Acoustic sensing of forces driving fast capillary flows
Abstract
The popping sound of a bursting soap bubble is acquired using microphone arrays and analyzed using spherical harmonics decomposition. Using the theoretical framework of aeroacoustics, we demonstrate that this acoustic emission originates mainly from the capillary stresses exerted by the liquid soap film on the air and that it quantitatively reflects the out-of-equilibrium evolution of the flowing liquid film. This constitutes the proof of concept that the acoustic signature of violent events of physical or biological origin could be used to measure the forces at play during these events.
Origin | Files produced by the author(s) |
---|