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ARTICLE

Long-range nonspreading propagation of sound
beam through periodic layered structure
Yurii Zubov1, Bahram Djafari-Rouhani2, Yuqi Jin 1, Mathew Sofield1, Ezekiel Walker 1,3, Arup Neogi 1✉ &

Arkadii Krokhin1✉

Linear spreading of a wave packet or a Gaussian beam is a fundamental effect known in

evolution of quantum state and propagation of optical/acoustic beams. The rate of spreading

is determined by the diffraction coefficient D which is proportional to the curvature of the

isofrequency surface. Here, we analyzed dispersion of sound in a solid-fluid layered structure

and found a flex point on the isofrequency curve where D vanishes for given direction of

propagation and frequency. Nonspreading propagation is experimentally observed in a water

steel lattice of 75 periods (~1 meter long) and occurs in the regime of anomalous dispersion

and strong acoustic anisotropy when the effective mass along periodicity is close to zero.

Under these conditions the incoming beam experiences negative refraction of phase velocity

leading to backward wave propagation. The observed effect is explained using a complete set

of dynamical equations and our effective medium theory.
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The dependence of the index of refraction on wavelength,
n= n(λ) known as dispersion, is responsible for a wide
variety of effects in optics and acoustics. In particular,

dispersion is the main reason for broadening of a wave packet
propagating in a dispersive medium. Only in a hypothetical dis-
persionless medium does a signal propagate without changing its
shape. However, even in this case a collimated beam of initial
width σ0 conically spreads. Spreading is due to the presence of the
Fourier components with wave vectors making angle Δθ ~ λ/(σ0n)
with direction of propagation.

It was demonstrated recently that initially spatiotemporaly
modulated optical pulses may propagate in a linear medium
without dispersion and diffraction1. In these 3D light bullets, the
effects of dispersion and diffraction are not manifested and
evolution of the packets is reduced to translational displacement
without form change. Initial localization of the wave packet in 3D
is achieved due to transversal modulation by a Bessel function
and due to longitudinal and temporal modulations by an Airy
function. Each function represents an exact solution of the
corresponding wave equation which exhibits shape-invariant
propagation2–5.

In acoustics, the area of dispersion/diffraction-free propagation
of signals is less developed. Generation and diffraction-free pro-
pagation of a bottle-shaped localized acoustic pulses in a homo-
geneous medium was demonstrated by Zhang et al. 6. A helical
structure metamaterial possessing a large effective index of
refraction for audible sound was proposed by Zhu et al. 7. Despite
high values of neff ~ 10, the index of refraction was practically
independent of frequency, i.e. a slow sound wave did not suffer
from dispersion spreading. Dispersionless propagation of
mechanical gravity waves with nonlinear spectrum was observed
on the surface of a water tank8. In all these experiments, as well as
in the experiments with light pulses, the nonspreading propaga-
tion becomes possible due to a specially prepared initial wave
packet.

In practical applications of acoustics in industry, biology, or
medicine the most common signal generated by a transducer is a
Gaussian beam. Divergence of a beam reduces sound energy
concentration, resolution of acoustic imagining, and depth of
penetration of the sound wave into a scanning medium. These
and other drawbacks of acoustic devices may be improved by a
robust and inexpensive method of collimation of acoustic beams.

In this paper, we report long-distance and nonspreading pro-
pagation of an acoustic Gaussian beam through a periodic stack
of solid–fluid layers with hyperbolic dispersion. Strong suppres-
sion of the dispersion broadening of a Gaussian beam is predicted
and observed for a set of angles of incidence and frequencies of
sound when the dispersion coefficient vanishes exactly. This effect
is due to some peculiarities in the dispersion law of the mixed
acoustic mode propagating in strongly anisotropic layered
environment.

Results
Evolution of a Gaussian beam. Propagation of a Gaussian beam
in a dispersive medium is a standard problem of wave
dynamics. Let a monochromatic source generate a pressure
beam at x= 0 of width σ0 along axis y, pðx ¼ 0; y; tÞ ¼
p0 exp ik0yy � y2=4σ20 � iω0t

� �
. The beam propagates in an

anisotropic elastic medium with nonlinear dispersion ω= ω
(kx, ky). The direction of the z-axis is chosen in such a way that
the wave vector has two nonzero components, k0= (k0x, k0y, 0).
To emphasize the effect of nonspreading propagation we
assume that the beam is homogeneous along z, i.e. its width
along z is much greater than along y. Under this condition,
z-dependence of pressure in the wave can be ignored.

The distribution of pressure in the region x > 0 is obtained by
integration over ky of the spatial Fourier components of p(x=
0, y, t) with phase-accumulation factor exp½iðkxx þ kyyÞ�.
Asymptotical behavior of this integral is obtained by quadratic
expansion of the diffraction relation kx= kx(ky, ω0) near k0y (see,
e.g. ref. 9)

pðx; y; tÞ ¼ p0e
iðk0�r�ω0tÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� i Dx2σ20

q exp � y þ xVð Þ2
4σ2ðxÞ 1þ i

Dx
2σ20

� �� �
: ð1Þ

Here σðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ20 þ Dx=4σ0ð Þ2

q
is the coordinate-dependent

width of the beam, Vðk0yÞ ¼ ∂kx=∂kyjky¼k0y
is the inclination

parameter, and Dðk0yÞ ¼ ∂2kx=∂k
2
y jky¼k0y

is the diffraction

coefficient of the medium9–11. At short distances,
x < σ20=jDðk0yÞj, the diffraction can be neglected. At longer
distances, x � σ20=jDðk0yÞj the width of the beam grows linearly
with x and the beam approaches a conical shape with the opening
angle Δθ ¼ arctanðjDjÞ. Thus, the diffraction coefficient D defines
the rate of beam spreading in spatial domain. The diffraction is
normal if D < 0, otherwise it is anomalous.

The inclination parameter V(k0y) gives the direction of the
transverse shift off the center of the Gaussian beam. The center of
the beam follows the straight line y=−Vx, which is parallel to
the vector of group velocity Vg ¼ ð∂ω∂kx ;

∂ω
∂ky
Þ. In an anisotropic

medium the group Vg and phase Vph ¼ ðω=kÞk̂ velocities are not
parallel.

Linear diffraction spreading does not occur if D(k0y)= 0. This
condition can be realized if for certain frequency and direction of
propagation the corresponding isofrequency surface has a region
with zero curvature. In particular, in a medium with hyperbolic/

elliptic dispersion where ωðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2yc

2
y � k2xc

2
x

q
the diffraction

coefficient is always negative, DðkyÞ ¼ �ðc2y=c4xÞðω2=k3xÞ< 0. It

vanishes if cx ¼
ffiffiffiffiffiffiffiffiffiffi
B=ρx

p ¼ 1. This can be realized if the dynamic
mass ρx= 0, i.e. if the elastic medium exhibits very strong
anisotropy, ρy/ρx→∞. In what follows we demonstrate that the
dynamic mass density ρx may be very small in a periodic layered
water–steel lattice that gives rise to long-range nonspreading
propagation of an acoustic beam.

Nonspreading propagation of an optical beam due to zero
curvature of isofrequency surface was realized in a 3D photonic
crystal12. Later, anomalous diffraction and diffractionless propa-
gation of optical beams in discrete optical waveguides were
studied in refs. 9,10,13. Anomalies in refraction of sound related to
curvature have been observed in ref. 14. A general consideration
of anomalous diffraction in metamaterials is proposed in ref. 11.

Diffractionless propagation of acoustic beams was predicted15,16

and observed in the experiment on acoustic transmission through
perforated layered elastic structures17. It was shown that for these
structures, the isofrequency curves have hyperbolic topology.
While the elastic structures studied in refs. 15–17 were layered,
they possess 3D periodicity due to perforation of solid plates. Our
goal is to demonstrate that the diffraction coefficient D(k0y)
vanishes in a layered solid–fluid structure with one-dimensional
periodicity.

Effective dynamical parameters of a periodic layered system.
Let us consider propagation of sound waves in a periodic binary
system with layers of materials a and b and lattice spacing d= a
+ b. In the experiment, material a is water and b is steel. The
geometrical and physical parameters of the structure are given in
Fig. 1. In the long-wavelength limit kd≪ 1, a layered structure
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behaves like a homogeneous anisotropic fluid with effective mass
densities ρx and ρy= ρz and effective elastic modulus B.
Frequency-dependent effective parameters (EPs) of a layered
structure can be calculated using the method of homogeniza-
tion18 for a binary structure with high acoustic contrast between
the constituents. Generalization of the results18 to a structure
with arbitrary contrast is given in Supplementary Note 1:

ρx ¼
ρa

kb
ka
sin kaa

2 cot kbb
2 þ ρb cos kaa

2

1þ kb
ka
sin kaa

2 cot kbb
2 � 2 ρb

ρa
sin2 kaa

4

;

ρy ¼ ρz ¼ ρa
kad
2

cos kaa
2 cot kbb

2 � ρakb
ρbka

sin kaa
2

sin kaa
2 cot kbb

2 þ ρa
ρb

ka
kb
� 2 kb

ka
sin2 kaa

4

h i ;

B ¼ λa
kad
2

cos kaa
2 cot kbb

2 � ρakb
ρbka

sin kaa
2

sin kaa
2 cot kbb

2 þ λaka
λbkb

� 2 kbρa
kaρb

sin2 kaa
4

:

ð2Þ

Here kaðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðω=caðbÞÞ2 � k2y

q
is the x-component of the wave

vector in the layer a(b) and caðbÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λaðbÞ=ρaðbÞ

q
is the velocity of

longitudinal sound. To simplify calculations the transverse
mode in the solid layer was ignored in derivation of the EPs Eq.
(2). However, this approximation turns out to be sufficient to
semi-quantitatively analyze the effect of nonspreading propa-
gation. Note that the EPs depend on ω and k accounting for
temporal and spatial dispersions. In the quasi-static limit, ω→
0 formulas (2) are reduced to Rytov’s results19, ρx= (aρa+
bρb)/d, ρ�1

y ¼ ðaρ�1
a þ bρ�1

b Þ=d, and B�1 ¼ ðaλ�1
a þ bλ�1

b Þ=d.
Frequency-dependent components ρx and ρy of the effective
density tensor and the effective compliance are shown in
Supplementary Figs. 1 and 2.

Analysis of isofrequency curves. The dispersion relation

ω2=B ¼ k2x=ρx þ k2y=ρy ð3Þ
with the EPs (2) reproduces well the long-wavelength region of
the band structure obtained for the water–steel layers. In Fig. 1
the first three transmission bands are plotted for sound Bloch

wave with Bloch vector kx varying within the first half of the
Brillouin zone and conserved ky= 89 m−1 propagating in
water–steel periodic lattice. Exact dispersion curves account for
transverse and longitudinal modes are shown in black and those
obtained in the effective medium approximation in red. The
second band has anomalous dispersion where ∂ω/∂kx < 0. It starts
at frequency f= 106.8 kHz. When the angle γ= 0 the band edge
is red-shifted to the frequency f0= 104.8 kHz (see Supplementary
Fig. 3).

Near the frequency f0 the dispersion relation, f= f(kx, ky) is
represented by a saddle surface shown in the inset to Fig. 2.
Horizontal planes cutting the saddle surface above and below the
level of f0 give two sets of isofrequency curves topologically
similar to hyperbolas. These two sets are separated by the
isofrequency contour f(kx, ky)= f0 as shown in Supplementary
Fig. 4. The separatrix is not a straightline since the curves are not
canonical hyperbolas. Two orthogonal parabolas passing through
the saddle point are highlighted in red in the inset to Fig. 2.
Projections of these parabolas on the horizontal plane form a
local set of coordinates for the hyperbolic-like curves. Each
coordinate line is the axis of symmetry of the hyperbolic-like
curves. In Fig. 2 black and blue curves represent the two sets of
hyperbolic-like isofrequency curves. The green line represents an
isofrequency curve for f= 24 kHz with elliptic-like (normal)
dispersion corresponding to the first transmitting band in Fig. 1.

For propagation along the lattice axis, ky= 0, the band gap
occupies the interval f1 < f < f2, where the gap edges f1= 46.7 kHz
and f2= 77.5 kHz are reached at the edge of the Brillouin zone,
kx= π/d= 314m−1. The isofrequency curves in the first passing
band (f < f1) are closed since equation f= f(kx, ky) has real
solutions for any direction of propagation. For the frequencies
slightly above f1 a narrow interval of the directions of propagation
almost parallel to the axis, ky << kx becomes inaccessible. This
interval increases with f. Thus, the topological transition from
closed to opened isofrequency curves occurs at f= f1. Evolution of

Fig. 1 Band structure of periodic water steel lattice. Black lines show the
exact dispersion, ω ¼ ωðkxÞjky¼const at ky= 89m−1 (see Supplementary
Note 2). Red lines represent the same dependence obtained in the effective
medium approximation given by Eqs. (3) and (2). Solid lines are for passing
bands and dashed lines are for band gaps. Inset is the symmetric unit cell
with a= 9.11 mm, b= 0.89mm, and d= 10 mm. Elastic parameters for
water (a) and steel (b) are the following: λa= 2 × 109 Pa, ρa= 103 kg m−3,
λb= 1.15 × 1011 Pa, μb= 7.7 × 1010 Pa, ρb= 7.8 × 103 kg m−3. Note that only
half of the Brillouin zone is shown.

Fig. 2 Structure of the isofrequency curves. Three isofrequency curves
representing elliptic-like (green) and hyperbolic-like (black and blue)
dispersion. Bloch waves have elliptic-like dispersion in the first passing
band, and hyperbolic-like dispersion in the second band. Transition occurs
through the band gap. Dash-dotted blue curve is the result of the effective
medium theory (EMT) obtained from Eqs. (2) and (3). The frequencies
corresponding to hyperbolic-like dispersion lie slightly above and slightly
below the saddle point at f0= 104.8 kHz. The saddle point is the point of
crossing of two parabolas marked by red lines in the inset. The arrows show
the directions of the phase and group velocities for the Bloch waves with
the same projection ky, which is conserved at the water–steel boundaries.
The crossing of the vertical line ky= 89 (ky= 71) with solid (dash-dotted)
blue curve occurs at kx=−51 m−1 (kx=−71 m−1) that corresponds to the
angle γ= 60° (γ= 45°).

COMMUNICATIONS PHYSICS | https://doi.org/10.1038/s42005-020-00422-1 ARTICLE

COMMUNICATIONS PHYSICS |           (2020) 3:155 | https://doi.org/10.1038/s42005-020-00422-1 | www.nature.com/commsphys 3

www.nature.com/commsphys
www.nature.com/commsphys


isofrequency curves with frequency is shown in Supplementary
Figs. 4–6.

The two blue curves are the plots for f= 105.1 kHz, which
belongs to the second transmission band with anomalous
dispersion. The solid blue curve is obtained from the exact
dispersion relation derived for a solid–liquid layered structure
taking into account longitudinal and transverse modes in metal
plates (see Supplementary Note 2). The dash-dotted blue line is
the result that follows from the effective medium theory, where
the transverse mode is neglected. Because of this approximation
and also since the parameter kxd ≈ 0.5 is not sufficiently small to
provide the quantitative validity of the effective medium theory,
the solid and dash-dotted blue lines deviate from each other.

Topologically, both blue curves are similar to hyperbolas.
However, they are not given by a canonical second-order
hyperbolic equation. The dash-dotted blue curve is obtained
from Eqs. (2) and (3). Since the EPs in Eq. (2) depend on ky, Eq.
(3) becomes a transcendental equation. Unlike canonical
hyperbolas, both blue curves contain regions with positive,
negative curvatures, and a flex point. Blue solid vertical line in
Fig. 2 marks the position of the exact flex point at ky= 0.89 cm−1.
It corresponds to the direction of the Bloch vector k that
makes an angle γ ¼ arctanðky=kxÞ � 60� with the negative
direction of axis x. Negative x-projections of vector k and

phase velocity V ðxÞ
ph;ref are due to anomalous dispersion. The

product VðxÞ
ph;ref V

ðxÞ
g;ref < 0 where the group velocity is always

positive. Thus, the incoming wave suffers negative phase velocity
refraction at the water–lattice interface and backward propaga-
tion inside the lattice. Similar effects were predicted for perforated
layered structures16.

Refraction of a sound beam of f= 105.1 kHz at water–lattice
interface is demonstrated by Supplementary Movie 1. It is seen
that the wave fronts in water propagate towards the lattice, i.e.
along positive direction of axis x. However, entering the lattice
under the angle of incidence θ= 10° the x-projection of their
velocity is reversed. It is a signature of negative phase velocity
refraction. It is interesting to note that negative group velocity
refraction cannot be observed at normal incidence. Unlike this,
negative phase velocity refraction and backward wave propaga-
tion exist even for normal incidence. This Supplementary Movie 2
demonstrates backward wave propagation in steel–water struc-
ture for normal incidence of acoustic beam with frequency f=
104.5 kHz lying in the second transmission band with anomalous
dispersion. However, the dispersion is normal in the third band (f
= 155.4 kHz) that results in positive phase velocity refraction (see
Supplementary Movie 3).

The flex point on the dash-dotted blue curve in Fig. 2 lies at
ky ≈ 71m−1 (see Fig. 2). At this point the dynamic density ρx ≈ 32
kg/m3 is much less than the densities of the lattice constituents. It
does not vanish exactly (unlike the case of elliptic/hyperbolic
dispersion) since the EPs in Eq. (3) are ky-dependent. We may
conclude that the nonspreading propagation of acoustic beam
occurs under the condition of very strong acoustic anisotropy, ρy/
ρx ≈ 40 (see Supplementary Note 1 and Supplementary Fig. 1).
One more visible signature is that at the flex point, group and
phase velocities are almost orthogonal. Also the dispersion curve
of the second transmission band in Fig. 1 is quite flat, that leads to
the inequality ∣Vg∣ << ∣Vph∣, which is related to strong scattering at
the interfaces20.

The isofrequency curves in Fig. 2 obtained from the exact
solution of equations of elasticity exhibit discontinuous cuts.
Sound waves with frequency and direction corresponding to the
cut do not propagate though a given layered structure. The effect
of zero acoustic transparency through a solid plate surrounded by

a fluid was recently predicted by Quotane et al. 21. This effect is
due to a narrow Fano resonance caused by interference between a
discrete trapped mode of a solid plate and a continuum of
acoustic modes of a fluid. In the experiment, the direction of
propagation of this Fano resonance is realized at must be ruled
out. Of course, the blue dash-dotted line does not show Fano
resonance since the EPs are obtained neglecting the
transverse mode.

Using Snell’s law sin θ= sin γ ¼ ca=Vph;ref the angle of incidence
is calculated to be θ ≈ 10°. This angle is counted from the positive
direction of axis x since the incident wave propagates in water
where Vg;inc � Vph;inc ¼ c2a > 0. Note, that the angle of incidence
calculated using the effective medium theory is 9° that is close to
the exact result (see Supplementary Note 2).

Numerical modeling and experimental results. Numerically
modeled transmission of a sound beam of frequency f= 105.1
kHz and angle of incidence θ= 10° through the steel–water
structure is shown in Fig. 3. The width of the beam in the x−y
plane practically does not change along its pass through a 100-
period long lattice since for the selected parameters the diffraction
coefficient D ¼ ∂2kx=∂k

2
y vanishes. However, in the 3D map of

sound intensity shown in Fig. 4, the width of the beam in the y−z
plane grows linearly because the corresponding diffraction coef-
ficient ∂2kx=∂k

2
z ≠ 0 (see Supplementary Note 3). The spreading of

the beam eventually results in interaction between the beam and
the top–bottom boundaries that manifested in unwanted multiple
reflections from the acrilic holders. However, the net effect of
these reflections is minimal since the impedance mismatch
between the acrylic and water produces a low reflection coeffi-
cient of ~8%. Also only a small part of the acoustic beam expands
over the edges of 17.8 × 17.8 cm plates, i.e. very small part of the
signal that reaches the receiving transducer suffers from multiple
reflections.

The directions of phase and group velocities in the incident
and refracted beams are indicated by arrows. The direction of the
group velocity in the refracted beam can be calculated from
Snell’s law using the definition of the group index of refraction16

ng ¼ � kyca=ω

∂kx=∂ky

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ∂kx

∂ky

 !2
vuut : ð4Þ

Fig. 3 Nonspreading transmission of acoustic Gaussian beam through
100 periods of the water steel layered structure. 2D map of pressure
produced by sound beam. In the incoming beam Vg=Vph. In the refracted
beam these vectors are almost orthogonal, in agreement with their
orientation in the isofrequency contour for f= 105.1 kHz. The angle of
incidence is θ= 10° and the angle of refraction for phase velocity is π−γ,
where γ= 60°. The angle of refraction for group velocity is γg= 35°.
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Since in Fig. 2 the derivative ∂kx/∂ky is negative at the flex point
(ky= 0.89 cm−1 with V ðxÞ

g > 0), the beam exhibits positive
refraction for group velocity, ng > 0. The angle of refraction
calculated from Eq. (4) is γg = 35∘.

This angle defines the geometry of the fabricated lattice. Due to
strong refraction of the acoustic beam at water–lattice interface,
the steel plates in the structure are vertically shifted as shown in

Fig. 5a, b. The input Gaussian beam of width σ0 ≈ 2 cm
propagates a distance 75= cos 35� � 88 cm through 75-period
long lattice. A comparison of the beam spreading in free water
versus the lattice is given in the plot inset of Fig. 5b. At 71 cm
from the emitter, the beam spreads from ≈2.7 to ≈10 cm
through free water. However, the same input spreads to only
≈3.5 cm when propagating through the lattice. Thus, the effect of
diffraction broadening is strongly suppressed in the lattice
supporting the contention that the diffraction coefficient D is
close to zero.

The condition of diffractionless propagation, D= 0, establishes
a dependence among three variables, kx, ky, and f. This
dependence can be reduced to the relation between the angle of
incidence θ and frequency f (see Supplementary Note 3). The
dependence f= f(θ) is plotted in Supplementary Fig. 7. The
frequency f= 105.1 kHz is selected as a point on the curve f= f(θ)
corresponding to relatively small angle of incidence (θ= 10°),
fitting the second transmission band close to the Γ point, and
lying away from Fano resonance.

The intensity of the signal (at the center of the beam)
transmitted through the lattice is reduced by 930 times as
compared to the signal intensity at the emitting transducer. The
ratio of the intensities averaged over the beam profile is about
500. The reduction of the transmitted signal is due to strong
reflection at the first and last metal plates, to the viscous losses
and scattering inside the lattice, and to losses outside the lattice.
The latter factor is related to the strongly inhomogeneous
acoustic field generated by the transducer displaced 8 cm away
from the first plate. Sound intensity measured near the first plate
is ≈5.5 times lower than at the transducer. The averaged signal

Fig. 5 Experimental measurement of nonspreading transmission of sound. a 75-period long structure of steel plates immersed in water. b Scheme of the
experiment and color scale distribution of pressure in the input and output beams. Inset shows normalized transversal profiles of intensity in the input
(black) and output (red) beams. Dashed blue curve is for sound beam propagating in free water measured at the distance of 71 cm from the emitter. The
normalizing factors calculated for average sound intensity for red and blue curves are 930 and 6.5, respectively. Fluctuations on the red line are due to
sharp decay of the signal away from its axis where amplitude of the signal drops to the level of noise. c Vertical displacement of the collimated beam with
slight variation of frequency of sound and the corresponding images of the input and output beams.

Fig. 4 3D modeling of transmission of acoustic Gaussian beam through
water steel layered structure. 3D distribution of sound intensity in the
layered structure. The width of the beam remains almost unchanged along
axis y. However, it grows linearly along axis z in the far field. Black dots
mark the lines of equal intensity in the transversal cross-section of
the beam.
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intensity also slightly decays (≈2 times) on the way (4 cm) from
the last plate to the receiving hydrophone. Thus, we estimate that,
passing through the lattice, the signal intensity is reduced by 500/
5.5 × 2= 45 times. Numerical modeling shown in Fig. 3 gives the
decay of the signal intensity by 36 times. This includes the losses
due to impedances mismatch and to viscosity. We attribute 45/
36 ≈ 1.3 times higher losses in the experiment mostly to scattering
at period fluctuations and absorption of sound by small amount
of air bubbles which are always present in water. The
transmission can be optimized by replacing stainless steel plates
by plates of softer material (see Supplementary Note 4 and
Supplementary Fig. 8).

The regime of backward propagation of sound inside the lattice
was demonstrated by measuring the phases of the wave at six
successive unit cells. The results are presented in Fig. 6 and the
details are given in Supplementary Note 5. Experimental and
numerical results are shown by squares and dots connected by
solid and dashed line, respectively. Red and blue symbols show
the phases of two passing waves with frequencies lying in the first
(red) and second (blue) passing bands. In the experiment the
phases of the Bloch wave that exhibit nonspreading propagation
at f= 112.7 kHz (second passing band) gradually decrease that
serves as a signature of backward propagation. Unlike this, the
phases of the wave with normal dispersion with f= 52.7 kHz (first
passing band) gradually increase. Numerically calculated phase
behaves similarly. Since in the experiment the nonspreading
propagation was observed at the frequency ≈7 kHz higher than
the theory predicts, only qualitative agreement is expected. Note
that for backward propagation the experimental and numerical
phases change much slower than for forward propagation. This
occurs because in both cases the frequencies are close to the upper

edge of the bandgap. Exactly at the band edge spatial variation of
the phase is compensated by its temporal variation since a
propagating Bloch wave becomes a standing wave.

Discussion. The divergenceless propagation results in a colli-
mated beam as shown in Fig. 5b. The emerging beam from the
lattice does not exhibit strong spreading over the 6 cm from the
end of the lattice to the end of the scanned area. From Fig. 5b
inset, it can also be seen that propagation through the lattice
maintains a strong intensity gradient at the beam edges as
compared with the weaker intensity gradient observed at com-
parable distance without the lattice. Collimation of acoustic beam
and energy funneling were previously observed due to diffraction
of incoming beam at corrugated surfaces22–24. This method
partially reduces transverse diffraction of acoustic beam. Reso-
nant interaction of the incoming sound with the surface acoustic
wave excited at a corrugated surface also reduces angular
spreading of the beam, while numerical simulations22 show
presence of lateral diffraction maxima. Lateral diffraction dis-
appears if the corresponding isofrequency surface has a flat
region11,14,25. Usually, the curvature never vanishes completely,
leading to some spreading. Experimental realization of a flat band
in acoustics was demonstrated in a 2D phononic crystal25 of steel
rods in water, and more recently in perforated Plexiglas plates in
air17. Simultaneous collimated propagation of acoustic and elec-
tromagnetic waves in phoxonic crystal of silicon rods in air was
numerically predicted26. Dissipative losses were not taken into
account and high level of collimation is achieved due to existence
of a single flex point on isofrequency line.

In these periodic structures where collimation of a sound beam
was predicted or observed, sound usually propagates through
narrow apertures that strongly enhance viscous losses. Therefore,
the length of the collimated beam did not exceed 10 cm. The
scheme proposed here is free from such drawback. Much less
energy losses allow much longer collimated propagation. Also the
angular width of the beam is much less since it is required that
curvature vanishes exactly only at a single point. From practical
point of view the 1D periodic lattice proposed here is much easier
to fabricate.

The exit position of the outgoing beam exhibits strong
dependence on frequency. Experimentally, nonspreading propa-
gation occurs at 112.17 kHz. Even small variation of the frequency
leads to noticeable vertical displacement of the output beam, as
shown by the colored beam profiles in Fig. 5c. This displacement
is due to dispersion of the refraction coefficient Eq. (4). The graph
in Fig. 5c shows calculated vertical displacement caused by small
variation of the refraction coefficient (4), and the angle of
refraction, with frequency. Calculated and measured displace-
ments are in reasonable agreement.

While the experimental results confirm most of our theoretical
predictions for nonspreading propagation, there is a disagreement
over the frequency. The effect is observed at frequency 7 kHz
higher than the theory predicts. We attribute this difference to
partial vibration coupling and subsequent minor mode shifting of
the lattice modes due to the two acrylic plates which hold the
metal plates on the top and bottom (see Fig. 5a). These holders
are not sufficiently massive to rule out sound transmission,
therefore the stiffness of the system as a whole turns out to be
higher than that of the steel–water lattice.

We have demonstrated long-range nonspreading propagation
of sound through a layered solid–liquid structure with one-
dimensional periodicity. Diffraction, usually leading to linear
divergence of the beam, is avoided due to vanishing of the
diffraction coefficient. Since this coefficient is proportional to the
curvature of the isofrequency curve, the possibility of

Fig. 6 Variation of the phase for forward and backward propagation. The
phase of propagating wave was measured (solid lines) and numerically
calculated (dashed lines) at the positions marked by stars inside the lattice.
Frequency 52.7 kHz (112.7 kHz) belongs to the first (second) passing band
with normal (anomalous) dispersion. The experiment was performed with a
10-period long structure as schematically shown in the figure. The phases
are calculated via fast Fourier transform of the average of 512 independent
time windows. The error in phase detection does not exceed 2πfΔt, where
Δt= 10−8 s is the time interval used for discretization of the input signal.
For both frequencies used in this experiment, the calculated error is ~10−3,
too small to be seen on the scale of 1 radian.
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diffractionless propagation depends on the presence or absence of
a flex point on the curve and the direction of propagation is
defined by the position of the flex point. The isofrequency curves
are obtained from the exact solution of the wave equation in the
layered structure and from the developed effective medium
theory, which accounts for temporal and spatial dispersions of the
EPs. Both methods give close results. We have shown that the
effect of nonspreading transmission is accompanied by two other
anomalies: negative phase velocity refraction and strong acoustic
anisotropy. The reported results may find applications in many
areas where robust transmission of narrow acoustic beams is
required.

Methods
Experiment. Our sample is assembled from 75 pieces of 17.78 cm square shape
grade 409 stainless steel plates with thickness b= 0.891 mm. The plates are 10 mm
apart, center-to-center with 0.1 mm tolerance. The plates are held in place by
specially fabricated acrylic top and bottom plates.

The acoustic experiment was conducted in a large deionized water tank (150 ×
90 × 60 cm), in a bistatic setup. Signal generation was achieved with a Lecroy
WaveStation2012 Arbitrary Waveform Generator set to 20 V peak-to-peak,
sweeping from 80 to 120 kHz in 80 s. A 25 mm diameter Ultran plane wave
NCG100-D25 immersion transducer served as the emitter. Detection was done
using a Müller-Platte 1 mm needle hydrophone connected to a Tektronix MDO
3024b in spectrum analyzer mode. The emitting transducer was rotated in the x−y
plane by a Thorlabs CR1-Z6 angular translation stage for variable incident angles.
The needle hydrophone was translated in the x−y plane by a two-dimensional
1500 mm by 1200 mm Newmark eBelt linear translation stage controlled by a
Newmark NSG-G2-X2 translation stage controller. Calibration of the angle and
subsequent alignment was performed for each experiment with angular tolerance
of 0.5. An automated raster scan was completed by a pre-prepared MATLAB code
with data acquired at each point for 90s. The incident angle with respect to the
lattice plane was 10°. For the incident scanned area, the beam profile was measured
60 mm from the incident lattice plate in a 9 cm × 4 cm area in 3 and 10 mm steps,
respectively (Fig. 5). The output signal was measured starting 20 mm from the last
plate with a scanned area of 9 cm × 4 cm in 3 and 10 mm intervals.

Theory. The EPs Eq. (2) are obtained from two dynamical conditions that define
the response of elastic medium on external perturbation.

First, the average acceleration of the unit cell in a Bloch wave equals to that
calculated for the equal volume of the effective medium under action of
propagating plane wave of same amplitude

�ai ¼ � 1
d

Z d=2

�d=2

∂pucðx; yÞ
∂xi

dx
ρðxÞ

¼ � 1
dρi

Z d=2

�d=2

∂phðx; yÞ
∂xi

dx; i ¼ x; y:

ð5Þ

Here puc(x, y) is the distribution of pressure within the unit cell, ph(x, y) is the
distribution of pressure in a homogeneous effective medium, and ρ(x) is the
coordinate-dependent density within the unit cell.

Second, the average deformations are also equal

ΔV
V

¼ � 1
d

Z d=2

�d=2

pucðx; yÞ
λðxÞ dx

¼ � 1
Bd

Z d=2

�d=2
phðx; yÞdx:

ð6Þ

Here λ(x) is the coordinate-dependent bulk modulus within the unit cell. Equations
(5) and (6) define the EPs not only for a binary structure but for any distribution of
density ρ(x) and elastic modulus λ(x) within the unit cell.

Derivation of the EPs ρx, ρy, and B is given in Supplementary Note 1.
The dispersion relation for fluid–solid lattice is obtained from the condition of

matching the solution of the wave equations for longitudinal mode in layer a (fluid)
with the solution for longitudinal and transverse modes in layer b (solid). Together
with the Bloch theorem for periodic medium, this leads to a set of 6 × 6 linear
homogeneous equations. Numerical simulations are conducted by using an
acoustic model in commercial software (COMSOL MULTIPHYSICS).

Data availability
All data used in this research are available from the corresponding author upon request.
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