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The SHape REtrieval Challenges (SHREC) are timerestricted challenges, which aim to evaluate the effectiveness 18 of 3D-shape retrieval algorithms. Typically, a challenge is opened by proposing a dataset of related shapes to participants while retaining the class membership. In the SHape REtrieval Challenge 2020 (SHREC2020) track on multi-domain protein shapes, the participants had 7 weeks from the dataset publication to send their results with a description of the methods used to generate the results (see Section 4). This SHREC2020 track on multi-domain protein shapes evaluates the current ability of shape comparison methods proposed by 6 different groups to tackle the protein surface comparison problem. The participants were asked to send their results in the form of matrices containing all-to-all dissimilarity scores. The results were analyzed and the overall retrieval performances are presented here.

The dataset includes 588 proteins consisting of two domains (the functional units of the proteins); only the corresponding triangulated meshes of their solvent-excluded surfaces (SES) [2] were provided as input to the participants. We then evaluated the retrieval performance of each method to retrieve the evolutionary relationships between orthologous proteins (pro-1 teins that have the same function in different organisms), and 2 to retrieve the different conformations of an individual protein.

3 Here, we present the results of all the participants and meth-4 ods, and briefly discuss the trade-off between performance in 5 retrieval and computational cost of each method. Proteins are linear polymers (the so-called protein chains) 8 made of amino-acid residues (up to several hundreds), which 9 fold into a specific, well-defined 3D structure. Furthermore, 10 many proteins need to form a complex of several chains to be-11 come functional. For instance, the human heamoglobin requires 12 two α-globin and two β-globin chains to be fully functional. [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] Domains define the functional units of the proteins, and are usu- was present in the same PDB structure, we only kept one of 34 those copies to limit redundancies. Finally, all proteins were re- 1). The solvent-excluded surfaces [2] were computed for all the entries using EDTSurf [7] (non-protein atoms were discarded) after protonation of the struture using propka [8,[START_REF] Olsson | Propka3: Consistent treatment of internal and surface residues in empirical pka predictions[END_REF], and only the corresponding .off files were provided to the participants on the track website (http://shrec2020.drugdesign.fr). At the end of the track, the ground truths were published online as well. As the participants were not provided some important details about the dataset creation (two-domains proteins only, protonation and SES calculation parameters, . . . ), the reverse engineering of the memberships from the surfaces (.off files) would require to compare all the PDB entries of the SCOPe database to the dataset. While feasible in principle, this approach in practice would be difficult to carry out.

Compared to other known protein shapes datasets [START_REF] Langenfeld | Shrec 2018 protein shape retrieval[END_REF][START_REF] Langenfeld | Protein Shape Retrieval Contest[END_REF], this dataset is exclusively composed by two-domains proteins while only one-domain proteins were included in [START_REF] Langenfeld | Shrec 2018 protein shape retrieval[END_REF][START_REF] Langenfeld | Protein Shape Retrieval Contest[END_REF]. As multi-domain proteins are commonplace at the cellular level, the impact of additional domains on the protein shape retrieval performances need to be evaluated. Recently, another dataset of protein surface patches was published [START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF], encompassing both geometric and chemical features of proteins surfaces. That dataset gathers partially overlapping patches rather than complete proteins surfaces, and is currently limited to structures that display specific functionalities, namely the ability to bind selected small molecules or to form a protein-protein complex.

Evaluation

Analyses were performed with scikit-learn [START_REF] Pedregosa | Scikit-learn: Machine learning in Python[END_REF] and numpy [START_REF] Oliphant | NumPy: A guide to NumPy[END_REF], and Figures 4 and 5 were produced using matplotlib [START_REF] Hunter | Matplotlib: A 2d graphics environment[END_REF].

Nearest Neighbor, First-tier and Second-tier. These retrieval metrics measure the ratio of models that belong to the same class as the query. For Nearest Neighbor (NN), the first match only is considered (the identity is not considered), while the |C|-1 and 2 * (|C|-1) first matches, where |C| denotes the size of the query's class, are considered for First-tier (T1) and Secondtier (T2); the maximum value for the Second-tier is therefore 0.5.

Precision-Recall plot. Precision P refers to the ratio of results that are relevant and is computed as the number of models from class C retrieved within all objects attributed to class C, while Recall R represents the number of results correctly classified and is computed as the number of models from class C retrieved compared to the size |C| of the class C. Mean Average Precision. Given a query, its average precision is the average of all precision values computed when each relevant object is found. Given several queries, the mean average precision (MAP) is the mean of average precision of each query. It then gives in a single value the overall retrieval performance of an algorithm. ease the reading, we have assigned each group a short name for 9 referencing in the following text. 

Descriptors calculation.

Extraction of protein 2D views. In this stage, 3D meshes representing protein surfaces are simplified using the Quadric Error Metric Decimation [START_REF] Garland | Surface simplification using quadric error metrics[END_REF]. By this way, the number of facets of each 3D mesh has been reduced to 20,000 facets (about 10% of the original surface) while maintaining the surface details. In the considered coordinate system related to the processing, each 3D mesh has its own position and size. These singular parameters are mainly due to the devices and conditions of acquisition that can vary from one protein to another. For normalizing the set of simplified 3D meshes of protein, each of them is recentered and rescaled with a sphere having a center of 0 and a radius of 1 as explained in [START_REF] Benhabiles | A transfer learning exploited for indexing protein structures from 3D point clouds[END_REF]. This allows to obtain protein surfaces invariant to geometric affine transformations considering scale and translation. A sequence of 2D views (312 × 312 RGB images) is then extracted using a set of virtual cameras uniformly positioned around the bounding sphere of each protein. 9 views are enough for covering the whole surface of the protein.

Protein characterization based on a single 2D view (2D descriptor). The goal of this stage is to extract a feature descriptor from each 2D view using a transfer learning strategy. More precisely, an Inception ResNet architecture [START_REF] Szegedy | Inception-v4, inception-resnet and the impact of residual connections on learning[END_REF] pretrained on ImageNet dataset has been fine-tuned and trained on SHREC2018 dataset [START_REF] Langenfeld | Shrec 2018 protein shape retrieval[END_REF] in order to learn 79 protein classes. The trained model is used to return a 512-dimensional feature vector for each 2D view by getting the output of a penultimate layer (the one before the classes output).

Protein characterization based on a sequence of 2D views (Compact 3D descriptor). A bidirectional LSTM-RNN architecture [START_REF] Hochreiter | Long short-term memory[END_REF] was trained on the SHREC2018 dataset to learn, as in the previous stage, 79 classes. The architecture has been fed with sequences of feature vectors obtained in the previous stage; each sequence is composed of 9 feature vectors associated to 9 views of a given protein. One of the strengths of RNN-based models is their ability to analyze data sequences (sequences of views in the current case) while keeping the most significant views to characterize protein classes. Indeed, a classification accuracy rate of 96% on the test data derived from SHREC2018 dataset [START_REF] Langenfeld | Shrec 2018 protein shape retrieval[END_REF] was reached using this trained bidi- the four comparison metrics applied to two representations of 54 the two proteins, the original 3DZDs (or 3DZMs) and encodings, which concatenate the output of the input layer and the three intermediate layers of the encoder. The feature comparator outputs a score between 0 and 1 using a sigmoid activation function, which is the probability that the two proteins are in the same protein level classification in the SCOPe database [3]. The feature comparator network has an input layer of a 1452dimensional feature vector, two intermediate layer of 100 and 50 neurons respectively, and one output neuron.

The network was trained on a dataset of 247,521 protein structures from the SCOPe 2.07 database. Proteins in Class I (Artifacts) were not included. To augment data for training the network for 3DZM, which is not rotation invariant, each protein was rotated with different random orientations. For each protein,EDTSurf [7] was used to generate the solvent excluded surface, which was then fed into the EM-Surfer pipeline [START_REF] Esquivel-Rodríguez | Navigating 3D electron microscopy maps with EM-SURFER[END_REF] to compute 3DZM and 3DZD. The network was trained to correctly distinguish proteins in the same protein level category in SCOPe from the rest.

Dissimilarity distance calculation & runtimes. The first dissimilarity matrix submitted was computed with the network trained with 3DZDs. The second matrix was computed with the network trained on a vector of a size 1771, which was the absolute values of complex numbers in 3DZM. The distances in the third matrix were the average between the Euclidean distance of 3DZDs, and the distances in the first and the second matrices. Generating 3DZD and 3DZM takes ∼8.00 seconds on average for each protein on an Intel(R) Xeon(R) CPU E5-2630 0 @ 2.30GHz. The 3DZD model took ∼0.22 seconds on average to predict the dissimilarity between two proteins using TitanX GPU, while the 3DZM model took ∼0.5 seconds on the same GPU. The Euclidean model took ∼0.17 seconds on average per prediction and the averaging of the three matrices was almost instant and was negligible.

Wave Kernel Signature and SGWS based Shape Descriptor

for Protein Retrieval (WKS/SGWS) -Author J, Author K, Author L

To reach robust and improved performance, a hybrid spectral feature descriptor is used which combines the benefits of features of wave kernel signature (WKS) [START_REF] Aubry | The wave kernel signature: A quantum mechanical approach to shape analysis[END_REF] and spectral graph wavelet transform (SGWS) [START_REF] Li | A multiresolution descriptor for deformable 3D shape retrieval[END_REF]. WKS is an isometric invariant descriptor that has been found to be effective for deformable 3D shape retrieval such as those of the dataset; in contrast to HKS, it focusses on the high-frequency information. SGWS is a generalisation of HKS and WKS, and provides a multiresolution local descriptor that is compact, easy to compute and combines the advantages of both band-pass and low-pass filters.

Data pre-processing. Meshes were simplified to reduce the number of faces to approximately 6000 using Qslim [START_REF] Garland | Surface simplification using quadric error metrics[END_REF] which provides an effective compromise between the fastest algorithms and the highest-quality algorithms to reduce computing time. Then the mesh is fixed using the open source software meshfix [START_REF] Attene | A lightweight approach to repairing digitized polygon meshes[END_REF] to convert a raw digitized polygon mesh to a clean mesh where all the occurrences of a specific set of "defects" are corrected. Holes, self-intersections, degenerate and nonmanifold elements are all replaced with valid configurations.

WKS descriptor calculation. The WKS feature vectors are computed from the eigenvalues and the eigenvectors of each protein mesh. Then the vocabulary is calculated using an improved vector-based k-means over 10% feature vectors of all proteins [START_REF] Bronstein | Shape google[END_REF]. Finally, the WKS descriptor is normalized for the bag-of-features (BoF) for each protein using hard vector quantization. The lengths of the WKS feature vector and the descriptor are 50 and 1000 respectively. 

Histogram of Area Projection Transform (HAPT) -Author M

The method characterizes protein shapes with the Histograms of Area Projection Transform (HAPT) [START_REF] Giachetti | Radial symmetry detection and shape characterization with the multiscale area projection transform[END_REF]. This descriptor, well suited for non-rigid shape retrieval, is based on a spatial map (Multiscale Area Projection Transform) [START_REF] Giachetti | Radial symmetry detection and shape characterization with the multiscale area projection transform[END_REF] that encodes the likelihood of the 3D points inside the shape of being centres of spherical symmetry. This map is obtained by computing, for each radius of interest, the value:

APT ( x, S , R, σ) = Area(T -1 R (k σ ( x) ⊂ T R (S , n))) (1) 
where S is the surface of the object (see Figure 1), T R (S , n), is the parallel surface of S shifted along the normal vector n (only in the inner direction) and k σ ( x); is a sphere of radius σ centred in the generic 3D point x where the map is computed. Values at different radii are normalized in order to have a scale-invariant behaviour, creating the Multiscale APT (MAPT):

MAPT (x, y, z, R, S ) = α(R) APT (x, y, z, S , R, σ(R)) (2)
where Descriptors calculation. A discrete MAPT is easily computed, 35 for selected values of R, on a voxelized grid including the sur-36 face mesh, with the procedure described in [START_REF] Giachetti | Radial symmetry detection and shape characterization with the multiscale area projection transform[END_REF]. The map is 37 computed in a grid of voxels with side s on a set of corre-38 sponding sampled radius values. For the proposed task, discrete 39 MAPT maps were quantized in 12 bins and histograms com-40 puted at the selected scales (radii) were concatenated creating a 41 unique descriptor. Voxel side and sampled radii were fixed for 42 each run and chosen to represent the approximate radii of the 43 spherical symmetries visible in the models.

α(R) = 1/4πR 2 and σ(R) = c • R (0 < c < 1).

44

Three different options were tested for the algorithm's pa-45 rameters. In HAPT1, s = 0.3, the MAPT histograms were 46 computed for 12 increasing radii starting from R 1 = 0.3 iter-47 atively adding a fixed step of 0.3 for the remaining values, and 48 c was set to 0.5. In HAPT2, s = 0.3, the MAPT histograms 49 were computed for 8 increasing radii starting from R 1 = 0.3 50 iteratively adding a fixed step of 0.3 for the remaining values, 51 and c was set to 0.5. In HAPT3, s = 0.4, 8 increasing radii 52 (from R 1 = 0.8 and a fixed step of 0.4 for the remaining values) 53 were used to compute the MAPT histograms, and c was set to 54 0.5.

55

Dissimilarity matrices computation & runtimes. The proce-56 dure for model comparison consists in concatenating the MAPT 57 histograms computed at the different scales and measuring dis-58 tances between shapes by evaluating the Jeffrey divergence [START_REF] Puzicha | Empirical evaluation of dissimilarity measures for color and texture[END_REF] 59 of the corresponding concatenated vectors. The estimation of 60 the descriptors took 112 seconds on average for the run HAPT1, 61 47 seconds on average for the run HAPT2, and 17 seconds on 62 average for the run HAPT3 on a laptop with an Intel CoreTM 63 i7-9750H CPU running Ubuntu Linux 18.04. The descriptor 64 comparison time was negligible. or Multi-view 2D Projection (M2DP) [START_REF] He | M2DP: A novel 3D point cloud descriptor and its application in loop closure detection[END_REF] descriptors, each of which are computed using hand-crafted features extracted from 3D surface. Details of APPFD, HoGD, and M2DP descriptors are provided in the following sections.

HAPPS is an improvement over the APPFD, aimed at achieving better retrieval performances. Although the latter is capable of robustly representing 3D shapes, a closer inspection of protein shapes for this retrieval challenge reveals identical local surface characteristics and somewhat uniqueness in global appearances between the Protein shapes, hence the need to extend the capability of the APPFD and effectively capture both local and global characteristics of the Protein shapes. Therefore, two global 3D descriptors were separately combined: The Histogram of Global Distances (HoGD) and Multi-view 2D Projection (M2DP) with APPFD to derive two variants of hybrid descriptor: the Hybrid Augmented Point Pair Signatures (HAPPS), referred to as HAPPS-1 and HAPPS-2, i.e., hybrid descriptors formed by combining local APPFD with global HoGD and M2DP, respectively. Alongside the APPFD, the HAPPS algorithm was first introduced in [START_REF] Otu | Nonrigid 3D shape retrieval with happs: A novel hybrid augmented point pair signature[END_REF] and recorded very high performance scores across several 3D benchmark datasets. LSP. In addition, the PPF approach opens up possibilities for additional feature space. Therefore, as illustrated in Figure 3, φ is the angle of the projection of the vector -→ S onto the unit vector -→ V 2 , while θ is geometrically the angle of the projection of the vector, -→ S onto the unit vector

-→ V 1 , where -→ V 1 = p i -p c , -→ V 2 = p i -l, and - → S = p i -p j , with p c = 1 n i n i
i=1 p k i (i.e., LSP centroid), and l = (p jp c ), the vector location of p k i w.r.t. its LSP. Note that p i , p j , p c , and l are all points in R 3 space, although l is a vector.

Basically, α, β, γ are the angular variations between (n i , n j ), while δ is the spatial distance between p i and p j . In Euclidean geometry, each of the projections φ and θ is considered angle between two vectors. For example

∠ 1 - → S , -→ V 1 and ∠ 2 - → S , -→ V 2
are equivalent to θ and φ respectively. These angles are derived by taking the scalar products of (

- → S • -→ V 1 ) for ∠ 1 , and ( - → S • -→ V 2 )
for ∠ 2 about a point p i in a given LSP. Mathematically, scalar products defined in this manner are homogeneous (i.e., invariant) under scaling [START_REF]Dot Product[END_REF] and rotation [START_REF] Mathworld | [END_REF]. For this reason, the two-dimensional local geometric features, φ and θ, are considered rotation and scale invariant for 3D shapes under rigid and non-rigid affine transformations.

Local APPF Descriptor. Lastly, for every possible combination, q of oriented point pair, p i , p j = [(p i , n i ), (p j , n j )] in an LSP, (P i , N i ), q(q -1)/2 six-dimensional APPF: f 3 = ( f 2 + f 1 ) are locally obtained thus: f 3 (p i , p j ) = ( f 2 (p i , p j ), f 1 (p i , p j )) = (φ, θ, α, β, γ, δ), then vertically stacked together and discretized into a multi-dimensional histogram with bins = 7 in each feature-dimension, flattened and normalized to give 7 6 = 117649-dimensional single local descriptor (APPFD) per 3D shape.

In computing APPFD for this task, points and their normals, (P, N), where |P| = 3500 and 4200, were sampled from each 3D shape and K keypoints were computed, {p k i , i = 1 : K}), around which LSPs, {P i , i = 1 : K}) and their corresponding normals, {N i , i = 1 : K}) were extracted, within a specified radius, r = 0.40 -0.50 for each p k i . Fig. 3. Local Surface Patch (LSP), P i with pairwise points (p i , p j ) as part of a surflet-pair relation for (p i , n i ) and (p j , n j ), with p i being the origin. θ and φ are the angles of vectors projection about the origin, p i . θ is the projection angle from vector p ip j to vector p ip c while φ is the projection angle from vector p ip j to vector p il . The LSP centre is given by p c , keypoint is given as p k i where i = 2. Finally, l is the vector position of p k ip c .

Histogram of Global Distances (HoGD).

Considering that a shape is represented by a discrete set of points, P on its surface which forms the external and internal contour of the shape, a set of normalized vectors δ i = p cp i was denoted between the centroid p c of a given 3D shape to all other points on its surface, where p i ∈ P. Such normalized vectors δ i are regarded as global features whose distribution (histogram) is capable of expressing the configuration of the entire shape relative to its centroid, and is a rich description of the global structure of the Multi-view 2D Projection (M2DP). The M2DP is a global descriptor for 3D point cloud applied for loop closure detection in [START_REF] He | M2DP: A novel 3D point cloud descriptor and its application in loop closure detection[END_REF]. It involves the projection of 3D cloud to multiple 2D planes from which density signature of points in each plane is computed and combined to produce 196-dimensional FV. This descriptor was adopted for HAPPS-2 due to its success and computational efficiency, and refer the reader to the literature in [START_REF] He | M2DP: A novel 3D point cloud descriptor and its application in loop closure detection[END_REF] for more details on M2DP. Again, using |P| = 3500 and 4200 as in previous cases, HAPPS-2 is a 117649 + 196 = 117845-dimensional FV.See Figure 2 for an overview of the HAPPS algorithm.

Shape Similarity Measurement. Overall, the L 2 or cosine distance metric between FVs are expected to give good approximations of the similarity between shapes in the SHREC2020 Protein dataset. The cosine metric was adpted in Equation (8), due to a slightly more improvement over the L 2 metric.

cos(FV 1 , FV 2 ) = FV 1 • FV 2 FV 1 FV 2 = n i=1 FV 1i FV 2i n i=1 (FV 1i ) 2 n i=1 (FV 2i ) 2 (8) 
Dissimilarity matrices computation & runtimes. Two parameters of APPFD, r and vs (i.e., voxel-size, a parameter that determines how big or small an occupied voxel grid can be, during pointcloud down-sampling to yield keypoints [START_REF] Zhou | Open3D: A modern library for 3D data processing[END_REF]), influence the overall performances of the HAPPS retrieval algorithms. r is directly proportional to LSP size while vs is inversely proportional to the number of sub-sampled points (keypoints), which implies that increasing the values of r and vs increases the size of LSP and reduces the number of keypoints, and vice versa.

Computational time and memory are affected by them, hence the configurations summarized in Table 5 were carefully selected for experimental run1, run2, and run3.

The HAPPS algorithms were implemented in Python 3.6.0 and all experiments were carried out under Windows 7 desktop PC with Intel Core i7-4790 CPU @ 3.60GHz, 32GB RAM. On average, it took 23 seconds and 45 seconds to compute HAPPS-1 and HAPPS-2, respectively, about 1 second to extract (P, N), and roughly 0.3 seconds each, to compute HoGD and M2DP per 3D shape. In this section, we assess quantitatively the performance of 54 each method described in Section 4. We analyzed the perfor-55 mance at the protein (Fig. 4 and Table 6) and the species (Fig. 5 56 and Table 7) levels as described in Section 3. Protein level. At the protein level, the 588 shapes were gath-58 ered into 7 classes of multi-domain orthologous proteins; 59 among each class, all members share at least one common do-60 main while the other domains are different. meaning that for a given query, the shape comparison algo- Therefore, and similarly to the last two SHREC tracks on 21 protein shape retrieval [START_REF] Langenfeld | Shrec 2018 protein shape retrieval[END_REF][START_REF] Langenfeld | Protein Shape Retrieval Contest[END_REF], the performances of the shape the retrieval results. Interestingly, the two learning-based methods trained on SHREC2018 and SHREC2019 tracks on protein shape retrieval (CODSEQ and GraphCNN, respectively) were outperformed by the learning-based method trained on the whole SCOPe dataset (3DZ). This latter training dataset encompasses multi-domains protein shapes while datasets from the last two SHREC tracks on protein shape retrieval only encompass one-domain protein shapes. Particularly, the COD-SEQ method showed lower performances on the SHREC2020 multi-domain protein dataset compared to their training dataset (see section 4.1) for which the CODSEQ approach shows relatively high performance. This may originate from the specificites of these two sets (one-domain versus multi-domain proteins shapes); besides, the CODSEQ was only trained at the protein level. These remarks also stand for the GraphCNN method, which used the dataset from the SHREC2019 track on protein shape retrieval, another one-domain protein shapes dataset, to train their network.

Performance / Computation cost trade-off. The Protein Data Bank (PDB) is the most populated database for the protein structures. As of May 2020, more than 160,000 structures have been deposited and more than 11,000 new structures are deposited every year. Furthermore, the size of the proteins deposited is growing as the performance of experimental protein structure resolution methods are improving, and the number of multi-domain proteins follows this trend. The ability to screen such a large database in a reasonable time and with acceptable performances is therefore a challenge.

The two main steps of the shape comparison are the computation of a descriptor for each object, and the comparison between two descriptors. Depending on the algorithm, the descriptor computation times are ranging from 8 (3DZ) to 112 (HAPT1) seconds for descriptors computed on a CPU, and 45 milliseconds for the descriptors computed on a GPU (GraphCNN). The Protein structures in the PDB are highly heterogeneous; missing (i.e., not solved by the experiment) atoms or residues at the surface of a protein is a very common phenomenon in PDB structures and can be considered as a noisy signal for the protein shape comparison. Their impact on the performances in retieval should be carefully evaluated.

It is common in drug design processes to compare proteins in order to find out a protein-specific feature against which to design a new, specific drug and limit drug adverse effects. In the upcoming years, we might propose similar tracks by adding other surficial properties such as the electrostatic potential to help determine whether combined methods (shape + surficial properties) improve the predictive power of the shapeonly methods. It may also stimulate the development of new dedicated, protein-dedicated methods. 

1

  Proteins are complex macro-molecular molecules with var-2 ious shapes and sizes ranging from hundreds to millions of 3 atoms [1]. The 3D arrangement of protein atoms is directly 4 linked to specific functions that are mostly mediated through 5 the protein surface. Protein surfaces are of great interest in drug 6 discovery pipelines, adverse drug reaction or the characteriza-7 tion of cellular processes at the molecular level. However, chal-8 lenges in protein surfaces comparison may arise from a) the 9 dynamical, non-rigid nature of the proteins that allows protein 10 conformational changes, i.e., surficial modifications and there-11 fore specific functions, b) the intrinsic structure of multi-do-12 main proteins, i.e., the fusion of multiple, individual domains 13 into one protein throughout evolution, and c) the similarity be-14 tween distinct protein structures and surfaces inherited from 15 their evolutionary relationships.

16

 16 

14 ally 30 '

 1430 associated with a specific function and/or interaction; it is 15 thus commonplace for two proteins to share one domain while 16 their other respective domains differ. This characteristic led to 17 the development of databases classifying proteins according to 18 both their structure and the functions of their domains. The 19 SHREC2020 track on multi-domain protein shapes dataset is 20 devoted to the analysis of protein shapes generated from pro-21 tein chains that comprise two domains. 22 Dataset creation. The SCOPe database [3, 4, 5] organizes the 23 protein domains according to their structural (in the 2 top levels 24 of the SCOPe tree) and evolutionary (for the 4 bottom levels) 25 relationships. Protein domains in the SCOPe database originate 26 from Protein Data Bank (PDB) experimental structures [6], and 27 are characterized by their PDBId and chainId, allowing for fil-28 tering based on these parameters. From all entries implemented 29 in the SCOPe tree (excluding entries from the 'Artifacts' and Low resolution protein structures' classes), we kept only the 31 entries from X-ray crystallography PDB structures composed of 32 two domains. When multiple copies of the same protein chain33

1 2

 1 All metrics were macro-averaged at the protein and species 3 levels, as defined in the SCOPe database.
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  Six groups from five different countries registered for the 6 track and submitted 15 dissimilarity matrices in the requested 7 time (8 weeks) along with the description of their protocol. To
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 10 CODSEQ by Author A, Author B, Author C, Author D, tion 4.3),
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 16 HAPT by Author M (subsection 4.4),
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 17 GraphCNN by Author N, Author O, Author P (subsec-18 tion 4.5),
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 19 HAPPS by Author Q, Author R, Author S, Author T (sub-20 section 4.6).
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 21 .1. 3D Characterization of prOteins by Deep analysis of 2D 22 view SEQuence (CODSEQ) -Author A, Author B, Author 23 C, Author D, Author E

14 13 ing

 13 rectional LSTM-RNN model. This model was used to extract a 2 1024-dimensional feature vector for each protein of the present 3 contest.Dissimilarity distance calculation & runtimes. Dissimilarity5 matrices were generated by calculating the Euclidean distance 6 between each pair of proteins using their associated 1024-7 dimensional feature vectors. Two matrices have been gener-8 ated based on two training runs performed in the previous stage, 9 namely CODSEQ1 with 0.96 and 0.18 of accuracy and loss, re-10 spectively, and CODSEQ2 with 0.94 and 0.14 of accuracy and 11 loss, respectively. 12 This framework has been developed in Python 3.7.6 us-Open3D 0.8.0.0, OpenCV 4.2.0 and Keras 2.2.4-tf on a 14 TensorFlow-GPU 2.1.0 backend. The experiments have been 15 conducted on an Intel Core i7-6700HQ CPU@2.60 GHz with 16 32 GB of memory and NVIDIA GeForce GTX 1070 GPU with 17 24 GB of memory. The running times in seconds of each stage 18 performed on CPU are reported in Table 2 for one protein. Ta-19 ble 2, shows the training times of the used CNN-based models 20 trained on GPU.

21 4. 2 .

 212 Network trained with encoded 3DZD and 3DZM (3DZ) -22 Author F, Author G, Author H, Author I 23 Three dissimilarity matrices of target protein surfaces were 24 generated unsing three methods based on the 3D Zernike De-25 scriptor (3DZD) or the 3D Zernike Moment (3DZM). 3DZM 26 are the coefficients for representing a 3D shape function in 27 terms of 3D Zernike-Canterakis polynomials [20]. 3DZD 28 is the rotation-invariant shape descriptor derived from the 29 3DZM [21]. 30 Descriptors calculation. Using the 3DZD or 3DZM as the fea-31 ture of protein shape, a neural network was trained to output a 32 score that measures the (dis)similarity between a pair of pro-33 tein shapes. The framework is the same with the one in the 34 SHREC2019 protein shape retrieval contest (see Section 4.3 35 in [11]). The network has an encoder, a feed-forward fully-36 connected neural network with an input layer and three hid-37 den layers with a ReLU activation function. The network takes 38 3DZD or 3DZM of a protein shape as input. The three hidden 39 layers have 250, 200, and 150 neurons, respectively, which are 40 used for the encoding of an input 3DZD (or 3DZM). The en-41 coder is connected to the feature comparator, a fully-connected 42 network, which takes the 3DZD (or the 3DZM) of the two pro-43 teins, and the encodings from the three hidden layers, and four 44 metrics that compare two vectors, the Euclidean distance, the 45 cosine distance, the element-wise absolute difference, and the 46 element-wise product, and the two features of the two protein 47 shapes (the difference in the number of vertices and faces). In 48 total, the number of the input features of the feature comparator 49 is 2 * 121 (or 1771 for 3DZM) +2 * (250+200+150)+2 * 4+2 = 50 1452 features (4752 features for 3DZM). The first term is the 51 3DZDs of order 20 (n=20), which is a 121 element vector, 52 of the two protein shapes. The third term, 2 * 4 comes from 53

  SGWS descriptor calculation. The process of the SGWS descriptor is similar to that of the WKS descriptor. The SGWS feature vectors were computed first, and then the vocabulary and bag of feature were obtained. The lengths of the SGWS feature vector and the descriptor are 5 and 1000 respectively. Hybrid spectral descriptor (WKS + SGWS). The hybrid spectral descriptor combines the normalized BoF of WKS and SGWS to form a long vector which is 2000-dimensional. Dissimilarity matrices computation & runtimes. The procedure for model comparison consists of computing bags of features and measuring distances between shapes. For the similarity measure, the L1 distance X -Y 1 is used. The estimation of the descriptors takes 37 seconds on average, running on a laptop with an i5-5200U CPU, RAM 4GB, running Windows 10. The descriptor comparison time was negligible.

Fig. 1 .

 1 Fig. 1. APT measures the area of the part of the input surface that, projected along the normal at a selected distance, is included in a circular neigborhood of the point of interest (see subsection 4.4).

6Draft/

  Computers & Graphics (2020) 

33 whole

 33 point cloud. Finally, the output features of all the four 34 encoders are concatenated and imported to a sequence of three 35 fully connected (FC) layers. The proposed scheme was trained 36 on the dataset from last years competition (SHREC2019 [11]), 37 which comprises 5298 structures from 17 protein classes. The 38 network was trained on a classification task aiming to assign 39 each structure to each corresponding protein class. During the 40 feature extraction step, the FC layers were dropped and the con-41 catenated output of the four encoders were used as descriptors. 42 Therefore, for each previously unseen input, a feature vector of 43 832 values is extracted. 44 Dissimilarity matrices computation & runtimes. After the 45 completion of the feature extraction, the Euclidean distance 46 metric is used to measure the dissimilarity between two input 47 models. Small distance values indicate that the corresponding 48feature vectors represent members of the same class. Among the three GraphCNN submissions, various sets of radius ρ were experimented. Specifically, the first one (GraphCNN1) corresponds to (ρ 1 , ρ 2 , ρ 3 ) = (0.05, 0.1, 0.2), the second one (GraphCNN2) to (0.05, 0.15, 0.45) and the third (GraphCNN3) to (0.1, 0.2, 0.4). The calculation of descriptors took on average 45 milliseconds per mesh sample on a GeForce GTX1070 GPU, while the training time is about 1 hour on the same GPU. The average comparison time between two descriptors is negligible (0.001 milliseconds on an Intel Core i7-6700K CPU). 4.6. Hybrid Augmented Point Pair Signatures (HAPPS) -Author Q, Author R, Author S, Author T Descriptors can be categorised into two main groups: local and global. Combining two or more descriptors (e.g., locallocal, local-global, or global-global) yields a third category, the hybrid descriptor -aimed at improving the resultant performance of the combined descriptors. The Hybrid Augmented Point Pair Signature (HAPPS) is a 3D shape descriptor in the third category, computed from a combination of two separate descriptors: local Augmented Point Pair Feature Descriptor (APPFD), and global Histogram of Global Distances (HoGD)

  Fig. (2) presents an overview of the HAPPS algorithms. Augmented Point Pair Feature Descriptor (APPFD). The Augmented Point Pair Feature Descriptor (APPFD) is a 3D shape descriptor, which describes the local geometry around

Fig. 2 .

 2 Fig. 2. Overview of HAPPS algorithm.

  shape. These global features were discretized into a histogram with √ |P| ≈ 65 bins, normalized to give HoGD, which is very fast and straightforward to compute -with |P| = 3500 and 4200, as in APPFD. Finally, HoGD is combined with APPFD to give HAPPS-1, with 117649 + 65 = 117714-dimensional final feature vector, FV. See Figure 2 for an overview of the HAPPS algorithm.

57Fig. 4 .

 4 Fig. 4. Precision-Recall curves at the protein level.
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 11 rithms were able to retrieve a query of the same class in at 4 least two thirds of the cases. The performances vary largely 5 between methods, as three methods (3DZM/D, WKS/SGWS 6 and HAPPS1-3) achieve successful nearest-neighbor retrieval 7 in more than 97.5% of the cases. For all the methods, the 8 performances decrease as we consider further results, but the 9 performance drops are different for each method, as illustrated 10 by the differences in the precision-recall (PR) curves profiles Fig.4) and the First-tier (T1) and Second-tier (T2) values (Ta-12 ble 6). This results in a wide range of MAP values (from 0.301 13 to 0.840). 14 Species level. At the species level, the dataset contains 26 15 classes. Within each protein class, the species classes were 16 evolutionary-related proteins. For instance, the protein class "T-17 cell antigen receptor" has two species child classes, the human 18 and the murine orthologs, which display 71.5% of amino-acid sequence identity and a strong structural similarity.

20

 20 

28 29

 28 Machine learning approaches have recently been applied30 to protein surface patches[START_REF] Gainza | Deciphering interaction fingerprints from protein molecular surfaces using geometric deep learning[END_REF]. In the present track, three 31 of the six methods make use of learning approaches in their 32 work-flows. Their performances are comparable to the per-33 formances of the other methods, showing no improvement in 34

HAPPS 23 -

 23 45 (CPU) 1.6 (CPU) N/A comparison between two descriptors are in the order of mil-1 lisecond or below, except for the 3DZD and 3DZM descriptor 2 comparisons which are in the range of 0.22-0.5 seconds on a 3 GPU. Regarding the learning-based methods, the computation 4 times are ranging from 20 minutes to 1 week. Carefully assess-5 ing the performance / computational cost ratio is therefore re-6 quired if one aims to screen a large database as the computation 7 cost may prove prohibitive for large-scale screening projects.

9

 9 In the present work, we have presented a dataset of shapes 10 from multi-domain proteins. Six groups, among which three 11 used machine learning approaches in their respective work-12 flows, submitted 15 sets of results. The performances were as-13 sessed at the protein and species levels of the SCOPe database. 14 Shape retrieval methods displayed high-quality results at the 15 protein level. We observed a significant decrease in the per-16 formances of all the methods at the species level. These re-17 sults indicate that comparing multi-domains proteins based on 18 their shapes only remains challenging, especially for closely related proteins. It could be of interest to compare shape-retrieval methods to the reference methods used in the structural biology community.

Fig. 5 .

 5 Fig. 5. Precision-Recall curves at the species level.
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 114 Chandonia, JM, Fox, NK, Brenner, SE. Scope: Manual cura-12 tion and artifact removal in the structural classification of proteins ex-13 tended database. Journal of Molecular Biology 2017;429(3):348 -355.

14 doi: 10

 1410 .1016/j.jmb.2016.11.023; computation Resources for Molec-15 ular Biology.

16 [ 5 ]

 165 Fox, NK, Chandonia, JM, Brenner, SE. Scope: classification of 17 large macromolecular structures in the structural classification of protein-18 sextended database. Nucleic Acids Research 2018;47(D1):D475-D481. doi:10.1093/nar/gky1134. 20 [6] Berman, HM, Westbrook, J, Feng, Z, Gilliland, G, Bhat, TN, Weissig, 21 H, et al. The protein data bank. Nucleic Acids Research 2000;28(1):235-

Table 1 .

 1 Number of classes and number of shapes in the dataset, at the protein and the species levels.

	Level	Number of classes Shapes by class (min / max)
	Protein	7	19 / 168
	Species	26	12 / 63

35

quired to have at least one orthologous protein, and classes with 36 less than 10 members were discarded.

37

Ground truth generation. The ground truth was generated 38 using the resulting SCOPe tree of two-domains proteins.

39

Only the biggest domain (highest number of amino-acid 40 residues) was used to define two ground truth classifications, 41 namely the protein and species levels, which reproduce the 42 SCOPe tree classifications at the protein and species levels, 43 respectively. These classifications were not provided to the 44 track participants. By using this protocol, 588 protein chains 45 were retrieved, from 26 orthologs (proteins having the same activity in different organisms such as the human and murine haemoglobin proteins) and 7 proteins (see Table

Table 2 .

 2 Running times in seconds of each stage of the CODSEQ framework for one protein.

		3D mesh size of one protein	247650 facets
		2D views extraction 9 × (312 × 312)	6.75
		2D descriptor (9 × 512)	4
		Compact 3D descriptor (1024)	2.46
		Distance to all proteins dataset (588 proteins)	0.007
		Table 3. Training times in seconds using GPU for the used CNN-
		based models.		
		CNN-based model	Training data size Epochs Training time
				(seconds)
		Inception ResNet [16]	12798 images	5	1260
		LSTM-RNN [17]	1422 sequences	40	13
	25	The CODSEQ method is a deep learning based framework
	26	for indexing proteins. The approach consists of capturing sur-
	27	face details of the 3D proteins under the form of a set of 2D
	28	views. To this end, a classification architecture was tailored by
	29	exploiting a transfer learning strategy to extract relevant fea-
		tures from the considered views of proteins. The SHREC 2018

Table 4 .

 4 GraphCNN's network configuration.

		Input	MLP	Encoder1 (ρ 1 )	Encoder2 (ρ 2 )	Encoder3 (ρ 3 )	Encoder4	Output
		3D points (10K, 3)	MLP (3, 32)	SPH3D(64, 64, 2) SPH3D(64, 64, 1) Pool(10K, 2500)	SPH3D(64, 64, 1) SPH3D(64, 128, 2) Pool(2500, 625)	SPH3D(128, 128, 1) SPH3D(128, 128, 1) Pool(625, 156)	G-SPH3D (128, 512)	FC(832, 512) FC(512, 256) FC(256, C)
	1	4.5. Graph-based CNN (GraphCNN) for 3D shape retrieval -		
	2	Author N, Author O, Author P			
	3	Following the recent tendency of addressing many scientific		
	4	tasks by exploiting the existing vast amount of data, a data-		
	5	driven approach was applied for the problem of 3D protein		
	6	shape retrieval. Based on the fact that the provided input pro-		
	7	teins are in the form of triangulated meshes, a transfer learn-		
	8	ing approach was applied. A method originally designed for		
	9	the task of 3D point cloud classification and segmentation was		
	10	adapted to the needs of the protein shape retrieval task, and		
	11	trained on a relevant dataset of protein 3D point clouds in order		
	12	to learn appropriate features (descriptors) for the representation		
		of 3D molecular shapes.				

13

Descriptors calculation. SPH3D-GCN

[START_REF] Lei | Spherical kernel for efficient graph convolution on 3D point clouds[END_REF]

, a graph-based 14 CNN method equipped with a novel spherical convolution ker-15 nel, was employed as it has achieved state-of-the-art results on 16 numerous computer vision tasks. The detailed architecture of 17 the applied network is depicted in Table 4. From each trian-

18 gulated protein surface, a number of 10000 points is uniformly 19 sampled, since the network requires a constant number of input 20 points. After transforming the input 3D coordinates to a higher 21 dimensional space of 32 features with a multilayer perceptron 22 (MLP), four encoder blocks are applied. Each encoder operates 23 on a specific spatial range, which is denoted by ρ. Parameter 24 ρ controls the radius of the applied spherical kernels and deter-25 mines the spatial extent of the applied convolutions. SPH3D(α, 26 β, γ) represents a separable spherical convolution that takes as 27 input α channels, performs a depth-wise convolution with a 28 multiplier γ and subsequently a point-wise convolution to gen-29 erate the output β channels. At the end of each decoder, a pool-30 ing operation is applied, which reduces gradually the number of 31 considered points. In Encoder4, a modified spherical convolu-32 tion is applied in order to obtain a global representation of the

Table 5 .

 5 HAPPS settings for experimental runs 1, 2 and 3.

	Parameter Settings

Table 6 .

 6 Evaluation metrics at the protein level. NN = Nearest Neighbor, T1 = First-tier, T2 = Second-tier, MAP = Mean Average Precision. For each metric, the highest value is in bold.

		Method	NN	T1	T2	MAP
		CODSEQ1	0.697	0.350	0.266	0.358
		CODSEQ2	0.666	0.345	0.264	0.356
		3DZD	0.978	0.753	0.428	0.797
		3DZM	0.975	0.719	0.422	0.766
		3DZD/3DZM average	0.980	0.789	0.436	0.823
		WKS/SGWS	0.985	0.818	0.438	0.840
		HAPT1	0.898	0.617	0.407	0.658
		HAPT2	0.875	0.602	0.402	0.646
		HAPT3	0.892	0.620	0.406	0.659
		GraphCNN1	0.773	0.278	0.218	0.301
		GraphCNN2	0.734	0.295	0.235	0.317
		GraphCNN3	0.770	0.310	0.243	0.339
		HAPPS-1	0.982	0.738	0.416	0.774
		HAPPS-2	0.983	0.746	0.420	0.779
		HAPPS-3	0.983	0.746	0.420	0.779
	1	This feature allows the methods for having nearest-neighbor		
	2	(NN) over the whole dataset ranging from 66.6 up to 98.5%,		

Table 7 .

 7 Evaluation metrics at the species level. NN = Nearest Neighbor, T1 = First-tier, T2 = Second-tier, MAP = Mean Average Precision. For each metric, the highest value is in bold.

	Method	NN	T1	T2	MAP
	CODSEQ1	0.438	0.173	0.125	0.180
	CODSEQ2	0.447	0.172	0.124	0.179
	3DZD	0.783	0.391	0.262	0.435
	3DZM	0.722	0.369	0.256	0.402
	3DZD/3DZM average	0.825	0.419	0.277	0.470
	WKS/SGWS	0.844	0.460	0.298	0.508
	HAPT1	0.595	0.286	0.209	0.313
	HAPT2	0.572	0.264	0.200	0.289
	HAPT3	0.608	0.286	0.209	0.313
	GraphCNN1	0.513	0.177	0.117	0.178
	GraphCNN2	0.533	0.175	0.120	0.186
	GraphCNN3	0.499	0.181	0.122	0.186
	HAPPS-1	0.757	0.407	0.272	0.432
	HAPPS-2	0.772	0.400	0.269	0.430
	HAPPS-3	0.768	0.400	0.269	0.430

Table 8 .

 8 For each method, running times of descriptor computation for one protein, descriptors comparison and, when applicable, training times. Descriptors computation and comparison times are expressed in seconds, training time units are specified. The type of hardware (CPU = Central Processing Unit, GPU = Graphics Processing Unit) used is indicated in parenthesis. N/A = Not Applicable.

	Method	Descriptor calculation Descriptor comparison Training Time
	CODSEQ	13.21 (CPU)	0.007 (CPU)	2 hours (GPU)
	3DZ	8.0 (CPU)	0.17-0.5 (GPU)	1 week
	WKS/SGWS	37 (CPU)	negligible (CPU)	N/A
	HAPT	17-112 (CPU)	negligible (CPU)	N/A
	GraphCNN	0.045 (GPU)	negligible (CPU)	1 hour (GPU)

WKS/SGWS by Author J, Author K, Author L (subsec-
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Author E (subsection 4.1), 12 2. 3DZ by Author F, Author G, Author H, Author I (subsec-13 tion 4.2), (v) final descriptor computation. The algorithms for stages (iv) 8 and (v) are described in this section, and the reader is referred 9 to the literature in [START_REF] Otu | Nonrigid 3D shape retrieval with happs: A novel hybrid augmented point pair signature[END_REF] for more details on the other stages. Feature Extraction. The first step of APPFD is to compute keypoints, p k i , i = 1, 2, • • • , and locally extract four-dimensional Point Pair Feature (PPF), f 1 = (α, β, γ, δ) as in [START_REF] Wahl | Surflet-pair-relation histograms: a statistical 3D-shape representation for rapid classification[END_REF] from r-nearest neighbourhood, {P i , i = 1 : K} of each keypoint {p k i , i = 1 : K}, where K is the number of keypoints for a given 3D shape. For every pair of points, p i , p j and their estimated normals, n i , n j i.e., oriented points, [(p i , n i ), (p j , n j )] (i j), in P i where p i is the origin w.r.t. the constraint in Equation (3) holding True, a transformation-independent Darboux frame U, V, W is defined as:

Alternatively, p j becomes the origin (i.e., point with the larger angle between its associated normal and the line connecting the two points) if the constraint in (3) is False, and the variables in (3) are reversed. f 1 is then derived for the source point as follows: