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A b s t r a c t 

In this paper, we propose combining between the transformed hand-crafted and deep features using PCA to recognize the six-basic 
facial expressions from static images. To evaluate our approach, we use three popular databases (CK+, CASIA and MMI). We 
introduce the use of the Pyramid Multi Level (PML) face
representation for facial expression recognition. The hand-crafted features are obtained with such repre- sentations. Initially, we 
determine the optimal level of the PML features of three hand-crafted descriptors
(HOG, LPQ and BSIF) using CK+, CASIA and MMI databases.
After the optimal level of the PML is found for each descriptor, we combine them together with the
transformed final VGG-face layers (FC6 and FC7) in order to get a compact image descriptor. In within- database experiments, our 
approach achieved higher accuracy than the state-of-art methods on both the
CK+ and CASIA databases, and competitive result on the MMI database. Likewise, our approach outper- formed the static methods 
in all six experiments of cross-databases.
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. Introduction

In recent years, facial expression recognition (FER) field has

eached some maturity due to the considerable data augmenta-

ion and abundant methods that have reached high performance.

n fact, most of the recent studies have concentrated on the

ecognition of the facial expression for subjects that were not in-

luded in the training phase which known as Subject-Independent

rotocol. Furthermore, there are some works that have studied

he generalization ability of their method on cross-databases task

uch as Xie, Jia, Shen, and Yang (2019) , and Shan, Gong, and

cOwan (2009) . 

The facial expression recognition methods can be divided into

and-crafted and Deep Learning methods. The hand-crafted meth-

ds have been one of the most popular methods for FER. There-

ore, Boosted Local Binary Pattern (Boosted-LBP) ( Shan et al., 2009 ),

ocal Phase Quantization (LPQ) ( Wang & Ying, 2012 ), Histogram

f Oriented Gradients (HOG) ( Carcagn, Del Coco, Leo, & Distante,
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DOI : 10.1016/j.eswa.
015 ), Local Mean Binary Pattern (LMBP) ( Goyani & Patel, 2017 ),

nd Local Directional Texture Pattern (LDTP) ( Ryu, Rivera, Kim, &

hae, 2017 ) are some successful hand-crafted methods that have

een used for facial expression recognition. 

Since the publication of the first Deep Learning architecture

alexnet” ( Krizhevsky, Sutskever, & Hinton, 2012 ), CNNs become a

opular approach in FER field ( Cai et al., 2019 ). In Lopes, de Aguiar,

e Souza, and Oliveira-Santos (2017) , Lopes et al. proposed a net-

ork consisting of two convolutional layers, two max pooling

ayers and one fully connected layer. In the training phase, the

riginal data were augmented by using rotation to different an-

les and adding 2D gaussian noise in the locations of the eyes.

ai et al. (2018) proposed to use novel island loss (IL) on two

NN architectures to enhance the discriminative power of Deep

earned features. IL-CNN includes three convolutional layers. Each

f the two first convolutional layers is followed by max pooling

ayer and the third convolutional layer is followed by FC layer

hen Island Loss (IL) layer. Finally, a softmax loss is used as de-

ision layer. For the second CNN, which is denoted as IL-VGG,

hey fine-tuned the pre-trained VGG-Face ( Parkhi, Vedaldi, & Zis-

erman, 2015 ) model with the island loss. For both architectures,

ata augmentation strategy was used. In Li et al. (2019) , the au-

hors proposed a network with three blocks, each block contains
2020.113459 1
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1 This requirement is very important for hand-crafted features.
two convolutional layers followed by max pooling layer. The last

block is followed by FC and softmax layers. To learn better feature

representation and reduce the interference of noise information,

they used spatial pyramid pooling model between the last convo-

lutional layer and the second convolutional layer at different scales.

Xie et al. (2019) used modified networks of VGG ( Simonyan & Zis-

serman, 2014 ) and ResNet ( He, Zhang, Ren, & Sun, 2016 ) by inte-

grating sparse regularization into the loss function. The proposed

networks with sparseness regularization achieved competitive per-

formances in Subject-Independent protocol and proved its general-

ization capability in cross-databases experiments. 

Although Deep Learning architectures have outperformed the

facial descriptors, the CNN architectures require high computa-

tional and experimental cost. In fact, CNNs have many hyper-

parameters to be optimized which makes finding these hyper-

parameters a tedious task. In addition to computation cost, huge

labelled data is required to train the CNNs. Indeed, the available

data in FER field are limited. To solve this issue, the state-of-art

methods have used data augmentation technique with various op-

erations: translations, rotations and skewing. This makes finding

the appropriate technique highly increasing the overall computa-

tion and time cost of the CNNs. 

In this paper, we propose to combine the shallow and deep

features to recognize the six-basic facial expressions from static

images. We implemented the PML representation for the shallow

descriptors to gain more sophisticated features. Moreover, our ap-

proach is strengthened by exploiting Deep Learning features. We

used pre-trained VGG-face model as feature descriptor to avoid

the computation complexity or the need of data augmentation,

which decrease the interest of Deep Learning methods. Our pro-

posed model exploits diversity that can be found in the shallow

and deep features. 

In summary, the contributions of this paper are: 

• We use the � -PML representation of the shallow features for

FER.
• We transform both the optimal � -PML features of each descrip-

tor (HOG, LPQ and BSIF (Binarized Statistical Image Features))

and the deep features to their corresponding eigenvectors.
• We combine the transformed � -PML features (HOG, LPQ, and

BSIF), and the transformed deep features (FC6, FC7) by concate-

nating them alongside each other.

This paper is organized as follows: we illustrate our approach

and the used methods in Section 2 . Section 3 describes the used

databases. Section 4 presents the experimental results and compar-

ison with the state-of-art methods. Finally, we conclude our work

in Section 5 . 

2. Methodology

2.1. Our approach 

Our approach is an extension of our previous work

( Bougourzi et al., 2019 ). In Bougourzi et al. (2019) , we proposed to

fuse different shallow features using PCA. After the face is aligned

and cropped, we extracted three types of features which are HOG,

LPQ, and BSIF. By using multi-blocks representation, we got feature

histograms for each descriptor type. We then transformed each

descriptor features to their corresponding eigenvectors. Finally, all

transformed (compact) features are concatenated to obtain the

final feature vector. 

Our proposed approach is summarized in Fig. 1 . The illustrated

steps correspond to the test phase. During the training phase, all

depicted steps are used. However, the individual PCA transformed

features and the SVM model are learned using a set of labeled
DOI : 10.1016/j.esw
mages. Compared to our previous work, the proposed approach

resents four main differences: 

1. We improved our face detection method by using more facial

landmarks to assign the boundaries of the facial box.

2. We proposed to use � -PML features representation of the shal-

low features for FER.

3. We proposed to transform the optimal � -PML features of each

descriptor and the deep features to their corresponding eigen-

vectors.

4. We combined the transformed � -PML features (HOG, LPQ, and

BSIF), and the transformed deep features by concatenating

them alongside each other. Thus, we fused shallow and deep

features in a reduced space.

.2. Face region of interest 

Since our approach is mainly based on facial texture descrip-

ors, the face region retrieval from the raw face image, should sat-

sfy two requirements. First, the faces should be cropped correctly

o avoid missing important facial parts or adding non-facial ones.

econd, the faces should be registered. 1 That is to say the facial

arts have to be matched from one face to another. The process is

llustrated in Fig. 2 . First, we detect 68 facial landmarks using the

lib library ( King, 2009 ), then we exploit the 2D locations of the

wo eyes in order to compensate the possible in-plane rotation. Af-

er performing this 2D rotation on the image and on the detected

oints, the three furthest points in the left, right, and bottom di-

ection are selected as the three boundaries of the face. We denote

he distance from the lower boundary to the eyes position as d 1 .

he upper boundary of the face is set at a distance d 2 from the

yes that is set to d 2 = 0.6 d 1 . Finally, the face ROI is obtained

y cropping the face using the four boundaries and re-sizing the

btained box image to a fixed size of 240 × 240 pixels. As conse-

uence, the vertical position for the eyes is fixed and both vertical

istances d 1 and d 2 are scaled to a constant distances D 1 and D 2 ,

espectively. 

In order to show the difference between the proposed face

ropping and the classic cropping way (normalizing the intra-

cular distance that is adopted by many published works), Fig. 3

llustrates two faces that are cropped by two different schemes:

he proposed one, and the classic one. From Fig. 3 , we notice that

he proposed scheme is more efficient than the classic one, where

he cropped face contains almost all face texture and exclude non

ace regions as much as possible. 

.3. Descriptors 

.3.1. Histogram of oriented gradients (HOG) 

HOG ( Dalal & Triggs, 2005 ) descriptor was originally developed

or human detection. Furthermore, it has been successfully used

or FER ( Carcagn et al., 2015 ). In HOG method, the input image is

ivided into small blocks called cells, then the occurrence of gra-

ient orientations is counted for each cell. The cells are grouped

nto overlapping blocks. The concatenation of the block histograms

roduces the final HOG histogram. 

.3.2. Local phase quantization (LPQ) 

LPQ ( Ojansivu & Heikkil, 2008 ) is a local descriptor that uses

hort-term Fourier transform on local M × M neighborhoods to

uantize the phase of Fourier transform by considering four fre-

uencies. In our experiments, we choose LPQ parameters as fol-

ows: the size of the local window is 13 × 13 pixels, the fre-

uency estimation method is the Gaussian derivative quadrature

lter pair. 
a.2020.113459 2



Fig. 1. General structure of the FTDS proposed approach.

Fig. 2. Face ROI. The left image is an original image that depicts a happy expression from the MMI database. The second image is the rotated face with its detected 68

landmarks that are used to determine the three face boundaries (right, left and bottom). These boundaries correspond to the three points marked in blue ∗ . The third image 

illustrates how the upper face boundary is obtained. It is placed at a distance d 2 = 0 . 6 × d 1 from the vertical position of the eyes. The fourth image illustrates the cropped 

and re-sized face image of 240 × 240 pixels. Note that the distances D 1 and D 2 are constant for all cropped faces. (For a better illustration of colours, the reader is referred 

to the web version of this article.)
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.3.3. Binarized statistical image features (BSIF) 

BSIF ( Kannala & Rahtu, 2012 ) features are obtained by binariz-

ng the response of filtering the input image by a set of prede-

ned 2D filters. The filters are learned from natural images us-

ng independent component analysis. In our experiments, we chose

7 × 17 × 8 bank of filters. 
f  

DOI : 10.1016/j.eswa.
.4. PML Representation 

In order to extract rich and sophisticated texture description,

ur approach is based on the PML ( Bekhouche, Ouafi, Dornaika,

aleb-Ahmed, & Hadid, 2017 ). The idea of � -PML is to generate a

hysical pyramid having � levels and divide these � images into dif-

erent blocks appropriately. In fact, � -PML representation contains
2020.113459 3



Fig. 3. Face detection comparison. The proposed face detection examples are shown in the first and the third images. While, the second and the fourth images are the

corresponding detected faces using the classic scheme.

Fig. 4. Pyramid Multi-Level Binarized Statistical Image Features example of 4 levels.
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� levels. We denote the i th level by L i . Thus, the pyramid consists

of { L 1 , L 2 , ..., L � }. For a squared image of size n × n , the basic block

size of � -PML is s = n/� . The size of L i is [ i × s, i × s ] and its

block division is i × i . By following the previous relation, the size

of L 1 (coarsest image) is [ s, s ] and its block division is 1 × 1, and

the size of L � (the finest image) is [ n, n ] and its block division is

� × � .

The final descriptor of � -PML is formed by the concatenation of

the descriptors of all blocks in all levels. The number of the con-

catenated descriptors is equal to the total number of the blocks

N b = 

∑ � 
i =1 i 

2 = 

� (� +1)(2 � +1) 
6 . Fig. 4 shows an example of 4-PML-BSIF.

2.5. Deep features 

For deep face features, we used the pre-trained deep CNN

model VGG-Face ( Parkhi et al., 2015 ). This model was originally de-

veloped for face recognition tasks. It was trained on over 2.6K per-

sons. VGG-Face has the ability to extract different facial features,

since it was trained on huge number of facial images. We selected

the FC6 and FC7 layers as two feature descriptors. We obtained a

feature vector of size 4096 from each layer. 

2.6. Features transformation using PCA 

In the literature, PCA ( Martnez & Kak, 2001 ) is used to cope

with the curse of dimensionality and to extract the most discrimi-

native features from the raw ones. For an n-by-d data matrix X ( n

is the number of samples and d is the number of features), PCA

computes an effective linear transformation by taking the eigen-

vectors of the covariance matrix Q = X T X . This is obtained by solv-

ing the eigen equation defined by: Q e i = λi e i , where λi is the

eigenvalue corresponding to the eigenvector e i . In our work, we

consider the eigenvectors of X X 

T as the transformation of our raw

data matrix X . The eigenvectors are ranked by the order of their

eigenvalues, from highest to lowest eigenvalue. In our experiments,

we grid search about the optimal number of transformed features.
DOI : 10.1016/j.esw
.7. Facial expression recognition using SVM 

After we found the Final-PCA-Fusion descriptor (concatenation

f the � -PML and deep features using the PCA outputs),we used

ib-linear library ( Fan, Chang, Hsieh, Wang, & Lin, 2008 ) based

inear-SVM classifier in order to learn our classifier without any

yper-parameter tuning. 

. Databases

To evaluate the performance of our approach, we used three

ublic databases: CK+, CASIA and MMI: 

CK+ ( Lucey et al., 2010 ) is a facial expression database that con-

ists of 593 image-sequences from 123 subjects. The database is

esigned for the six-basic expressions (Anger, Disgust, Fear, Happy,

adness and Surprise) plus Contempt. In our experiments, we se-

ected the three last frames (peak frames) for the six-basic ex-

ressions, therefore we collected 927 images from 106 persons.

he images are in gray-scale or color and their resolution is

40 × 490 or 640 × 480 pixels. 

Oulu-CASIA ( Zhao, Huang, Taini, Li, & PietikInen, 2011 ) NIR VIS

atabase consists of 80 persons where each person has six image-

equences corresponding to the six-basic expressions. Each se-

uence begins with the neutral face and ends with the peak of the

orresponding expression. We selected the last three frames from

ach sequence as we did with CK+ database. In total, we got 1440

olor images with resolution of 320 × 240 pixels. 

MMI ( Valstar & Pantic, 2010 ) consists of 208 videos that are la-

eled as one of the six-basic expressions. These sequences are ob-

ained from 31 persons. In contrast to CK+ and CASIA, MMI peak

xpression frames are unknown. MMI’s clips begin with the neu-

ral face and end with it and the expression is in between. We

pproximated three peak frames in the middle of each clip, so we

btained 624 color images with resolution of 720 × 576 pixels. 

In the collection of the static images from image sequences,

e followed the research community protocol, in which the last

hree frames of each sequence are selected for CK+ and CASIA

ai et al. (2018) ; Kuo, Lai, and Sarkis (2018) ; Xie et al. (2019) and

he three middle frames are selected for MMI database ( Cai et al.,

019; 2018; Ryu et al., 2017 ). 

. Performance evaluation

To evaluate the performance of our approach, we conducted

wo types of experiments: within-database classification and cross-

atabases classification. For within-databases experiments, we

sed Leave-One-Subject-Out (LOSO) scheme. The LOSO scheme is

 K-folds Subject-Independent Cross-Validation (K-folds SI CV) pro-

ocol where the number of folds (K) is equal to the number of

ubjects; for each fold we consider one subject’s samples as the

esting data and the rest subject’s samples will be used as training
a.2020.113459 4



Table 1

Classification accuracy (%) as a function of the number of PML levels for

each descriptor on the CK+, CASIA and MMI databases using LOSO proto- 

col. N 

∗ is the number of selected PCA features corresponding to the order 

of their eigenvalues, from highest to lowest eigenvalue.

Descriptor � CK + N 

∗ CASIA N 

∗ MMI N 

∗

12 97.20 100 78.40 140 68.44 30

10 96.55 130 78.01 170 65.83 40

PML-HOG 8 96.22 130 76.49 190 67.07 40

6 94.39 130 74.96 190 67.71 60

4 93.31 150 68.08 180 63.94 50

12 96.12 150 83.24 180 65.38 40

10 96.55 150 83.14 160 65.71 50

PML-LPQ 8 97.20 120 83.89 190 67.47 120

6 97.09 130 83.25 170 66.02 50

4 95.90 120 82.33 150 67.43 50

12 96.66 140 83.61 210 60.90 50

10 96.66 140 84.31 200 61.06 50

PML-BSIF 8 97.41 150 84.72 210 62.66 150

6 97.52 150 85.14 200 63.45 60

4 93.85 150 82.15 240 59.46 50
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ata. For the cross-databases experiments, all the three databases

re considered. Each time, one database is used as testing data and

nother one is used as training data. This cross-databases experi-

ents seek to quantify the generalization ability of our approach. 

.1. Within database experiment 

Our proposed approach relies on the use of � -PML, which has

he number of levels as a parameter. In order to determine this

arameter and fix it for subsequent use, we used CK+, CASIA and

MI databases to find the optimal number of levels for each hand-

rafted descriptor. To this end, we apply our scheme on the indi-

idual descriptors HOG, LPQ and BSIF. We used 4, 6, 8, 10 and 12

ML levels. Table 1 depicts the obtained results. From Table 1 , we

ound that the optimal number of PML-levels are 12, 8 and 6 for

OG, LPQ and BSIF, respectively, for all the evaluated databases.

fter we found the optimal number of PML-levels for each de-

criptor, we evaluated transformed individual features (three hand-

rafted types and two deep types) and four fusion schemes on CK+,

ASIA and MMI databases. For the fusion schemes, we concate-

ated equal number of transformed individual features. The opti-

al number of PCA features is obtained by grid search strategy.

he results are summarized in Table 2 . 

From Table 2 , we can notice that the fusion between the op-

imal � -PML (HOG, LPQ, and BSIF) and deep features achieved the

ighest accuracy compared with the scheme that uses an optimal

 -PML of one single descriptor on CK+, CASIA, and MMI databases.
Table 2

Performance evaluation using transformed indiv

and two deep types) and fused features on CK+, C

tocol. Four fusion schemes are tested. ψ denotes

PML-BSIF, VGG-FC7 and VGG-FC6 using PCA. N 

∗

the experiments of features fusion, N 

∗ is the op

descriptor.

Features Type \ Database CK + 

Accuracy N 

∗

12-PML-HOG (1) 97.20 100

8-PML-LPQ (2) 97.20 120

6-PML-BSIF (3) 97.52 150

VGG-FC7 (4) 90.83 90

VGG-FC6 (5) 94.39 150

(1) + (2) + (3) 98.27 150

(1) + (2) + (3) + (4) 97.30 150

(1) + (2) + (3) + (5) 97.63 130

FTDS ψ (Prop. approach) 98.27 120

DOI : 10.1016/j.eswa.
lthough the deep features (both FC6 and FC7 of VGG-Face model)

ave lower accuracy than the � -PML of a single descriptor, fusing

hem with the � -PML improves the performance. This occurred be-

ause the features type of deep features is different of the hand-

rafted ones. The proposed approach (FTDS) gave better perfor-

ance than the best individual feature by 1.07%, 4.51% and 5.63%

or CK+, CASIA and MMI databases, respectively. This proves the

fficiency of combining different feature types (three hand-crafted

ypes and two deep types) for recognizing the facial expressions in

ifferent databases. 

Table 3 depicts all the specifics of our approach and those re-

ated to the state-of-art works we considered for comparison on

he evaluated databases (CK+, CASIA and MMI). The specifics in-

ludes: the type of approach (Deep Learning, Shallow or Deep +

hallow) and the detailed information of the used databases (num-

er of subjects, number of selected frames from a sequence and

umber of expressions). 

Tables 4 , 5 and 6 illustrate the comparison between our pro-

osed approach and several recent state-of-art methods on CK+,

ASIA and MMI, respectively. All of the comparisons to the state-

f-art methods were conducted using Subject-Independent (SI)

rotocol. As we can see from the fourth column of the Tables 4,

 and 6 , there is no unique number of K-folds SI CV in the re-

earch community. Due to that, we conducted our experiments us-

ng LOSO scheme (K equals the number of subjects of the eval-

ation database) to avoid random grouping of the subjects into

olds which will be changed from one experiment to another as

xplained in our previous paper ( Bougourzi et al., 2019 ). 

Our approach gives better performance than our previous work

y 2.31%, 9.66% and 0.5% for the CK+, CASIA and MMI databases

s shown in the Tables 4, 5 and 6 , respectively. Furthermore, our

pproach achieved higher accuracy than the state-of-art methods

n the CK+ and CASIA databases as shown in Tables 4 , and 5 , re-

pectively. For CK+ database, we included, in the comparison table

 Table 4 ), two methods that have used fusion between shallow and

eep methods ( Sun & Lv, 2019; Zeng, Zhou, Jia, Xie, & Shen, 2018 ),

espite that they have not used exactly the same subjects images

s in other published works (has not selected the same number of

rames from each sequence) as depicted in Table 3 . 

On the other hand, our proposed approach is among the best

pproaches on MMI database as illustrated in Table 6 , where

he best method outperformed ours by only 0.6%. Similar to

K+ database, we included, in the comparison table ( Table 6 ), a

ethod that has used fusion between shallow and deep meth-

ds ( Zeng et al., 2018 ), despite it has not used exactly the same

ubjects images as in other published works (has not selected the

ame number of frames from each sequence and did not use all

he available subjects) as depicted in Table 3 . 
idual features (three hand-crafted types

ASIA and MMI databases using LOSO pro- 

 the fusion between PML-HOG, PML-LPQ,

is the optimal number of PCA features. In 

timal number of PCA features from each 

CASIA MMI

Accuracy N 

∗ Accuracy N 

∗

78.40 140 68.44 30

83.89 190 67.47 50

85.14 200 63.45 60

75.63 160 62.96 60

80 210 66.34 50

87.15 230 70.37 50

86.18 230 72.62 50

87.92 210 72.46 50

89.65 190 74.07 50
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Table 3

The specifics of our approach and those related to the state-of-art works we considered for comparison on the evaluated databases (CK+, CASIA 
and MMI). ∗ is the number of subjects; ∗∗  is the number of selected frames from a sequence; ∗∗∗  is the number of expressions. 

Database Article Method Type N. Sub. ∗ N. F/S ∗∗ N. Exp. ∗∗∗

Xie et al. (2019) Deep Learning 106 3 last frames 6

Li et al. (2019) Deep Learning 106 3 last frames 6

Yang, Ciftci, and Yin (2018a) Deep Learning 106 3 last frames 6

Lopes et al. (2017) Deep Learning 106 3 last frames 6

Cai et al. (2019) Deep Learning 106 3 last frames 6

Yang, Zhang, and Yin (2018b) Deep Learning 106 3 last frames 6

CK + Cai et al. (2018) Deep Learning 106 3 last frames 6

Ryu et al. (2017) Shallow 106 3 last frames 6

Cai et al. (2018) Deep Learning 106 3 last frames 6

Zeng et al. (2018) Shallow + Deep 106 1 last frame 6

Sun and Lv (2019) Shallow + Deep 106 first + 3 last frames 7

Zhang et al. (2019) Deep Learning 106 video-based (6 frames) 6

Ours Shallow + Deep 106 3 last frames 6

Yang et al. (2018b) Deep Learning 80 3 last frames 6

Kuo et al. (2018) Deep Learning 80 3 last frames 6

Yang et al. (2018a) Deep Learning 80 3 last frames 6

CASIA Otberdout, Kacem, Daoudi, Ballihi, and Berretti (2018) Deep Learning 80 3 last frames 6

Cai et al. (2018) Deep Learning 80 3 last frames 6

Xie et al. (2019) Deep Learning 80 3 last frames 6

Zhang et al. (2019) Deep Learning 80 video-based (6 frames) 6

Ours Shallow + Deep 80 3 last frames 6

Li et al. (2019) Deep Learning 20 2 middle frames 6

Cai et al. (2018) Deep Learning 31 3 middle frames 6

Cai et al. (2019) Deep Learning 31 3 middle frames 6

MMI Yang et al. (2018a) Deep Learning 31 3 middle frames 6

Ryu et al. (2017) Shallow 28 3 middle frames 6

Sun and Lv (2019) Shallow + Deep 20 1 middle frame 6

Zhang et al. (2019) Deep Learning 30 video-based (6 frames) 6

Ours Shallow + Deep 31 3 middle frames 6

Table 4

Comparison with the state-of-art methods on CK + database using Subject-

Independent protocol. ∗ Our previous method; ∗∗ the work reported in that paper 

has not used exactly the same subjects images as in other published works.

Article Method Accuracy Protocol

Xie et al. (2019) Sparse CNN 97.59 10-folds SI CV

Li et al. (2019) C-SPP 97.41 8-folds SI CV

Kuo et al. (2018) Compact CNN 97.37 10-folds SI CV

Yang et al. (2018a) DeRL 97.30 10-folds SI CV

Lopes et al. (2017) CNN 96.76 8-folds SI CV

Yang et al. (2018b) CNN 96.57 LOSO

Cai et al. (2019) IF-GAN 95.90 10-folds SI CV

Cai et al. (2018) IL-CNN 94.39 LOSO

Ryu et al. (2017) LDTP 94.2 LOSO

Cai et al. (2018) IL-VGG 91.64 LOSO

Zeng et al. (2018) ∗∗ GSF + CNN 97.35 10-folds SI CV

Sun and Lv (2019) ∗∗ CNN-SIFT + SVM 94.13 8-folds SI CV

Bougourzi et al. (2019) (Pr) ∗ MB-fusion-PCA 95.96 LOSO

Proposed approach FTDS 98.27 LOSO

Table 5

Comparison with the state-of-art methods on CASIA database using Subject-

Independent protocol. ∗ Our previous method. 

Article Method Accuracy Protocol

Yang et al. (2018b) CNN 88.92 LOSO

Kuo et al. (2018) Compact CNN 88.75 10-folds SI CV

Yang et al. (2018a) DeRL 88.00 10-folds SI CV

Otberdout et al. (2018) ExpNet 84.80 LOSO

Cai et al. (2018) IL-VGG 84.58 LOSO

Xie et al. (2019) Sparse CNN 82.71 10-folds SI CV

Cai et al. (2018) IL-CNN 77.29 LOSO

Bougourzi et al. (2019) (Pr) ∗ MB-fusion-PCA 79.99 LOSO

Proposed approach FTDS 89.65 LOSO
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t  
DOI : 10.1016/j.esw
.2. Cross databases experiment 

In addition to intra-database experiments, we evaluated the

erformance of our approach in cross-databases tasks. In total, we

roduced 6 cross-databases experiments, in each one we selected

ne database as a training database and another one as the testing

ne. There are many factors that control the cross-databases re-

ults such as the caption conditions of each database images which

nclude illumination, resolution and occlusion. The number of sub-

ects and the balance of the training database also have great ef-

ect. Table 7 summarizes the results of the six cross-databases ex-

eriments using the individual optimal PML features (i.e., 12-PML-

OG, 8-PML-LPQ and 6-PML-BSIF). From the results, we observe

hat there is no individual feature type that performs better than

he others in all cross-databases experiments. In more details, we
a.2020.113459 6



Table 6

Comparison with the state-of-art methods on MMI database using Subject-

Independent protocol. ∗ Our previous method; ∗∗ the work reported in that paper 

has not used exactly the same subjects images as in other published works.

Article Method Accuracy Protocol

Cai et al. (2018) IL-VGG 74.68 LOSO

Cai et al. (2019) IF-GAN 74.52 10-folds SI CV

Yang et al. (2018a) DeRL 73.23 10-folds SI CV

Cai et al. (2018) IL-CNN 70.67 LOSO

Ryu et al. (2017) LDTP 67.86 LOSO

Li et al. (2019) ∗∗ C-SPP 59.20 7-folds SI CV

Sun and Lv (2019) ∗∗ CNN-SIFT + SVM 53.81 8-folds SI CV

Bougourzi et al. (2019) (Pr) ∗ MB-fusion-PCA 73.57 LOSO

Proposed approach FTDS 74.07 LOSO

Table 7

Cross-databases experiments using individual transformed features (three hand- 

crafted types). N 

∗ is the number of selected features corresponding to the order 

of their eigenvalues, from highest to lowest eigenvalue.

Database \ Features Type 12-PML-HOG 8-PML-LPQ 6-PML-BSIF

Tr. data Ts. data Accuracy N 

∗ Accuracy N 

∗ Accuracy N 

∗

CASIA CK + 72.32 30 78.32 40 87.92 30

MMI CK + 78.43 30 67.32 30 64.08 30

CK + MMI 63.62 30 56.41 50 52.08 40

CASIA MMI 59.62 40 60.58 70 56.09 80

CK + CASIA 50.21 50 59.58 40 63.61 60

MMI CASIA 55.14 30 56.11 40 51.39 40
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bserve that 12-PML-HOG gave the best accuracy when CK+ and

MI are used as the training and testing databases and as test-

ng and training databases. Also, 8-PML-LPQ gave the best accuracy

hen CASIA and MMI are used as training and testing databases

nd as testing and training databases. When CASIA and CK+ are

sed as training and testing databases and as testing and training

atabases, 6-PML-BSIF gave the best accuracy. 

Table 8 summarizes the results of the six cross-databases ex-

eriments using the two deep features (FC6 and FC7) and our FTDS

pproach. The comparison with the results in Table 7 shows that

he deep features achieved competitive performance with the in-

ividual descriptors. Also, the fusion between all features (FTDS)

ave the best performance in all of the six experiments of cross-

atabases, that proves the efficiency of our method on combining

ifferent features types, taking the advantage from each type and

educing their drawbacks. Also, we can observe that our approach

FTDS) can achieve high accuracy with lower feature dimension

han the raw features. 

From the FTDS results (fifth column of Table 8 ), the perfor-

ances when CK+ is the testing database are higher than those

btained when MMI or CASIA is the testing one. This occurred

ecause CK+ is less challenging than MMI and CASIA. From the

rst and second rows of the fifth column of Table 8 , we observe
Table 8

Cross-databases experiments using individual 

and the proposed fused features (The three han

N 

∗ is the optimal number of PCA features. In t

the optimal number of PCA features from each

Database \ Features Type VGG-FC6

Tr. data Ts. data Accuracy N 

∗

CASIA CK + 74.97 30

MMI CK + 63.86 30

CK + MMI 61.22 80

CASIA MMI 59.14 70

CK + CASIA 59.60 50

MMI CASIA 53.89 50

DOI : 10.1016/j.eswa.
hat using CASIA as training database gives higher accuracy than

hen using MMI as training database. This happened because CA-

IA database contains higher number of subjects and it is more

alanced than MMI database. From the third and fourth rows of

he fifth column of Table 8 , we observe that using CASIA as train-

ng database gives less accuracy than when using CK+. This is due

o the considerable difference in image resolution between the

raining (CASIA) and testing (MMI) databases. The image resolution

n CASIA database is 320 × 240 pixels and that of MMI database

s 720 × 576 pixels. The same phenomenon occurs when MMI is

sed as training database and CASIA as the testing one, as shown

n the fifth and sixth rows of the fifth column of Table 8 . 

Since there are few works that have tested their methods on

ross-databases tasks, we compared our approach with the state-

f-art methods that were trained and tested on the same databases

s we did. The comparison results are summarized in Table 9

hich includes two methods Sun and Lv (2019) and Zhang, Ma-

oor, and Mavadati (2015) that produced just one and two cross-

atabases experiments, respectively. From this table, we observe

hat our method achieved higher performance in these experi-

ents. Although the work described in Sun and Lv (2019) has not

sed exactly the same subjects images as in other published works

has not selected the same number of frames from each sequence

nd did not use all the available subjects of MMI database) as de-

icted in Table 3 , we made the comparison with it because they

sed fusion between shallow and deep learning methods as we

id. 

In addition, Table 9 includes one static method ( Xie et al., 2019 ),

nd an extra video-based method ( Zhang, Xia, & Liu, 2019 ) which

ade the six cross-databases experiments as we did. The video-

ased methods use sequence of images as input instead of one

ingle image and classify them entirely. To the best of our knowl-

dge, Xie et al. (2019) and Zhang et al. (2019) are the only available

orks that tested their method on the six cross-databases experi-

ents as we did. From the comparison of these results, we observe

hat our approach outperforms the static method in all six exper-
transformed features (two deep types)

d-crafted types and the two deep types).

he experiments of features fusion, N 

∗ is 

 descriptor.

VGG-FC7 FTDS

Accuracy N 

∗ Accuracy N 

∗

72.06 50 88.35 20

58.14 30 78.96 20

61.22 100 67.63 100

57.53 90 62.34 100

56.32 70 68.33 70

48.55 70 63.06 50
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Table 9

Comparison of the proposed approach with the state-of-art methods on Cross-Databases. ∗ the work reported in that paper 

has not used exactly the same subjects images as in other published works; ∗∗  video-based framework. 

Tr. data Ts. data Sun and Lv (2019) ∗ Zhang et al. (2015) Xie et al. (2019) Zhang et al. (2019) ∗∗ Ours

CASIA CK + - - 84.47 64.72 88.35

MMI CK + - 61.2 77.02 58.90 78.96

CK + MMI 53.81 66.9 60.48 67.80 67.63

CASIA MMI - - 61.46 60.49 62.34

CK + CASIA - - 42.08 61.46 68.33

MMI CASIA - - 50.83 76.10 63.06
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iments. Also, our approach performs better than the video-based

method in four experiments out of six. 

5. Conclusion

In this paper, we presented a framework for fusing the hand-

crafted features with deep features. The resulting framework can

compete with pure Deep Learning architectures. The used hand-

crafted features adopted sophisticated face representations such as

PML. Moreover, the fusion process is performed in transformed

subspaces such as PCA. Our approach is not only designed to com-

bine different hand-crafted methods, but it allows to combine the

shallow and deep features. The proposed approach performed bet-

ter than most of the State-of-art methods on both the within-

database and cross-databases experiments. As future work, we pro-

pose to exploit more descriptors and pre-trained CNN architec-

tures. In addition, we will extend our work on evaluating a com-

mittee of classifiers. We also plan to fit our approach to recognize

the facial expressions from videos. 
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