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Abstract—Distributed smart sensors are more and more used
in applications such as biomedical or domestic monitoring.
However, each sensor broadcasts data wirelessly to the others
or to an aggregator, which leads to energy-hungry sensor nodes
not ensuring data privacy. To tackle both challenges, this work
proposes to distribute the feature extraction and a part of a
clique-based neural network (CBNN) in each sensor node. This
scheme allows standardizing data at the sensor level, ensuring
privacy if the data is intercepted. Besides, a lower number of
bits is transmitted, thus limiting the communication overhead.
The inherent redundancy of clique-based networks makes them
resilient to out-of-range connections, allowing an additional
power reduction in the sensor nodes. Compared with a localized
CBNN in the aggregator, the distributed structure reduces the
inference latency by 28%, the sensor energy consumption by 25%
and increases the protocol robustness. The circuit implementation
is possible with the use of single-cluster iterative clique-based
circuits, and demonstrated for a posture recognition application.
To this end, a hardware circuit has been fabricated and performs
a classification using 115fJ per synaptic event per neuron in 83ns.

Index Terms—Neural networks circuit, clique-based neural
networks, analog/mixed-signal circuit, distributed architecture.

I. INTRODUCTION

W ITH the growing number of global monitoring ap-
plications through various parameters, such as home

monitoring or healthcare monitoring, wireless sensor networks
(WSN) are vastly used. The standard architecture is as fol-
lows [1]. Every sensor in the network acquires data and
broadcasts it wirelessly. Then, an aggregator acquires all the
data from the sensors and processes the whole flow, typically
using Artificial Intelligence (AI) paradigms.

However, this structure has three main drawbacks, at differ-
ent levels of the system. First, at the aggregator level, the main
processor has to be able to compute in real-time the complete
flow of information. This necessary computational power is
paid either in additional power consumption or computation
time. The drawback becomes all the more an issue if the
aggregator is destined to be embedded with battery operation,
like a smartwatch or smartphone. Second, at the sensor level,
transmitting the whole acquired data is energy-hungry and thus
harmful to the battery lifetime. Third, at the system level,
sending directly the data to the aggregator does not guarantee
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the information privacy if someone intercepts the transmitted
data, which is especially crucial for healthcare monitoring.

The concept of “Near-sensor computing” is a solution to
mitigate the first two drawbacks. It consists of shifting part of
the processing – feature extraction and small-scale classifica-
tion – at the sensor level, as explained in [2]. Pre-processing
data in the sensor aims at decreasing the use-time of the
communication interface by determining the relevance of the
input data in regard to the targeted application. If the acquired
data is relevant, a “wake-up” signal can be generated to enable
the transmission; otherwise, the communication interface is in
sleep mode, as illustrated in [3]. Moreover, when the interface
is activated, only pre-processed data can be transmitted for
analysis instead of raw data, thereby reducing the number of
transmitted bits further.

While the feature extraction operation strongly depends
on the type of sensor, the classification operation can be
done by a generic unit, and thus output the same type of
data flow for each sensor. This scheme allows anonymously
transferring data from one or another sensor, addressing thus
the issue of information privacy, provided that the classifier
structure is generic. This work proposes to use clique-based
neural networks (CBNNs) to be the generic classifier in the
previously stated architecture, applied in a WSN used for
posture recognition. The structure of CBNNs [4] allows them
either to be embedded as a whole network in the aggregator
or to be divided into clusters and dispatched in each node
of the WSN. In [5], the latter case, where each cluster is
embedded with a memory storing the connections between
the neurons, is explored. The circuit structure, as well as the
memory organization destined to be embedded is presented.
This paper is an extended version of [5] and includes the
following additional contributions:

• An applicative use-case context for the distributed sensor
architecture is described. In this work, the study is
conducted in the context of posture recognition where the
sensors are Inertial Measurement Units (IMUs) placed at
different places over the body.

• The two aforementioned envisioned scenarios using an
embedded CBNN are detailed. The implications of the
hardware in each case are also described.

• A thorough study about the advantages of distributing
or not the clusters in the sensor nodes is presented. A
comparison in terms of inference latency and energy
consumption per node per inference between the two
scenarios is given.

• Simulation results showing the impact of out-of-range
sensor nodes on the network performance are provided.

©IEEE Version submitted for final publication in IEEE JETCAS : 10.1109/JETCAS.2020.3023481
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Figure 1. Topology of a clique-based neural network composed of NC

clusters of NN neurons each. An example of a clique is highlighted in black.

Figure 2. Algorithmic flowchart of the network inference. Four iterations of
the WTA process are needed to converge to a stable state [6].

This structure has been tested with an on-chip single-
cluster CBNN circuit driven by an external digital unit in an
FPGA. In the ASIC, the analog structure designed for neuron
computation consumes 115fJ to process a local classification,
validating thus the possibility to integrate distributed CBNNs
on a sensor node.

This paper is organized into the following sections. Section
II provides details about the applicative context, as well as
about CBNNs and how they can be distributed. Section III
explains in detail the proposed architecture to be embedded.
Section IV gives a comparison between a distributed CBNN
and an aggregated CBNN for the same context. Finally,
Section V presents a hardware realization and Section VI
concludes the paper.

II. CBNN STRUCTURE

“Neural processors” circuits implement large Artificial Neu-
ral Networks (ANNs) composed of about one million neurons
for embedded AI [7]-[9]. Oversized for tasks such as embed-
ded associative memories, they are advantageously replaced by
simpler clique-based ANNs [4], where specific classification
tasks can be performed by networks of a few thousand of
neurons in total [10]-[11]. Moreover, neuromorphic systems
such as [12]-[13] operate at low frequency and are thus

not adapted for real-time operation, unlike CBNNs which
converge in tens of nanoseconds [14]. This Section aims at
providing contextual elements about CBNNs and how they
behave, as well as an applicative use-case with a WSN.

A. CBNN theory

CBNNs are not fully connected, have binary-weighted
synapses and use simple activation functions. Clustered net-
works are formed by grouping neurons per category of in-
formation, as shown in Figure 1. There are NC clusters, NN

neurons per cluster, and NS synapses per neuron. Neurons
from different clusters are connected a priori to form a clique.
An in-cluster “Winner-Takes-All” (WTA) rule activates or not
the neurons. Thus, only one neuron is activated per cluster. An
algorithmic flowchart describing network behavior is shown in
Figure 2. First, the neurons are stimulated externally and the
first round of WTA is applied per cluster. Depending on the
existing connections, the clusters propagate the neurons state
(activated or not) to stimulate neurons in different clusters,
before another round of WTA. In total, four iterations of
neurons stimulation and WTA operation are performed to
ensure the convergence of the network [6].

Low complexity and, hence, low power consumption are
better exploited by implementing the neurons using analog
CMOS circuits [4]. However, creating the neural connections
a priori implies that they are not reconfigurable. This limits
their uses for pattern recognition in a non-variable context once
the system is calibrated. Proper calibration avoids the necessity
of a self-configuration feature in this kind of context.

Several leads are envisioned to address the issue of recon-
figurability in integrated CBNNs. One is to fabricate all the
possible connections between neurons and store an activation
bit in an embedded memory. This solution brings full flexibil-
ity in terms of possible stored patterns. It is thus adapted for
applications where the context can change and an update of
the patterns is necessary. However, the overhead in terms of
silicon area compared to the non-configurable structure grows
exponentially with the number of neurons, which is not suited
for an integrated solution. A second solution to bring flexibility
to the structure is to implement a single cluster and iterate the
recovery process to emulate an entire network. The number
of clusters and number of neurons can thus be changed (for
a lower or equal number of neurons per cluster than in the
implemented cluster), at the price of increased response time.
The number of synapses per neuron NS can also be identified
to NC in the structure, reducing the silicon area occupation. A
dedicated memory is also necessary to store the connections
between all the neurons, and the intermediate neuron states.
In [14], this solution was chosen to emulate networks of up
to 4,000 neurons with 128 neurons implemented on-chip.

B. Applicative use-case

In the context of WSN, an applicative use-case using Inertial
Measurement Units (IMUs) such as ISM330DLC from ST
Microelectronics® [15] for posture recognition is set. It is
illustrated with five sensors in Figures 3 and 4. Several IMUs
are dispatched all over the body, each of them recording
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Figure 3. Definition of inclination and azimuthal angles compared to an
absolute calibrated reference (in gray).
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Figure 4. Example of a WSN of 5 IMUs dispatched on the body for posture
recognition. Each sensor node is associated with a cluster from a CBNN,
and each neuron corresponds to an absolute angular position of the sensor. A
clique between neurons from different clusters is highlighted in black dotted
lines, it corresponds to the “Laying down face up, azimuth 0°” posture from
Table II.

the inclination angle θ and the azimuthal angle Φ of the
absolute spherical coordinates with a 45° resolution, Figure 3.
The angles are calculated from the calibrating position at
device start-up, which is aligned with the z-axis. There are
five possible values for θ (0°, 45°, 90°, 135°, 180°) and
eight values for Φ (0°, 45°, 90°, 135°, 180°, 225°, 270°,
315°), leading to 40 unique angular positions combining θ
and Φ per accelerometer. One cluster in a CBNN is thus
associated with one sensor in the WSN, and one neuron in
a cluster corresponds to a combination (θ,Φ), Figure 4. The

Table I
CORRESPONDENCE MAP BETWEEN ACCELEROMETER DATA AND THE

NEURONS IN A CLUSTER

Neuron Associated
couple (θ,Φ) Neuron Associated

couple (θ,Φ)
Neuron #1

(N1) (0°,0°) Neuron #21
(N21) (90°,180°)

Neuron #2
(N2) (0°,45°) Neuron #22

(N22) (90°,225°)

Neuron #3
(N3) (0°,90°) Neuron #23

(N23) (90°,270°)

Neuron #4
(N4) (0°,135°) Neuron #24

(N24) (90°,315°)

Neuron #5
(N5) (0°,180°) Neuron #25

(N25) (135°,0°)

Neuron #6
(N6) (0°,225°) Neuron #26

(N26) (135°,45°)

Neuron #7
(N7) (0°,270°) Neuron #27

(N27) (135°,90°)

Neuron #8
(N8) (0°,315°) Neuron #28

(N28) (135°,135°)

Neuron #9
(N9) (45°,0°) Neuron #29

(N29) (135°,180°)

Neuron #10
(N10) (45°,45°) Neuron #30

(N30) (135°,225°)

Neuron #11
(N11) (45°,90°) Neuron #31

(N31) (135°,270°)

Neuron #12
(N12) (45°,135°) Neuron #32

(N32) (135°,315°)

Neuron #13
(N13) (45°,180°) Neuron #33

(N33) (180°,0°)

Neuron #14
(N14) (45°,225°) Neuron #34

(N34) (180°,45°)

Neuron #15
(N15) (45°,275°) Neuron #35

(N35) (180°,90°)

Neuron #16
(N16) (45°,315°) Neuron #36

(N36) (180°,135°)

Neuron #17
(N17) (90°,0°) Neuron #37

(N37) (180°,180°)

Neuron #18
(N18) (90°,45°) Neuron #38

(N38) (180°,225°)

Neuron #19
(N19) (90°,90°) Neuron #39

(N39) (180°,270°)

Neuron #20
(N20) (90°,135°) Neuron #40

(N40) (180°,315°)

Table II
EXAMPLES OF STORED POSTURES (NON-EXHAUSTIVE LIST)

Stored clique Corresponding posture

(N1,N1,N1,N1,N1) “Laying down face up,
azimuth 0°”

(N17,N17,N17,N17,N17) “Standing up arms down,
azimuth 0°”

(N17,N17,N17,N1,N1) “Sitting up, azimuth 0°”

(N17,N21,N17,N17,N17) “Standing up left arm up,
azimuth 0°”

(N19,N19,N19,N17,N17) “Rotating torso 90° left
standing up, azimuth 0°”

correspondence map between neurons in a cluster and the
combinations (θ,Φ) is given in Table I.

The postures are stored as cliques by activating the connec-
tions between the corresponding neurons. Examples of stored
cliques are shown in Table II. In the left column, the notation
used to indicate the neurons connected by a clique is the
following: (Neuron in Node 1,Neuron in Node 2, ... ,Neuron
in Node 5). It is demonstrated in [4] that, in a CBNN with 40
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Figure 5. Structural comparison between: (a) Localized CBNN in the aggregator; and (b) Distributed CBNN in the sensor nodes. Each structure is composed
of 5 sensor nodes and an aggregator.

neurons per cluster, it is possible to store 400 cliques, hence
400 different postures, without degrading the inference process
with ideal stimulation conditions.

C. Distribution of a CBNN in the sensor nodes

In the literature, CBNNs are typically integrated on a single
chip, as a whole like in [4], or iteratively like in [14]. In
the application of WSNs, a CBNN can be integrated into the
aggregator (e.g. a smartwatch), receiving the encoded data
from the sensor nodes for the external stimulation of the
neurons. This structure is illustrated in Figure 5-(a) in the
applicative context, but can be extended to a generic CBNN
structure of NC clusters of NN neurons each. In each sensor
node, the angular features are extracted and formatted so
that they correspond to one or several neurons to stimulate.
Multiple stimulations are possible if the input data are not
close enough to one feature in particular. Thus, the stimulation
word, coded on NN bits, is transmitted to the aggregator in
addition to the cluster index, coded on log2(NC) bits. From

Section II-A, a memory storing the connections between the
neurons needs to be embedded in the aggregator so that the
cliques can be modified in case a sensor is added or removed
in the network, or if the number of stored postures needs to
be changed. It contains N2

C ×NN words (i.e. the number of
connections arriving on the clusters) of NN bits each.

In the scope of the “Near-sensor computing” paradigm,
instead of integrating the whole CBNN in the aggregator, the
clusters can be dispatched among the nodes of the WSN. The
aggregator is thus used only to collect the clusters’ activation
states and compare them to stored cliques. An example of a
distributed CBNN for body monitoring is shown in Figure 5-
(b) with the same CBNN structure as in Figure 5-(a). With this
scheme, the transmitted data from the sensors are the outputs
of the individual clusters instead of raw data from the sensors.
Since only 1 neuron is active per cluster, only the index of
the activated neuron in the cluster is transmitted, along with
the cluster index, in base 2. Thus, the total number of bits
transmitted by a node is reduced to log2(NC) + log2(NN ).
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Considering the embedded memory, it can be distributed as
well in each node of the network. Each memory can, therefore,
be reduced to NC ×NN words of NN bits each, storing only
the incoming connections to the concerned integrated cluster.
With smaller memories, the access time for each cluster is
faster and thus more energy efficient. Moreover, since the
cluster structure is generic, the data structure is also identical
from one node to another. This means that, even if a message is
intercepted, the context and information about the data can not
be deduced from the transmitted message itself. It structurally
ensures data privacy without having to spend resources to
encrypt the transmission.

III. CIRCUIT ARCHITECTURE

This section describes the implementation choices for the
single-cluster circuit. The first subsection details the analog

cluster circuit structure and the second subsection explains the
different possible embedded memory topologies.

A. Mixed-signal cluster structure

The cluster circuit is structured as follows. Each neuron
circuit adds contributions from the NS synapses and performs
the WTA operation locally, as shown in Figure 7. Synapses are
switched current sources acting as V-to-I converters outputting
either 0A or IUNIT. The currents provided by the synapses are
summed at node A.

One element of the WTA circuit is composed of M1 and
diode M2. After being copied by the means of the M3 - M4

current mirror, the current flowing in the neuron sets the drain-
source voltage of M1 depending on the other currents flowing
in the neurons in the same cluster, connected through node C.
The operation results in a binary voltage at node B. If the
current flowing in a neuron is the highest in the cluster, the
drain-source voltage of M1 is set over its saturation voltage.
Otherwise, M1 is blocked and its drain-source voltage is set
below its saturation voltage.

A digital buffer converts the binary voltage at node B into
a standard binary voltage at node D. The index of the winning
neuron is then transmitted to the rest of the network.

B. Memory distribution and stimulation process

The embedded memory stores the binary connections be-
tween the different neurons in the network. The memory orga-
nization is shown in Figure 6 for both localized and distributed
scenarios. In the localized architecture, the connection memory
stores NC

2×NN words of NN bits each, organized in columns
for the sake of clarity in Figure 6-(a). The number of words
corresponds to all the possible source neurons (NC ×NN ) for
all the NC clusters. One word is input in the cluster and is
thus NN -bit long.
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In the distributed architecture, the whole connection mem-
ory does not have to be integrated into every node. Only the
connections incoming from other clusters to the considered
integrated cluster are implemented, Figure 6-(b). It contains
NC ×NN words, corresponding to the number of neurons in
the whole network. Each word contains NN bits, as 1 bit is
used to stimulate 1 neuron in the integrated cluster.

The reading process is scheduled as follows. In the localized
scenario, the NN stimulation bits coming from the sensors are
directly input in the cluster through the shift registers. The
cluster index is only used for scheduling. After each WTA
operation in the same iteration, the winning neuron index is
stored in a state memory so that the connected neurons can be
stimulated during the next iterations of the inference process.

In the distributed scenario, the stimulation bits are also
directly input in the cluster through the shift registers and the
first message is output. During the next iterations, each circuit
receives a message of log2(NC)+log2(NN ) bits from another
cluster indicating the winning neuron in that cluster, Figure 6.
This message serves as an address to retrieve the activated
connections to the current cluster in the embedded memory.
The selected memory word concerns 1 cluster in the network.
The word is pushed in a temporary shift register, waiting for
the messages from the other clusters. Once all the clusters
have sent data, all the memorized bits are input in the analog
cluster at the same time. If a cluster takes too long to send
its message or is out of range, a timeout signal is triggered
and the shift register is sent as-is to the analog cluster. The
structural redundancy of CBNNs can recover a stored clique
as long as half of the neurons are stimulated.

IV. COMPARISON BETWEEN CBNN ARCHITECTURES

In this Section, the objective is to compare the benefits of
both scenarios envisioned in Section II-C. The comparison
criteria include inference latency and energy consumption per
node per inference. The case of out-of-range nodes in the

WSN is also studied in both scenarios and the impact on the
transmission power in each node is given.

A. Inference latency

The inference process, including 4 iterations of WTA opera-
tions in the CBNN, is depicted in Figure 8-(a) for the localized
CBNN in the aggregator scenario, and Figure 8-(b) for the
distributed CBNN in the sensor nodes scenario. In both cases,
the wireless link is modeled from a stae-of-the-art Bluetooth©

Low-Energy (BLE) transceiver/receiver [16], with a 1 Mbps
data rate or a transmission bit period Tbit = 1µs. The
considered CBNN hardware is the single-cluster architecture
from [14], implying successive computations in time on the
same chip in the localized scenario, or multiple physical
instances of the chip in each sensor in the distributed scenario.

In the localized scenario, the aggregator sends a start-up
signal for the sensor nodes triggering data acquisition. Once
the feature extraction step has ended, each sensor transmits one
after another to the aggregator the corresponding log2(NC) +
NN -bit word for CBNN stimulation. In the aggregator, after a
stimulation word is received, the first iteration of the inference
process concerning the corresponding cluster starts and lasts
the cluster convergence time Tclus. The value of Tclus is 83 ns
from [14]. Once all the stimulation words are received, the
remaining three iterations of the inference process are done
cluster by cluster in the aggregator, during 3.NC .Tclus. The
total inference time in that scenario Tloc is thus equal to:

Tloc = NC .(log2(NC) +NN ).Tbit + (3.NC + 1).Tclus (1)

In the distributed scenario, after the start-up signal and the
feature extraction, a cluster convergence starts in each sensor
node. Each one of them transmits a log2(NC)+ log2(NN )-bit
word to the other sensors to update their data with the entire
network data for the next iteration. The four iterations of the
inference are thus processed in the sensors and the aggregator
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Figure 9. Inference duration model depending on the number of neurons in
each sensor node NN in both localized and distributed scenarios. The time
values are calculated for NC = 5 sensor nodes.

Figure 10. Energy consumption model per sensor node per inference
depending on the number of neurons NN in both localized and distributed
scenarios. The energy values are calculated for NC = 5 sensor nodes.

only outputs the final result. The total inference time in that
scenario Tdis is equal to:

Tdis = 4.(NC .(log2(NC) + log2(NN )).Tbit + Tclus) (2)

Figure 9 shows the evolution of the inference time in both
scenarios depending on the number of neurons per cluster NN ,
i.e. the quantization of each parameter. The values of Tloc and
Tdis are given for NC = 5 sensor nodes, but the behavior
shown in Figure 9 is the same for other values of NC since
both Tloc and Tdis are proportional to NC . However, this
graph shows a critical value of NN after which the distributed
architecture becomes interesting in terms of inference time.
This value is 26 in this work but can change depending on
the hardware used for data transmission or CBNN inference.
The posture recognition application will thus benefit from the
distributed architecture in terms of inference duration. The
values of Tloc and Tdis for NN = 40 neurons are 213 µs
and 153 µs, respectively.

B. Energy consumption per inference per sensor

From the process described in Figure 8 and the power con-
sumption figures from [14] and [16], the energy consumption
per inference per sensor node is derived. Its value for both
scenarios is shown in Figure 10 for NC = 5 sensor nodes.

Figure 11. Inference accuracy of a CBNN composed of NC = 5 sensor
nodes used in the posture recognition application, for 100, 200 and 300
stored postures, simulated with Matlab®. (a) Impact of out-of-range clusters
in a localized architecture; and (b) Impact of out-of-range connections in a
distributed architecture.

From [16], the power consumption has been scaled by a factor
of 30 so that the distance range of the BLE specifications
matches the typical distance range of the applied WSN, i.e.
2 m. The energy consumption of the BLE transceiver/receiver
still averages 97% of the inference energy consumption per
sensor node in the distributed scenario. Therefore, the behavior
of the energy values follows that of the inference time, also
mostly depending on the wireless data transmission. A critical
value of NN where the distributed architecture becomes inter-
esting in terms of energy consumption per inference per sensor
node also exists. Its value is 26 for the considered hardware.
Thus, the distributed architecture allows reducing the energy
consumption per inference per sensor node in the posture
recognition use-case from 22 nJ (in the localized architecture)
to 16.5 nJ. This study also highlights that the potential gain
in power consumption (and latency) effectively increases with
larger values of NN .

C. Network robustness and power optimization

In the specific context of body WSNs, the relative positions
of the sensor nodes change over time. Therefore, the power
of the wireless transceiver/receiver has to be set including a
margin in the distance range so that the sensor nodes are never
out of range from one another. However, by using CBNN
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for the inference, it is possible to cut off several connections
between sensor nodes and still manage to classify data with
only a slight loss of accuracy. The power of the transmission
front-end can thus be reduced as the distance range margin
is not necessary anymore. Besides, since most of the sensor
power is used for data transmission, a noticeable energy gain
(depending on the distance between the sensors) can make up
for the accuracy loss.

A CBNN of five clusters of 40 neurons each is simulated
using Matlab® to estimate the effect of out-of-range sensor
nodes on the classification accuracy. Three cases have been
simulated for 100, 200, and 300 postures stored. The sim-
ulation results are shown in Figure 11-(a) for the localized
scenario and in Figure 11-(b) for the distributed scenario. In
the localized scenario, an out-of-range sensor node means that
the corresponding feature for cluster stimulation is lost. The
corresponding cluster is therefore not stimulated during the
first iteration, but still plays a role in the last three iterations
of the inference process. In the distributed scenario, a sensor
node can be in the range of all the other sensors but one. In
that case, the messages between the two clusters will not be
received at all, as explained in Section III-B.

The inference results of 10,000 simulations are averaged in
each case. In each simulation, a 10% stimulation error prob-
ability models the sensing error of the IMU for each sensor
node. The CBNN can detect the postures in 99.72%, 95.04%,
87.51% of the cases if there are 100, 200, 300 postures stored
in the CBNN, respectively. The more stored cliques, the more a
stimulation error has a chance to lead to a wrong classification.
This is all the more impacting in a localized architecture
since stimulation errors due to out-of-range sensors stack with
stimulation errors due to the sensors themselves, as shown in
Figure 11-(a). However, in the distributed architecture, out-
of-range cluster-to-cluster connections have a limited impact
on the global inference, Figure 11-(b). This is because data
output by the distant clusters are still propagated by the other
in-range clusters, thus, at the network level, the impact of
the lost connection is mitigated. It is therefore possible to
reduce further the power of the transceiver (and its range) with
minimal effect on the global inference. Finally, another way
to limit the impact of out-of-range connections is to increase
the number of clusters in the CBNN. It increases the size
of the cliques and thus the redundancy of the network. As
an example, three lost connections in a CBNN of NC = 7
clusters storing 300 postures still yield an inference accuracy
of 96.98% (versus 99.1% for the 7-cluster reference network).

V. HARDWARE PROTOTYPE AND TESTING

The single-cluster architecture has been integrated on-chip
using the ST 65-nm CMOS technology, Figure 12. A cluster of
128 neurons with 31 synapses each has been fabricated, as well
as the 128×31 shift registers loading the data in the synapses.
The whole circuit occupies a silicon area of 0.21mm2. The
circuit operates at a supply voltage VCC of 1V, with a unitary
current IUNIT of 300nA to ensure transistor operation in
the moderate inversion regime. With these parameters, the
measured static power consumption is of 23.4µW.

Figure 12. Chip integration of the proposed architecture. The analog cluster
and the shift registers have been integrated on-chip, while the connection
memory is implemented externally on an FPGA for simplicity reasons.

For the sake of simplicity, the connection memory of 508Kb
is implemented off-chip on a Xilinx® Spartan6-based FPGA
board. The silicon area of the connection memory has been
estimated for the 65-nm CMOS technology process using
Synopsys® and SRAM memory density provided by the circuit
manufacturer. The estimated silicon area is 0.53mm2. The
energy efficiency of the loading process from the connection
memory to the shift registers has been also estimated using
using Synopsys®. Its value is 3.3pJ per clock cycle per neuron,
which corresponds to 103pJ per neuron for the complete
loading process, using 40 neurons out of the 128 implemented.

Once the shift register is loaded and the synapses are
activated, the analog cluster takes 83ns (in the worst case)
to converge and output the winning neuron index. During that
time, the power consumption is very application-dependent
since it varies depending on the number of active connections.
For 1 active synapse, the measured dynamic power consump-
tion overhead is 1.2µW. It corresponds to the successive
mirroring of IUNIT 4 times through the synapse and neuron
circuits. Therefore, the unitary amount of energy needed to
propagate an event from the synapse to the neurons’ output,
defined as a synaptic event, is 115fJ, including static biasing.
As a reference, an artificial neuron in [7] consumes 26pJ
per synaptic event in 28-nm CMOS process, while a neuron
in [9] consumes 23.6pJ per synaptic event in 14-nm CMOS
process. However, while both implementations in [7] and [9]
have a higher computational power, their higher number of
implemented neurons and denser connectivity make them less
suited for embedded distributed applications. They are more
adapted for integration as a whole in the aggregator, but they
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do not address the issue of data exchange introduced in this
work.

VI. CONCLUSION

This paper presents a distributed scheme for CBNNs to
be integrated into multiple sensors in the same WSN. The
proposed structure leads to a reduction of the number of
transmitted bits, thus decreasing both the energy consumed
per node, the inference latency and the complexity needed
to process the complete data stream in the aggregator node.
Besides, using the same structure in each node with the
same output format anonymizes the transmissions, so that
intercepting one data stream without knowing the context does
not allow recovering its meaning. Distributing a CBNN also
offers a resistance to connections being cut off because out-
of-range sensor nodes. The proposed scheme is validated by
the means of Matlab® simulations and a single-cluster CBNN
ASIC dedicated to distributed computation and consuming
115fJ per neuron per synaptic event. Further developments will
include the fabrication of the complete single-cluster ASIC,
including the connection memory. The long-term objective of
this work is to embed the fabricated chip in a wireless sensor
node for the demonstration of AI distribution in the posture
recognition application.
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