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transients (SETs) that are typically caused by high 
energy particles striking elec-tronic devices. These 
events can lead to bitflips in sequential parts and 
mem-ory cells. This situation may propagate  to 
cause system-level fail ures and viola-tion of safety 
specifications. In safety-crit-ical systems, incorrect 
values represent a serious concern, as these systems 
must comply with strict safety standards.

Intentional attacks are another potential source 
of faults. The widespread usage of CNNs led to the 
development of sophisticated attacks. Adversarial 
attacks are among these attacks. Malicious users 
could intentionally tamper with processed data 
to fool the network. While these attacks are lim-
ited to the input, they can be easily generalized to 
other parameters of the system, such as the CNN 
weights [1].

Given the trend of high performance, sensitive 
hardware platforms and reliability issues of CNN-
hosting systems remain an underexplored topic 
yet. In fact, since CNNs can be dedicated to safety-
critical applications, one cannot rely on their inher-
ent fault tolerance aspect without deep exploration. 
The reliability of CNNs, especially those dedicated to 
safety-critical applications, should be a concern in 
the early design stage, not an afterthought.

In this work, we consider random errors resulting 
from the environment. These errors are simulated 
as bit-flips. Redundancy is a common solution to 

 Deep learning systems such as convolutional 
neural networks (CNNs) have shown remarkable 
efficiency in dealing with a variety of complex 
real-life problems. These techniques have been 
found to be deployed in widespread domains 
from main-stream applications to safety-critical 
systems. From handwritten digit recognition to 
advanced environ-mental perception for 
autonomous cars, deep neu-ral networks (DNNs) 
have demonstrated an effective ability to train 
robust feature extractors that can be successfully 
exploited by a classifier.

In the context of performance-driven design require-
ments, new hardware generations continuously shrink 
the transistor dimensions, thereby increasing circuits’ 
sensitivity to external events which can negatively 
affect their reliability. One of the major sources of these 
errors in modern embedded systems are soft errors 
such as single-event upsets (SEUs) and single-event 
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reliability issues. However, a systematic redundancy 
has high resource and energy overheads, and is not 
suitable for limited-budget systems [2].

We undertook an extensive experimental study, 
involving scenarios with different levels of error 
injection. We showed the following.

• Our experimental results successfully character-
ize the distribution of errors in layer-wise param-
eters of CNNs.

• Our approach shows that the quantization has,
counterintuitively, a positive impact on CNNs’
resilience to errors.

• This article explores the impact of weights’ bit
significance on the error resilience of CNNs. We
show that one single bit, namely the most signif-
icant bit of the exponent, needs hardening in
floating-point-based CNNs. Other bits are insignif-
icant from a reliability impact perspective.

• Our approach can be used to construct a set of
reliability guidelines for the deployment of CNNs
in critical and aggressive environments.

This article also presents a fault injection engine
operating on CNN weights. This engine studies dif-
ferent reliability issues of a given trained CNN. The 
source is made publicly available.1

Related works
Two types of fault injections were presented by 

Liu et al. [3]. They managed to achieve misclassi-
fication after a series of careful bit-flipping. They 
reported the loss of accuracy for the target class 
only. In our work, we study the impact on the overall 
accuracy. Furthermore, they assumed that the injec-
tions are selected carefully, whereas in our experi-
mental setup, injections are performed randomly to 
simulate environment faults.

In [2], a method for estimating fault tolerance in 
artificial neural networks (ANNs) is proposed. This 
method exploits the redundancy of hidden units to 
increase the network’s fault tolerance. In their results, 
a very high number of replications (more than 7) are 
needed to achieve complete fault tolerance. Our study 
locates the most vulnerable parts to reduce this over-
head when redundancy techniques are employed.

The partial fault tolerance (PFT) of ANNs during 
the training was discussed in [4]. The authors con-
sidered replication to enhance the PFT of a network. 
In [5], it was shown that only 17 bit-flips are required 

1https://github.com/cypox/CNN-Fault-Injector

to corrupt a network such as Alexnet. The authors 
carefully selected the target bits to be flipped. In this 
work, we focus on random error injections at differ-
ent levels: data representation, position in the rep-
resentation, and position in the architecture.

The inherent fault tolerance of networks has also 
been studied in [6]. However, the authors focused 
on relatively small CNNs. Their methodology is based 
on stuck-at faults. Stuck-at faults in feedforward neu
ral nets were also discussed in [7]. Replication was 
proposed as a solution to achieve fault tolerance.

Stuck-at faults were also discussed in [8]. The 
authors studied the impact of faulty multiply accu-
mulate (MAC) units on the tensor processing unit 
(TPU)’s grid-like architecture. Their results show 
that with less than 0.006% fault rate, the accuracy 
degrades dramatically. They also proposed two 
solutions by pruning and retraining. Their study con-
sidered only permanent errors in activation, since 
they claim that memory errors could be mitigated 
by error correcting codes (ECCs).

The reliability of object detection networks 
on GPUs has been studied in [9]. This study was 
based on fault injection and exploited the error-
leaking potential between GPU threads. Our study is 
platform-independent, and the results could be pro-
jected for other embedded systems.

To the best of our knowledge, this is the first 
study that explores random fault injections in CNNs’ 
weight memory, considering different quantization 
parameters, different data representations, the bit 
position, and the layer of occurring faults.

Experimental methodology
In this section, we present our setup and meth-

odology to evaluate the reliability. We use the same 
methodology as in [10] with a different experimen-
tal setup. When compared to the previous article, we 
evaluate more variables and confirm the obtained 
results on other networks.

Methodology
Without considering the physical damage, soft 

errors compromise system functionality by causing 
bit-flips in memory or in computational elements. 
Since memory errors are more critical and durable 
[10], we only focus on bit-flips in memory. In most 
machine learning accelerator designs, two mem-
ories are present: 1) the weights’ memory (Mw), 
which stores trained network parameters and 2) the 
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intermediate output memory (Mi), which stores the 
output of hidden layers.
Mi receives new values for each input. A bit-flip 

in this memory will only affect the current run, and 
only if it occurs before the subsequent layer starts 
processing. This is similar to the errors in computa-
tional parts, which is not discussed in this article. On 
the other hand, a bit-flip in Mw will remain active 
until a new network is deployed. We focus on this 
kind of errors.

To reproduce this behavior, we simulate a soft 
error in Mw by a number of bit-flips in a random 
weight, once the network is trained. Multiple studies 
are conducted based on this simulation hypothesis. 
In each study, we evaluate the robustness variable 
of a CNN-based system. The position of the flip is 
decided by the study and the evaluated variable.

• Networks: CNNs can perform a variety of tasks.
Whether it is for images, voice, text, or other
input types, classification is the most common
task performed by CNNs. Other tasks, such as
detection, uses a classification subnetwork. In
the experimental setup we propose, we only con-
sider classification networks. Consequently, the
study can be projected for other variants.

• Data set: Measuring a CNN’s accuracy requires
a labeled test set. Since test sets are usually not
labeled, we use the validation set of ImageNet,
as used in the challenge. The set contains 50,000
images with the corresponding class of each
image. The set contained 1000 classes.

• Data representation: We consider two data
representations:
• IEEE-754’s 32-bit float: This is the standard

representation format for the floating-point
format. It is the dominant representation in
CPU and GPU architectures. Many GPUs are
optimized to deal with floating-point multi-
plications. For simplicity, we refer to this rep-
resentation as  in the rest of this article.

• X-bit fixed point: We used the format from
[11]. Trading accuracy for high performance
by using low bit-widths is a common prac-
tice in CNN acceleration. This representation
uses two parameters: bit-width and fractional
length. Negative fractional lengths can be
used to represent powers of two. This rep-
resentation is referred to as Q (for quantized)
in the rest of this article.

• Injection algorithm: Based on the fault-injection
model in [10], we create a fault-injection engine.
The engine takes a trained network, a data set,
and a test type. The test type dictates the execu-
tion flow and the parameters to vary during the
test. Multiple test types are developed, and more
details are provided later in this section. Depend-
ing on the selected test type, a series of bit-flips
are performed in the network’s weights. After
each test, the engine reports the measured accu-
racy on the data set after the injection.

We consider three test types: full-network, index-
wise, and layer-wise tests.

• Full-network injection: The engine generates a list
of errors that are identified by their layer and their
position in the layer. The engine incrementally
injects errors in the network. After each injection,
we measure the accuracy of the whole data set. As a 
result, we aim to compare the two data representa-
tions in terms of inherent resilience. This compari-
son is useful to decide which data representation is
more suitable when faults are present.

• Indexed injection: In this test, the generated errors 
are injected in a fixed bit significance. The engine 
then loops over every possible position from the
least to the most significant bit.2 The result of this
test type extends to the result of the full test. After
comparing the two representations, we use this
study to explain the difference, if any. Further-
more, this helps localizing the most vulnerable
bits to protect.

• Layer-wise injection: In this test, errors are gener-
ated in the same layer with different positions.
This test is repeated for each layer while report-
ing the accuracy after each run. The number of
errors injected is proportional to the number
of parameters of each layer. This is similar to
the real world, where the soft-error rate is pro-
portional to the surface of the chip. This study
allows us to understand the inherent tolerance
of CNN layers. Finding the most vulnerable layers
will assist in creating comprehensive reliability
enhancement strategies.

These tests are repeated 60 times. In each run, the
engine generates a new set of errors and the injec-
tion of the generated errors is performed each run. 

2In the case of a trained network represented as 32-bit floating point, the engine 
loops over the 32-bit positions.
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We then present the mean of 60 runs as well as the 
maximum, the minimum, and the standard devia-
tion of the test.

A single soft error can cause multiple bit-flips. 
Furthermore, memory errors are cumulative. We fix 
the number of errors to be injected when varying the 
index of the bit-flip to 50. For layers, we inject errors 
proportional to the number of parameters with at 
least one injected error.3 An extensive study, with a 
variable number of errors, is possible; however, the 
same tendency reappears.

Experimental setup
The engine was developed in Python. For CNN 

inference, we used the framework Caffe. The code 
is made publicly available.4 As part of our study, we 
performed injections on quantized (low-precision) 
CNNs. The weights were obtained using Ristretto.

The experiments were performed on an Nvidia 
Quadro P5000 GPU with an Intel Xeon W-2123 CPU 
with a 3.60-GHz frequency.

3Scales with the size of the target layer.
4https://github.com/cypox/CNN-Fault-Injector

Convolutional neural networks 
We used four network architectures: GoogleNet, 

Alexnet, VGG16, and SqueezeNet. These networks 
were selected for their wide usage, diversity, various 
sizes, and high accuracy. Their convolutional layers 
are widely reproduced as a feature extractor in other 
models. This facilitates generalizing the obtained 
results to other networks.

For the 32-bit floating point-represented weights, 
we used trained instances from Caffe’s Model Zoo.5 
We used Ristretto to quantize and fine-tune the four 
networks into 8-bit fixed point networks without a 
huge loss in accuracy.

Experimental results
The results we collected from the engine are pre-

sented in this section. For each test type (full, layer, 
and index), we show the obtained results separately.

Impact of data representation and quantization
The results were obtained on weights represented 

as 32-bit floating points. We present a comparison of 

5Publicly available on: https://github.com/BVLC/caffe/wiki/Model-Zoo

Figure 1. Comparison between the 8-bit fixed-point representation (Q) of weights and the 
32-bit IEEE-754 representation (F ). The results of different runs are presented as the mean and the
standard deviation of the top-1 accuracy.

DOI : 10.1109/MDAT.2019.2952336 4



the impact of different data representations on the 
accuracy of different networks.

Figure 1 illustrates the result of comparing the 
two representations. The Q-representation is clearly 
more resilient than its counterpart. This tendency 
is present for the four networks with different rates. 
The theoretical reason behind this resilience is 
explained by the overall difference after injection, 
denoted A in [10]. For instance, the Q-representation 
with seven decimal bits and one integer bit will dif-
fer from the original value by at most ±1. For the  
F-representation, the difference in activations can
reach 3 × 1038 [10].

The decrease in the accuracy in VGG16 and Alex-
net is not as fast as the decrease for the same number 
of errors in GoogleNet and squeezeNet. The main rea-
son for this phenomenon is the number of weights, 
as shown in Table 1. The same number of errors has 
less impact if the number of weights is important.

Significance of bits
To further explore this decrease in accuracy, we 

investigate the individual impact of the bit position. 
The injections are performed at the same position on 
the four networks for each run. The only difference is 
the index of the bit-flip on the binary representation 

of the weight. We performed this study only on the 
F-representation. The Q-representation in invulner-
able to bit-flips, as shown in the previous results in
Figure 1.

In Figure 2, the four networks show the same 
tendency. Unless bits are injected in the exponent’s 
most significant bit, almost no impact on the accu-
racy is perceived.

Layer tolerance
The impact of injected faults may depend on 

its location within the network architecture. This 
section explores the layers’ tolerance aspect. Sim-
ilar to that discussed in the “Significance of bits” 
section, we isolate the target layer in the fault 
injection process. This isolation allows tracking 
the individual impact of the chosen layer on the 
overall accuracy.

GoogleNet and SqueezeNet have a special archi-
tecture. They are built on top of two modules, incep-
tion for the former and fire modules for the latter. 
These modules regroup a set of convolutional layers 
working in parallel on the same input. The output 
of the module is obtained by concatenating the 
outputs of each execution branch. For clarity, we 
reduced the individual layers into the correspond-
ing modules. For each module, we take the average 
accuracy of its individual layers.

Figure 3 presents the results of this study. The 
four networks tend to lose more accuracy when 
injections occur in advanced layers. This is corre-
lated to our previous results in [10]. While CNNs 
have a sequential structure, error propagation is 
not problematic in CNNs. Errors in early layers 
have, in general, less impact on the accuracy. 
This shows the implicit characteristic of CNNs to 
maintain a same behavior when incorrect values 
are forwarded. This is explained by the implicit 
redundancy in CNN weights. After training, many 
weight clusters are repeated. A small number of 
errors are found if they occur in the first layers. 
Techniques such as pruning can greatly affect this 
study. They explore weight redundancy to reduce 
computations. While they achieve high through-
put with acceptable accuracy, reliability can be 
greatly compromised [12]. This tradeoff should 
be considered to evaluate the CNN acceleration in 
aggressive environments.

It is worth mentioning that, although the mean 
value is at a comfortable accuracy, the minimum 

Figure 2. Position of bit-flips in the F  -representation 
and its impact on the accuracy. In the X-axis, red 
labels represent the mantissa, blue labels represent 
the exponent, and the sign bit is in green.

Table 1. Number of weights per network.
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accuracy reported is almost always ≈  0%.6 This 
means that in some runs, the injected errors were 
able to fully compromise the network. As rare as it 
could be, anticipating these cases by studying the 
network should precede any deployment. Also, the 
fact that a few number of errors can damage a net-
work this far is another motivation to deeply study 
the impact of faults.

Discussion

Floating point and fixed point
In contrast to common belief, the F-representa-

tion is more vulnerable to injections even though 
it has more bits. The individual impact of a bit in 
a short representation (8-bit fixed point) is greater 
than its counterpart in the F-representation. How-
ever, the divergence from the correct value is greater 
in the latter due to the nature of the representation. 
The exponent is not represented in the fixed-point 
representation. A bit-flip in any position is simi-
lar to adding or subtracting a power of 2. Since all 
weights range from -1 to +1 [1], the value added or 

6The worst case is 0.001 which is equal to randomly guessing the class over the 
1000 possibilities.

subtracted is minuscule. Hence, its impact can be 
logically masked.

Bit position
In the F-representation, not all the bits in the 

exponent are important. The impact of bits is not 
linear to the bit position but constant except for 
the most-significant bit, as shown in Figure 2. This 
is partly due to the distribution of CNN weights. 
Weights range from  -1 to +1. High values in the 
exponent are always accompanied by a negative 
exponent sign. Having a bit-flip will decrease the 
value even more, making it close to 0, which is not 
a big difference considering the range of weights. 
The only important change is the most-signifi-
cant bit of the exponent. If changed from 0 to 1, 
the new value will be orders of magnitude higher 
than the others. Combined with the maximum 
pooling, this leads to catastrophic results in the 
subsequent  layers.

Layer index
Although the general tendency shows that 

the last layers are more vulnerable, no conclu-
sions could be drawn. In other words, vulnerable 

Figure 3. Impact of faults layerwise for the four networks. Each series is represented as the mean 
top-1 accuracy (black dots), the standard deviation (red error-bars), and the minimum/maximum 
(gray fill).
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layers of a new CNN cannot be located without 
simulation. A fault injection engine such as the 
one we presented in this article should be used to 
evaluate the individual layer’s vulnerability. This 
is an extension to Netscope,7 a neural network 
visualizer and analyzer. We introduced the resil-
ience parameter, which is computed from the 
accuracy reported by the fault-injection engine. 
The modified version allows the extraction of the 
most vulnerable layers visually. An example out-
put of the analyzer is available with the engine 
source code.8

Suggestions and guidelines
The first study shows a bit difference between the 

storage formats. The floating-point representation 
should be used with caution in critical systems. The 
fixed-point representation would result in less mem-
ory and computation9 overhead with higher relia-
bility. System designers should consider this aspect 
when dealing with aggressive environments.

It was shown that the most significant bit in the 
exponent is the vulnerable part of the floating-point 
representation. Based on this conclusion, the over-
head of redundancy techniques could be reduced. 
Techniques such as triple mode redundancy (TMR) 
will replicate the whole number three times. This 
will triple the memory requirements of GoogleNet, 
for instance, whose number of weights is 6,996,452, 
thereby adding 427 MB of required storage. If applied 
exclusively to the vulnerable bits, only 13 MB would 
be necessary. This result can also be extended to the 
layer test with variable degrees of protection depend-
ing on the resilience of each layer as output by the 
injection engine.

An extensive analysis of the inherent fault tol-
erance of CNNs is proposed. We show that quanti-
zation has a positive impact on reliability. The issue 
with nonquantized networks is the data representa-
tion. For the IEEE-754 format, the most significant 
bit of the exponent is crucial for the reliability of 
CNNs. A layer-wise analysis is then performed. For 
complex networks, the reliability of the overall net-
work should be studied based on the architecture. 
The framework we developed to analyze reliability 

7https://github.com/ethereon/netscope
8https://www.github.com/cypox/CNN-Fault-Injector
9Fixed point representation is usually coupled with low precision arithmetic.  
This allows for better efficiency with comparable accuracy.

is made publicly available. This study is useful 
in localizing the vulnerable parts of CNNs and 
helps designing comprehensive low-overhead 
reliability  enhancement  techniques. 
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