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Abstract: We investigate both theoretically and experimentally the properties of electromagnetic
waves propagation and localization in periodic and quasi-periodic stub structures of Fibonacci
type. Each block constituting the Fibonacci sequence (FS) is composed of an horizontal segment
and a vertical stub. The origin of the primary and secondary gaps shown in such systems is
discussed. The behaviors and scattering properties of the electromagnetic modes are studied in two
geometries, when the FS is inserted horizontally between two semi-infinite waveguides or grafted
vertically along a guide. Typical properties of the Fibonacci systems such as the fragmentation of the
frequency spectrum, the self-similarity following a scaling law are analyzed and discussed. It is found
that certain modes inside these two geometries decrease according to a power law rather than an
exponential law and the localization of these modes displays the property of self-similarity around
the central gap frequency of the periodic structure where the quasi-periodicity is most effective.
Also, the eigenmodes of the FS of different generation order are studied depending on the boundary
conditions imposed on its extremities. It is shown that both geometries provide complementary
information on the localization of the different modes inside the FS. In particular, in addition to bulk
modes, some localized modes induced by both extremities of the system exhibit different behaviors
depending on which surface they are localized. The theory is carried out using the Green’s function
approach through an analysis of the dispersion relation, transmission coefficient and electric field
distribution through such finite structures. The theoretical findings are in good agreement with the
experimental results performed by measuring in the radio-frequency range the transmission along a
waveguide in which the FS is inserted horizontally or grafted vertically.

Keywords: photonic crystal; Fibonacci structure; stub; electromagnetic modes; surface modes;
self-similarity; scaling law

1. Introduction

After decades of extensive studies focusing on periodic crystals, scientific research interest have
also been extended to quasi-periodic crystals. These structures were discovered by Dan Shechtman [1]
in metallic Al-Mn alloys in 1984, for which he earned the Nobel Prize in Chemistry 2011. The samples
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of such alloys exhibit a high degree of symmetry including the fivefold and icosahedral symmetries,
which is prohibited by the rules of crystallography [1–3] and possess a long-range orientational
order instead of a translational symmetry typical of a conventional crystal. The fascinating features
of the quasiperiodic structures are that they have multiple frequency band gap regions similar to
the band gaps of periodic crystals, due to the presence of more than one form of periodicity across
these structures. Moreover, they exhibit transmission resonances and critical localized states [4].
The peculiar properties of quasi-crystals are strongly useful for the conception of potential applications
in different domains [5,6], especially optical communications technology such as optical filter [7–9],
optical fibers [10,11], microcavities and lasers [12–16], lenses [17], sensors [18,19] etc.

Studies of lower dimensional systems such as one dimensional (1D) layered media, waveguides
and aperiodic linear chains are performed as in their 2D and 3D analogues with different
applications [4,5]. Indeed, it was shown that 1D models can be considered as a first approximation
to the study of higher dimensional quasiperiodic systems [4]. Quasiperiodic structures could
be structured following different types of sequences such as Fibonacci [20], Thue-Morse [21,22],
Rudin-Shapiro [23], Double period [24,25] and Cantor [26–28]. The most well known of these systems
is the Fibonacci structures [29], which have been widely studied for several types of excitations
such as electrons [30,31], phonons [32–35], photons [36,37], magnons [38] and plasmons [39–41].
Merlin et al. [30] produced first Fibonacci structures based on GaAs-AlAs semiconductor superlattices.
Since this work, several works have been devoted to observe the exotic phenomena of Fibonacci
systems [42,43] and different interesting properties have been found [44] essentially by theoretical
studies using simple 1D models. Kohmoto et al. [31] investigated the electronic features of a
1D quasi-periodic structure organized along a Fibonacci sequence such as the self-similarity and
other critical properties of the wave functions. The first calculations of the phonon dispersion relations
in a Fibonacci superlattice was developed by Tamura et al. [32] and a number of transmission dips
associated with Bragg-like reflections of phonons has been found. In addition, a theoretical study
for the propagation and localization of acoustic waves in a Fibonacci waveguide structure made of
slender loop tubes connected together by slender tubes has been investigated by Aynaou et al. [33] and
experimentally checked by King and Cox [45]. Kohmoto et al. [36] have found that the transmission
coefficient is multi-fractal and the resonance modes exhibit scaling behavior. The first experiment
on photonic quasi-crystal based on the Fibonacci sequence has been reported by Hattori et al. [37].
It was shown that the phase spectrum exhibits clearly the self-similar structure of the dispersion
curves typical of Fibonacci lattices. The research in Refs. [36,37] have generated a large amount of
theoretical and experimental research activity in the field of 1D, 2D and 3D photonic quasi-crystals
with numerous device and engineering applications [5,6,46]. It was demonstrated that these systems
exhibit fascinating properties like the occurrence of multiple forbidden frequency regions, self-similar
spectrum and critical behavior of resonance modes, which can present an interesting alternative to
ordinary photonic crystals for the design of new photonic devices [47–59].

In addition to the multi-layer structures, few works have been devoted to quasi-periodic coaxial
photonic crystals by some of us [60–62]. In Ref. [60] Aynaou et al. studied the localization and
propagation of electromagnetic waves in a Fibonacci coaxial photonic circuits made of two blocks in
which each block is composed by a loop and segment arranged following a FS. They have found that the
symmetrical loop structure is equivalent to simple alternating layers. However, the asymmetrical loops
play the role of resonators giving rise to transmission zeros (like in Mach-Zehnder interferometer [63])
and hence new gaps which does not exist in the case of layered media. El Boudouti et al. [61]
have examined the properties of Fibonacci 1D serial loop structures where each block is made of a
segment or a loop. Particular properties have been deduced when the FS was inserted horizontally
between two waveguides or attached vertically along a guide, such as self-similarity, scaling behavior
and critical localized modes. Furthermore El Hassouani et al. [62] have extensively studied the
behavior of the surface modes in Fibonacci superlattices made from a periodic repetition of a given
Fibonacci generation.
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It is worth mentioning that a number of interesting physical properties related to the
electronic transport, charge density distribution and energy spectra in periodic and Fibonacci stub
structures have been performed theoretically by Jin et al. [64] and Nomata and Horie [65]. Also,
Chattopadhyay et al. [66] have developed a method showing the single-electron transport through
quantum stub waveguides arranged in a Fibonacci quasi-periodic pattern. The similarity between
scattering properties (equation of motion and boundary conditions) of electrons and photons, points
out that this type of features can also appear for photons [67]. Furthermore, because of their
noninteracting nature, electromagnetic waves represent an interesting tool for studying the localization
phenomena [37,47] in comparison with electrons. Therefore, photonic circuits based coaxial cables
represent an excellent platform to observe several properties of Fibonacci stubbed structures. Indeed,
these systems are more appealing for this goal than their optical counterparts since they only require
simple equipments. In addition, the propagation in these waveguides is monomode (see below) and
one can obtain experimental results with a good precision as well as theoretical results using a simple
1D model with a very good agreement between both results [67].

In this paper, we give a theoretical and experimental study of the localization and propagation of
electromagnetic waves in Fibonacci stub structures. Such structures have been studied only for periodic
structures with or without defects [68,69]. However, to our knowledge, no similar study has been
carried out for photonic Fibonacci structures. In this work, a theoretical and an experimental evidence
of the features of the transmission modes through a Fibonacci stubbed circuit structure inserted
either between two semi-infinite waveguides or grafted vertically along a guide are investigated.
The geometry of the FS proposed here is original and simple in comparison with the symmetrical loop
geometries studied before [60–62] as the stubs may present transmission zeros which do not exist in
loop structures, also the boundary conditions on the stub extremities can be changed easily which is
not the case for loop systems. Furthermore, the study of the FS in the two geometries (horizontal and
vertical) enables us to deduce typical properties of these systems such as: (i) the fragmentation of the
frequency spectrum into small bands and primary and secondary gaps, (ii) the self-similarity of the
modes in the transmission spectra as well as in the electric field distribution around a central frequency
where the quasi-periodicity is more effective, (iii) the analysis of the behavior of the eigenmodes of the
FS with different boundary conditions imposed on its both extremities. These modes are obtained by
means of a theorem developed by some of us earlier [70,71] in which the eigenmodes of a finite system
can be deduced directly from the maxima or minima of the transmission coefficient when this system
is grafted vertically along a waveguide. Among these modes, there exist different surface modes
which depend on the surface termination of the FS. (iv) The study of the transition between periodic
and quasi-periodic structures in the transmission spectra, when the former is perturbed progressively
towards the latter and vice-versa.

As mentioned above, both geometries (horizontal and vertical) provide complementary
informations on the localization and propagation of different modes in the FS. However the vertical
structure is rich of information as it enables to extract also the confined and surface modes of the finite
photonic Fibonacci crystal with different boundary conditions on its extremities. The latter boundary
modes are found quantitatively equivalent to those of the Harper model [72] in a Fibonacci photonic
quasicrystal [73], showing their topological origin [74]. The experiments are carried out using coaxial
cables in the radio-frequency region and the theoretical approach is based on the Green’s function
formalism which enables us to deduce the dispersion relations, transmission coefficients and densities
of states (DOS).

This paper is organized as follows: Section 2 is devoted to the theoretical model based on the
Green’s function approach to derive the expressions of transmission coefficients, densities of states
and dispersion relations, whereas the experimental procedure is described in Section 3. The numerical
and experimental results are provided in Section 4, when the Fibonacci stub structure is inserted
horizontally between two semi-infinite guides or connected vertically along a guide. Finally, a brief
summary of the main results of this paper is presented in the conclusion.
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2. Theoretical Approach: Green’s Function

We consider a 1D quasi-periodic structure composed of two blocks A and B stacked following
the Fibonacci sequence [29]: Sk+1 = SkSk−1 with the initial conditions S1 = A and S2 = AB,
where Sk is the kth generation of the Fibonacci sequence. For exemple S3 = ABA, S4 = ABAAB,
S5 = ABAABABA,.... For the Fibonnaci structures considered here (Figure 1), the block A is formed
of identical horizontal and vertical coaxial cables of length d2 = d1 (Figure 1a), while the Block B is
similar to the block A but with different length of its vertical cable, namely d3 = d2/2 (Figure 1b).
All coaxial cables are characterized by the same impedance Z.

 

 

 

 

 

 

 

Figure 1. Schematic representation of blocks A and B constituting the Fibonacci structure. (a) The block
A consists of a horizontal coaxial cable of length d1 combined with another identical vertical stub of
length (d2 = d1). (b) The Block B is similar to the block A but with the length of the vertical stub of
length d3 = d2/2. All cables are characterized by the same impedance Z. (c–e) give the shape of the
Fibonacci sequences S3, S4 and S5 respectively. (f) A finite Fibonacci structure (6th generation) inserted
horizontally between two semi-infinite waveguides. (g) A finite Fibonacci structure (5th generation)
grafted vertically along a waveguide.

The localization and the propagation of electromagnetic waves in the Fibonacci structures depicted
in Figure 1f,g, are performed within the framework of the interface response theory of continuous
media [75]. This theory enables to calculate the Green’s function of any heterogenous system containing
a large number of interfaces separating different homogenous media. In what follows, the fundamental
equations and the basic concepts of this theory [75] are presented. We consider an heterogenous system
composed of N different homogeneous sub-systems defined in their domains Di (D =

⋃
Di being

the whole space of the system). Each subsystem “i” is connected in general to j (1 ≤ j ≤ J) other
pieces through sub-interface domains Mij (Mi =

⋃
Mij being the interface space of the sub-system “i”).

All these interface spaces Mi constitutes what is called the interface space M of the heterogenous
material. In this theory, the elements of the Green’s function g(DD) of a composite material is given
by [75]

g(DD) = G(DD)− G(DM)G−1(MM)G(MD) (1)

+G(DM)G−1(MM)g(MM)G−1(MM)G(MD),
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where G(DD) is the reference Green’s function constituted from the superposition of the truncated
bulk Green’s functions of each piece defined in its space domain Di. g(MM) corresponds to the Green’s
function of the composite system in the whole interface space M. The inverse of g(MM) enables to
calculate the dispersion relations of the composite system using the following expression [75]

det[g−1(MM)] = 0. (2)

Also, using this theory, Equation (1) enables to calculate the eigenvectors u(D) of the composite
material from the relation [75]

u(D) = U(D)−U(M)G−1(MM)G(MD) + (3)

U(M)G−1(MM)g(MM)G−1(MM)G(MD),

where U(D), U(M) and u(D) are row vectors. In particular, if U(D) represents a bulk wave launched
in one homogeneous piece of the whole system [67], then Equation (3) enables to calculate the
transmission and reflection coefficients through the system.

The calculation of the Green’s function of a FS in the whole interface space M, requires the
knowledge of the surface elements of its elementary constituents, namely, the Green’s function of
the block A (Figure 1a) and of the block B (Figure 1b). The explicit expressions of the 2 × 2 matrices
of these two blocks are given by Equations (A6) and (A7) in the Appendix A. Also, the method for
deriving the inverse surface Green’s function matrix of the whole FS (Figure 1c–e) is described in the
Appendix A for the 4th generation for example. g−1

FS (Me Me) can be written as

[gFS(Me Me)]
−1 =

(
a b
b c

)
, (4)

where Me = {0, L} is the space of interfaces at both free extremities of a given FS and L is the total
length of the structure. a, b and c are real quantities, functions of the different parameters of the
constituent’s elements. The derivation of these parameters is described in Equations (A6) and (A7) of
the Appendix A.

Let us consider the finite FS structure delimited by two homogeneous semi-infinite waveguides
labeled s characterized by their inverse surface Green’s function at the surface x = 0 or x = L
(see Equation (A5) in the Appendix A)

gs(0, 0)−1 = gs(L, L)−1 = −Fs, (5)

where Fs = −jω/Zs, Zs is the impedance of semi-infinite waveguide and ω is the angular frequency.
Then the inverse Green’s function of the whole horizontal composite system (Figure 1f) can be obtained
from a superposition of the matrix given in Equation (4) surrounded by two semi-infinite waveguides
on both sides (Equation (5)) such as

[gh(Me Me)]
−1 =

(
a− Fs b

b c− Fs

)
. (6)

Similarly, the inverse Green’s function of the whole vertical system (Figure 1g) can be obtained
from a superposition of the matrix given in Equation (4) surrounded by two semi-infinite waveguides
on one side (Equation (5)) such as

[gv(Me Me)]
−1 =

(
a− 2Fs b

b c

)
. (7)
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Here h and v stand for horizontal and vertical insertion of the finite FS. As a preliminary remark,
let us notice from Equations (2) and (7) that one can deduce the expressions giving the eigenmodes of
the Fibonacci sequence in two particular cases:

(i) when the magnetic field vanishes on both sides of the FS structure (i.e., Zs → ∞ or equivalently
Fs = 0), one obtains:

ac− b2 = 0. (8)

(ii) When the electric field vanishes on the side of the structure which will be grafted on the
waveguide and the magnetic field vanishes on the free surface (i.e., Zs = 0 or Fs → ∞),
one obtains:

c = 0. (9)

Now, the determination of the properties of wave propagation and localization in a
Fibonacci system inserted (grafted) horizontally (vertically) between two homogeneous waveguides
labeled s (Figure 1f,g), requires the calculation of the transmission coefficient of an incident plane
wave launched from the left semi-infinite waveguide and traveling through the system. From the bulk
Green’s function (Equation (A1)) and Equations (6) and (7), one can get the transmission functions for
the horizontal and vertical structures such as: th = −2Fsgh(0, L) and tv = −2Fsgv(0, 0) respectively.
Therefore, one obtains

th =
−2Fsb

ac− b2 − (Fs)2 − (a + c)Fs
, (10)

and
tv =

−2Fsc
ac− b2 − 2Fsc

. (11)

Let us notice that from Equation (11), the eigenmodes of the FS with the boundary conditions of
type E = 0 on one side and H = 0 on the other side (Equation (9)) are obtained from tv = 0 (i.e., c = 0)
and the eigenmodes of the FS with the boundary conditions of type H = 0 on both sides (Equation (8))
are obtained from tv = 1 (i.e., ac− b2 = 0).

3. Experimental Procedure

The experiments were performed using standard coaxial cables with different lengths and identical
characteristic impedance Zc, combined with metallic T-shaped connectors. The validity of our results
is subject to the requirement that the cross section of the waveguide is negligible compared to their
length and to the propagation wavelength. Indeed, it is well established that within such assumption
and for frequencies below the cut-off frequency ( fc), only transverse electromagnetic modes (TEM) can
propagate. The threshold frequency fc below which the propagation becomes monomode, is given
by [76]

fc = 190.85/(εr(dout + din)) (GHz), (12)

where dout = 3± 0.1 mm is the dielectric diameter (i.e., the interior diameter of the outer conductor),
din = 0.8± 0.02 mm is the diameter of the inner conductor and εr is the dielectric permittivity (εr = 2.3)
of the polyethylene between the two conductors, which corresponds to a nominal propagation speed
of 0.66c. For dout = 3 mm and din = 0.8 mm, one obtains fc = 33.11 GHz which is sufficiently above
the domain of frequencies considered in this work.

The characteristic impedance Zc of the cables is given by [76]

Zc = 138 log(dout/din)/
√

εr. (13)

From the above values of dout and din, one can find the characteristic impedance Zc = 50± 3 Ω.
The electromagnetic impedance at the free ends of the resonators of lengths d2 (Figure 1a) and
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d3 (Figure 1b), may be adapted in order to realize the boundary condition E = 0 (short-circuit) or
H = 0 (open-circuit).

The experimental measurements (including the amplitude and the phase of the transmission
coefficients) were measured in the frequency range 0–200 MHz by means of a broadband vector
network analyzer (VNA) Agilent PNA-X N5242A. The VNA allows accurate measurements of the four
S parameters with an error less than 0.2%. The uncertainty on the measurements of the amplitude and
phase are around 0.5 mV and 0.01◦ respectively.

The attenuation inside the coaxial cables was simulated by introducing a relative dielectric
permittivity ε (ε = ε′− jε′′) where ε′ and ε′′ are the real and imaginary parts of the dielectric permittivity
respectively. The attenuation coefficient α′′ can be expressed as α′′ = ε′′ω/c. From the data supplied
by the manufacturer of the coaxial cables in the frequency range of 0 to 200 MHz, one can deduce a
fitted expression of α′′ such as ln(α′′) = γ + δ ln(ω), where γ and δ are two constants. This fitting
procedure enables to deduce a useful expression for ε′′ versus the frequency, namely ε′′ = ( f

f0
)−0.5

where the frequency f is expressed in Hz and f0 = 9200 Hz. Further details and a photograph of the
experimental setup can be found elsewhere [77,78].

4. Numerical and Experimental Results

Before developing the numerical and experimental results, we shall give a description of the
different geometrical structures considered in this work. As mentioned above the periodic and
Fibonacci structures considered here are constituted from two blocks A and B. The block A is made
of an horizontal waveguide and a vertical stub of the same length (i.e., d1 = d2 = 1 m) (Figure 1a).
The shape of the block B is made of the same horizontal segment as for the block A (i.e., d1 = 1 m),
whereas the vertical stub is characterized by a different length d3 = d2/2 = 0.5 m (Figure 1b).
Therefore, one obtains the Fibonacci sequences S3 (ABA), S4 (ABAAB) and S5 (ABAABABA) ...
sketched in Figure 1c–e respectively. For the sake of simplicity, the horizontal segments separating
the stubs are chosen similar in such a way that only the stubs follow the Fibonacci rule. However,
the theoretical results developed here can be applied also to any lengths of the waveguides constituting
the blocks A and B. The particular case of periodic structures can be either obtained from only A blocks
or only B blocks. All the waveguides are made of the same standard coaxial cables. The boundary
conditions at the ends of the stubs are chosen such that E = 0 (short-circuited).

4.1. From Periodic to Fibonacci Sequence and Vice Versa

Before giving the transmission spectra of a given FS composed of A and B blocks, it will be
interesting to understand first the dispersion curves of the periodic structures made of only A blocks
or only B blocks. The dispersion relation of an infinite periodic comb-like structure constituted by a
segment of length d1 and a stub of length dm (m = 2 or 3) is given by [67]

cos(kBd1) = cos(ωd1
√

ε/c) + 0.5 cos(ωdm
√

ε/c) sin(ωd1
√

ε/c)/ sin(ωdm
√

ε/c), (14)

where kB is the Bloch wave-vector.
In the particular case of a periodic structure composed of B blocks (i.e., dm = d3 = d1/2 = 0.5 m),

then Equation (14) becomes simply cos(kBd1) = 3 cos(ωd1
√

ε/c)/2+1/2. Therefore, the band edges are
given by ωd1

√
ε/c = arccos(1/3) at the center of the Brillouin zone (BZ) and ωd1

√
ε/c = π [mod. 2π]

at the limit of the BZ. This result shows that the allowed bands close at the limit of the BZ, whereas the
limits of the bands at the center of the BZ are given by f = 38 MHz and f = 140 MHz. In addition,
the band gaps are periodic every ωd1

√
ε/c = 2π (i.e., f = 196 MHz). These results are in accordance

with the dispersion curves sketched in Figure 2a inside the first BZ. The transmission spectra through
a finite periodic structure composed of 13 B blocks is plotted in Figure 2b. A wide allowed band in
the frequency region [38–140] MHz and two gaps at the edges of this band can clearly be observed.
The solid (dashed) curves represent the theoretical results with (without) taking into account the
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dissipation, whereas open circles correspond to the experimental data. Despite the small number
of B blocks, the allowed (forbidden) transmission spectra coincide perfectly with the bands (gaps)
of the infinite system (Figure 2a). The theoretical results with dissipation (solid curves) are in good
agreement with experimental results (open circles). Let us notice that the attenuation inside the cables
induces a decay in the transmission amplitude, especially at high frequencies.

Similarly, in the case of a periodic structure composed of A blocks (i.e., dm = d2 = d1 = 1 m),
then Equation (14) becomes simply cos(kBd1) = 3 cos(ωd1

√
ε/c)/2. The band-gap edges are given

by cos(kBd1) = ±1 or equivalently cos(ωd1
√

ε/c) = ±2/3. Therefore, the band edges are given by
ωd1
√

ε/c = arccos(±2/3) [mod. 2π]. The first four band limits fall at f = 26 MHz, f = 72 MHz,
f = 124 MHz and f = 170 MHz, in accordance with the dispersion curves sketched in Figure 2i inside
the first Brillouin zone. The transmission spectra through a finite periodic structure composed of
13 A blocks is plotted in Figure 2h. Here also, the allowed (forbidden) transmission spectra coincide
perfectly with the bands (gaps) of the infinite system (Figure 2i) and the band gaps are periodic every
ωd1
√

ε/c = 2π (i.e., f = 196 MHz).

Figure 2. (a,i) Dispersion curves of the periodic structures composed of only B or only A blocks
respectively. (b–h): Variation of the transmittance versus the frequency for different finite structures
composed of 13 blocks A and B. (e) Transmission spectrum for generation S6 of the Fibonacci structure.
The solid (dashed) curves represent the theoretical results with (without) dissipation, whereas open
circles correspond to the experimental data.
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Now, we start perturbing the periodic structure composed of 13 B blocks (Figure 2b) by replacing
the first B block of the system with an A block. One can observe the apparition of a transmission zero
in Figure 2c around f = 98 MHz which is induced by the stub of length d2 of the A block, which plays
the role of a defect. This transmission dip appears in the middle of the allowed transmission band
corresponding to the periodic structure in Figure 2b, giving rise to a rejective filter in which all
the waves propagate through the structure except those around the frequency 98 MHz. It is well
known [67] that the frequencies of the transmission zeros induced by a short-circuited stub of length d2

grafted along a guide is given by [67] fn = nc
2d2
√

ε′
= 98n MHz (n being an integer). Therefore, the first

transmission zero (i.e., n = 1) falls at 98 MHz (Figure 2c). By substituting more B blocks by A blocks,
the dip in the transmission becomes larger as shown in Figure 2d. When several B blocks are replaced
by A blocks in order to achieve the 6th Fibonacci structure (Figure 2e), one can see that the transmission
zero around f = 98 MHz becomes a large gap, known as a primary gap, although the structure is
non-periodic. Nevertheless, the appearance of transmission dips can also be observed in the bands
around 40 MHz, 60 MHz, 130 MHz and 150 MHz. These gaps indicated with arrows in Figure 2e,
become secondary gaps when the generation number increases (see Figure 3). If we continue randomly
substituting B blocks by A blocks (Figure 2f,g), one can notice that the central gap around 98 MHz
becomes larger and the transmission dips associated to the secondary gaps in the transmission curves
of the FS disappear in order to create two separate allowed bands in the case of the system composed
of only A blocks (Figure 2h).

Figure 3. Theoretical (solid lines) and experimental (open circles) evolution of the transmission
coefficients versus the frequency for different structures. The dashed curves in (a–g) are the theoretical
curves when the absorption is not taken into account. The inset of (a) corresponds to the schematic
illustration of blocks A and B constituting the systems. (a) The periodic structure, (b–g) generation
Sk (k = 4–9) of the Fibonacci structure. One can compare the scale of the frequency axis near the central
frequency fc in the insets of the figures associated with the generations S4, S5, S6 and those of S7, S8,
S9 respectively.



Appl. Sci. 2020, 10, 7767 10 of 24

4.2. Horizontal Fibonacci Sequence: Scaling Law

In this subsection, we will discuss the properties of wave propagation and localization in a
Fibonacci sequence sandwiched horizontally between two semi-infinite waveguides (Figure 1f). To our
knowledge, neither theoretical nor experimental studies have been performed on photonic crystals
using such quasi-periodic systems. Figure 3b–g give the transmission coefficient versus the frequency
for the generations S4, S5, S6, S7, S8 and S9 composed of 5, 8, 13, 21, 34 and 55 blocks, respectively.
Solid, dashed and open circles lines have the same meaning as defined in Figure 2. In this figure, one
can distinguish two regions of frequencies: the regions where the transmission presents clear dips as
the generation number increases, which correspond to the forbidden bands, and the regions where
the transmission is more pronounced, which corresponds to the allowed bands. From these results,
it can be derived that the transmission for the Fibonacci structures (Figure 3b–g) has more than one
gap (transmission dip) with respect to the transmission spectrum of the periodic system composed
by an alternate repetition of A and B blocks (Figure 3a), especially for increasing generations of FS
(Figure 3c–g). This phenomenon is the result of the fragmentation of the spectrum (subdivision of
the bands) when the generation number increases. An interesting result illustrated in Figure 3b–g
is the occurrence of new characteristics around the frequency fc = 53 MHz at the center of the gap
associated with the periodic structure (Figure 3a). These resonances exhibit a certain order of repetition
which is a typical characteristic of Fibonacci structures. This property, known as the scaling law [36,64],
has been considered as a sign of localization of the waves in Fibonacci systems. In the frame of a
theoretical investigation of electronic transport in periodic and quasiperiodic mesoscopic structures
with stubs and using the beautiful ’trace map’ method introduced by Kohmoto et al. [36], Jin et al. [64]
demonstrated that the scaling behavior of the transmission spectra in Fibonacci stubbed structures is
characterized by the scaling factor

F =
√

1 + 4(1 + I)2 + 2(1 + I), (15)

where I is an invariant that remains unchanged at each step of the recursive repetition [36,64]. It was
demonstrated that this invariant is given by [64]

I =
1
4
[cot(

ωd2
√

ε

c
)− cot(

ωd3
√

ε

c
)]2 sin2(ωd1

√
ε/c). (16)

Similar expressions to Equations (15) and (16) have been derived by Nomata and Horie [65]
using Kohmoto-Kadanoff-Tang renormalization-group theory [79]. Furthermore, it has been
demonstrated [36,64] that the self-similarity property occurs around the frequency fc = 53 MHz
at the center of the gap of the periodic structure. This implies that the transmission coefficient should
exhibit a self-similar behavior around the central frequency with Tj+3 = Tj (i.e., the transmittance
is periodic every three generations) and according to a scaling factor F. For the frequency fc,
Equations (15) and (16) give I = 0.25 and therefore F ' 5.2. This phenomenon is clearly depicted
in the insets of Figure 3b–g near fc. One can see a high similitude of the generations S4–S7, S5–S8

and S6–S9 with a third order periodicity and a scaling factor F (see the inset around fc) as it was
found theoretically by Jin et al. [64] in quantum wires with serial stubs and El Boudouti et al. [61]
in Fibonacci serial loop structures. Nevertheless, it can be pointed out that due to the attenuation in
the coaxial cables, the similarities between the different curves around the central gap frequency fc

do not exhibit exactly the same features as it is the case in the absence of loss (see the dashed curves
in Figure 3). This is particularly pronounced for higher generations. It is worth noticing that the
above self-similarity between the transmission spectra requires the boundary condition E = 0 on the
stub ends, otherwise one can check numerically that for the boundary condition H = 0 with the same
geometrical parameters, this property is not fulfilled in all the frequency spectra.

It has been found that the localization of modes in a Fibonacci structure exhibits critical behavior
within the structure [80]. Indeed, contrary to disordered systems, these modes decrease according to a
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power law instead of an exponential law and the localization of these modes displays the property
of self-similarity [81]. In order to understand the spatial localization of the different modes in
Figures 3 and 4a,c illustrate the local density of states (LDOS) versus the space position x for the
modes located at central gap frequency fc = 53 MHz for generations S14, S11 and S8 respectively.
The LDOS reflects the square modulus of the electric field inside the structure. The LDOS shows a
self-similarity behavior [31,82] around the main peak every three generations as it is shown in the
insets of Figure 4b,c displayed for the 11th and 8th generations respectively. These results show that
the electric field around the central frequency is neither extended nor localized. This particular field
localization, which is due the quasi-periodicity arrangement of the blocks A and B in the FS, has been
explained by a multifractal analysis to understand the critical behavior of such modes [31,50,62,81,83].

Figure 4. (a–c) Represent the spatial representation of the local density of states (LDOS) [in arbitrary
units] of the mode lying at the central frequency fc = 53 MHz for the 14th generation. The insets of
(b,c) correspond to the LDOS associated with the 11th and 8th generations at fc, respectively.

The behavior of the modes lying at the band edges is also analyzed as shown in Figure 5 for the
mode f = 68.08 MHz in Figure 3f. The spectrum of LDOS is less regular compared to the band edge
resonances occurring in the periodic structure (see the inset of Figure 5 for the mode f = 61.40 MHz).
However, band edge resonances in periodic photonic crystals are non-localized states since they
propagate throughout the system and are not evanescent [31]. In contrast, the Fibonacci band edge
resonances may decay via a power law due to the non-periodic character of the blocks A and B in
these systems [36,84]. This kind of resonances has been shown to be useful in designing new complex
cavity in 1 D photonic crystals that enables the feedback for laser action in the domain of random laser
devices [85].
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Figure 5. The local density of states (LDOS) [in arbitrary units] as a function of the space position x
of the mode located at the band edge ( f = 68.08 MHz) for the 8th generation. The inset of the figure
corresponds to the LDOS associated with the periodic structure of length 34 m at f = 61.40 MHz.

4.3. Vertical Fibonacci Sequence: Confined and Surface Modes

In the following, we will discuss the case where the Fibonacci sequences are grafted vertically to an
horizontal waveguide (Figure 1g). The choice of this geometry is motivated by the fact that the maxima
and minima of the transmission spectra permit to deduce all the eigenmodes of the structure [70,71].
As mentioned in Section 2, the transmission maxima occur for the eigenfrequencies of the finite FS when
the boundary conditions at its both ends are perfect magnetic conductor type (i.e., vanishing magnetic
field). However, the transmission minima occurs for eigenfrequencies of the finite Fibonacci sequence
when the boundary conditions are perfect magnetic conductor type on the free surface of the structure
and perfect electric conductor type (i.e., vanishing electric field) on the other side which will be grafted
on the waveguide. The evolution of the transmission versus the frequency is displayed in Figure 6 for
the generations S3–S9. It is shown that there are transmission oscillations between minima and maxima
within the frequency range from 30 and 80 MHz. In addition, the theoretical results (solid curves)
are in good agreement with the experimental ones (open circles). As predicted, these findings clearly
show that the eigenmodes of the FS falling essentially inside the frequency region [30–80] MHz, where
the transmission spectra of the horizontal Fibonacci structure is more pronounced (see Figure 3).
The frequencies corresponding to the maxima of the transmittance (Figure 6) are reported in Figure 7
by dots for different generations. As a matter of completeness, Figure 7 displays the theoretical results
for the generations S10–S14. The experimental spectra of these high order generations are difficult
to measure as the modes become very close to each other (Figure 7). As predicted, the number of
eigenmodes of a FS increases with increasing the generation number. One can notice that, apart surface
modes falling in the forbidden bands at the same frequency for all generations or for one generation
over two, the other modes accumulate in the allowed bands in accordance with the results in Figure 3.

To widen the scope of our findings, Figure 8 illustrates the LDOS as a function of the space position
x for the surface modes labeled 1, 2, 3, 4 and 5 in Figure 7. These modes present different behaviors:
the modes labeled 1, 2 and 3 in Figure 7 fall at the same frequency regardless the number of generations.
Indeed, these modes are induced by the same surface terminated by block A for all generations as
illustrated in Figure 8a–c, respectively. One can notice that for the modes 1 and 2 localized in primary
gaps (Figure 7), the LDOS decreases rapidly far from the surface (Figure 8a,b), while for the mode
3 lying inside a secondary gap (Figure 7), the LDOS decreases less rapidly (Figure 8c). In addition,
the spatial localization of these modes is independent of the generation number, as shown in Figure 8a–c
for generations S6 (dashed lines) and S7 (solid lines). The modes denoted 4 and 5 in Figure 7 fall at
the same frequency every two generations. In contrast to modes 1, 2 and 3, which are induced by
the bottom surface of the FS (Figure 1g), modes 4 and 5 are generated by the top surfaces in which
the terminations are not the same for odd (block A) and even (block B) generations. Consequently,
the mode 4 (5) is induced by odd (even) generations, as illustrated in Figure 8d,e. Furthermore,
the spatial behavior of the square modulus of the electric field of the mode lying at the central
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frequency fc = 53 MHz is displayed in Figure 9b–d. Indeed, a magnification of Figure 7 around fc

(Figure 9a) shows stable modes. The behavior of the electric field of such modes are not similar to
surface modes (Figure 8), but exhibit rather a self similar behavior as for the horizontal Fibonacci
structure (Figure 4). This is illustrated in Figure 9b–d for the mode labeled 6 (12th generation) as
compared to the modes labeled 7 and 8 for the 11th and 10th generations respectively. However,
one can notice that the self-similarity occurs here every generation instead of three generations as it is
the case in Figure 4, where the range on the horizontal axis is adapted for comparison to 11th and 10th
FS generations.

Figure 6. Theoretical (solid curves) and experimental (open circles) variations of the transmittance
versus the frequency for a Fibonacci sequence inserted vertically along a waveguide (Figure 1g) for the
generations S3–S9.
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Figure 7. Dispersion of the eigenfrequencies (dots) of different generation numbers. The boundary
conditions on both sides of the Fibonacci sequence (FS) are H = 0. One can notice the existence of
primary and secondary gaps. All the discrete modes are obtained from the maxima of the transmission
spectra displayed in Figure 6. The labels 1, 2, 3, 4 and 5 represent the surface modes.



Appl. Sci. 2020, 10, 7767 15 of 24

Figure 8. (a–c) Spatial representation of the LDOS (in arbitrary units) of the modes labeled 1, 2, 3
in Figure 7 at f1 = 26.85 MHz (a), f2 = 62.10 MHz (b) and f3 = 51.38 MHz (c) respectively. Dashed
(solid) lines correspond to the 6th (7th) generation. (d,e) Same as (a–c) but for the modes labeled 4
and 5 in Figure 7 at f4 = 45.56 MHz (d) and f5 = 71.93 MHz (e), respectively. Dashed (solid) lines
correspond to the 7th (9th) and 8th (10th) generation, respectively.
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Figure 9. (a) Magnification of the FS modes around the central frequency fc = 53 MHz from Figure 7.
(b–d) The LDOS (in arbitrary units) as a function of the space position x at the central frequency fc for
the 12th generation (mode 6) where the range on the horizontal axis is adapted for comparison to 11th
and 10th FS generations. The insets of (c,d) correspond to the LDOS associated with modes 7 and 8 for
the 11th and 10th generations at fc, respectively.

As mentioned in Section 2, the minima of the transmittance plotted in Figure 6 give the eigenmodes
of the finite FS with vanishing electric field on one side and magnetic field on the other side.
These minima are reported in Figure 10 for different generations. One can notice that the eigenmodes
of this system are quite different from those of the FS with vanishing magnetic field on both sides
(Figure 10). Moreover, the primary and secondary gaps appear as the generation number increases
and some of these gaps exhibit surface modes denoted 1′ and 2′ for all generations. These modes
are induced by the short-circuited surface as illustrated by the spatial localization of the electric field
displayed in Figure 11 for these two modes. One can see clearly a decrease of the LDOS (or the square
modulus of the electric field) of these modes far from the surface when penetrating inside the bulk of
the Fibonacci system with almost the same localization length (solid and dashed curves). The typical
features of confined and surface waves in photonic Fibonacci stub structures can provide added value
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for technology applications and offer many solutions to various problems with respect to periodic
or defected structures. Moreover, the two configurations of FS proposed here can produce multiple
photonic bandgaps and different resonant peaks/dips which can be utilized as a high precision
selective/rejective filter to the incident wave. Finally, it is worth mentioning that the edge modes
in a Fibonacci photonic quasicrystal [73] are found quantitatively equivalent to those of the Harper
model [72], showing their topological origin [74].

Figure 10. Same as in Figure 7 but for a FS with vanishing magnetic field on the top surface of the
structure and vanishing electric field on the bottom surface. Here, the discrete modes are obtained
from the minima of the transmission spectra displayed in Figure 6. The labels 1′ and 2′ correspond to
the surface modes.
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Figure 11. The LDOS (in arbitrary units) versus the space position x of the modes labeled 1′ and
2′ in Figure 10 at f1 = 98.68 MHz (a) and f2 = 44.10 MHz (b), respectively. Dashed (solid) curves
correspond to the 6th (7th) generation.

5. Conclusions

We have studied both theoretically and experimentally the behavior of the propagating and
localization of electromagnetic modes in periodic and Fibonacci stub structures. Each block constituting
the Fibonacci (or periodic) structure is formed by an horizontal segment and a vertical stub.
Different features of the transmission spectra and confined modes in Fibonacci structures inserted
horizontally between two semi-infinite waveguides or grafted vertically along a guide have been
analyzed. It was shown through an analysis of the transmission spectra of the horizontal structure
that such systems exhibit the self-similar behavior of order three around the central gap frequency of
the periodic structure and the fragmentation of the frequency spectrum when the generation number
increases. Also, the spatial localization of the different modes around the central frequency shows a
self-similar behavior of order three.

Furthermore, the behavior of the eigenmodes of the FS with different boundary conditions on its
both extremities has been studied. Also, as predicted, the number of eigenmodes of the FS increases
with increasing the generation number. In addition to the allowed modes, it was shown in the case
of a FS with H = 0 boundary conditions on both sides, the existence of other modes induced by one
surface which fall at the same frequency for different generations, their spatial localization being
independent of the generation number. Moreover, the modes generated by the other surface in which
the terminations are not the same for odd and even generations, fall at the same frequency every two
generations. These findings are different from those of the FS with H = 0 on one side and E = 0 on the
other side, where the surface modes appear only on the termination with E = 0. The experiments are
performed by using standard coaxial cables in the radio frequency domain. These results are in good
agreement with the 1D theoretical model based on the Green’s function approach.

Despite the difference of scale between coaxial cables and usual photonic crystals, the physical
phenomena reported here, such as scaling law, confined and surface modes, can be obtained in their
analogues photonic crystals. In particular, by using appropriate scales, the geometries presented in
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this paper can be transposed to micro-resonators operating in microwave and optical ranges, see,
for example, our recent papers on demultiplexer circuits based on coaxial cables [86] and plasmonic
waveguides [87].
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Appendix A. Inverse Surface Green’s Function of the Fibonacci Sequence

To build the Green’s function of any heterostructure based on finite coaxial cables, we need
first the Green’s function of an infinite homogeneous isotropic dielectric cable characterized by its
characteristic impedance Zi and its relative permittivity εi. The Green’s function between two points x
et x′ of the infinite cable is given by [75]

Gi(x, x′) = − e−αi |x−x′ |

2Fi
, (A1)

with
αi = −j

ω

c
√

εi and Fi = −j
ω

Zi
. (A2)

c the speed of light in vacuum, ω is the angular frequency of the wave and j =
√
−1.

Before treating the problem of the quasi-periodic structure, it is necessary to establish the Green’s
function of its elementary constituents in their own space of interface, namely, the surface elements of
a finite cable of length d1, the stubs 2 and 3 of lengths d2 and d3 respectively and the semi-infinite wire
s. The finite cable is limited by two free surfaces (with H = 0 boundary condition) defined at x = − d1

2
and x = + d1

2 . The inverse Green’s function [g1(MM)]−1 of this system can be written in the form of a
(2× 2) matrix within the interface space Mi = {− d1

2 ,+ d1
2 } as follows [67]

[g1(MM)]−1 =

(
− F1C1

S1

F1
S1

F1
S1

− F1C1
S1

)
. (A3)

When the boundary condition on the upper end of the stubs 2 and 3 (Figure 1) is of type E = 0,
the inverse of the Green’s function on the lower end is given by [67]

gi(−di/2,−di/2)−1 = − FiCi
Si

(A4)

with Ci = cosh(αidi) and Si = sinh(αidi) (i = 1, 2, 3) (see Figure 1).
The inverse of the surface element of the semi-infinite cables s surrounding the FS structure, is

given by [67]
gs(0, 0)−1 = −Fs (A5)

where Fs = −jω/Zs and Zs is the characteristic impedance of the semi-infinite cables.
From Equations (A3) and (A4), one can deduce easily the inverse Green’s functions [gA(MM)]−1

and [gB(MM)]−1 of blocks A and B, respectively as follows

[gA(MM)]−1 =

(
aA bA
bA cA

)
(A6)
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and

[gB(MM)]−1 =

(
aB bB
bB cB

)
, (A7)

with aA = aB = − F1C1
S1

, bA = bB = F1
S1

, cA = − F1C1
S1
− F2C2

S2
and cB = − F1C1

S1
− F3C3

S3
.

The inverse Green’s function of a given Fibonacci sequence can be built as a superposition of
those of blocks A and B arranged following the Fibonacci rule. The space of interface M is composed
of all the connection points between the different finite size cables constituting the system. The inverse
of the matrix g(MM)−1 giving all the interface elements of the Green’s function g is a finite tridiagonal
matrix formed by a linear superposition of the above elements g(i=A,B)(Mi Mi)

−1 (Equations (A6)
and (A7)).

For example, in the case of the fourth Fibonacci structure S4 = ABAAB, the matrix g(MM)−1 can
be written in the following tri-diagonal matrix form:

[gFS(MM)]−1 =



aA bA 0 0 0 0
bA cA + aB bB 0 0 0
0 bB cB + aA bA 0 0
0 0 bA cA + aA bA 0
0 0 0 bA cA + aB bB
0 0 0 0 bB cB


. (A8)

Now, in order to get the inverse Green’s function of the whole system only on its two free
extremities Me = {0, L} (L being the total length of the structure), we invert numerically the matrix
[g(MM)]−1 (Equation (A8)) and keep only the elements at both extremities of the truncated matrix
(i.e., the elements (1,1), (1,6), (6,1) and (6,6)) to form a (2× 2) matrix. The inversion of the latter matrix
enables to get the (2× 2) Green’s function matrix of the FS in the following form

[gFS(Me Me)]
−1 =

(
a b
b c

)
. (A9)

The four matrix elements in Equation (A9) are real quantities functions of the different parameters
of the constituent’s elements g(i=A,B)(Mi Mi) (Equations (A6) and (A7)). From the elements in
Equations (A5) and (A9), one can deduce analytically the expressions of the dispersion relations
as well as the transmission coefficients in a simple form as it is described in Section 2.
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