
HAL Id: hal-03321520
https://hal.science/hal-03321520v1

Submitted on 21 Nov 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Are CNNs reliable enough for critical applications? An
exploratory study

Mohamed Ayoub Neggaz, Ihsen Alouani, Smail Niar, Fadi Kurdahi

To cite this version:
Mohamed Ayoub Neggaz, Ihsen Alouani, Smail Niar, Fadi Kurdahi. Are CNNs reliable enough
for critical applications? An exploratory study. IEEE Design & Test, 2020, 37 (2), pp.76-83.
�10.1109/MDAT.2019.2952336�. �hal-03321520�

https://hal.science/hal-03321520v1
https://hal.archives-ouvertes.fr

IEEE Design & Test 37-2 (2020) 76-83

transients (SETs) that are typically caused by high
energy particles striking elec-tronic devices. These
events can lead to bitflips in sequential parts and
mem-ory cells. This situation may propagate to
cause system-level fail ures and viola-tion of safety
specifications. In safety-crit-ical systems, incorrect
values represent a serious concern, as these systems
must comply with strict safety standards.

Intentional attacks are another potential source
of faults. The widespread usage of CNNs led to the
development of sophisticated attacks. Adversarial
attacks are among these attacks. Malicious users
could intentionally tamper with processed data
to fool the network. While these attacks are lim-
ited to the input, they can be easily generalized to
other parameters of the system, such as the CNN
weights [1].

Given the trend of high performance, sensitive
hardware platforms and reliability issues of CNN-
hosting systems remain an underexplored topic
yet. In fact, since CNNs can be dedicated to safety-
critical applications, one cannot rely on their inher-
ent fault tolerance aspect without deep exploration.
The reliability of CNNs, especially those dedicated to
safety-critical applications, should be a concern in
the early design stage, not an afterthought.

In this work, we consider random errors resulting
from the environment. These errors are simulated
as bit-flips. Redundancy is a common solution to

 Deep learning systems such as convolutional
neural networks (CNNs) have shown remarkable
efficiency in dealing with a variety of complex
real-life problems. These techniques have been
found to be deployed in widespread domains
from main-stream applications to safety-critical
systems. From handwritten digit recognition to
advanced environ-mental perception for
autonomous cars, deep neu-ral networks (DNNs)
have demonstrated an effective ability to train
robust feature extractors that can be successfully
exploited by a classifier.

In the context of performance-driven design require-
ments, new hardware generations continuously shrink
the transistor dimensions, thereby increasing circuits’
sensitivity to external events which can negatively
affect their reliability. One of the major sources of these
errors in modern embedded systems are soft errors
such as single-event upsets (SEUs) and single-event

Are CNNs Reliable Enough for Critical Applications?
An Exploratory Study

Mohamed A. Neggaz, Ihsen Alouani,
and Smail Niar
Université Polytechnique Hauts-De-France

Fadi Kurdahi
University of California at Irvine

DOI : 10.1109/MDAT.2019.2952336 1

reliability issues. However, a systematic redundancy
has high resource and energy overheads, and is not
suitable for limited-budget systems [2].

We undertook an extensive experimental study,
involving scenarios with different levels of error
injection. We showed the following.

• Our experimental results successfully character-
ize the distribution of errors in layer-wise param-
eters of CNNs.

• Our approach shows that the quantization has,
counterintuitively, a positive impact on CNNs’
resilience to errors.

• This article explores the impact of weights’ bit
significance on the error resilience of CNNs. We
show that one single bit, namely the most signif-
icant bit of the exponent, needs hardening in
floating-point-based CNNs. Other bits are insignif-
icant from a reliability impact perspective.

• Our approach can be used to construct a set of
reliability guidelines for the deployment of CNNs
in critical and aggressive environments.

This article also presents a fault injection engine
operating on CNN weights. This engine studies dif-
ferent reliability issues of a given trained CNN. The
source is made publicly available.1

Related works
Two types of fault injections were presented by

Liu et al. [3]. They managed to achieve misclassi-
fication after a series of careful bit-flipping. They
reported the loss of accuracy for the target class
only. In our work, we study the impact on the overall
accuracy. Furthermore, they assumed that the injec-
tions are selected carefully, whereas in our experi-
mental setup, injections are performed randomly to
simulate environment faults.

In [2], a method for estimating fault tolerance in
artificial neural networks (ANNs) is proposed. This
method exploits the redundancy of hidden units to
increase the network’s fault tolerance. In their results,
a very high number of replications (more than 7) are
needed to achieve complete fault tolerance. Our study
locates the most vulnerable parts to reduce this over-
head when redundancy techniques are employed.

The partial fault tolerance (PFT) of ANNs during
the training was discussed in [4]. The authors con-
sidered replication to enhance the PFT of a network.
In [5], it was shown that only 17 bit-flips are required

1https://github.com/cypox/CNN-Fault-Injector

to corrupt a network such as Alexnet. The authors
carefully selected the target bits to be flipped. In this
work, we focus on random error injections at differ-
ent levels: data representation, position in the rep-
resentation, and position in the architecture.

The inherent fault tolerance of networks has also
been studied in [6]. However, the authors focused
on relatively small CNNs. Their methodology is based
on stuck-at faults. Stuck-at faults in feedforward neu
ral nets were also discussed in [7]. Replication was
proposed as a solution to achieve fault tolerance.

Stuck-at faults were also discussed in [8]. The
authors studied the impact of faulty multiply accu-
mulate (MAC) units on the tensor processing unit
(TPU)’s grid-like architecture. Their results show
that with less than 0.006% fault rate, the accuracy
degrades dramatically. They also proposed two
solutions by pruning and retraining. Their study con-
sidered only permanent errors in activation, since
they claim that memory errors could be mitigated
by error correcting codes (ECCs).

The reliability of object detection networks
on GPUs has been studied in [9]. This study was
based on fault injection and exploited the error-
leaking potential between GPU threads. Our study is
platform-independent, and the results could be pro-
jected for other embedded systems.

To the best of our knowledge, this is the first
study that explores random fault injections in CNNs’
weight memory, considering different quantization
parameters, different data representations, the bit
position, and the layer of occurring faults.

Experimental methodology
In this section, we present our setup and meth-

odology to evaluate the reliability. We use the same
methodology as in [10] with a different experimen-
tal setup. When compared to the previous article, we
evaluate more variables and confirm the obtained
results on other networks.

Methodology
Without considering the physical damage, soft

errors compromise system functionality by causing
bit-flips in memory or in computational elements.
Since memory errors are more critical and durable
[10], we only focus on bit-flips in memory. In most
machine learning accelerator designs, two mem-
ories are present: 1) the weights’ memory (Mw),
which stores trained network parameters and 2) the

DOI : 10.1109/MDAT.2019.2952336 2

intermediate output memory (Mi), which stores the
output of hidden layers.
Mi receives new values for each input. A bit-flip

in this memory will only affect the current run, and
only if it occurs before the subsequent layer starts
processing. This is similar to the errors in computa-
tional parts, which is not discussed in this article. On
the other hand, a bit-flip in Mw will remain active
until a new network is deployed. We focus on this
kind of errors.

To reproduce this behavior, we simulate a soft
error in Mw by a number of bit-flips in a random
weight, once the network is trained. Multiple studies
are conducted based on this simulation hypothesis.
In each study, we evaluate the robustness variable
of a CNN-based system. The position of the flip is
decided by the study and the evaluated variable.

• Networks: CNNs can perform a variety of tasks.
Whether it is for images, voice, text, or other
input types, classification is the most common
task performed by CNNs. Other tasks, such as
detection, uses a classification subnetwork. In
the experimental setup we propose, we only con-
sider classification networks. Consequently, the
study can be projected for other variants.

• Data set: Measuring a CNN’s accuracy requires
a labeled test set. Since test sets are usually not
labeled, we use the validation set of ImageNet,
as used in the challenge. The set contains 50,000
images with the corresponding class of each
image. The set contained 1000 classes.

• Data representation: We consider two data
representations:
• IEEE-754’s 32-bit float: This is the standard

representation format for the floating-point
format. It is the dominant representation in
CPU and GPU architectures. Many GPUs are
optimized to deal with floating-point multi-
plications. For simplicity, we refer to this rep-
resentation as  in the rest of this article.

• X-bit fixed point: We used the format from
[11]. Trading accuracy for high performance
by using low bit-widths is a common prac-
tice in CNN acceleration. This representation
uses two parameters: bit-width and fractional
length. Negative fractional lengths can be
used to represent powers of two. This rep-
resentation is referred to as Q (for quantized)
in the rest of this article.

• Injection algorithm: Based on the fault-injection
model in [10], we create a fault-injection engine.
The engine takes a trained network, a data set,
and a test type. The test type dictates the execu-
tion flow and the parameters to vary during the
test. Multiple test types are developed, and more
details are provided later in this section. Depend-
ing on the selected test type, a series of bit-flips
are performed in the network’s weights. After
each test, the engine reports the measured accu-
racy on the data set after the injection.

We consider three test types: full-network, index-
wise, and layer-wise tests.

• Full-network injection: The engine generates a list
of errors that are identified by their layer and their
position in the layer. The engine incrementally
injects errors in the network. After each injection,
we measure the accuracy of the whole data set. As a
result, we aim to compare the two data representa-
tions in terms of inherent resilience. This compari-
son is useful to decide which data representation is
more suitable when faults are present.

• Indexed injection: In this test, the generated errors
are injected in a fixed bit significance. The engine
then loops over every possible position from the
least to the most significant bit.2 The result of this
test type extends to the result of the full test. After
comparing the two representations, we use this
study to explain the difference, if any. Further-
more, this helps localizing the most vulnerable
bits to protect.

• Layer-wise injection: In this test, errors are gener-
ated in the same layer with different positions.
This test is repeated for each layer while report-
ing the accuracy after each run. The number of
errors injected is proportional to the number
of parameters of each layer. This is similar to
the real world, where the soft-error rate is pro-
portional to the surface of the chip. This study
allows us to understand the inherent tolerance
of CNN layers. Finding the most vulnerable layers
will assist in creating comprehensive reliability
enhancement strategies.

These tests are repeated 60 times. In each run, the
engine generates a new set of errors and the injec-
tion of the generated errors is performed each run.

2In the case of a trained network represented as 32-bit floating point, the engine
loops over the 32-bit positions.

DOI : 10.1109/MDAT.2019.2952336 3

We then present the mean of 60 runs as well as the
maximum, the minimum, and the standard devia-
tion of the test.

A single soft error can cause multiple bit-flips.
Furthermore, memory errors are cumulative. We fix
the number of errors to be injected when varying the
index of the bit-flip to 50. For layers, we inject errors
proportional to the number of parameters with at
least one injected error.3 An extensive study, with a
variable number of errors, is possible; however, the
same tendency reappears.

Experimental setup
The engine was developed in Python. For CNN

inference, we used the framework Caffe. The code
is made publicly available.4 As part of our study, we
performed injections on quantized (low-precision)
CNNs. The weights were obtained using Ristretto.

The experiments were performed on an Nvidia
Quadro P5000 GPU with an Intel Xeon W-2123 CPU
with a 3.60-GHz frequency.

3Scales with the size of the target layer.
4https://github.com/cypox/CNN-Fault-Injector

Convolutional neural networks
We used four network architectures: GoogleNet,

Alexnet, VGG16, and SqueezeNet. These networks
were selected for their wide usage, diversity, various
sizes, and high accuracy. Their convolutional layers
are widely reproduced as a feature extractor in other
models. This facilitates generalizing the obtained
results to other networks.

For the 32-bit floating point-represented weights,
we used trained instances from Caffe’s Model Zoo.5
We used Ristretto to quantize and fine-tune the four
networks into 8-bit fixed point networks without a
huge loss in accuracy.

Experimental results
The results we collected from the engine are pre-

sented in this section. For each test type (full, layer,
and index), we show the obtained results separately.

Impact of data representation and quantization
The results were obtained on weights represented

as 32-bit floating points. We present a comparison of

5Publicly available on: https://github.com/BVLC/caffe/wiki/Model-Zoo

Figure 1. Comparison between the 8-bit fixed-point representation (Q) of weights and the
32-bit IEEE-754 representation (F ). The results of different runs are presented as the mean and the
standard deviation of the top-1 accuracy.

DOI : 10.1109/MDAT.2019.2952336 4

the impact of different data representations on the
accuracy of different networks.

Figure 1 illustrates the result of comparing the
two representations. The Q-representation is clearly
more resilient than its counterpart. This tendency
is present for the four networks with different rates.
The theoretical reason behind this resilience is
explained by the overall difference after injection,
denoted A in [10]. For instance, the Q-representation
with seven decimal bits and one integer bit will dif-
fer from the original value by at most ±1. For the
F-representation, the difference in activations can
reach 3 × 1038 [10].

The decrease in the accuracy in VGG16 and Alex-
net is not as fast as the decrease for the same number
of errors in GoogleNet and squeezeNet. The main rea-
son for this phenomenon is the number of weights,
as shown in Table 1. The same number of errors has
less impact if the number of weights is important.

Significance of bits
To further explore this decrease in accuracy, we

investigate the individual impact of the bit position.
The injections are performed at the same position on
the four networks for each run. The only difference is
the index of the bit-flip on the binary representation

of the weight. We performed this study only on the
F-representation. The Q-representation in invulner-
able to bit-flips, as shown in the previous results in
Figure 1.

In Figure 2, the four networks show the same
tendency. Unless bits are injected in the exponent’s
most significant bit, almost no impact on the accu-
racy is perceived.

Layer tolerance
The impact of injected faults may depend on

its location within the network architecture. This
section explores the layers’ tolerance aspect. Sim-
ilar to that discussed in the “Significance of bits”
section, we isolate the target layer in the fault
injection process. This isolation allows tracking
the individual impact of the chosen layer on the
overall accuracy.

GoogleNet and SqueezeNet have a special archi-
tecture. They are built on top of two modules, incep-
tion for the former and fire modules for the latter.
These modules regroup a set of convolutional layers
working in parallel on the same input. The output
of the module is obtained by concatenating the
outputs of each execution branch. For clarity, we
reduced the individual layers into the correspond-
ing modules. For each module, we take the average
accuracy of its individual layers.

Figure 3 presents the results of this study. The
four networks tend to lose more accuracy when
injections occur in advanced layers. This is corre-
lated to our previous results in [10]. While CNNs
have a sequential structure, error propagation is
not problematic in CNNs. Errors in early layers
have, in general, less impact on the accuracy.
This shows the implicit characteristic of CNNs to
maintain a same behavior when incorrect values
are forwarded. This is explained by the implicit
redundancy in CNN weights. After training, many
weight clusters are repeated. A small number of
errors are found if they occur in the first layers.
Techniques such as pruning can greatly affect this
study. They explore weight redundancy to reduce
computations. While they achieve high through-
put with acceptable accuracy, reliability can be
greatly compromised [12]. This tradeoff should
be considered to evaluate the CNN acceleration in
aggressive environments.

It is worth mentioning that, although the mean
value is at a comfortable accuracy, the minimum

Figure 2. Position of bit-flips in the F  -representation
and its impact on the accuracy. In the X-axis, red
labels represent the mantissa, blue labels represent
the exponent, and the sign bit is in green.

Table 1. Number of weights per network.

DOI : 10.1109/MDAT.2019.2952336 5

accuracy reported is almost always ≈  0%.6 This
means that in some runs, the injected errors were
able to fully compromise the network. As rare as it
could be, anticipating these cases by studying the
network should precede any deployment. Also, the
fact that a few number of errors can damage a net-
work this far is another motivation to deeply study
the impact of faults.

Discussion

Floating point and fixed point
In contrast to common belief, the F-representa-

tion is more vulnerable to injections even though
it has more bits. The individual impact of a bit in
a short representation (8-bit fixed point) is greater
than its counterpart in the F-representation. How-
ever, the divergence from the correct value is greater
in the latter due to the nature of the representation.
The exponent is not represented in the fixed-point
representation. A bit-flip in any position is simi-
lar to adding or subtracting a power of 2. Since all
weights range from -1 to +1 [1], the value added or

6The worst case is 0.001 which is equal to randomly guessing the class over the
1000 possibilities.

subtracted is minuscule. Hence, its impact can be
logically masked.

Bit position
In the F-representation, not all the bits in the

exponent are important. The impact of bits is not
linear to the bit position but constant except for
the most-significant bit, as shown in Figure 2. This
is partly due to the distribution of CNN weights.
Weights range from -1 to +1. High values in the
exponent are always accompanied by a negative
exponent sign. Having a bit-flip will decrease the
value even more, making it close to 0, which is not
a big difference considering the range of weights.
The only important change is the most-signifi-
cant bit of the exponent. If changed from 0 to 1,
the new value will be orders of magnitude higher
than the others. Combined with the maximum
pooling, this leads to catastrophic results in the
subsequent layers.

Layer index
Although the general tendency shows that

the last layers are more vulnerable, no conclu-
sions could be drawn. In other words, vulnerable

Figure 3. Impact of faults layerwise for the four networks. Each series is represented as the mean
top-1 accuracy (black dots), the standard deviation (red error-bars), and the minimum/maximum
(gray fill).

DOI : 10.1109/MDAT.2019.2952336 6

layers of a new CNN cannot be located without
simulation. A fault injection engine such as the
one we presented in this article should be used to
evaluate the individual layer’s vulnerability. This
is an extension to Netscope,7 a neural network
visualizer and analyzer. We introduced the resil-
ience parameter, which is computed from the
accuracy reported by the fault-injection engine.
The modified version allows the extraction of the
most vulnerable layers visually. An example out-
put of the analyzer is available with the engine
source code.8

Suggestions and guidelines
The first study shows a bit difference between the

storage formats. The floating-point representation
should be used with caution in critical systems. The
fixed-point representation would result in less mem-
ory and computation9 overhead with higher relia-
bility. System designers should consider this aspect
when dealing with aggressive environments.

It was shown that the most significant bit in the
exponent is the vulnerable part of the floating-point
representation. Based on this conclusion, the over-
head of redundancy techniques could be reduced.
Techniques such as triple mode redundancy (TMR)
will replicate the whole number three times. This
will triple the memory requirements of GoogleNet,
for instance, whose number of weights is 6,996,452,
thereby adding 427 MB of required storage. If applied
exclusively to the vulnerable bits, only 13 MB would
be necessary. This result can also be extended to the
layer test with variable degrees of protection depend-
ing on the resilience of each layer as output by the
injection engine.

An extensive analysis of the inherent fault tol-
erance of CNNs is proposed. We show that quanti-
zation has a positive impact on reliability. The issue
with nonquantized networks is the data representa-
tion. For the IEEE-754 format, the most significant
bit of the exponent is crucial for the reliability of
CNNs. A layer-wise analysis is then performed. For
complex networks, the reliability of the overall net-
work should be studied based on the architecture.
The framework we developed to analyze reliability

7https://github.com/ethereon/netscope
8https://www.github.com/cypox/CNN-Fault-Injector
9Fixed point representation is usually coupled with low precision arithmetic.
This allows for better efficiency with comparable accuracy.

is made publicly available. This study is useful
in localizing the vulnerable parts of CNNs and
helps designing comprehensive low-overhead
reliability enhancement techniques.

 References
[1] Q. Liu et al., “Security analysis and enhancement

of model compressed deep learning systems under

adversarial attacks,” in Proc. 23rd Asia South Pacific

Design Autom. Conf. (ASPDAC’18), Piscataway, NJ,

USA, 2018, pp. 721–726. [Online]. Available: http://

dl.acm.org/citation.cfm?id=3201607.3201772

[2] D. S. Phatak and I. Koren, “Fault tolerance of

feedforward neural nets for classification tasks,” in

Proc. IJCNN Int. Joint Conf. Neural Netw., vol. 2,

Jun. 1992, pp. 386–391.

[3] Y. Liu et al., “Fault injection attack on deep neural

network,” in Proc. IEEE/ACM Int. Conf. Comput.-Aided

Design (ICCAD), Nov. 2017, pp. 131–138.

[4] E. B. Tchernev, R. G. Mulvaney, and D. S. Phatak,

“Investigating the fault tolerance of neural networks,”

Neural Comput., vol. 17, no. 7, pp. 1646–1664,

Jul. 2005.

[5] A. S. Rakin, Z. He, and D. Fan, “Bit-flip attack:

Crushing neural network with progressive bit search,”

arXiv preprint arXiv:1903.12269, 2019.

[6] P. W. Protzel, D. L. Palumbo, and M. K. Arras,

“Performance and fault-tolerance of neural networks

for optimization,” IEEE Trans. Neural Netw., vol. 4,

no. 4, pp. 600–614, Jul. 1993.

[7] D. S. Phatak and I. Koren, “Complete and partial fault

tolerance of feedforward neural nets,” IEEE Trans.

Neural Netw., vol. 6, no. 2, pp. 446–456, Mar. 1995.

[8] J. J. Zhang et al., “Analyzing and mitigating the impact

of permanent faults on a systolic array based neural

network accelerator,” in Proc. IEEE 36th VLSI Test

Symp. (VTS), 2018, pp. 1–6.

[9] F. dos Santos et al., “Analyzing and increasing the

reliability of convolutional neural networks on GPUs,”

IEEE Trans. Rel., vol. 68, pp. 663–677, 2018.

	[10] M. A. Neggaz et al., “A reliability study on CNNs for

critical embedded systems,” in Proc. IEEE 36th Int.

Conf. Comput. Design (ICCD), 2018, pp. 476–479.

	[11] M. Courbariaux, Y. Bengio, and J.-P. David,

“Training deep neural networks with low precision

multiplications,” arXiv preprint arXiv:1412.7024, 2014.

	[12] B. E. Segee and M. J. Carter, “Fault tolerance of

pruned multilayer networks,” in Proc. IJCNN-91-Seattle

Int. Joint Conf. Neural Netw., vol. 2, Jul. 1991,

pp. 447–452.

DOI : 10.1109/MDAT.2019.2952336 7

