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A B S T R A C T

Proteins are natural modular objects usually composed of several domains, each do-
main bearing a specific function that is mediated through its surface, which is accessible
to vicinal molecules. This draws attention to an understudied characteristic of protein
structures: surface, that is mostly unexploited by protein structure comparison methods.
In the present work, we evaluated the performance of six shape comparison methods,
among which three are based on machine learning, to distinguish between 588 multi-
domain proteins and to recreate the evolutionary relationships at the protein and species
levels of the SCOPe database.

The six groups that participated in the challenge submitted a total of 15 sets of re-
sults. We observed that the performance of all the methods significantly decreases at the
species level, suggesting that shape-only protein comparison is challenging for closely
related proteins. Even if the dataset is limited in size (only 588 proteins are considered
whereas more than 160,000 protein structures are experimentally solved), we think that
this work provides useful insights into the current shape comparison methods perfor-
mance, and highlights possible limitations to large-scale applications due to the com-
putational cost.

© 2020 Elsevier B.V. All rights reserved.

1. Introduction1

Proteins are complex macro-molecular molecules with var-2

ious shapes and sizes ranging from hundreds to millions of3

atoms [1]. The 3D arrangement of protein atoms is directly4

linked to specific functions that are mostly mediated through5

the protein surface. Protein surfaces are of great interest in drug6

discovery pipelines, adverse drug reaction or the characteriza-7

tion of cellular processes at the molecular level. However, chal-8

lenges in protein surfaces comparison may arise from a) the9

dynamical, non-rigid nature of the proteins that allows protein10

conformational changes, i.e., surficial modifications and there-11

fore specific functions, b) the intrinsic structure of multi-do-12

main proteins, i.e., the fusion of multiple, individual domains13

into one protein throughout evolution, and c) the similarity be-14

tween distinct protein structures and surfaces inherited from15

their evolutionary relationships.16

The SHape REtrieval Challenges (SHREC) are time-17

restricted challenges, which aim to evaluate the effectiveness18

of 3D-shape retrieval algorithms. Typically, a challenge is 19

opened by proposing a dataset of related shapes to participants 20

while retaining the class membership. In the SHape REtrieval 21

Challenge 2020 (SHREC2020) track on multi-domain protein 22

shapes, the participants had 7 weeks from the dataset publica- 23

tion to send their results with a description of the methods used 24

to generate the results (see Section 4). This SHREC2020 track 25

on multi-domain protein shapes evaluates the current ability of 26

shape comparison methods proposed by 6 different groups to 27

tackle the protein surface comparison problem. The partici- 28

pants were asked to send their results in the form of matrices 29

containing all-to-all dissimilarity scores. The results were ana- 30

lyzed and the overall retrieval performances are presented here. 31

The dataset includes 588 proteins consisting of two domains 32

(the functional units of the proteins); only the corresponding tri- 33

angulated meshes of their solvent-excluded surfaces (SES) [2] 34

were provided as input to the participants. We then evalu- 35

ated the retrieval performance of each method to retrieve the 36
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evolutionary relationships between orthologous proteins (pro-1

teins that have the same function in different organisms), and2

to retrieve the different conformations of an individual protein.3

Here, we present the results of all the participants and meth-4

ods, and briefly discuss the trade-off between performance in5

retrieval and computational cost of each method.6

2. Dataset7

Proteins are linear polymers (the so-called protein chains)8

made of amino-acid residues (up to several hundreds), which9

fold into a specific, well-defined 3D structure. Furthermore,10

many proteins need to form a complex of several chains to be-11

come functional. For instance, the human heamoglobin requires12

two α-globin and two β-globin chains to be fully functional.13

Domains define the functional units of the proteins, and are usu-14

ally associated with a specific function and/or interaction; it is15

thus commonplace for two proteins to share one domain while16

their other respective domains differ. This characteristic led to17

the development of databases classifying proteins according to18

both their structure and the functions of their domains. The19

SHREC2020 track on multi-domain protein shapes dataset is20

devoted to the analysis of protein shapes generated from pro-21

tein chains that comprise two domains.22

Dataset creation. The SCOPe database [3, 4, 5] organizes the23

protein domains according to their structural (in the 2 top levels24

of the SCOPe tree) and evolutionary (for the 4 bottom levels)25

relationships. Protein domains in the SCOPe database originate26

from Protein Data Bank (PDB) experimental structures [6], and27

are characterized by their PDBId and chainId, allowing for fil-28

tering based on these parameters. From all entries implemented29

in the SCOPe tree (excluding entries from the ‘Artifacts‘ and30

‘Low resolution protein structures‘ classes), we kept only the31

entries from X-ray crystallography PDB structures composed of32

two domains. When multiple copies of the same protein chain33

was present in the same PDB structure, we only kept one of34

those copies to limit redundancies. Finally, all proteins were re-35

quired to have at least one orthologous protein, and classes with36

less than 10 members were discarded.37

Table 1. Number of classes and number of shapes in the dataset, at the
protein and the species levels.

Level Number of classes Shapes by class (min / max)

Protein 7 19 / 168

Species 26 12 / 63

Ground truth generation. The ground truth was generated38

using the resulting SCOPe tree of two-domains proteins.39

Only the biggest domain (highest number of amino-acid40

residues) was used to define two ground truth classifications,41

namely the protein and species levels, which reproduce the42

SCOPe tree classifications at the protein and species levels,43

respectively. These classifications were not provided to the44

track participants. By using this protocol, 588 protein chains45

were retrieved, from 26 orthologs (proteins having the same 46

activity in different organisms such as the human and murine 47

haemoglobin proteins) and 7 proteins (see Table 1). The 48

solvent-excluded surfaces [2] were computed for all the entries 49

using EDTSurf [7] (non-protein atoms were discarded) after 50

protonation of the struture using propka [8, 9], and only the 51

corresponding .off files were provided to the participants on 52

the track website (http://shrec2020.drugdesign.fr). At 53

the end of the track, the ground truths were published online 54

as well. As the participants were not provided some important 55

details about the dataset creation (two-domains proteins only, 56

protonation and SES calculation parameters, . . . ), the reverse 57

engineering of the memberships from the surfaces (.off files) 58

would require to compare all the PDB entries of the SCOPe 59

database to the dataset. While feasible in principle, this 60

approach in practice would be difficult to carry out. 61

62

Compared to other known protein shapes datasets [10, 11], 63

this dataset is exclusively composed by two-domains proteins 64

while only one-domain proteins were included in [10, 11]. As 65

multi-domain proteins are commonplace at the cellular level, 66

the impact of additional domains on the protein shape retrieval 67

performances need to be evaluated. Recently, another dataset 68

of protein surface patches was published [12], encompassing 69

both geometric and chemical features of proteins surfaces. That 70

dataset gathers partially overlapping patches rather than com- 71

plete proteins surfaces, and is currently limited to structures 72

that display specific functionalities, namely the ability to bind 73

selected small molecules or to form a protein-protein complex. 74

3. Evaluation 75

Analyses were performed with scikit-learn [13] and 76

numpy [14], and Figures 4 and 5 were produced using mat- 77

plotlib [15]. 78

Nearest Neighbor, First-tier and Second-tier. These retrieval 79

metrics measure the ratio of models that belong to the same 80

class as the query. For Nearest Neighbor (NN), the first match 81

only is considered (the identity is not considered), while the 82

|C|−1 and 2∗(|C|−1) first matches, where |C| denotes the size of 83

the query’s class, are considered for First-tier (T1) and Second- 84

tier (T2); the maximum value for the Second-tier is therefore 85

0.5. 86

Precision-Recall plot. Precision P refers to the ratio of results 87

that are relevant and is computed as the number of models from 88

class C retrieved within all objects attributed to class C, while 89

Recall R represents the number of results correctly classified 90

and is computed as the number of models from class C retrieved 91

compared to the size |C| of the class C. 92

Mean Average Precision. Given a query, its average pre- 93

cision is the average of all precision values computed 94

when each relevant object is found. Given several queries, 95

the mean average precision (MAP) is the mean of av- 96

erage precision of each query. It then gives in a single 97
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value the overall retrieval performance of an algorithm.1

2

All metrics were macro-averaged at the protein and species3

levels, as defined in the SCOPe database.4

4. Participants & Methods5

Six groups from five different countries registered for the6

track and submitted 15 dissimilarity matrices in the requested7

time (8 weeks) along with the description of their protocol. To8

ease the reading, we have assigned each group a short name for9

referencing in the following text.10

1. CODSEQ by Author A, Author B, Author C, Author D,11

Author E (subsection 4.1),12

2. 3DZ by Author F, Author G, Author H, Author I (subsec-13

tion 4.2),14

3. WKS/SGWS by Author J, Author K, Author L (subsec-15

tion 4.3),16

4. HAPT by Author M (subsection 4.4),17

5. GraphCNN by Author N, Author O, Author P (subsec-18

tion 4.5),19

6. HAPPS by Author Q, Author R, Author S, Author T (sub-20

section 4.6).21

4.1. 3D Characterization of prOteins by Deep analysis of 2D22

view SEQuence (CODSEQ) — Author A, Author B, Author23

C, Author D, Author E24

Table 2. Running times in seconds of each stage of the CODSEQ
framework for one protein.

3D mesh size of one protein 247650 facets

2D views extraction 9 × (312 × 312) 6.75

2D descriptor (9 × 512) 4

Compact 3D descriptor (1024) 2.46

Distance to all proteins dataset (588 proteins) 0.007

Table 3. Training times in seconds using GPU for the used CNN-
based models.

CNN-based model Training data size Epochs Training time
(seconds)

Inception ResNet [16] 12798 images 5 1260

LSTM-RNN [17] 1422 sequences 40 13

The CODSEQ method is a deep learning based framework25

for indexing proteins. The approach consists of capturing sur-26

face details of the 3D proteins under the form of a set of 2D27

views. To this end, a classification architecture was tailored by28

exploiting a transfer learning strategy to extract relevant fea-29

tures from the considered views of proteins. The SHREC 201830

dataset [10] was exploited for the training stage as these protein 31

surfaces share similar silhouettes with the protein surfaces pro- 32

posed in the current contest (connected stretched shapes). The 33

protein surfaces from SHREC 2019 dataset have not been ex- 34

ploited since their shapes visually seemed too different (com- 35

pact shapes). Only protein classes represented by at least 19 36

(18 train and 1 test) different proteins (dominant classes) were 37

considered, resulting in selecting 79 classes among 107 classes 38

of the SHREC 2018 dataset. Noteworthy, the training stage 39

has only been performed at the protein level since the SHREC 40

2018 dataset does not include the species level. The train/test 41

methodology has been adopted thanks to the availability of the 42

ground-truths. 43

Descriptors calculation. 44

Extraction of protein 2D views. In this stage, 3D meshes 45

representing protein surfaces are simplified using the Quadric 46

Error Metric Decimation [18]. By this way, the number of 47

facets of each 3D mesh has been reduced to 20,000 facets (about 48

10% of the original surface) while maintaining the surface de- 49

tails. In the considered coordinate system related to the process- 50

ing, each 3D mesh has its own position and size. These singular 51

parameters are mainly due to the devices and conditions of ac- 52

quisition that can vary from one protein to another. For normal- 53

izing the set of simplified 3D meshes of protein, each of them is 54

recentered and rescaled with a sphere having a center of 0 and 55

a radius of 1 as explained in [19]. This allows to obtain protein 56

surfaces invariant to geometric affine transformations consider- 57

ing scale and translation. A sequence of 2D views (312 × 312 58

RGB images) is then extracted using a set of virtual cameras 59

uniformly positioned around the bounding sphere of each pro- 60

tein. 9 views are enough for covering the whole surface of the 61

protein. 62

Protein characterization based on a single 2D view (2D de- 63

scriptor). The goal of this stage is to extract a feature de- 64

scriptor from each 2D view using a transfer learning strat- 65

egy. More precisely, an Inception ResNet architecture [16] pre- 66

trained on ImageNet dataset has been fine-tuned and trained on 67

SHREC2018 dataset [10] in order to learn 79 protein classes. 68

The trained model is used to return a 512-dimensional feature 69

vector for each 2D view by getting the output of a penultimate 70

layer (the one before the classes output). 71

Protein characterization based on a sequence of 2D views 72

(Compact 3D descriptor). A bidirectional LSTM-RNN archi- 73

tecture [17] was trained on the SHREC2018 dataset to learn, 74

as in the previous stage, 79 classes. The architecture has been 75

fed with sequences of feature vectors obtained in the previous 76

stage; each sequence is composed of 9 feature vectors asso- 77

ciated to 9 views of a given protein. One of the strengths of 78

RNN-based models is their ability to analyze data sequences 79

(sequences of views in the current case) while keeping the most 80

significant views to characterize protein classes. Indeed, a clas- 81

sification accuracy rate of 96% on the test data derived from 82



4 Draft / Computers & Graphics (2020)

SHREC2018 dataset [10] was reached using this trained bidi-1

rectional LSTM-RNN model. This model was used to extract a2

1024-dimensional feature vector for each protein of the present3

contest.4

Dissimilarity distance calculation & runtimes. Dissimilarity5

matrices were generated by calculating the Euclidean distance6

between each pair of proteins using their associated 1024-7

dimensional feature vectors. Two matrices have been gener-8

ated based on two training runs performed in the previous stage,9

namely CODSEQ1 with 0.96 and 0.18 of accuracy and loss, re-10

spectively, and CODSEQ2 with 0.94 and 0.14 of accuracy and11

loss, respectively.12

This framework has been developed in Python 3.7.6 us-13

ing Open3D 0.8.0.0, OpenCV 4.2.0 and Keras 2.2.4-tf on a14

TensorFlow-GPU 2.1.0 backend. The experiments have been15

conducted on an Intel Core i7-6700HQ CPU@2.60 GHz with16

32 GB of memory and NVIDIA GeForce GTX 1070 GPU with17

24 GB of memory. The running times in seconds of each stage18

performed on CPU are reported in Table 2 for one protein. Ta-19

ble 2, shows the training times of the used CNN-based models20

trained on GPU.21

4.2. Network trained with encoded 3DZD and 3DZM (3DZ) —22

Author F, Author G, Author H, Author I23

Three dissimilarity matrices of target protein surfaces were24

generated unsing three methods based on the 3D Zernike De-25

scriptor (3DZD) or the 3D Zernike Moment (3DZM). 3DZM26

are the coefficients for representing a 3D shape function in27

terms of 3D Zernike-Canterakis polynomials [20]. 3DZD28

is the rotation-invariant shape descriptor derived from the29

3DZM [21].30

Descriptors calculation. Using the 3DZD or 3DZM as the fea-31

ture of protein shape, a neural network was trained to output a32

score that measures the (dis)similarity between a pair of pro-33

tein shapes. The framework is the same with the one in the34

SHREC2019 protein shape retrieval contest (see Section 4.335

in [11]). The network has an encoder, a feed-forward fully-36

connected neural network with an input layer and three hid-37

den layers with a ReLU activation function. The network takes38

3DZD or 3DZM of a protein shape as input. The three hidden39

layers have 250, 200, and 150 neurons, respectively, which are40

used for the encoding of an input 3DZD (or 3DZM). The en-41

coder is connected to the feature comparator, a fully-connected42

network, which takes the 3DZD (or the 3DZM) of the two pro-43

teins, and the encodings from the three hidden layers, and four44

metrics that compare two vectors, the Euclidean distance, the45

cosine distance, the element-wise absolute difference, and the46

element-wise product, and the two features of the two protein47

shapes (the difference in the number of vertices and faces). In48

total, the number of the input features of the feature comparator49

is 2∗121 (or 1771 for 3DZM) +2∗(250+200+150)+2∗4+2 =50

1452 features (4752 features for 3DZM). The first term is the51

3DZDs of order 20 (n=20), which is a 121 element vector,52

of the two protein shapes. The third term, 2 * 4 comes from53

the four comparison metrics applied to two representations of54

the two proteins, the original 3DZDs (or 3DZMs) and encod- 55

ings, which concatenate the output of the input layer and the 56

three intermediate layers of the encoder. The feature compara- 57

tor outputs a score between 0 and 1 using a sigmoid activation 58

function, which is the probability that the two proteins are in 59

the same protein level classification in the SCOPe database [3]. 60

The feature comparator network has an input layer of a 1452- 61

dimensional feature vector, two intermediate layer of 100 and 62

50 neurons respectively, and one output neuron. 63

The network was trained on a dataset of 247,521 protein 64

structures from the SCOPe 2.07 database. Proteins in Class I 65

(Artifacts) were not included. To augment data for training the 66

network for 3DZM, which is not rotation invariant, each pro- 67

tein was rotated with different random orientations. For each 68

protein,EDTSurf [7] was used to generate the solvent excluded 69

surface, which was then fed into the EM-Surfer pipeline [22] 70

to compute 3DZM and 3DZD. The network was trained to cor- 71

rectly distinguish proteins in the same protein level category in 72

SCOPe from the rest. 73

Dissimilarity distance calculation & runtimes. The first dis- 74

similarity matrix submitted was computed with the network 75

trained with 3DZDs. The second matrix was computed with 76

the network trained on a vector of a size 1771, which was the 77

absolute values of complex numbers in 3DZM. The distances 78

in the third matrix were the average between the Euclidean dis- 79

tance of 3DZDs, and the distances in the first and the second 80

matrices. Generating 3DZD and 3DZM takes ∼8.00 seconds 81

on average for each protein on an Intel(R) Xeon(R) CPU E5- 82

2630 0 @ 2.30GHz. The 3DZD model took ∼0.22 seconds on 83

average to predict the dissimilarity between two proteins using 84

TitanX GPU, while the 3DZM model took ∼0.5 seconds on the 85

same GPU. The Euclidean model took ∼0.17 seconds on aver- 86

age per prediction and the averaging of the three matrices was 87

almost instant and was negligible. 88

4.3. Wave Kernel Signature and SGWS based Shape Descriptor 89

for Protein Retrieval (WKS/SGWS) — Author J, Author K, 90

Author L 91

To reach robust and improved performance, a hybrid spectral 92

feature descriptor is used which combines the benefits of fea- 93

tures of wave kernel signature (WKS) [23] and spectral graph 94

wavelet transform (SGWS) [24]. WKS is an isometric invariant 95

descriptor that has been found to be effective for deformable 3D 96

shape retrieval such as those of the dataset; in contrast to HKS, 97

it focusses on the high-frequency information. SGWS is a gen- 98

eralisation of HKS and WKS, and provides a multiresolution 99

local descriptor that is compact, easy to compute and combines 100

the advantages of both band-pass and low-pass filters. 101

Data pre-processing. Meshes were simplified to reduce the 102

number of faces to approximately 6000 using Qslim [18] which 103

provides an effective compromise between the fastest algo- 104

rithms and the highest-quality algorithms to reduce computing 105

time. Then the mesh is fixed using the open source software 106

meshfix [25] to convert a raw digitized polygon mesh to a clean 107

mesh where all the occurrences of a specific set of “defects” 108
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are corrected. Holes, self-intersections, degenerate and non-1

manifold elements are all replaced with valid configurations.2

WKS descriptor calculation. The WKS feature vectors are3

computed from the eigenvalues and the eigenvectors of each4

protein mesh. Then the vocabulary is calculated using an im-5

proved vector-based k-means over 10% feature vectors of all6

proteins [26]. Finally, the WKS descriptor is normalized for7

the bag-of-features (BoF) for each protein using hard vector8

quantization. The lengths of the WKS feature vector and the9

descriptor are 50 and 1000 respectively.10

SGWS descriptor calculation. The process of the SGWS de-11

scriptor is similar to that of the WKS descriptor. The SGWS12

feature vectors were computed first, and then the vocabulary13

and bag of feature were obtained. The lengths of the SGWS14

feature vector and the descriptor are 5 and 1000 respectively.15

Hybrid spectral descriptor (WKS + SGWS). The hybrid spec-16

tral descriptor combines the normalized BoF of WKS and17

SGWS to form a long vector which is 2000-dimensional.18

Dissimilarity matrices computation & runtimes. The proce-19

dure for model comparison consists of computing bags of fea-20

tures and measuring distances between shapes. For the similar-21

ity measure, the L1 distance ‖X−Y‖1 is used. The estimation of22

the descriptors takes 37 seconds on average, running on a lap-23

top with an i5-5200U CPU, RAM 4GB, running Windows 10.24

The descriptor comparison time was negligible.25

4.4. Histogram of Area Projection Transform (HAPT) — Au-26

thor M27

The method characterizes protein shapes with the Histograms
of Area Projection Transform (HAPT) [27]. This descriptor,
well suited for non-rigid shape retrieval, is based on a spatial
map (Multiscale Area Projection Transform) [27] that encodes
the likelihood of the 3D points inside the shape of being centres
of spherical symmetry. This map is obtained by computing, for
each radius of interest, the value:

APT (~x, S ,R, σ) = Area(T−1
R (kσ(~x) ⊂ TR(S , ~n))) (1)

where S is the surface of the object (see Figure 1), TR(S , ~n), is28

the parallel surface of S shifted along the normal vector ~n (only29

in the inner direction) and kσ(~x); is a sphere of radius σ centred30

in the generic 3D point ~x where the map is computed. Values at31

different radii are normalized in order to have a scale-invariant32

behaviour, creating the Multiscale APT (MAPT):33

MAPT (x, y, z,R, S ) = α(R) APT (x, y, z, S ,R, σ(R)) (2)

where α(R) = 1/4πR2 and σ(R) = c · R (0 < c < 1).34

Fig. 1. APT measures the area of the part of the input surface that, pro-
jected along the normal at a selected distance, is included in a circular
neigborhood of the point of interest (see subsection 4.4).

Descriptors calculation. A discrete MAPT is easily computed, 35

for selected values of R, on a voxelized grid including the sur- 36

face mesh, with the procedure described in [27]. The map is 37

computed in a grid of voxels with side s on a set of corre- 38

sponding sampled radius values. For the proposed task, discrete 39

MAPT maps were quantized in 12 bins and histograms com- 40

puted at the selected scales (radii) were concatenated creating a 41

unique descriptor. Voxel side and sampled radii were fixed for 42

each run and chosen to represent the approximate radii of the 43

spherical symmetries visible in the models. 44

Three different options were tested for the algorithm’s pa- 45

rameters. In HAPT1, s = 0.3, the MAPT histograms were 46

computed for 12 increasing radii starting from R1 = 0.3 iter- 47

atively adding a fixed step of 0.3 for the remaining values, and 48

c was set to 0.5. In HAPT2, s = 0.3, the MAPT histograms 49

were computed for 8 increasing radii starting from R1 = 0.3 50

iteratively adding a fixed step of 0.3 for the remaining values, 51

and c was set to 0.5. In HAPT3, s = 0.4, 8 increasing radii 52

(from R1 = 0.8 and a fixed step of 0.4 for the remaining values) 53

were used to compute the MAPT histograms, and c was set to 54

0.5. 55

Dissimilarity matrices computation & runtimes. The proce- 56

dure for model comparison consists in concatenating the MAPT 57

histograms computed at the different scales and measuring dis- 58

tances between shapes by evaluating the Jeffrey divergence [28] 59

of the corresponding concatenated vectors. The estimation of 60

the descriptors took 112 seconds on average for the run HAPT1, 61

47 seconds on average for the run HAPT2, and 17 seconds on 62

average for the run HAPT3 on a laptop with an Intel CoreTM 63

i7-9750H CPU running Ubuntu Linux 18.04. The descriptor 64

comparison time was negligible. 65
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Table 4. GraphCNN’s network configuration.

Input MLP Encoder1 (ρ1) Encoder2 (ρ2) Encoder3 (ρ3) Encoder4 Output

3D points
(10K, 3)

MLP (3,
32)

SPH3D(64, 64, 2)
SPH3D(64, 64, 1)
Pool(10K, 2500)

SPH3D(64, 64, 1)
SPH3D(64, 128, 2)

Pool(2500, 625)

SPH3D(128, 128, 1)
SPH3D(128, 128, 1)

Pool(625, 156)

G-SPH3D
(128, 512)

FC(832, 512)
FC(512, 256)
FC(256, C)

4.5. Graph-based CNN (GraphCNN) for 3D shape retrieval —1

Author N, Author O, Author P2

Following the recent tendency of addressing many scientific3

tasks by exploiting the existing vast amount of data, a data-4

driven approach was applied for the problem of 3D protein5

shape retrieval. Based on the fact that the provided input pro-6

teins are in the form of triangulated meshes, a transfer learn-7

ing approach was applied. A method originally designed for8

the task of 3D point cloud classification and segmentation was9

adapted to the needs of the protein shape retrieval task, and10

trained on a relevant dataset of protein 3D point clouds in order11

to learn appropriate features (descriptors) for the representation12

of 3D molecular shapes.13

Descriptors calculation. SPH3D-GCN [29], a graph-based14

CNN method equipped with a novel spherical convolution ker-15

nel, was employed as it has achieved state-of-the-art results on16

numerous computer vision tasks. The detailed architecture of17

the applied network is depicted in Table 4. From each trian-18

gulated protein surface, a number of 10000 points is uniformly19

sampled, since the network requires a constant number of input20

points. After transforming the input 3D coordinates to a higher21

dimensional space of 32 features with a multilayer perceptron22

(MLP), four encoder blocks are applied. Each encoder operates23

on a specific spatial range, which is denoted by ρ. Parameter24

ρ controls the radius of the applied spherical kernels and deter-25

mines the spatial extent of the applied convolutions. SPH3D(α,26

β, γ) represents a separable spherical convolution that takes as27

input α channels, performs a depth-wise convolution with a28

multiplier γ and subsequently a point-wise convolution to gen-29

erate the output β channels. At the end of each decoder, a pool-30

ing operation is applied, which reduces gradually the number of31

considered points. In Encoder4, a modified spherical convolu-32

tion is applied in order to obtain a global representation of the33

whole point cloud. Finally, the output features of all the four34

encoders are concatenated and imported to a sequence of three35

fully connected (FC) layers. The proposed scheme was trained36

on the dataset from last years competition (SHREC2019 [11]),37

which comprises 5298 structures from 17 protein classes. The38

network was trained on a classification task aiming to assign39

each structure to each corresponding protein class. During the40

feature extraction step, the FC layers were dropped and the con-41

catenated output of the four encoders were used as descriptors.42

Therefore, for each previously unseen input, a feature vector of43

832 values is extracted.44

Dissimilarity matrices computation & runtimes. After the45

completion of the feature extraction, the Euclidean distance46

metric is used to measure the dissimilarity between two input47

models. Small distance values indicate that the corresponding48

feature vectors represent members of the same class. Among 49

the three GraphCNN submissions, various sets of radius ρ were 50

experimented. Specifically, the first one (GraphCNN1) cor- 51

responds to (ρ1, ρ2, ρ3) = (0.05, 0.1, 0.2), the second one 52

(GraphCNN2) to (0.05, 0.15, 0.45) and the third (GraphCNN3) 53

to (0.1, 0.2, 0.4). The calculation of descriptors took on average 54

45 milliseconds per mesh sample on a GeForce GTX1070 GPU, 55

while the training time is about 1 hour on the same GPU. The 56

average comparison time between two descriptors is negligible 57

(0.001 milliseconds on an Intel Core i7- 6700K CPU). 58

4.6. Hybrid Augmented Point Pair Signatures (HAPPS) — Au- 59

thor Q, Author R, Author S, Author T 60

Descriptors can be categorised into two main groups: local 61

and global. Combining two or more descriptors (e.g., local- 62

local, local-global, or global-global) yields a third category, 63

the hybrid descriptor - aimed at improving the resultant perfor- 64

mance of the combined descriptors. The Hybrid Augmented 65

Point Pair Signature (HAPPS) is a 3D shape descriptor in the 66

third category, computed from a combination of two separate 67

descriptors: local Augmented Point Pair Feature Descriptor 68

(APPFD), and global Histogram of Global Distances (HoGD) 69

or Multi-view 2D Projection (M2DP) [30] descriptors, each of 70

which are computed using hand-crafted features extracted from 71

3D surface. Details of APPFD, HoGD, and M2DP descriptors 72

are provided in the following sections. 73

74

HAPPS is an improvement over the APPFD, aimed at achiev- 75

ing better retrieval performances. Although the latter is capa- 76

ble of robustly representing 3D shapes, a closer inspection of 77

protein shapes for this retrieval challenge reveals identical lo- 78

cal surface characteristics and somewhat uniqueness in global 79

appearances between the Protein shapes, hence the need to ex- 80

tend the capability of the APPFD and effectively capture both 81

local and global characteristics of the Protein shapes. There- 82

fore, two global 3D descriptors were separately combined: The 83

Histogram of Global Distances (HoGD) and Multi-view 2D 84

Projection (M2DP) with APPFD to derive two variants of hy- 85

brid descriptor: the Hybrid Augmented Point Pair Signatures 86

(HAPPS), referred to as HAPPS-1 and HAPPS-2, i.e., hybrid 87

descriptors formed by combining local APPFD with global 88

HoGD and M2DP, respectively. Alongside the APPFD, the 89

HAPPS algorithm was first introduced in [31] and recorded 90

very high performance scores across several 3D benchmark 91

datasets. Fig. (2) presents an overview of the HAPPS algo- 92

rithms. 93

Augmented Point Pair Feature Descriptor (APPFD). The 94

Augmented Point Pair Feature Descriptor (APPFD) is a 3D 95

shape descriptor, which describes the local geometry around 96
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Fig. 2. Overview of HAPPS algorithm.

a point, p = [px, py, pz] or vertex, v = [vx, vy, vz] for 3D1

pointcloud or mesh datasets, respectively. Here, the pointcloud2

shape representation for this task was used, instead. Computing3

this descriptor involves the following stages: (i) pointcloud4

sampling and normals estimation, (ii) keypoint, pki determi-5

nation, (iii) local surface region (i.e., LSP), Pi selection, (iv)6

Augmented Point Pair Feature (APPF) extraction per LSP, and7

(v) final descriptor computation. The algorithms for stages (iv)8

and (v) are described in this section, and the reader is referred9

to the literature in [31] for more details on the other stages.10

11

Feature Extraction. The first step of APPFD is to compute key-
points, pki , i = 1, 2, · · · , and locally extract four-dimensional
Point Pair Feature (PPF), f1 = (α, β, γ, δ) as in [32] from
r-nearest neighbourhood, {Pi, i = 1 : K} of each keypoint
{pki , i = 1 : K}, where K is the number of keypoints for a
given 3D shape. For every pair of points, pi, p j and their es-
timated normals, ni, n j i.e., oriented points, [(pi, ni), (p j, n j)]
(i , j), in Pi where pi is the origin w.r.t. the constraint in
Equation (3) holding True, a transformation-independent Dar-
boux frame U,V,W is defined as: U = ni, V = U× ((p j− pi)/δ),
W = U × V .

|ni · (p j − pi)| ≤ |n j · (p j − pi)| (3)

Alternatively, p j becomes the origin (i.e., point with the larger
angle between its associated normal and the line connecting the
two points) if the constraint in (3) is False, and the variables
in (3) are reversed. f1 is then derived for the source point as
follows:

α = arctan(W · n j,U · n j), α ∈
[
−
π

2
,
π

2

]
(4)

β = V · n j, β ∈ [−1, 1] (5)

γ = U ·
p j − pi

‖p j − pi‖
, γ ∈ [−1, 1] (6)

δ = ‖p j − pi‖ (7)

Secondly, f2(pi, p j) = (φ, θ) is extracted for every possible12

combination of points pair, pi, p j in Pi, because f1 is not robust13

enough to capture the entire geometric information for a given14

LSP. In addition, the PPF approach opens up possibilities for 15

additional feature space. Therefore, as illustrated in Figure 3, 16

φ is the angle of the projection of the vector
−→
S onto the unit 17

vector
−→
V2, while θ is geometrically the angle of the projection 18

of the vector,
−→
S onto the unit vector

−→
V1, where

−→
V1 = pi − pc, 19

−→
V2 = pi − l, and

−→
S = pi − p j, with pc = 1

ni

∑ni
i=1 pki (i.e., LSP 20

centroid), and l = (p j − pc), the vector location of pki w.r.t. 21

its LSP. Note that pi, p j, pc, and l are all points in R3 space, 22

although l is a vector. 23

24

Basically, α, β, γ are the angular variations between (ni, n j), 25

while δ is the spatial distance between pi and p j. In Euclidean 26

geometry, each of the projections φ and θ is considered angle 27

between two vectors. For example ∠1〈
−→
S ,
−→
V1〉 and ∠2〈

−→
S ,
−→
V2〉 28

are equivalent to θ and φ respectively. These angles are 29

derived by taking the scalar products of (
−→
S ·
−→
V1) for ∠1, and 30

(
−→
S ·
−→
V2) for ∠2 about a point pi in a given LSP. Mathematically, 31

scalar products defined in this manner are homogeneous (i.e., 32

invariant) under scaling [33] and rotation [34]. For this reason, 33

the two-dimensional local geometric features, φ and θ, are 34

considered rotation and scale invariant for 3D shapes under 35

rigid and non-rigid affine transformations. 36

37

Local APPF Descriptor. Lastly, for every possible combina- 38

tion, q of oriented point pair, pi, p j = [(pi, ni), (p j, n j)] in an 39

LSP, (Pi,Ni), q(q − 1)/2 six-dimensional APPF: f3 = ( f2 + f1) 40

are locally obtained thus: f3(pi, p j) = ( f2(pi, p j), f1(pi, p j)) = 41

(φ, θ, α, β, γ, δ), then vertically stacked together and discretized 42

into a multi-dimensional histogram with bins = 7 in each 43

feature-dimension, flattened and normalized to give 76 = 44

117649-dimensional single local descriptor (APPFD) per 3D 45

shape. 46

In computing APPFD for this task, points and their normals, 47

(P,N), where |P| = 3500 and 4200, were sampled from each 48

3D shape and K keypoints were computed, {pki , i = 1 : K}), 49

around which LSPs, {Pi, i = 1 : K}) and their corresponding 50

normals, {Ni, i = 1 : K}) were extracted, within a specified 51

radius, r = 0.40 − 0.50 for each pki . 52

Fig. 3. Local Surface Patch (LSP), Pi with pairwise points (pi, p j) as part
of a surflet-pair relation for (pi, ni) and (p j, n j), with pi being the origin.
θ and φ are the angles of vectors projection about the origin, pi. θ is the
projection angle from vector 〈pi − p j〉 to vector 〈pi − pc〉 while φ is the
projection angle from vector 〈pi − p j〉 to vector 〈pi − l〉. The LSP centre
is given by pc, keypoint is given as pki where i = 2. Finally, l is the vector
position of pki − pc.
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Histogram of Global Distances (HoGD). Considering that a1

shape is represented by a discrete set of points, P on its sur-2

face which forms the external and internal contour of the shape,3

a set of normalized vectors δi = ‖pc − pi‖ was denoted between4

the centroid pc of a given 3D shape to all other points on its5

surface, where pi ∈ P. Such normalized vectors δi are regarded6

as global features whose distribution (histogram) is capable of7

expressing the configuration of the entire shape relative to its8

centroid, and is a rich description of the global structure of the9

shape. These global features were discretized into a histogram10

with
√
|P| ≈ 65 bins, normalized to give HoGD, which is very11

fast and straightforward to compute - with |P| = 3500 and 4200,12

as in APPFD. Finally, HoGD is combined with APPFD to give13

HAPPS-1, with 117649 + 65 = 117714-dimensional final fea-14

ture vector, FV. See Figure 2 for an overview of the HAPPS15

algorithm.16

Multi-view 2D Projection (M2DP). The M2DP is a global de-17

scriptor for 3D point cloud applied for loop closure detection18

in [30]. It involves the projection of 3D cloud to multiple 2D19

planes from which density signature of points in each plane is20

computed and combined to produce 196-dimensional FV. This21

descriptor was adopted for HAPPS-2 due to its success and22

computational efficiency, and refer the reader to the literature23

in [30] for more details on M2DP. Again, using |P| = 350024

and 4200 as in previous cases, HAPPS-2 is a 117649 + 196 =25

117845-dimensional FV.See Figure 2 for an overview of the26

HAPPS algorithm.27

Shape Similarity Measurement. Overall, the L2 or cosine dis-28

tance metric between FVs are expected to give good approx-29

imations of the similarity between shapes in the SHREC202030

Protein dataset. The cosine metric was adpted in Equation (8),31

due to a slightly more improvement over the L2 metric.32

cos(FV1,FV2) =
FV1 · FV2

‖FV1‖‖FV2‖
=

∑n
i=1 FV1iFV2i√∑n

i=1 (FV1i)2
√∑n

i=1 (FV2i)2

(8)

Dissimilarity matrices computation & runtimes. Two parame-33

ters of APPFD, r and vs (i.e., voxel-size, a parameter that deter-34

mines how big or small an occupied voxel grid can be, during35

pointcloud down-sampling to yield keypoints [35]), influence36

the overall performances of the HAPPS retrieval algorithms. r37

is directly proportional to LSP size while vs is inversely propor-38

tional to the number of sub-sampled points (keypoints), which39

implies that increasing the values of r and vs increases the size40

of LSP and reduces the number of keypoints, and vice versa.41

Computational time and memory are affected by them, hence42

the configurations summarized in Table 5 were carefully se-43

lected for experimental run1, run2, and run3.44

The HAPPS algorithms were implemented in Python 3.6.045

and all experiments were carried out under Windows 7 desktop46

PC with Intel Core i7-4790 CPU @ 3.60GHz, 32GB RAM. On47

average, it took 23 seconds and 45 seconds to compute HAPPS-48

1 and HAPPS-2, respectively, about 1 second to extract (P,N),49

and roughly 0.3 seconds each, to compute HoGD and M2DP50

per 3D shape.51

Table 5. HAPPS settings for experimental runs 1, 2 and 3.

Parameter Settings
Expts. Algorithms P r vs binsapp f d binshogd

run-1 HAPPS-1 4200 0.40 0.20 7 65
run-2 HAPPS-1 3500 0.50 0.20 7 65
run-3 HAPPS-2 3500 0.50 0.20 7 -

52

5. Results & discussion 53

In this section, we assess quantitatively the performance of 54

each method described in Section 4. We analyzed the perfor- 55

mance at the protein (Fig. 4 and Table 6) and the species (Fig. 5 56

and Table 7) levels as described in Section 3. 57

Fig. 4. Precision-Recall curves at the protein level.

Protein level. At the protein level, the 588 shapes were gath- 58

ered into 7 classes of multi-domain orthologous proteins; 59

among each class, all members share at least one common do- 60

main while the other domains are different. 61
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Table 6. Evaluation metrics at the protein level. NN = Nearest Neighbor, T1 = First-tier, T2 = Second-tier, MAP = Mean Average Precision. For each
metric, the highest value is in bold.

Method NN T1 T2 MAP

CODSEQ1 0.697 0.350 0.266 0.358
CODSEQ2 0.666 0.345 0.264 0.356

3DZD 0.978 0.753 0.428 0.797
3DZM 0.975 0.719 0.422 0.766

3DZD/3DZM average 0.980 0.789 0.436 0.823

WKS/SGWS 0.985 0.818 0.438 0.840

HAPT1 0.898 0.617 0.407 0.658
HAPT2 0.875 0.602 0.402 0.646
HAPT3 0.892 0.620 0.406 0.659

GraphCNN1 0.773 0.278 0.218 0.301
GraphCNN2 0.734 0.295 0.235 0.317
GraphCNN3 0.770 0.310 0.243 0.339

HAPPS-1 0.982 0.738 0.416 0.774
HAPPS-2 0.983 0.746 0.420 0.779
HAPPS-3 0.983 0.746 0.420 0.779

This feature allows the methods for having nearest-neighbor1

(NN) over the whole dataset ranging from 66.6 up to 98.5%,2

meaning that for a given query, the shape comparison algo-3

rithms were able to retrieve a query of the same class in at4

least two thirds of the cases. The performances vary largely5

between methods, as three methods (3DZM/D, WKS/SGWS6

and HAPPS1-3) achieve successful nearest-neighbor retrieval7

in more than 97.5% of the cases. For all the methods, the8

performances decrease as we consider further results, but the9

performance drops are different for each method, as illustrated10

by the differences in the precision-recall (PR) curves profiles11

(Fig. 4) and the First-tier (T1) and Second-tier (T2) values (Ta-12

ble 6). This results in a wide range of MAP values (from 0.30113

to 0.840).14

Species level. At the species level, the dataset contains 2615

classes. Within each protein class, the species classes were16

evolutionary-related proteins. For instance, the protein class “T-17

cell antigen receptor” has two species child classes, the human18

and the murine orthologs, which display 71.5% of amino-acid19

sequence identity and a strong structural similarity.20

Therefore, and similarly to the last two SHREC tracks on21

protein shape retrieval [10, 11], the performances of the shape22

comparison methods are significantly lowered at the species23

level compared to the protein level. The NN values range from24

43.8 to 84.4%, while no method displays a T1 value greater25

than 0.46. The PR curve profiles are characterized by steepest26

slopes indicating lower precision values at the same recall27

values when compared to the protein level.28

29

Machine learning approaches have recently been applied30

to protein surface patches [12]. In the present track, three31

of the six methods make use of learning approaches in their32

work-flows. Their performances are comparable to the per-33

formances of the other methods, showing no improvement in34

the retrieval results. Interestingly, the two learning-based meth- 35

ods trained on SHREC2018 and SHREC2019 tracks on pro- 36

tein shape retrieval (CODSEQ and GraphCNN, respectively) 37

were outperformed by the learning-based method trained on 38

the whole SCOPe dataset (3DZ). This latter training dataset en- 39

compasses multi-domains protein shapes while datasets from 40

the last two SHREC tracks on protein shape retrieval only en- 41

compass one-domain protein shapes. Particularly, the COD- 42

SEQ method showed lower performances on the SHREC2020 43

multi-domain protein dataset compared to their training dataset 44

(see section 4.1) for which the CODSEQ approach shows rel- 45

atively high performance. This may originate from the speci- 46

ficites of these two sets (one-domain versus multi-domain pro- 47

teins shapes); besides, the CODSEQ was only trained at the 48

protein level. These remarks also stand for the GraphCNN 49

method, which used the dataset from the SHREC2019 track 50

on protein shape retrieval, another one-domain protein shapes 51

dataset, to train their network. 52

Performance / Computation cost trade-off. The Protein Data 53

Bank (PDB) is the most populated database for the protein 54

structures. As of May 2020, more than 160,000 structures have 55

been deposited and more than 11,000 new structures are de- 56

posited every year. Furthermore, the size of the proteins de- 57

posited is growing as the performance of experimental protein 58

structure resolution methods are improving, and the number of 59

multi-domain proteins follows this trend. The ability to screen 60

such a large database in a reasonable time and with acceptable 61

performances is therefore a challenge. 62

The two main steps of the shape comparison are the computa- 63

tion of a descriptor for each object, and the comparison between 64

two descriptors. Depending on the algorithm, the descriptor 65

computation times are ranging from 8 (3DZ) to 112 (HAPT1) 66

seconds for descriptors computed on a CPU, and 45 millisec- 67

onds for the descriptors computed on a GPU (GraphCNN). The 68
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Table 7. Evaluation metrics at the species level. NN = Nearest Neighbor, T1 = First-tier, T2 = Second-tier, MAP = Mean Average Precision. For each
metric, the highest value is in bold.

Method NN T1 T2 MAP

CODSEQ1 0.438 0.173 0.125 0.180
CODSEQ2 0.447 0.172 0.124 0.179

3DZD 0.783 0.391 0.262 0.435
3DZM 0.722 0.369 0.256 0.402

3DZD/3DZM average 0.825 0.419 0.277 0.470

WKS/SGWS 0.844 0.460 0.298 0.508

HAPT1 0.595 0.286 0.209 0.313
HAPT2 0.572 0.264 0.200 0.289
HAPT3 0.608 0.286 0.209 0.313

GraphCNN1 0.513 0.177 0.117 0.178
GraphCNN2 0.533 0.175 0.120 0.186
GraphCNN3 0.499 0.181 0.122 0.186

HAPPS-1 0.757 0.407 0.272 0.432
HAPPS-2 0.772 0.400 0.269 0.430
HAPPS-3 0.768 0.400 0.269 0.430

Table 8. For each method, running times of descriptor computation for one protein, descriptors comparison and, when applicable, training times. Descrip-
tors computation and comparison times are expressed in seconds, training time units are specified. The type of hardware (CPU = Central Processing Unit,
GPU = Graphics Processing Unit) used is indicated in parenthesis. N/A = Not Applicable.

Method Descriptor calculation Descriptor comparison Training Time

CODSEQ 13.21 (CPU) 0.007 (CPU) 2 hours (GPU)

3DZ 8.0 (CPU) 0.17-0.5 (GPU) 1 week

WKS/SGWS 37 (CPU) negligible (CPU) N/A

HAPT 17-112 (CPU) negligible (CPU) N/A

GraphCNN 0.045 (GPU) negligible (CPU) 1 hour (GPU)

HAPPS 23-45 (CPU) 1.6 (CPU) N/A

comparison between two descriptors are in the order of mil-1

lisecond or below, except for the 3DZD and 3DZM descriptor2

comparisons which are in the range of 0.22-0.5 seconds on a3

GPU. Regarding the learning-based methods, the computation4

times are ranging from 20 minutes to 1 week. Carefully assess-5

ing the performance / computational cost ratio is therefore re-6

quired if one aims to screen a large database as the computation7

cost may prove prohibitive for large-scale screening projects.8

6. Conclusion9

In the present work, we have presented a dataset of shapes10

from multi-domain proteins. Six groups, among which three11

used machine learning approaches in their respective work-12

flows, submitted 15 sets of results. The performances were as-13

sessed at the protein and species levels of the SCOPe database.14

Shape retrieval methods displayed high-quality results at the15

protein level. We observed a significant decrease in the per-16

formances of all the methods at the species level. These re-17

sults indicate that comparing multi-domains proteins based on18

their shapes only remains challenging, especially for closely re- 19

lated proteins. It could be of interest to compare shape-retrieval 20

methods to the reference methods used in the structural biology 21

community. 22

Protein structures in the PDB are highly heterogeneous; 23

missing (i.e., not solved by the experiment) atoms or residues 24

at the surface of a protein is a very common phenomenon in 25

PDB structures and can be considered as a noisy signal for the 26

protein shape comparison. Their impact on the performances in 27

retieval should be carefully evaluated. 28

It is common in drug design processes to compare proteins 29

in order to find out a protein-specific feature against which 30

to design a new, specific drug and limit drug adverse effects. 31

In the upcoming years, we might propose similar tracks by 32

adding other surficial properties such as the electrostatic po- 33

tential to help determine whether combined methods (shape + 34

surficial properties) improve the predictive power of the shape- 35

only methods. It may also stimulate the development of new 36

dedicated, protein-dedicated methods. 37
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Fig. 5. Precision-Recall curves at the species level.
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