(vi|vi−1, . . . , v1) using a neural
network which we dub VoxelDNN.

The conditional distributions in (2) depend on previously
decoded voxels. This requires a causality constraint on the
VoxelDNN network. To enforce causality, we extend to 3D
the idea of masked convolutional filters, initially proposed in
PixelCNN [22]. Specifically, two kinds of masks (A or B) are
employed. Type A mask is filled by zeros from the center
position to the last position in raster scan order as shown in
Figure 2(b). Type B mask differs from type A in that the
value in the center location is 1 (colored in red). Type A
masks are used in the first convolutional filter to remove the

Fig. 3: VoxelDNN architecture, d is the dimension of the input
block, masked layers are colored in yellow and blue. A type A
mask is applied to the first layer (dashed borders) and type B
masks afterwards. ‘f64,k7,s1’ stands for 64 filters, kernel size
7 and stride 1. Only probabilities of voxels being occupied are
kept after the last Softmax layer.

Algorithm 1: Block partitioning selection
Input: block: B, current level: curLv, max level: maxLv
Output: partitioning flags: fl, output bitstream: bits

1 Function partitioner(B, curLv,maxLv):
2 fl2 ← 2 ; // encode as 8 child blocks
3 for block b in child blocks of B do
4 if b is empty then
5 child_flag ← 0;
6 child_bit ← empty;
7 else
8 if curLv == maxLv then
9 child_flag ← 1;

10 child_bit ← singleBlockCoder(b);
11 else
12 child_flag, child_bit ← partitioner(b,

curLv + 1,maxLv);
13 end
14 end
15 fl2← [fl2, child_flag];
16 bit2← [bit2, child_bit];
17 end
18 total_bit2 = sizeOf(bit2) + len(fl2)× 2;
19 fl1← 1; // encode as a single block
20 bit1← singleBlockCoder(B);
21 total_bit1 = sizeOf(bit1) + len(fl1)× 2;

/* partitioning selection */
22 if total_bit2 ≥ total_bit1 then
23 return fl1, bit1;
24 else
25 return fl2, bit2;
26 end

connections between all future voxels and the voxel currently
being predicted. From the second layer, the value of the current
voxel is not used in its spatial position and is replaced by the
result of the convolution over previous voxels. As a result,
from the second convolutional layer, type B masks are applied
which relaxes the restrictions of mask A by allowing the
connection from the current spatial location to itself.

In order to learn good estimates p̂(vi|vi−1, . . . , v1) of the
underlying voxel occupancy distribution p(vi|vi−1, . . . , v1),
and thus minimize the coding bitrate, we train VoxelDNN
using cross-entropy loss. That is, for a block v of resolution
d, we minimize :

H(p, p̂) = Ev∼p(v)

 d3∑
i=1

− log p̂(vi)

 . (3)

It is well known that cross-entropy represents the bitrate
cost to be paid when the approximate distribution p̂ is used
instead of the true distribution p. More precisely, H(p, p̂) =
H(p) +DKL(p‖p̂), where DKL denotes the Kullback-Leibler
divergence and H(p) is Shannon entropy. Hence, by mini-
mizing (3), we indirectly minimize the distance between the
estimated conditional distributions and the real data distribu-
tion, yielding accurate contexts for arithmetic coding. Note
that this is different from what is typically done in learning-
based lossy PC geometry compression, where the focal loss
is used [31], [32]. In this lossy context, the motivation behind
using focal loss is to cope with the high spatial unbalance
between occupied and non-occupied voxels. The reconstructed
PC is then obtained by hard thresholding p̂(v), and the target
is thus the final classification accuracy. Conversely, here we
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aim at estimating accurate soft probabilities to be fed into an
arithmetic coder.

Figure 3 shows our VoxelDNN network architecture for
a block of dimension d. Given the d × d × d input block,
VoxelDNN outputs the predicted occupancy probabilities of
all input voxels. Our first 3D convolutional layer uses 7×7×7
kernels with a type A mask. Type B masks are used in the
subsequent layers. To avoid vanishing gradients and speed up
the convergence, we implement two residual blocks [40] with
5× 5× 5 kernels. Since type A masks are applied at the first
layer, identity skip connection of residual block does not vio-
late the causality constraint. Throughout VoxelDNN, the ReLu
activation function is applied after each convolutional layer,
except in the last layer where we use softmax activation. Using
more filters generally increases the performance of VoxelDNN,
at the expense of an increase in the number of parameters and
computational complexity. After experimenting with various
number of filters, we concluded that for input voxel block
(d×d×d×1) which only has a single feature, 64 convolutional
filters give a good trade-off between complexity and model
performance.

C. Multi-resolution encoder and adaptive partitioning

We use an arithmetic coder to encode the voxels sequentially
from the first voxel to the last voxel of each block in a
generative manner. Specifically, every time a voxel is encoded,
it is fed back into VoxelDNN to predict the probability of the
next voxel. Note that at this prediction step, all future voxels
are filled with zeros. Then, we pass the probability to the
arithmetic coder to encode the next symbol.

However, applying this coding process at a fixed resolution
d (in particular, on larger blocks) can be inefficient when
blocks are sparse, i.e., they contain only a few occupied
voxels. This is due to the fact that in this case, there is
little or no information available in the receptive fields of the
convolutional filters. To overcome this problem, we propose
to optimize the block size based on a rate-optimized multi-
resolution splitting algorithm as follows. We partition a block
into 8 sub-blocks recursively and signal the occupancy of
sub-blocks as well as the partitioning decision (0: empty, 1:
encode as a single block, 2: further partition). The partitioning
decision depends on the bit rate after arithmetic coding. If the
total bitstream of partitioning flags and occupied sub-blocks
is larger than encoding the parent block as a single block, we
do not perform partitioning. The details of this process are
shown in Algorithm 1. The maximum partitioning level or the
maximum number of block sizes is controlled by maxLv and
partitioning is performed up to maxLv = 5 corresponding to
a smallest block size of 4. Depending on the output bits of
each partitioning solution, a block of size 64 can contain a
combination of blocks with different sizes. Figure 4 shows 4
partitioning examples for an encoder with maxLv = 4. Note
that VoxelDNN learns to predict the distribution of the current
voxel based on previously encoded voxels. As a result, we can
use a bigger model size to predict the probabilities for smaller
input block size.

(a) (b) (c) (d)

Fig. 4: Partitioning a block of size 64 into: (a) a single block
of size 64, (b): blocks of size 32, (c): 32 and 16, (d): 32, 16
and 8. Non-empty blocks are indicated by blue cubes.

(a) (b)

Fig. 5: 2D illustration of context extension from block 4 × 4
to block 8×8. (a): Before extension, (b): after extension. Blue
squares are active voxels in the context, voxels in the white
area are ignored by masks or from the bigger block.

D. Context extension

We have discussed our multi-resolution encoder with multi-
ple block sizes to adapt to the point cloud structure. However,
with smaller block sizes, an implicit context model (using the
content of the block) will be less efficient because the context
may be too small. Therefore, we extend the context of each
block to the encoded voxels that are above and on the left
of the current voxel (causality constraint). Figure 5 illustrates
the context before and after extension. Before extending the
context, to encode voxel vc, only voxels from v1 to vi−1 in
Figure 5(a) are considered as contexts. After extending the
context to the bigger block, the context is now composed of all
voxels in the blue area in Figure 5(b). The white area represent
inactive voxels, i.e., not used in Eq. (2). Extending the context
does not change the partitioning algorithm discussed above,
although it might change the optimal selected partitions. Also,
the causality is still enforced as long as we use masked filters
in our network.

However, extending to a larger context is not always ef-
ficient when the extension area is sparse or contains noise,
therefore we employ a rate-optimized block extension deci-
sion. To limit the computational complexity, we only allow
certain combinations of block sizes and extension sizes, as
shown in Table I. To encode a block with context extension, in
Algorithm 1, we encode a block with all the possible extension
sizes and select the best one in terms of bpov. In total, we build
5 models for 5 input sizes which are {128, 64, 32, 16, 8} in the
context extension mode.

E. Data augmentation

In order to train more robust probability estimation models
and to increase the generalization capabilities of our model,
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Fig. 6: Example of data augmentation applied on the Long-
dress point cloud. (a) Original; (b) After removing color
attributes; (c),(d),(e) Rotation with θ = 45◦ on x, y and z
axis; (f),(g) Sampling rate fs = 0.7 and fs = 0.4

we employ data augmentation techniques specifically suited
for PCC. In particular, we observed that methods based
on convolutional neural networks are especially sensitive to
changes in PC density and acquisition noise. Therefore, in
addition to typical rotation and shifting data augmentation used
for other PC analysis tasks [37], [41], we also consider here
alternative techniques, such as downsampling. Note that even
though our VoxelDNN operates on voxel domain, to reduce
the complexity, all input pipelines process point clouds in the
form of x, y, z coordinates before converting into dense block
in the final step. Specifically, for each generated block from
the training datasets, we rotate them by an angle θ around each
x, y, z axis. In addition, to adapt to varying density levels of
the test point clouds, we randomly remove points from the
original block as well as rotated blocks by controlling the
probability of an occupied voxel being kept fs (fs ∈ [0, 1]).
Figure 6 shows our data augmentation methods applying on
Longdress point cloud from MPEG.

IV. EXPERIMENTAL RESULTS

A. Experimental Setup

1) Training dataset: We consider point clouds from dif-
ferent and varied datasets, including ModelNet40 [42] which
contains 12,311 models from 40 categories and three smaller
datasets: MVUB [43], MPEG CAT1 [44] and 8i [45], [46].

TABLE I: Extending block size
Block size Extending block size

64 128,64
32 64,32
16 64,32,16
8 64,32,16,8

TABLE II: Training and Testing Point Clouds
Training Set Test Set

Point Cloud # Fr ρ Point Cloud ρ
MVUB, 10 bits MVUB, 10 bits, dynamic upper body

Andrews 6 1.70 Phil 1.64
David 5 1.65 Ricardo 1.77
Sarah 6 1.72

8i, 10 bits, dynamic full body
8i, 10 bits Redandblack 1.49

Soldier 9 1.51 Loot 1.43
Longdress 9 1.52 Thaidancer 1.68

Boxer 1.56
CAT1, 10 bits

Facade 1 1.20 CAT1, 10 bits, static cultural heritage
Egyptian mask 1 0.12 Frog 1.13
Statue klimt 1 0.89 Arco Valentino 0.45
Head 1 1.43 Shiva 0.88
House w/o roof 1 1.21

USP, 10 bits, static cultural heritage
ModelNet40, 9 bits BumbaMeuBoi 0.18

200 largest PCs 200 1.53 RomanOilLight 0.94

TABLE III: Number of blocks in the training sets of each
model.

MVUB 8i CAT1 ModelNet40 Total
Model 128 1516 1101 677 2860 6154
Model 64 5777 4797 2777 11147 24498
Model 32 22082 20436 15243 50611 108372
Model 16 87578 86106 45626 224951 444261
Model 8 354617 349760 180037 986253 1870667

We uniformly sample points from the mesh models from
ModelNet40 and then scale them to voxelized point clouds
with 9 bit precision. To enforce the fairness between the
smaller datasets in which we select point clouds for testing,
point clouds from MPEG CAT1 are sampled to 10 bit precision
as in MVUB and 8i. In addition, we measure the local
density ρ of a point cloud, computed as the average portion
of occupied voxels in the blocks of size 64, that is:

ρ =
1

NB
×

∑
Bi∈B

100× number of points in Bi
643

(%) (4)

where B is the set of occupied blocks of size 64, and NB is
the cardinality of B. The higher the value of ρ is, the denser
the point cloud. The selected point clouds, number of frames
as well as ρ of the training data are shown in Table II.

To train a VoxelDNN model of size d we divide all selected
PCs into occupied blocks of size d× d× d. Table III reports
the number of blocks from each dataset for training, with the
majority coming from the ModelNet40 dataset. For the models
trained with data augmentation, we apply rotation with θ =
45◦ on x, y, z axis and then sampling from all blocks with
sampling rate fs = [0.7; 0.4]. In total, we augment from each
block to 12 variations in terms of density and rotation which
significantly increase the volume and diversity of our training
set.

2) Test data: We evaluate the performance of our approach
on a diverse set of point clouds in terms of spatial density
and content type. All selected point clouds are either used
in MPEG Common Test Condition or JPEG Pleno Common
Test Condition to evaluate point cloud compression methods.
As shown in Table II the test PCs can be categorized into four
sets:
• MVUB: Microsoft Voxelized Upper Bodies [43] - a

dynamic voxelized point cloud dataset containing five
subjects. For testing, we randomly select 2 frames from
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Phil (frame number 10) and Ricardo (76) sequences
which are both very dense (high ρ) with smooth surfaces.

• 8i: Dense point clouds from 8i Labs. They are also dy-
namic voxelized point clouds but each sequence contains
the full body of a human subject. In the test set, loot
(1000) and redandblack (1510) are from 8i Voxelized Full
Bodies (8iVFB v2) [45] while boxer and thaidancer are
selected and downsampled to 10 bits from 8i Voxelized
Surface Light Field (8iVSLF) dataset [46].

• CAT1: static point clouds for cultural heritage and other
related 3D photography applications [44]. We select
Arco_Valentino_Dense_vox12, Frog_00067_vox12, and
Shiva_00035_vox12 from this dataset and downsample
to 10 bits to validate the performance of our method.
PCs from this dataset are less dense compared to the
previous two datasets. Frog_00067 has smoother surfaces
compared to the other two PCs which contain rough
surfaces.

• USP: an inanimate dataset from the University of São
Paulo, Brazil, related to cultural heritage with 10 bits
geometry precision [47]. BumbaMeuBoi and RomanOil-
Light are two selected point clouds from this dataset.
PCs from USP dataset have simple shape with smooth
surfaces. BumbaMeuBoi is the sparsest PC in our test set
with the smallest ρ.

Figure 7 illustrates the test point clouds.
3) Training procedure: We train 5 models for 5 input block

sizes, i.e., 128, 64, 32, 16, 8. The mini-batch sizes are 1, 8,
64, 128, 128, respectively. Our models are implemented in
TensorFlow and trained with Adam [48] optimizer, a learning
rate of 0.001 for 80 epochs on a GeForce RTX 2080 GPU.1

B. Performance evaluation and ablation studies

In the following, we evaluate the performance of the pro-
posed approach as well as the impact of its various com-
ponents. We start with models without data augmentation
nor context extension in order to study the optimal maximal
partitioning depth for our method and establish a baseline
for the evaluation. Next, on top of the best encoder in this
experiment (Baseline), we separately add data augmentation
(Baseline + DA) and context extension (Baseline + CE).
Finally, Baseline + DA + CE incorporates both data augmen-
tation and context extension. We compare our method against
the state-of-the-art point cloud compression method G-PCC
v12 from MPEG [3] which has a dedicated lossless geometry
mode for static point clouds. We report the number of bits
per occupied voxel (bpov) for each test point cloud and the
average per dataset.

In all experiments, the high-level octree plus partitioning
signal are directly converted to bytes without any compression.
For the encoders with context extension, we signal the selected
size using two bits (maximum 4 options on block 8). This
information is also directly converted to bytes in the bitstream.
On average, signaling bits account for 2.44% of the bitstream.

1The source code is available at https://github.com/Weafre/VoxelDNN_v2.

Fig. 7: Point clouds in the test set. (a) Phil, (b) Ricardo (c)
BumbaMeuBoi (d) RomanOilLight, (e) Redandblack, (f) Loot,
(g) Thaidancer (h) Boxer, (i) Frog, (j) Arco Valentino, (k)
Shiva.

1) Optimal maximum partition depth: To evaluate the effec-
tiveness of the partitioning scheme, we increase the maximum
partitioning level from 1 to 5, corresponding to a minimum
block size of 64, 32, 16, 8, and 4. As 3D convolution is not able
to efficiently exploit voxel relations on a very small receptive
field, we do not train a separate model for block 4. Instead,
we use the model trained on blocks of size 8 to predict its
probabilities.

Table IV shows the average bpov of our encoder on the
4 test datasets at 4 partitioning levels. The results with 5
partitioning levels are identical to 4 partitioning levels and
are not shown in the table. We observe that, as partitioning
levels increases, the corresponding gain over single-level also
increases. However, adding the 3rd and 4th level yields only
a slight improvement compared to adding the 2nd level. This
can be explained with Figure 8 showing the percentages of
occupied voxels in each partition size. We observe that most
voxels are encoded using blocks 64 and 32, while very few
voxels are encoded using blocks of smaller size. Adding
more partitioning levels enables to better adapt to point cloud
geometry, however, this is not often compensated by a bitrate
reduction of the sub-blocks, since in the smaller partitions
the encoder has access to limited contexts, resulting in less
accurate probability estimation. However, there is an increase
in the portion of block 32 and 16 on CAT1 and USP compared
to MVUB and 8i. This reflects the density characteristics
of each dataset: on sparser datasets (CAT1 and USP), the
algorithm tends to partition point cloud into smaller blocks
to eliminate as much empty space as possible. Based on these
observations, we use a maximum of 4 partitioning levels for
our baseline codec in later experiments.

https://github.com/Weafre/VoxelDNN_v2
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TABLE IV: Average rate in bpov per dataset at different partitioning levels and the gain over the encoder with 1 partitioning
level.

1 level 2 levels 3 levels 4 levels
Dataset Point Cloud bpov bpov Gain bpov Gain bpov Gain

MVUB
Phil 0.8943 0.8295 -7.25% 0.8206 -8.24% 0.8205 -8.25%
Ricardo 0.8109 0.7511 -7.37% 0.7440 -8.25% 0.7440 -8.25%
Average 0.8256 0.7903 -7.31% 0.7823 -8.25% 0.7823 -8.25%

8i

Redandblack 0.7920 0.7269 -8,22% 0.7191 -9.20% 0.7190 -9.22%
Loot 0.7017 0.6347 -9.56% 0.6271 -10.63% 0.6271 -10.63%
Thaidancer 0.7941 0.7360 -7.32% 0.7298 -8.10% 0.7297 -8.11%
Boxer 0.6462 0.5960 -7.77% 0.5901 -8.68% 0.5900 -8.70%
Average 0.7335 0.6734 -8.22% 0.6665 -9.15% 0.6665 -9.16%

CAT1

Frog 1.9497 1.8406 -5.60% 1.8216 -6.57% 1.8214 -6.58%
Arco Valentino 5.4984 5.2947 -4.52% 5.2051 -5.33% 5.2050 -5.34%
Shiva 3.7964 3.6632 -3.51% 3.6400 -4.01% 3.6403 -4.11%
Average 3.7482 3.5845 -4.54% 3.5569 -5.31% 3.5556 -5.34%

USP
BumbaMeuBoi 6.3618 5.8235 -8.46% 5.7305 -9.92% 5.7305 -9.92%
RomanOilLight 1.8708 1.7157 -5.14% 1.7030 -5.84% 1.7030 -5.84%
Average 4.0853 3.7696 -6.80% 3.7168 -7.88% 3.7168 -7.88%

Fig. 8: Percentage of occupied voxels encoded in each partition size. From top to bottom: block 8, 16, 32, 64. Most of occupied
voxel are encoded in block 64 and block 32.

2) Comparison with G-PCC: In table V, we report the
output bitrate of our methods to compare with MPEG G-PCC.
Both our method and G-PCC perform better on dense PCs
while having higher rates on sparser PCs. Compared to G-
PCC, the Baseline encoder obtains a significant gain – over
29% bitrate reduction on dense point clouds from MVUB and
8i dataset. On CAT1 and USP datasets, our method achieves a
comparable rate with G-PCC. In particular, for Arco Valentino
and BumbaMeuBoi, the two point clouds having the lowest ρ,
our baseline codec yields a rate higher than G-PCC (+7.25%
and +5.99%, respectively). For point clouds with high local
density levels, our VoxelDNN could efficiently leverage the
relations between voxels and predict more accurate probability.
In contrast, probability prediction is less accurate on sparser
point clouds.

This can be partially solved by adding data augmentation
during training. Indeed, by random subsampling the point
clouds in the training set, VoxelDNN learns to predict more
accurate probabilities when the point cloud is less dense.
Baseline + DA yields higher gains over G-PCC on CAT1 and
USP compared to Baseline, with average bitrate reductions of

about 1.68% and 3.67%, respectively. On the other hand, we
observe a small degradation of the performance compared to
Baseline for denser datasets, such as MVUB and 8i dataset.
This is somehow expected, as data augmentation increases the
generalization capability of VoxelDNN, which instead is more
adapted to denser PCs in the baseline mode.

The encoder with context extension, Baseline + CE, obtains
a better rate on all test point clouds compared to the Baseline
encoder, regardless of the density, with an average further
bitrate reduction of 4.8% over G-PCC. The cost to be paid
for this performance improvement is a higher computational
complexity in the encoding process.

The last two columns of Table V show the experiment
results for the encoder incorporating both data augmentation
and context extension, Baseline + DA + CE. On average,
we have a higher gain than Baseline and Baseline + DA
because of the Context Extension. As expected, comparing
with Baseline + CE, Baseline + DA + CE has increasing
gains on CAT1 and USP datasets while obtaining a lower gain
on MVUB and 8i datasets. Despite the different performance
trends for different densities of the input point clouds, we
obtain, on average, a bitrate reduction of 20.66% compared to
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TABLE V: Average rate in bpov of proposed method and percentage gains compared with MPEG G-PCC v12 (negative
percentages mean bitrate reduction).

G-PCC Baseline Baseline + DA Baseline + CE Baseline + DA + CE
Dataset Point Cloud bpov bpov Gain over

G-PCC
bpov Gain over

G-PCC
bpov Gain over

G-PCC
bpov Gain over

G-PCC

MVUB
Phil 1.1599 0.8205 -29.26% 0.8954 -22.80% 0.7601 -34.47% 0.8252 -28.86%
Ricardo 1.0673 0.7440 -30.29% 0.8235 -22.84% 0.6874 -35.59% 0.7572 -29.05%
Average 1.1136 0.7823 -29.78% 0.8595 -22.82% 0.7238 -35.01% 0.7912 -28.95%

8i

Redandblack 1.0893 0.7190 -33.90% 0.7772 -28.65% 0.6645 -39.00% 0.7003 -35.71%
Loot 0.9524 0.6271 -34.16% 0.6282 -34.04% 0.5766 -39.46% 0.6084 -36.12%
Thaidancer 0.9990 0.7297 -26.96% 0.7253 -27.40% 0.6769 -32.23% 0.6627 -33.66%
Boxer 0.9492 0.5900 -37.81% 0.6573 -30.75% 0.5503 -41.94% 0.5906 -37.78%
Average 0.9975 0.6665 -33.24% 0.6870 -30.21% 0.6171 -38.13% 0.6405 -35.79%

CAT1

Frog 1.8990 1.8214 -4.09% 1.7662 -6.99% 1.6971 -10.63% 1.7071 -10.11%
Arco Valentino 4.8531 5.2050 +7.25% 5.0639 +4.34% 4.9923 +2.87% 4,9900 +2.82%
Shiva 3.6716 3.6403 -0.85% 3.5838 -2.39% 3.4619 -5.71% 3.5135 -4.31%
Average 3.4746 3.5556 +0.77% 3.7413 -1.68% 3.3838 -2.61% 3.4035 -3.86%

USP
BumbaMeuBoi 5.4068 5.7305 +5.99% 5.3831 -0.44% 5.3580 -0.90% 5.066 -6.29%
RomanOiLight 1.8604 1.7030 -8.46% 1.7319 -6.91% 1.6130 -13.30% 1.6231 -12.76%
Average 3.6336 3.7168 -1.24% 3.5575 -3.67% 3.4855 -7.10% 3.4855 -9.52%

G-PCC. Note that, in practice, if the characteristics of point
cloud to be coded are known in advance, our approach is
flexible, in that we could deploy different models targeting a
specific application (cultural heritage, tele-immersive confer-
encing, etc.) and content type to obtain the best compression
rate.

3) Effect of PC content and density on coding performance:
In order to better understand the performance of our codec for
different types of content, we plot in Figure 9 the average bpov
as a function of the percentage of occupied voxels for each
block 64 of Phil, Loot, Arco Valentino and BumbaMeuBoi with
the Baseline + DA + CE encoder. Notice that each block 64
can be split up to different partition levels, indicated by the
size of the dots in the figure. The distribution of the density
of blocks 64 is shown in the top panel.

From this figure, we can draw some observations. First,
most of blocks are partitioned into 3 levels (smallest dots) and
the majority of the remaining blocks are partitioned into 2 or 4
levels. Second, in each point cloud, denser blocks are easier to
compress, as mentioned before, due to the better capabilities of
convolution to capture spatial relations. On the other hand, our
approach becomes inefficient when the blocks are less dense,
and the bitrate associated to the very sparse blocks rapidly
grows by an order of magnitude compared to the rest. This
phenomenon is true for all kinds of contents, although it has a
stronger effect when the block density distribution is skewed
to the left, such as for Arco Valentino or BumbaMeuBoi, which
have the highest bitrates in our experiments.

We can also observe a content-dependence trend in the
figure, which appears like a vertical offset for different PCs.
Arco Valentino and RomanOilLight overall have higher bpov
compared to Phil and Loot with the same number of occupied
voxels. This suggests that local density alone is not the
only factor affecting the performance of our approach, but
that somehow higher-order statistics enter into play. We will
speculate more about this behaviour when discussing the
bitrate allocation in Figure 11. Further analysis of this trend, as
well as how to take better into account the PC characteristics
to improve coding performance, are left to future work.

4) Selection of context extension and impact on the parti-
tioning: Figure 10 shows how many times an extended block
size is selected in the Baseline + DA + CE experiments.
First, it can be seen that in most cases our encoder choose
to extend the context to encode the current block, and mostly
the immediate larger size is selected. By extending context
to exploit geometry information from the neighboring voxels,
VoxelDNN can leverage a larger amount of information and
predict a better probability. In most cases where the encoder
does not extend the context, the blocks are on the border of
the volume, corresponding to a mostly empty extending area.

By summing the quantities in each column, we obtain
the number of blocks which are encoded using each block
size and we observe that large parts of the point cloud are
partitioned into block 32 or 16. This is in contrast with the
previous observation on baseline experiments where the most
frequent partitions are 64 and 32 (Figure 8). This has an
intuitive explanation: without context extension, small block
sizes of 32 or 16 were insufficient to provide a representative
enough context for VoxelDNN in most of the cases, even
if they would better adapt to areas with low point density.
Conversely, the context extension allows to compensate for the
small block dimension and renders these modes competitive.
As a result, context extension significantly affects the optimal
partitioning and enables VoxelDNN to adapt better to local
sparsity while still providing enough contextual information
to predict accurate probabilities.

5) Using multiple models for the context: For the multi-
resolution encoder, instead of using a separate model for each
block size, VoxelDNN can use only a single neural network
to predict the distribution. Specifically, we place small blocks
(8, 16, 32) into a block of size 64 and then use the network
for block 64 to predict and extract the corresponding distri-
butions. This method of computing the occupancy distribution
is different from Context Extension in that the surrounding
voxels are always set to 0. In Table VI, we compare the
performance of using a single model with Baseline, which is a
multi-models encoder. In this experiment, both encoders have
4 maximum partitioning levels and use the same model 64.
On average, by having a separate model for each block size,
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Fig. 9: Performance on block 64 on four test point clouds. Each point corresponds to a block 64 with percentage of occupied
voxels (ρ) and bpov (log scale) performance of that block. The size of each point indicates the partitioning level and each
partitioning level was sized according to its frequency. Higher points indicate that VoxelDNN is performing worse. The marginal
distributions of occupied voxels for each point cloud are on the top of the scatter plot.

Fig. 10: Number of extending block size for each block. (a)
Phil, (b) Loot, (c) Arco Valentino, (d) BumbaMeuBoi. Most of
the time, the encoder extend the context to neighboring voxels
instead of independently encoding a block.

a multi-model encoder obtains about 1% additional gain over
G-PCC compared to the single model encoder. This amount
of gain indicates that the bigger VoxelDNN model can predict
the conditional distribution on smaller blocks as efficiently as
using a separate model for each block size. However, model
64 is trained on blocks of size 64 only, and learns features at
that scale. In general, a model trained on small blocks could
better capture the context from small input blocks and thus
provides a higher gain in some circumstances.

TABLE VI: Single model and multi-models comparison.
G-PCC Single model Multi-models

Point Cloud bpov bpov Gain over
G-PCC

bpov Gain over
G-PCC

M
V

U
B Phil 1.1599 0.8312 -28.33% 0.8205 -29.26%

Ricardo 1.0673 0.7541 -29.34% 0.7440 -30.29%
Average 1.1136 0.7927 -28.81% 0.7823 -29.78%

8i

Redandblack 1.0893 0.7320 -32.80% 0.7190 -33.99%
Loot 0.9524 0.6403 -32.77% 0.6271 -34.16%
Thaidancer 0.9990 0.7305 -26.87% 0.7297 -26.96%
Boxer 0.9492 0.6008 -36.70% 0.5900 -37.84%
Average 0.9975 0.6759 -32.24% 0.6665 -33.24%

C
A

T
1

Frog 1.8990 1.8433 -2.93% 1.8214 -4.09%
Arco Valentino 4.8531 5.2173 +7.50% 5.2050 +7.25%
Shiva 3.6716 3.6595 -0.32% 3.6403 -0.85%
Average 3.4746 3.5734 +2.84% 3.5556 +0.77%

U
SP

BumbaMeuBoi 5.4068 5.7501 +6.34% 5.7305 +5.10%
RomanOiLight 1.8604 1.7094 -8.11% 1.7030 -8.46%
Average 3.6336 3.7298 -2.64% 3.7168 -1.24%

6) Visualization of the bitrate allocation on coded PCs: The
bpov heatmaps of 4 point cloud are shown in Figure 11. The
blocks in the figures reflect the optimal partitioning obtained
by the algorithm. First, we visually confirm what found in
Figure 9, i.e., VoxelDNN performs better, i.e., achieves a small
bitrate, in the smooth and dense areas of the point cloud.
Conversely, in the noisy areas (Phil’s hand, Loot’s hand),
sudden holes (Arco Valentino) or very sparse regions (edges
in Arco Valentino, the bottom part of BumbaMeuBoi), which
are indicated in red, the performance is worse. We can argue
that the density of a point cloud, together with the smoothness
and noise characteristics of the content, are among the main
factors that influence the performance of VoxelDNN. On the
other hand, we can argue that noisy and very sparse areas are
intrinsically difficult to code in general, and indeed also the
MPEG G-PCC codec requires a large number of bits to encode
point clouds such as BumbaMeuBoi and Arco Valentino.
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Fig. 11: Output geometry bitrate in bpov per block. (a) Phil, (b) Loot, (c) Arco Valentino, (d) BumbaMeuBoi. The heatmap
bar below each subfigure shows the minimum and maximum bpov and the corresponding color.

TABLE VII: Average runtime (in seconds) of different en-
coders comparing with G-PCC v12

G-PCC Baseline Baseline + CE
(Enc) 2.90 298 885
(Dec) 2.79 672 640

C. Computational complexity analysis

A well-known drawback of auto-regressive generative mod-
els such as PixelCNN and VoxelDNN is the sequential gen-
eration of the symbol probabilities. This requires to run the
network for each voxel, which has a complexity that increases
linearly with the number of voxels. Therefore, VoxelDNN has
a computational complexity which is 3 orders of magnitures
bigger than G-PCC.

Table VII reports the encoding and decoding time of our
Baseline and Baseline + CE. Tests are benchmarked on an
Intel(R) Xeon(R) Silver 4110 CPU @ 2.10GHz machine with
an Nvidia GeForce GTX 2080 GPU and 16 GB of RAM,
running Ubuntu 16.04. Our encoding time is highly dependent
on the number of blocks and the number of voxels within
each block. Besides, the number of modes in the partitioning
algorithm and context extension also influence the complexity.
The Baseline + CE encoder tries all the extending modes
and selects the best one, thus its average encoding time is
higher than Baseline – an increase of about 196%. The reason
why the encoding time for the Baseline codec is lower than
the decoding time is purely implementative: at the encoder
it is possible to predict the whole block probabilities in a
single batch on a GPU, while in a realistic scenario, at the
decoder side the voxels need to be individually decoded. When
context extension is enabled, point clouds are partitioned into
even smaller blocks, corresponding to a smaller complexity
at the decoder, as a smaller number of voxels need to be
decoded. On the other hand, the total parameters of each
VoxelDNN model corresponds only to about 3.5 MB which
is a small-size network in practice. Notice that the bottleneck
in our system comes from the adoption of an auto-regressive
model, which has the advantage of providing, in principle,
an exact likelihood estimation of the data, though at a high
computational cost. We are currently investigating the use of

alternative generative approaches that avoid sequential proba-
bility estimation.

V. CONCLUSIONS AND FUTURE WORK

This paper presents a lossless compression method for
point cloud geometry. We extend a well-known auto-regressive
generative model initially proposed for 2D images to the 3D
voxel space, and we incorporate 3D data augmentation to effi-
ciently exploit the redundancies between points. This approach
enables to build accurate probability models for the arithmetic
coder. As a result, when using an adaptive partitioning scheme
and context extension, our solution outperforms MPEG G-
PCC over a diverse set of point clouds.

Our analyses on the performance of the proposed method
indicate at least two major avenues for improvement. On
one hand, handling low-density point clouds would require to
rethink the network architecture to handle sparse input data.
On the other hand, a major drawback of VoxelDNN is the high
computational cost of sequential probability generation, which
we plan to replace in the future by a more efficient generative
model.
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