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An argumentation framework is a pair made of a graph and a semantics. The nodes and the edges of the graph represent respectively arguments and relations (e.g., attacks, supports) between arguments while the semantics evaluates the strength of each argument of the graph. This paper investigates gradual semantics dealing with weighted graphs, a family of graphs where each argument has an initial weight and may be attacked by other arguments. It contains four contributions. The first consists of laying the foundations of gradual semantics by proposing key principles on which evaluation of argument strength may be based. Foundations are important not only for a better understanding of the evaluation process in general, but also for clarifying the basic assumptions underlying semantics, for comparing different (families of) semantics, and for identifying families of semantics that have not been explored yet. The second contribution consists of providing a formal analysis and a comprehensive comparison of the semantics that have been defined in the literature for evaluating arguments in weighted graphs. As a third contribution, the paper proposes three novel semantics and shows which principles they satisfy. The last contribution is the implementation and empirical evaluation of the three novel semantics. We show that the three semantics are very efficient in that they compute the strengths of arguments in less than 20 iterations and in a very short time. This holds even for very large graphs, meaning that the three semantics scale very well.

Introduction

Argumentation is a reasoning approach based on the justification of claims by arguments, which are reasons for accepting claims. It has received great interest from the Artificial Intelligence community since late 1980s, mainly as a unifying approach for nonmonotonic reasoning [START_REF] Lin | Argument systems -an uniform basis for non-monotonic reasoning[END_REF]. It was later used for solving other problems including reasoning with inconsistent information [START_REF] Simari | A mathematical treatment of defeasible reasoning and its implementation[END_REF], reasoning with defeasible information [START_REF] Garcia | Defeasible logic programming: an argumentative approach[END_REF], decision making [START_REF] Amgoud | Using arguments for making and explaining decisions[END_REF], classification [START_REF] Amgoud | Agents that argue and explain classifications[END_REF], etc. It was also used in various practical applications, namely in legal and medical domains [START_REF] Atkinson | Towards artificial argumentation[END_REF].

Whatever the application, an argumentation-based model usually follows a four-step process: support claims by arguments, identify relations (e.g. attack or support) between the generated arguments, evaluate the strength of each argument, and define the output of the model (e.g. the set of formulas to be inferred from a knowledge base). Arguments and their relations are represented by a graph called flat when arguments are not assigned initial (or basic) weights and weighted otherwise. The initial weight of an argument may represent various issues like probability of believing the argument [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF][START_REF] Polberg | Empirical evaluation of abstract argumentation: Supporting the need for bipolar and probabilistic approaches[END_REF], certainty degree of the argument's reasons [START_REF] Benferhat | Argumentative inference in uncertain and inconsistent knowledge bases[END_REF], votes provided by users [START_REF] Leite | Social abstract argumentation[END_REF], importance degree of a value promoted by the argument [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF], trustworthiness of the argument's source [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF].

The last step of an argumentation process depends broadly on arguments' strengths. For instance, a decision system would recommend to users options that are supported by strong arguments. Consequently, a plethora of evaluation methods, called semantics, have been proposed in the literature. There exist several approaches according to the nature of their outcomes, such as extension semantics, labelling semantics, gradual semantics and ranking semantics. Extension semantics have been introduced for the first time by Dung [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF]. They look for arguments that can be accepted by a rational agent, and more precisely those that can be jointly accepted. Examples of such semantics are stable and preferred from [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF], and those based on the SCC-recursive schema [START_REF] Baroni | Scc-recursiveness: a general schema for argumentation semantics[END_REF]. More generally, labelling semantics [START_REF] Baroni | An introduction to argumentation semantics[END_REF] are closely related to extension semantics. Each labelling assigns three possible values to the elements of a graph: in, out and undecided, and a set of arguments labelled in corresponds to an extension.

Gradual semantics, initiated by Cayrol and Lagasquie in [START_REF] Cayrol | Graduality in argumentation[END_REF], quantify argument strength. They are defined as functions which assign a unique numerical or qualitative value to each argument. In [START_REF] Amgoud | A replication study of semantics in argumentation[END_REF], the author discussed how to identify acceptable arguments from the values of their strengths. For instance, one may accept any argument whose value is beyond a given threshold. Examples of gradual semantics are Trust-based [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF], social simple product [START_REF] Leite | Social abstract argumentation[END_REF], and (Discontinuity-Free)-QuAD [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF][START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debates[END_REF].

Ranking semantics have been proposed by Amgoud and Ben-Naim in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF]. They return a (total or partial) preordering on arguments, thus ranking them from the strongest to the weakest ones. Obviously, any gradual semantics may be transformed into a ranking one, but the converse is not necessarily true. Indeed, pure ranking semantics may be defined without assigning values to arguments. Examples of such semantics are Burden-based and Discussion-based from [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF], the propagation-based ones from [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF][START_REF] Bonzon | A parametrized ranking-based semantics for persuasion[END_REF] and those based on subgraphs analysis [START_REF] Dondio | Ranking semantics based on subgraphs analysis[END_REF]. It has been argued in [START_REF] Amgoud | A replication study of semantics in argumentation[END_REF] that the choice of the family of semantics depends broadly on the problem to solve.

Given the importance of semantics in argumentation, it is important to have a good understanding of the rules that control how evaluation of arguments is performed by a semantics, in other words a good understanding of the principles underlying a semantics. In the argumentation literature, several works have been devoted to the definition of principles for each of the families of semantics. A principle is a formal property that a semantics may satisfy. In [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF], Baroni and Giacomin proposed some principles that extension semantics should satisfy. The list was later extended in [START_REF] Van Der Torre | The principle-based approach to abstract argumentation semantics[END_REF] and used to theoretically analyse and compare the existing extension semantics that deal with flat graphs. Amgoud and Ben-Naim proposed in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF] another set of principles for ranking semantics. Each principle expresses a property that a ranking of arguments should satisfy. That set was used in [START_REF] Bonzon | A comparative study of ranking-based semantics for abstract argumentation[END_REF] for comparing some existing gradual/ranking semantics among those devoted to flat graphs. Regarding gradual semantics, some principles were proposed by Amgoud and Ben-Naim in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] for flat graphs and extended to weighted graphs in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] and bipolar ones in [START_REF] Amgoud | Evaluation of arguments in weighted bipolar graphs[END_REF][START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF]. Each principle describes an elementary property of argument strength.

Focusing on gradual semantics that deal with weighted graphs, this paper presents four contributions. The first consists of simplifying the principles presented in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] and proposing five novel ones. The principles describe very elementary properties, which then serve as basic building blocks for proving higher-level ones. Some of them are mandatory while others represent reasonable choices for some applications but not for others. Indeed, argumentation is a rich theory that may be applied for solving a large variety of problems, thus the requirements may vary from one application to another. The second contribution of the paper consists of providing the first theoretical analysis of each of the ten semantics that were proposed in the literature for evaluating arguments in weighted graphs. We studied the four semantics that follow the contraction-based approach for dealing with preferences between arguments [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF][START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF], the four semantics that follow the change-based approach [START_REF] Amgoud | A new approach for preference-based argumentation frameworks[END_REF], and the two gradual semantics proposed in [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF][START_REF] Gabbay | Equilibrium states in numerical argumentation networks[END_REF]. This study allowed the first thorough comparison of i) semantics of different families (extension vs gradual), ii) the two approaches that deal with preferences in argumentation (contraction vs change), and iii) semantics of the same family, e.g. Trust-based and Iterative Schema (IS). The results show that the ten semantics are different in that they made different design choices. The study also revealed the kind of semantics that are missing in the literature. For instance, there is no semantics that satisfies all the compatible principles, there is no semantics that privileges the quantity of attackers over their quality when it faces a dilemma between the two criteria, and there is no semantics that favours the quality criterion and at the same time satisfies all the remaining principles. The third contribution of the paper fills the previous gaps by introducing three novel semantics, one for each of the three cases. The fourth contribution of the paper consists of implementing algorithms for computing the strengths of arguments using the three novel semantics, and running several experiments on a publicly available benchmark proposed in [START_REF] Da Costa Pereira | Fuzzy labeling for abstract argumentation: An empirical evaluation[END_REF][START_REF] Bistarelli | A first comparison of abstract argumentation reasoning-tools[END_REF]. The results show that our semantics are very efficient as the strengths of arguments can be calculated quickly and in less than 20 iterations whatever the size and typology of the graph.

The paper is organized as follows: Section 2 introduces some basic concepts. Section 3 discusses the notion of argument strength. Section 4 introduces the list of principles whose properties are investigated in Section 5. Section 6 recalls existing semantics from the literature, and analyses them against the set of principles. Section 7 presents the three novel semantics and investigates their formal properties, and Section 8 analyses them empirically. Section 9 discusses related work, and the last section concludes and presents some perspectives.

Remark:

The paper extensively develops the content of the conference paper [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. It simplifies some principles presented in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF], proposes five novel ones, presents a more detailed analysis and comparison of existing semantics, and presents for the first time an experimental analysis of the performances of the three new semantics.

Background

Throughout the paper, a weighted argumentation graph (WAG) is a graph whose nodes are arguments and edges represent attacks between them. Each argument has an initial or basic weight (called basic score in [START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debates[END_REF]) from the interval [0, 1]. The smaller the weight of an argument, the weaker the argument. The basic weight of an argument may represent different issues like certainty degree of its premises [START_REF] Benferhat | Argumentative inference in uncertain and inconsistent knowledge bases[END_REF], degree of trust in its source [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF], an aggregation of votes provided by users [START_REF] Leite | Social abstract argumentation[END_REF], etc. For the sake of generality, the origin of weights and arguments is left unspecified. Similarly, arguments and attacks are considered as abstract notions. Before formally introducing WAGs, let us define the useful notion of weighting.

Definition 1 (Weighting). A weighting on a set X is a function from X to the interval [0, 1].

Weighted argumentation graphs (or weighted graphs for short) are defined as follows.

Definition 2 (WAG). A weighted argumentation graph is a triple G = A, w, R , where A is a non-empty finite set of arguments, w is a weighting on A, and R ⊆ A × A. We denote by WAG the class of all weighted argumentation graphs.

Intuitively, for G = A, w, R ∈ WAG, a, b ∈ A, w(a) represents the basic weight of argument a, and (a, b) ∈ R (or equivalently aRb) means argument a attacks argument b. Let a 0 , . . . , a 2n+1 be a non-empty sequence of arguments of A such that n ∈ N, for every 0 ≤ j < 2n + 1, a j Ra j+1 , a 0 = a, and a 2n+1 = b. If n = 0, then a is a direct attacker of b; it is an indirect attacker of b if n ≥ 1.

Definition 3 (Isomorphism). Let G = A, w, R , G = A , w , R ∈ WAG. An isomorphism from G to G is a bijective function f from A to A such that:

• ∀ a ∈ A, w(a) = w (f (a)), • ∀ a, b ∈ A, aRb iff f (a)R f (b).
Let us recall the notion of path between two nodes in a graph. Definition 4 (Path). Let G = A, w, R ∈ WAG, and a, b ∈ A. A path from b to a is a finite non-empty sequence x 1 , . . . , x n such that x 1 = b, x n = a, and ∀1 ≤ i < n, x i Rx i+1 .

Note that, according to the previous definition, a sequence of length one is also considered to be a path. We present next the list of all notations used in the paper.

Notations: Let G = A, w, R ∈ WAG and a ∈ A. We denote by Att G (a) the set of all attackers of a in G, i.e., Att G (a) = {b ∈ A | bRa}. Let G = A , w , R ∈ WAG such that A ∩ A = ∅. We denote by G ⊕ G the element A ∪ A , w , R ∪ R of WAG such that for any x ∈ A (resp. x ∈ A ), w (x) = w(x) (resp. w (x) = w (x)).

Strength of Arguments

In most approaches in the literature [START_REF] Bondarenko | An abstract, argumentation-theoretic approach to default reasoning[END_REF][START_REF] Modgil | A general account of argumentation with preferences[END_REF][START_REF] Besnard | A logic-based theory of deductive arguments[END_REF][START_REF] Amgoud | Inferring from inconsistency in preference-based argumentation frameworks[END_REF], an argument is a set of premises that serve as reasons for accepting a claim 1 . However, unlike a mathematical demonstration, it does not necessarily guarantee the truth of the claim. Its strength may range from very weak to strong depending on the plausibility of the premises, the strength of the link between the premises and the claim and its interaction with other arguments.

In the literature, evaluation of arguments is conducted by formal methods, called semantics. Their key idea is to predict whether an argument can be accepted by a rational agent so that its claim can safely be used for drawing conclusions, making decisions, etc. The very first semantics, proposed by Dung in his seminal paper [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF], focused on extensions. For a given argument graph, each of Dung's semantics returns several extensions, where each extension is a set of arguments representing an individually reasonable position. In this setting, acceptability status of an argument in a graph is defined as follows [START_REF] Baroni | Scc-recursiveness: a general schema for argumentation semantics[END_REF][START_REF] Cayrol | Graduality in argumentation[END_REF][START_REF] Grossi | On the graded acceptability of arguments[END_REF][START_REF] Modgil | A general account of argumentation with preferences[END_REF][START_REF] Prakken | Argument-based extended logic programming with defeasible priorities[END_REF]: an argument is sceptically accepted if it belongs to all extensions, it is credulously accepted it belongs to some but not all extensions, and it is rejected if it does not belong to any extension.

Gradual semantics [START_REF] Leite | Social abstract argumentation[END_REF][START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF][START_REF] Cayrol | Graduality in argumentation[END_REF][START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF][START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debates[END_REF][START_REF] Amgoud | Ranking arguments with compensation-based semantics[END_REF] take a view from another perspective. Instead of calculating possible coherent points of view (i.e. extensions) they assign a unique numerical or qualitative value to each argument, representing its strength in a graph. Indeed, having more than three acceptability statuses (skeptically / credulously accepted and rejected) might be beneficial in some applications. Take, for instance, multiple criteria decision making (MCD), where the main objective is to define mathematical models that are able to compare different alternatives on the basis of how they perform regarding a set of criteria. The more discriminating a model between alternatives, the more efficient it is. In argument-based MCD models, an argument in favour of an alternative expresses how the latter satisfies a criterion (see [START_REF] Amgoud | On the use of argumentation for multiple criteria decision making[END_REF][START_REF] Zhong | An explainable multi-attribute decision model based on argumentation[END_REF]). Thus, it is not sufficient to identify sceptically/credulously acceptable arguments (as alternatives may all be supported by acceptable arguments), arguments strengths are crucial for fine-grained comparisons of alternatives.

In this paper, we focus on argument strength. We start the analysis with reference to some basic questions:

• Does an argument have a unique strength?

• What is the form of argument strength?

• What are the factors that may impact argument strength?

• Is there a unique way of evaluating argument strength?

• What is a good evaluation method of argument strength?

Concerning the first question, in this paper we focus on a single-status notion of strength. As pointed out by Leite and Martins [START_REF] Leite | Social abstract argumentation[END_REF], even if assigning multiple strength values may be interesting from a theoretical point of view, most users (for instance, in the domain of e-democracy / on-line debates) would be turned away by a system which is based on such a semantics.

Concerning the second question, argument strength may take two forms, as absolute value or relative one compared to other arguments. Obviously, a ranking of arguments can be constructed from absolute argument strengths. However, the converse is not always true. In the argumentation literature, gradual semantics initiated in [START_REF] Cayrol | Graduality in argumentation[END_REF] assign a qualitative or numerical value to each argument, while ranking semantics introduced in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF] rank-order arguments from the strongest to the weakest ones without necessarily computing the exact strength of arguments. Given that gradual semantics can also be used to induce a ranking of arguments, both classes of semantics are suitable when a comparison of arguments is needed. This is particularly the case in decision problems where the goal is to rank-order different alternatives (e.g. candidates for a research position) on the basis of the strength of their supporting arguments. In addition, gradual semantics are also able to go beyond qualitative comparison, namely they can say to what extent one argument is stronger than another one.

Regarding the third question, argument strength depends on two main elements: i) the (typology of the) weighted argumentation graph to which the argument belongs, and ii) the application that gave birth to the weighted argumentation graph. The strength of the same argument may change from one graph to another due to the following key factors influencing it within a fixed graph:

• Basic weights of arguments • Quantity of attackers • Strengths of attackers Besides, argumentation theory has a very broad and diversified range of practical applications (e.g. critical debate, committees, trial) and theoretical ones (e.g. inconsistency handling in knowledge bases [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF], defeasible reasoning [START_REF] Garcia | Defeasible logic programming: an argumentative approach[END_REF], decision making [START_REF] Amgoud | Using arguments for making and explaining decisions[END_REF], classification [START_REF] Amgoud | Agents that argue and explain classifications[END_REF], negotiation [START_REF] Bonzon | Knowing each other in argumentation-based negotiation[END_REF]). All these disparate applications may require different types of arguments (deductive, abductive, analogical, etc), each of which may impose particular constraints on the evaluation of argument strength. Some of them may concern the use of the previous factors. For example, assume an application where arguments may be analogical in nature, i.e., their reasoning is based on perceived similarities between two objects. Dissimilarities between objects might decrease the strength of the analogy [START_REF] Juthe | Argument by analogy[END_REF][START_REF] Juthe | Classification of of arguments by analogy part i -a comprehensive review of proposals for classifying arguments by analogy[END_REF][START_REF] Walton | Similarity, precedent and argument from analogy[END_REF][START_REF] Walton | Argument from analogy in legal rhetoric[END_REF]. In the framework discussed by Amgoud [START_REF] Amgoud | Evaluation of analogical arguments by choquet integral[END_REF], every attack raises a novel case of dissimilarity between the two objects. Hence, in such a setting, the more an analogical argument is attacked, the weaker it may be. This means that the quantity of attackers of an argument is important. However, this factor may be less desirable when handling inconsistency in logical knowledge bases, since a single attack is generally lethal for its target. Hence, the above factors may be considered in some applications and not in others, and semantics need not capture all of them. Applications may require other constraints, which are not related to the above factors. An example of such a constraint is the impact of worthless attackers on their targets. A worthless attacker is an argument whose strength is extremely weak (say 0 when argument strength is evaluated on a scale [0,1]). In a scientific debate about the safety of a recently developed vaccine, such arguments should not have any impact on their targets. However, it is argued that worthless arguments may have an impact in political debates [START_REF] Rago | On instantiating generalised properties of gradual argumentation frameworks[END_REF].

From the above discussion, it follows that there is no unique way of evaluating arguments, which answers the fourth question. A reasonable semantics is one that takes into account the factors that are suitable for the application under study, and the peculiarities of the application.

Foundational Principles for Semantics

Throughout the paper, we focus on semantics that evaluate argument strength in the context of weighted argumentation graphs. We are particularly interested in gradual semantics, which ascribe to each argument a single absolute value taken from a totally ordered scale with the convention that the greater the value, the stronger the argument. The choice of the exact scale is not crucial for the definition of principles, the only requirement is that it should have minimum V min and maximum V max values. The former specifies worthless arguments and the latter refers to perfect ones. For the sake of illustration, in this paper we consider the unit interval [0, 1], and call a non-worthless argument alive. The previous definition introduces the notion of semantics in general terms, without specifying whether and how it depends on the two main elements analyzed in the previous section: the (typology of the) weighted argumentation graph, and the application that gave birth to the graph. In this paper, we abstract away from applications, and investigate evaluations of arguments exclusively on the basis of a weighted argumentation graph. For that purpose, we propose a set of 21 principles that describe basic properties of semantics and factors that may be taken into account in the evaluation of strength. These principles will play three roles:

1. clarifying foundations of argument evaluation, 2. theoretically analysing each existing semantics. This would clarify the choices made by those semantics, 3. theoretically comparing the plethora of semantics that exist in the literature.

The principles are elementary properties that are free of implicit assumptions. Each of them describes a unique idea, some of their combinations lead to higher-level properties like those proposed in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF], and four principles follow from the others. We considered them in the paper for an in-depth analysis of certain existing semantics. Finally, it is worth mentioning that some principles extend properties proposed by Amgoud and Ben-Naim in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] for flat graphs. The new versions take into account basic weights of arguments. Other principles are simplified versions of those proposed in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. Five properties (Weakening, Reinforcement, Proportionality, Invariance and Strict Invariance) are novel and have no counterparts in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. Let us now introduce the principles.

The first principle, called anonymity, states that arguments should not be evaluated on the basis of their names exactly as the evaluation of students' work should not depend on their identity. This property can be found in many axiomatic studies including those in the domain of cooperative games [START_REF] Shapley | Contributions to the theory of games[END_REF]. In the argumentation literature, it is called Anonymity in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF], abstraction in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF], and language independence in [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF]. This principle expresses some rationality of a semantics, it is thus mandatory and any semantics should satisfy it.

Principle 1 (Anonymity). A semantics S satisfies anonymity iff, for all G = A, w, R , G = A , w , R ∈ WAG, for any isomorphism f from G to G , the following property holds:

∀ a ∈ A, Deg S G (a) = Deg S G (f (a)).
The second principle, called independence, is about the essence of strength which expresses to what extent an argument is robust against attacks. It states that the strength of an argument should be independent of any argument that is not connected to it by a path. It delimits thus the sub-graph of a weighted argumentation graph that may have an impact on the strength of an argument. This principle is crucial to avoid strength being biased by irrelevant information. Consider the argumentation graph depicted in Figure 1 below and which is extracted from an online debate platform. Obviously, the strength of c should not depend on that of a since their topics are completely unrelated. Finally, it is worth mentioning that this principle generalizes the independence axiom from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Principle 2 (Independence). A semantics S satisfies independence iff, for all G = A, w, R ∈ WAG, G = A , w , R ∈ WAG such that A ∩ A = ∅, the following property holds:

∀ a ∈ A, Deg S G (a) = Deg S G⊕G (a).
Example 1. Consider the weighted argumentation graph G 1 depicted in Figure 1, where the numerical values represent basic weights. The strength of a should be independent from that of c since there is no path from c to a.

The third principle, called directionality, states that an attacker may influence the strength of its target but the converse is not allowed. In other words, attacking other arguments cannot be beneficial or harmful for an attacker. Recall that argument strength expresses the plausibility of premises, prior acceptance of the argument's claim and the solidity of the link. These three parameters can only be affected by incoming attacks showing their weaknesses, the fact that an argument attacks another argument does neither improve nor worsen their strength. Like the two previous principles, we regard Directionality as mandatory for each semantics. Formally, Directionality states that if one adds an attack from an argument a to another argument b in a given graph, then this additional attack may impact the strength of b, but not that of any other argument c which is not related to b by a path. This definition is more general than the Circumscription axiom presented in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] even when the arguments have the same basic weights. Indeed, the formal definition of Circumscription assumes the addition of an attack towards an argument b which does not attack any argument while in our case this constraint is relaxed. The principle was also considered in [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF] but at the level of extensions of flat argumentation graphs. Example 1 (Cont) Let G 1 be the graph G 1 augmented with a self-attack on c (i.e., c attacks itself in G 1 ). The strength of b should be the same in the two graphs G 1 and G 1 .

Principle 3 (Directionality

Remark 1.

Example 1 shows some difference between Independence and Directionality. The former is defined at the level of two or more graphs (the two strongly connected components of G 1 ) while the latter is at the level of one graph (G 1 ). It is worth noticing that Independence is silent about whether b should have the same strength in G 1 and G 1 .

Any argument in a weighted graph has a basic weight. Hence, an argument should not be considered strong just because it is not attacked; its strength should also depend on its basic weight. A non-attacked argument can be deemed as weak if its basic weight is low, otherwise the argument is overvalued. Consider the weighted argumentation graph {A, B}, w, R = ∅ where A, B are as follows:

Most people are right-handed. Therefore, Pat is right-handed.

(A) All people have DNA. Therefore, Pat has DNA.

(B)

In possibilistic logic [START_REF] Benferhat | An overview of possibilistic logic and its application to nonmonotonic reasoning and data fusion[END_REF], the premises of A and B are encoded in propositional logic as implications X → Y and X → Z, where X, Y , Z stand respectively for "being a person", "being right-handed" and "having DNA". Since the rule X → Y has exceptions, it is ascribed a necessity or certainty degree [START_REF] Benferhat | An overview of possibilistic logic and its application to nonmonotonic reasoning and data fusion[END_REF] from the scale [0, 1] that is less than the maximal value 1. The second rule X → Z is certain, thus it is ascribed value 1. Consequently, in [START_REF] Benferhat | Argumentative inference in uncertain and inconsistent knowledge bases[END_REF] a basic weight is assigned to each argument. It is the certainty degree of the least certain premise of an argument. Note that both A and B have the hidden certain premise: Pat is a person. Thus, w(A) < 1 and w(B) = 1. Unlike B, the argument A does not guarantee its conclusion since it is based on uncertain premises. Hence, even if both arguments are not attacked, B can be deemed stronger than A. For an accurate evaluation of arguments and since the scales of basic weight and strength are commensurate (both are the interval [0, 1]), our next principle, called Maximality, states that the strength of a non-attacked argument is equal to the basic weight of the argument (w(A) < 1 for A and w(B) = 1 for B). In [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF], all the arguments of an argumentation graph are assumed to have a basic weight equal to 1; that is why non-attacked arguments get value 1.

Principle 4 (Maximality). A semantics S satisfies maximality iff, for any

G = A, w, R ∈ WAG, for any a ∈ A, if Att G (a) = ∅, then Deg S G (a) = w(a).
Example 1 (Cont) Consider again the weighted argumentation graph G 1 . Maximality principle ensures that Deg S G1 (a) = 0.01 and Deg S G1 (b) = 0.90. Note that b is stronger than a even if both arguments are unattacked.

The next two principles, Weakening and Strict Weakening, are about the role of attacks. The latter being negative relations that highlight arguments' weaknesses (e.g. , false premises/claim, inapplicable rules), they have negative impact on targets' strengths. Hence, Weakening states that attacks may weaken, but never strengthen, an argument when they come from alive arguments. This principle leaves room for ineffective attacks that may exist in applications, namely in the legal domain. Consider the case of a judge who decides to ignore a given argument during a trial. Even if the argument is alive (for instance it has some basic weight and is not attacked), it has no effect on the arguments it attacks. Strict Weakening is more demanding as it ensures that argument strength should decrease when the argument has at least one alive attacker. This principle is desirable for normative systems, where evaluation of arguments is done objectively on the basis of weighted graphs only. Any semantics should satisfy at least Weakening since it defines the role of attacks without being too demanding. Note that the Trust-based semantics [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF] satisfies Weakening but violates its strict version. It is worth mentioning that in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF], we only defined the strict version of weakening, and called it Weakening. In what follows, we call Weakening the non-strict version and Strict Weakening the strict one.

Principle 5 (Weakening). A semantics S satisfies weakening iff, for any

G = A, w, R ∈ WAG, for any a ∈ A, if ∃b ∈ Att G (a) such that Deg S G (b) > 0, then Deg S G (a) ≤ w(a).
In addition to existence of alive attackers, Strict Weakening checks whether an argument can lose weight.

Principle 6 (Strict Weakening). A semantics S satisfies strict weakening iff, for any G = A, w, R ∈ WAG, for any a ∈ A, if

• w(a) > 0,

• ∃b ∈ Att G (a) such that Deg S G (b) > 0,
then Deg S G (a) < w(a). Remark 2. It is important to underline that Strict Weakening does not formally imply Weakening. Namely, the strict variant does not impose any constraint on a target whose initial weight is zero. More generally, we will present three more pairs of principles which have "strict" and "non-strict" versions (Proportionality, Reinforcement and Invariance), and it is essential to point out that the notion "strict" does not indicate that those versions imply "non-strict" versions. The terminology originates from the type of inequality (strict / non strict) used in the conclusion of the principle.

In some approaches in the the argumentation literature, namely in [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF], if an attacker is weaker than its target, the attack fails. In the context of weighted argumentation graphs, this means that if the basic weight of an attacker is weaker than that of its target, the attack has no effect on the target. Note that this is no longer the case if the semantics satisfies Strict Weakening. Indeed, each attack coming from an alive argument b weakens its target a whatever the values of basic weights, i.e., regardless of whether w(a) > w(b).

The next principle, called Weakening Soundness, goes further than the two previous ones by ensuring that attacks are the only source of strength loss. Indeed, if an argument loses weight, then it is certainly attacked by at least one alive attacker. This principle is suitable when evaluation of strength is done solely on the basis of weighted argumentation graphs, i.e., there is no extra information that is considered. The following definition simplifies the one from [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] by removing the condition on basic weight, since it follows naturally from the remaining one.

Principle 7 (Weakening Soundness). A semantics S satisfies weakening soundness iff for any G = A, w, R ∈ WAG, for any a ∈ A, if Deg S G (a) < w(a), then ∃b ∈ Att G (a) such that Deg S G (b) > 0.

We have seen that an alive attacker may weaken its target. An important question is: to what extent that attacker may be harmful? More precisely, can it make the target lose its entire basic weight? Resilience principle answers this question negatively. It states that an attack cannot make its targeted argument worthless. More formally, an argument whose basic weight is positive cannot get strength equal to 0 due to attacks. Considering this principle for a semantics depends largely on the application at hand. Resilience makes perfect sense, for instance, in debates deprived of formal rules, like those on societal issues (e.g. capital punishment, abortion) where people express their opinion. Assume the following dialogue between Carla and Paul: Carla Let us go to Señor Taco because it has the best Mexican food in Toulouse. (A) Paul: I don't agree that Señor Taco has the best Mexican food in the city. The food at La Sandia is better.

(B)

Assume that Carla knows La Sandia restaurant. The argument B attacks A since the conclusion of B contradicts the premise of A. However, B does not make A worthless since it is simply based on Paul's personal opinion. Resilience is, however, not suitable for reasoning with inconsistent propositional knowledge bases (e.g. [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF][START_REF] Amgoud | Logical limits of abstract argumentation frameworks[END_REF]). In this case, an argument is deductive in nature, and it is valid if its premises are true. Note that when the premises are true, the conclusion of the argument is also true. An attack amounts to showing that one or more premises of an argument are false. Thus, it is lethal for the validity of the targeted argument. Note that Resilience generalizes the Resilience axiom from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. Furthermore, it was shown in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] that in the case of flat argumentation graphs, Resilience is one of the main principles that distinguishes extension semantics [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF] from those proposed in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF][START_REF] Besnard | A logic-based theory of deductive arguments[END_REF]. Indeed, the former violate the principle while the latter satisfy it. The two following principles concern the impact of basic weights on strengths of arguments. Proportionality states that if the basic weight of an argument increases, then its strength might increase as well, but it surely cannot decrease. Similarly, Strict Proportionality ensures that increasing the basic weight of an argument necessarily leads to an increase of the strength of that argument. Trust-based semantics [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF] satisfies the non-strict version but violates the strict one. The non-strict variant of the principle (which we simply call Proportionality) is more suitable in applications where basic weights do not play an important role. Consider an application where the goal is to analyse whether users of an online debate platform evaluate arguments in a rational way. For that purpose, the application evaluates arguments using some semantics solely based on attacks, and then compares the results with votes provided by users. In this case, basic weights of arguments were not used by the semantics. In another application like decision making [START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debates[END_REF], basic weights are important and thus one may need Strict Proportionality. Note that in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF], we introduced only the strict version and called it Proportionality. For the sake of coherence, in what follows, this word will refer to the non-strict version.

Principle 9 (Proportionality). A semantics S satisfies proportionality iff, for any G = A, w, R ∈ WAG, for all a, b ∈ A such that

• w(a) ≥ w(b), • Att G (a) = Att G (b), then Deg S G (a) ≥ Deg S G (b).
The strict version of Proportionality is given below.

Principle 10 (Strict Proportionality). A semantics S satisfies strict proportionality iff, for any Note that Strict Proportionality is compatible with non-Resilience. Assume that S violates Resilience, and that, like extension semantics, an attack may make its target worthless. Hence, it is possible to have Deg S G2 (a) = Deg S G2 (b) = 0. In this case, Principle 10 is not applicable since its third condition is not fulfilled. The next principle, called Monotony, concerns the quantity of attackers of an argument. It states that the more an argument is attacked, the weaker it may be. This principle is desirable in various applications, such as decision making and analogical reasoning. For instance, it has been shown recently in [START_REF] Amgoud | Evaluation of analogical arguments by choquet integral[END_REF], that the number of attackers plays a crucial role in the evaluation of analogical arguments. The latter are inductive arguments that rely on analogies for drawing conclusions. They cite accepted similarities between two items in support of the conclusion that some further similarity exists between the items. Attacks amount at highlighting dissimilarities between the items. The more dissimilarities are pointed out, the weaker the analogy and thus the weaker the analogical argument. This principle extends the one proposed in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] by accounting for basic weights.

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) > w(b), • Att G (a) = Att G (b), • Deg S G (a) > 0, then Deg S G (a) > Deg S G (b). Example 2. Let

Principle 11 (Monotony). A semantics S satisfies monotony iff, for any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) = w(b), • Att G (a) ⊆ Att G (b), then Deg S G (a) ≥ Deg S G (b).
The next three principles concern the strength of individual attackers. Neutrality states that any worthless attacker (attacker whose strength is 0) has no impact on its target. In other words, being attacked by such an attacker is similar to not being attacked at all. This principle was initially proposed in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] for flat argumentation graphs, then generalized for weighted graphs in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. Both versions make two implicit assumptions: symmetry and independence. Symmetry states that a set of attackers has the same effect on arguments having the same basic weight. The second assumption states that the attackers of an argument are independent from each other. We propose below an elementary version of Neutrality which does not implicitly suppose those assumptions. Regarding the suitability of Neutrality, in [START_REF] Rago | On instantiating generalised properties of gradual argumentation frameworks[END_REF], the authors discussed some specificities of political debates and argued that in such debates worthless attackers may have an impact on their targets. In other applications like scientific debates, Neutrality is certainly suitable since arguments should only be rejected based on substantial grounds.

Principle 12 (Neutrality). A semantics S satisfies neutrality iff, for any G = A, w, R ∈ WAG, for all a, b, x ∈ A, if

• w(a) = w(b), • Att G (a) = ∅, • Att G (b) = {x} with Deg S G (x) = 0, then Deg S G (a) = Deg S G (b).
The two principles Reinforcement and Strict Reinforcement ensure that the strength of alive attackers is taken into account in the evaluation of argument strength. They respectively state that increasing the strength of an alive attacker may lead to a decrease in the strength of its target. In other words, the stronger an attacker, the more harmful it may be.

Under the name Reinforcement, the Strict Reinforcement property was proposed in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] for flat graphs and extended in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] for weighted ones. Furthermore, in both papers the formal definition of the property makes implicitly the two previous assumptions of symmetry and independence. In what follows, we simplify the principle from [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF], call it Strict Reinforcement, and propose its non-strict version, called here Reinforcement. Both (strict and non-strict) versions are elementary in that they do not make the two assumptions. We will see later that the old versions of Reinforcement (from [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]) follow from our Strict Reinforcement principle together with some other principles. The non-strict version of Reinforcement may be suitable for neglecting small differences in strengths of attackers. In the literature, Trust-based semantics [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF] satisfies the non-strict version of the above property and violates its strict version.

Principle 13 (Reinforcement). A semantics S satisfies reinforcement iff, for any G = A, w, R ∈ WAG, for all a, b, x, y ∈ A, if

• w(a) = w(b), • Att G (a) = {x}, • Att G (b) = {y}, • Deg S G (y) ≥ Deg S G (x), then Deg S G (a) ≥ Deg S G (b).
The fourth condition excludes worthless attackers since the latter are treated by Neutrality principle.

Principle 14 (Strict Reinforcement). A semantics S satisfies strict reinforcement iff, for any G = A, w, R ∈ WAG, for all a, b, x, y ∈ A, if The next four principles, Symmetry, Equivalence, Invariance and Strict Invariance, are about the strength of groups of attackers. They express the general idea that two equally strong groups of attackers should have the same impact on an argument. The four versions (from the simplest to the richest one) were proposed for an accurate analysis of existing semantics and a deeper comparison of pairs of them. For example, Dung's semantics violate Invariance, but satisfy its simplest form Symmetry. Trust-based semantics satisfies the three first versions but violates the strongest one (Strict Invariance). This finer-grained analysis is important for a better understanding of those semantics and their foundations.

• w(a) = w(b), • Deg S G (a) > 0, • Att G (a) = {x}, • Att G (b) = {y}, • Deg S G (y) > Deg S G (x), then Deg S G (a) > Deg S G (b).
The simplest principle, called Symmetry, states that the same group of attackers should have the same impact on all arguments having the same basic weights. It captures the symmetry assumption underlying the Neutrality and Reinforcement principles in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF].

Principle 15 (Symmetry). A semantics S satisfies symmetry iff, for any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) = w(b), • Att G (a) = Att G (b), then Deg S G (a) = Deg S G (b).
Equivalence is more demanding. It states that two groups of equally strong attackers should have the same impact on arguments having the same basic weights. This means also that the strength of an argument depends only on the basic weight of the argument and the strengths of its (direct and indirect) attackers.

Principle 16 (Equivalence). A semantics S satisfies equivalence iff, for any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) = w(b),
• there exists a bijective function

f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) = Deg S G (f (x)), then Deg S G (a) = Deg S G (b).
The next two principles are new and have no counterparts in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. They capture the independence assumption that was implicit in Neutrality and Reinforcement principles from [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. Invariance states that the strength of a group cannot decrease when a new attacker joins the group.

Principle 17 (Invariance). A semantics S satisfies invariance iff, for any G = A, w, R ∈ WAG, for all a, b, a , b , x, y ∈ A such that

• w(a) = w(a ) = w(b) = w(b ), • Att G (a ) = Att G (a) ∪ {x} with x / ∈ Att G (a), • Att G (b ) = Att G (b) ∪ {y} with y / ∈ Att G (b), • Deg S G (x) = Deg S G (y), the following holds: if Deg S G (a) ≥ Deg S G (b), then Deg S G (a ) ≥ Deg S G (b ).
The next principle defines the strict version of Invariance. This property is strong since, as we will see in Section 5, it enforces a semantics to consider all the attackers of an argument. In other words, it ensures that each alive attacker will have an impact on its target. The principle is thus suitable in applications where each attacker matters like the case of analogical arguments. Amgoud [START_REF] Amgoud | Evaluation of analogical arguments by choquet integral[END_REF] proposed a framework for reasoning about analogical arguments. It is based on perceived similarities between two objects for inferring some further similarity that has yet to be observed. Its attackers point out cases of dissimilarity between the two objects. Hence, attackers are pairwise different and the greater the number of attackers, the greater the dissimilarity between the objects -and the weaker the target argument. This is in accordance with the claim of some philosophers [START_REF] Juthe | Argument by analogy[END_REF][START_REF] Juthe | Classification of of arguments by analogy part i -a comprehensive review of proposals for classifying arguments by analogy[END_REF][START_REF] Walton | Similarity, precedent and argument from analogy[END_REF][START_REF] Walton | Argument from analogy in legal rhetoric[END_REF] that every distinct dissimilarity decreases the strength of an analogy.

Principle 18 (Strict Invariance).

A semantics S satisfies strict invariance iff, for any G = A, w, R ∈ WAG, for all a, b, a , b , x, y ∈ A such that:

• w(a) = w(a ) = w(b) = w(b ), • Att G (a ) = Att G (a) ∪ {x} with x / ∈ Att G (a), • Att G (b ) = Att G (b) ∪ {y} with y / ∈ Att G (b), • Deg S G (x) = Deg S G (y), • Deg S G (a ) > 0, the following holds: if Deg S G (a) > Deg S G (b) then Deg S G (a ) > Deg S G (b ).
The three last principles have no counterparts in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. They concern possible strategies that a semantics may follow when it faces a conflict between the strength and the quantity of attackers as shown by the following example. The answer to the previous question depends on which of quantity and quality is more important. Cardinality precedence states that a great number of attackers has more effect on an argument than just a few. This strategy makes sense in some applications like debates, where the number of participants attacking a point of view is important.

Principle 19 (Cardinality Precedence). A semantics S satisfies cardinality precedence (CP) iff, for any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) = w(b), • Deg S G (a) > 0, g:1.0 c:1.0 h:1.0 d:1.0 a:1.0 j:1.0 b:1.0 Figure 4: Weighted graph G 4 • |{x ∈ Att G (a) | Deg S G (x) > 0}| < |{y ∈ Att G (b) | Deg S G (y) > 0}|, then Deg S G (a) > Deg S G (b).
Quality precedence principle gives more importance to the strength of attackers2 . This strategy is important, for instance, in debates requiring expertise. If a Fields medalist says P , whilst three students say ¬P , we probably believe P . It is worth mentioning that this principle is similar to the Pessimistic rule in decision making under uncertainty [START_REF] Dubois | Possibility theory as a basis for qualitative decision theory[END_REF].

Principle 20 (Quality Precedence). A semantics S satisfies quality precedence (QP) iff, for any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) = w(b), • Deg S G (a) > 0, • ∃y ∈ Att G (b) such that Deg S G (y) > 0 and ∀x ∈ Att G (a), Deg S G (y) > Deg S G (x), then Deg S G (a) > Deg S G (b).
Compensation says that several weak attackers might, in some situations, compensate one or more strong attackers. For instance, in the graph G 4 , the two weak attackers of a may compensate the strong attacker of b, and a is declared as strong as b. This strategy is very common in multiple criteria decision making where several weak criteria compensate a strong one [START_REF] Dubois | On the qualitative comparison of decisions having positive and negative features[END_REF].

Principle 21 (Compensation).

A semantics S satisfies compensation iff it violates both CP and QP.

Note how weak the compensation principle is. Namely, it is sufficient to find one argumentation graph that violates CP and one that violates QP, in order to satisfy this principle.

Example 4 (Cont) Assume a semantics S which satisfies Resilience. Thus by definition, Deg S G4 (x) > 0 for any x ∈ {a, b, c, d, g, h, j}. Assume also that S satisfies Maximality and Strict Weakening, then

Deg S G4 (j) = 1, Deg S G4 (c) < 1, and Deg S G4 (d) < 1. Hence, Deg S G4 (j) > Deg S G4 (c), Deg S G4 (d). If S satisfies (CP), then Deg S G4 (a) < Deg S G4 (b). However, if S satisfies (QP), then Deg S G4 (a) > Deg S G4 (b).
It is worth mentioning that two axioms, similar to (CP) and (QP), were proposed for the first time by Amgoud and Ben-Naim [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF] for flat graphs and ranking semantics. Recall that the latter do not quantify strengths of arguments, but rather define a preference relation between arguments. Thus, the equivalent axiom of (QP) uses that preference relation while the one corresponding to (CP) simply counts the number of attackers, even the worthless ones. Our principles are finer since they do not consider worthless attackers. The three previous principles (CP, QP, Compensation) were also investigated by the same authors in [START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF] for support argumentation graphs, i.e., graphs where arguments may only support each other.

At the end of this section, let us discuss our choice to use the interval [0, 1] as the co-domain of gradual semantics. Note that all our principles are concerned with comparing arguments' scores, without essentially using the fact that the co-domain is equal to [0, 1]. They only use the ordering on the arguments' strengths, so they are also applicable to semantics that use other total orders with a minimal value. In case of semantics that are defined on a co-domain without a minimal value, Neutrality is non-applicable, and other principles can be easily modified by dropping the conditions which require that the degrees of arguments are strictly positive. For example, if a semantics would take values from a scale without a minimal value (e.g. (0, 1]), we could modify the principles as follows. For instance, Strict Reinforcement would be changed by dropping the condition Deg(a) > 0 and simply transforming the condition Deg(y) > Deg(x) > 0 into Deg(y) > Deg(x). To take another example, Weakening would be changed by transforming the condition "there exists an argument b attacking a such that Deg(b) > 0" into "there exists an argument b attacking a".

Let us also note that almost all existing gradual/ranking semantics use either an abstract co-domain or the unit interval [0, 1] (for an overview see [START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF]). A notable exception is α-BBS [START_REF] Amgoud | Ranking arguments with compensation-based semantics[END_REF], whose co-domain is the interval [1, +∞). Under this semantics, the value of an argument represents its burden (so the bigger the score the weaker the argument), but it was recently noted by Amgoud and Doder [START_REF] Amgoud | Gradual semantics accounting for varied-strength attacks[END_REF] that α-BBS is equivalent to a generalisation of h-categorizer [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF]. More precisely, the function which assigns reciprocals of α-BBS values to arguments has the co-domain [0, 1] and satisfies the principles.

Formal Properties

This section presents three kinds of formal properties. The first concerns compatibilities and links between principles. The second concerns generalisations of the elementary principles. The third concerns features of semantics that satisfy subsets of the proposed principles.

Links and Compatibility Results

The three principles (CP, QP, Compensation) are incompatible, that is there is no semantics that can satisfy more than one of them. Any semantics should choose one of the three strategies for evaluating arguments in any graph, and thus violates the principles corresponding to the two others. Quality Precedence is also incompatible with another subset of principles.

Proposition 1. The two following properties hold. The following result summarizes the various links that exist between the principles.

Proposition 2. Let S be a semantics.

• If S satisfies Equivalence, then S satisfies Symmetry.

• If S satisfies Independence, Directionality, Invariance, and Maximality, then:

-S satisfies Equivalence.

-If S satisfies Neutrality, then S satisfies Weakening Soundness.

-If S satisfies Weakening, then S satisfies Monotony.

Remark: Note that despite the fact that Weakening Soundness, Equivalence, Monotony, and Symmetry follow from other subsets of principles, they belong to our set of principles since they allow to understand the behavior of some existing semantics. As we will see in Section 6, some semantics may satisfy these basic properties while violating the ones implying them. For instance, Stable semantics [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF] violates Invariance but satisfies Symmetry. This shows that this semantics does not violate all the cases covered by Invariance.

Generalizations of principles

The principles are presented in very basic forms for two reasons: i) such forms make them easy to grasp, and ii) their general versions follow from subsets of principles. In what follows, we provide the subsets which lead to the general versions of Directionality, Neutrality, Strict Reinforcement, Invariance and Strict Invariance.

Before presenting the generalization of Directionality, we start by introducing a new notion and a notation.

Given G = A, w, R ∈ WAG, a set U ⊆ A is unattacked in G if and only if for all a ∈ A \ U and b ∈ U , (a, b) / ∈ R.
Notation: For a weighted argumentation graph G = A, w, R ∈ WAG and A ⊆ A, we denote by G| A the element of WAG such that:

G| A = A , w| A , R ∩ (A × A )
where w| A is the restriction of the function w to the set A .

The following result presents generalized Directionality. It is worth mentioning that it is an adaptation of the principle with the same name from [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF]. Proposition 3. If a semantics S satisfies Independence and Directionality, then for any G = A, w, R ∈ WAG and U ⊆ A which is unattacked in G, for any a ∈ U , the following holds:

Deg S G (a) = Deg S G| U (a).
The following two results generalize respectively Proportionality and Strict proportionality.

Proposition 4. Let S be a semantics which satisfies Independence, Directionality, Equivalence and Proportionality. For any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) ≥ w(b),
• there exists a bijective function

f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) = Deg S G (f (x)), then Deg S G (a) ≥ Deg S G (b).
Proposition 5. Let S be a semantics which satisfies Independence, Directionality, Equivalence and Strict Proportionality. For any

G = A, w, R ∈ WAG, for all a, b ∈ A, if • w(a) > w(b),
• there exists a bijective function

f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) = Deg S G (f (x)), • Deg S G (a) > 0, then Deg S G (a) > Deg S G (b).
Regarding Neutrality, the idea is that any worthless attacker will not have effect on its target. This is particularly the case for semantics satisfying Independence, Directionality, Invariance, and Neutrality. Proposition 6. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. For any

G = A, w, R ∈ WAG, for all a, b ∈ A, for any X ⊆ A \ Att G (a), if • w(a) = w(b), • Att G (b) = Att G (a) ∪ X such that X = ∅ and for any x ∈ X, Deg S G (x) = 0, then Deg S G (a) = Deg S G (b).
The general version of Reinforcement follows from its basic form as well as Independence, Directionality, and Invariance.

Proposition 7. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Reinforcement. For any

G = A, w, R ∈ WAG, for all a, b ∈ A, If • w(a) = w(b), • Att G (a) \ Att G (b) = {x}, • Att G (b) \ Att G (a) = {y}, • Deg S G (y) ≥ Deg S G (x) > 0, then Deg S G (a) ≥ Deg S G (b).
The general version of Strict Reinforcement as defined in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] follows from its basic form as well as Independence, Directionality, Maximality, Invariance, and Strict Invariance. 

• Deg S G (a) > 0, • Att G (a) \ Att G (b) = {x}, • Att G (b) \ Att G (a) = {y}, • Deg S G (y) > Deg S G (x) > 0, then Deg S G (a) > Deg S G (b).
The generalized Invariance follows from its basic form as well as Independence and Directionality.

Proposition 9. Let S be a semantics which satisfies Independence, Directionality, and Invariance. For any

G = A, w, R ∈ WAG, for all a, b, a , b ∈ A, for all X, Y ∈ P(A) \ ∅, if • w(a) = w(a ), • w(b) = w(b ), • Att G (a ) = Att G (a) ∪ X, • Att G (b ) = Att G (b) ∪ Y ,
• there exists a bijective function f from X to Y such that for any x ∈ X,

Deg S G (x) = Deg S G (f (x))
then the following holds

: if Deg S G (a) ≥ Deg S G (b) then Deg S G (a ) ≥ Deg S G (b ).
Similarly, the generalized Strict Invariance follows from its basic form as well as Independence and Directionality.

Proposition 10. Let S be a semantics which satisfies Independence, Directionality, and Strict Invariance. For any

G = A, w, R ∈ WAG, for all a, b, a , b ∈ A, for all X, Y ∈ P(A) \ ∅, if • w(a) = w(a ), • w(b) = w(b ), • Att G (a ) = Att G (a) ∪ X, • Att G (b ) = Att G (b) ∪ Y ,
• there exists a bijective function f from X to Y such that for any x ∈ X,

Deg S G (x) = Deg S G (f (x)) • Deg S G (a ) > 0, then the following holds: if Deg S G (a) > Deg S G (b) then Deg S G (a ) > Deg S G (b ).

Consequences of principles

This section investigates properties of semantics that satisfy some subsets of principles. The first result states that under some principles, an argument that is attacked only by worthless attackers does not lose weight.

Proposition 11. If a semantics S satisfies Independence, Directionality, Invariance, Neutrality, and Maximality, then for any

G = A, w, R ∈ WAG, for any a ∈ A such that Att G (a) = ∅, if for every x ∈ Att G (a), Deg S G (x) = 0, then Deg S G (a) = w(a).
In [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF], the strict version of Monotony, called Counting, is considered as a principle. It ensures that each attacker impacts its target as soon as it has a strictly positive strength.

Definition 6 (Counting). A semantics S satisfies Counting iff for any

G = A, w, R ∈ WAG, for all a, b, x ∈ A, if • w(a) = w(b), • Att G (b) = Att G (a) ∪ {x} with x / ∈ Att G (a) and Deg S G (x) > 0, • Deg S G (a) > 0, then Deg S G (a) > Deg S G (b).
Counting follows from more elementary principles, namely Independence, Directionality, Neutrality, Maximality, Strict Weakening, Invariance, and Strict Invariance. We show next that, roughly speaking, an argument which loses its entire basic weight cannot become better off if it is further attacked.

Proposition 13. If a semantics S satisfies Anonymity, Independence, Directionality, Neutrality, Monotony, Invariance, and Reinforcement, then for any G = A, w, R ∈ WAG, for any a, b ∈ A such that

• w(a) = w(b), • Att G (a) \ Att G (b) = {x}, • Att G (b) \ Att G (a) = {y}, • Deg S G (y) ≥ Deg S G (x), if Deg S G (a) = 0, then Deg S G (b) = 0.
A semantics satisfying Independence, Directionality, Invariance, Neutrality, Maximality, and Weakening, assigns to each argument a value between 0 and its basic weight. We also show that any pair of arguments which have similar attack structures get the same strengths.

Theorem 3. Let S be a semantics which satisfies Anonymity, Independence and Directionality. For any G = A, w, R ∈ WAG, for all a, b ∈ A, if there exists an isomorphism f :

G| Str G (a) → G| Str G (b) such that f (a) = b, then Deg S G (a) = Deg S G (b).
Another property which follows from a subset of principles is Counter-Transitivity, which was introduced in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF] for ranking semantics in the case of non-weighted graphs. It states that: "if the attackers of an argument b are at least as numerous and strong as those of an argument a, then a is at least as strong as b". • there exists an injective function

f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) ≤ Deg S G (f (x)), then Deg S G (a) ≥ Deg S G (b).
In case of flat argumentation graphs, it was shown in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] that any semantics which satisfies Anonymity, assigns the same strength to any argument of an elementary cycle. This result still holds in the case of weighted argumentation graphs, namely when the arguments of the elementary cycle all have the same basic weights. Indeed, suppose that we are given an elementary cycle a 1 , . . . , a n and consider the bijection

f such that f (a 1 ) = a 2 , . . ., f (a n-1 ) = a n , f (a n ) = a 1 .
Observe that f is an isomorphism. Then from Anonymity, we obtain that for every i, j, Deg S G (a i ) = Deg S G (a j ).

Analysis of Some Existing Semantics

While semantics dealing with flat graphs have already been analysed in [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF][START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF], in this section we present the first analysis and comparison of existing semantics devoted to weighted argumentation graphs. We focus on semantics that can deal with graphs with cycles3 and we present our results in Table 1.

We distinguish two families of semantics: The first family extends Dung's semantics with preferences between arguments (e.g. [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF][START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF][START_REF] Amgoud | A new approach for preference-based argumentation frameworks[END_REF][START_REF] Bao | Abaplus: Attack reversal in abstract and structured argumentation with preferences[END_REF]), or with weights on attacks (e.g. [START_REF] Cayrol | Acceptability semantics accounting for strength of attacks in argumentation[END_REF][START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF][START_REF] Dunne | Computation with varied-strength attacks in abstract argumentation frameworks[END_REF]). In case of preferences, an argumentation framework takes as input a finite set A of arguments, a binary attack relation R between them, and a preference relation between arguments. The relation is a (partial or total) preorder, and is its strict version. For two arguments a, b, the notation a b means that the argument a is at least as preferred as b. In [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF][START_REF] Amgoud | A new approach for preference-based argumentation frameworks[END_REF], the preference relation is abstract and may capture different issues like differences in certainty degrees of information involved in arguments, differences in trustworthiness of arguments' sources, etc. In [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF], the preference relation captures differences of importance of values promoted by arguments. Finally, in [START_REF] Bao | Abaplus: Attack reversal in abstract and structured argumentation with preferences[END_REF], it captures priorities between rules used in arguments. There are two approaches for dealing with preferences: contraction-based and change-based.

The contraction-based approach is followed in [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF][START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF] and its basic idea is shrinking attacks by getting rid of those whose source is weaker than the target before computing extensions. Indeed, from an input A, R, , a new flat argumentation graph A, R c is computed as follows: Change-based approach was introduced for the first time in [START_REF] Amgoud | A new approach for preference-based argumentation frameworks[END_REF], then used in [START_REF] Bao | Abaplus: Attack reversal in abstract and structured argumentation with preferences[END_REF], for solving a drawback of the contraction-based approach. Indeed, when the original attack relation R is not symmetric, the extensions of the graph A, R c may be conflicting, which is incompatible with the essence of extensions. Amgoud and Vesic [START_REF] Amgoud | A new approach for preference-based argumentation frameworks[END_REF] then proposed a set of axioms that an extension-based semantics should satisfy. They have then shown that such a semantics amounts to reversing the direction of each attack whose target is stronger than the source. Thus, from an input A, R, , a new flat argumentation graph A, R r is computed as follows: In both approaches, the classical semantics of Dung [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF] are applied to the new graphs ( A, R c , A, R r ). Those semantics are based on two key concepts: conflict-freeness and defense. Let x ∈ {c, r}.

• E ⊆ A is conflict-free iff a, b ∈ E such that (a, b) ∈ R x . • E ⊆ A defends a ∈ A iff ∀b ∈ A, if (b, a) ∈ R x , then ∃c ∈ E such that (c, b) ∈ R x .
The four semantics (grounded, complete, stable, preferred) we investigate in this paper are recalled below. Let E ⊆ A.

• E is an admissible extension iff it is conflict-free and defends all its elements.

• E is a complete extension iff it is admissible and contains all the arguments it defends.

• E is a grounded extension iff it is the minimal (wrt set inclusion) complete extension.

• E is a preferred extension iff it is a maximal (wrt set inclusion) admissible extension.

• E is a stable extension iff it is conflict-free and ∀a ∈ A \ E, ∃b ∈ E such that (b, a) ∈ R x .

Given a set of extensions, the most common way to assign a (qualitative) strength to an argument a ∈ A (see [START_REF] Baroni | Scc-recursiveness: a general schema for argumentation semantics[END_REF][START_REF] Cayrol | Graduality in argumentation[END_REF][START_REF] Grossi | On the graded acceptability of arguments[END_REF][START_REF] Modgil | A general account of argumentation with preferences[END_REF][START_REF] Prakken | Argument-based extended logic programming with defeasible priorities[END_REF]) is as follows:

• a is sceptically accepted if it belongs to all extensions,

• a is credulously accepted if it belongs to some but not all extensions,

• a is rejected if it does not belong to any extension.

Let us now analyse how this approach works when the input consists of a weighted graph G = A, w, R . The question of how to define a preference relation between arguments has already been answered in [START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF]. The idea is simply to privilege arguments with the highest basic weight. Indeed, for a, b ∈ A, a is preferred to b (i.e., a b) iff w(a) ≥ w(b). A new flat graph A, R x (with x ∈ {c, r}) is then generated as explained above and Dung's semantics are applied to A, R x . The last issue to solve is transforming the three-valued qualitative scale of strengths of arguments into a numerical one. Amgoud and Ben-Naim [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] proposed the following translation: for any a ∈ A, if A, R x has no extensions, then Deg S G (a) = 0.3. Otherwise,

• Deg S G (a) = 1 iff a belongs to all extensions.

• Deg S G (a) = 0.5 iff a is in some but not all extensions.

• Deg S G (a) = 0.3 iff a does not belong to any extension and is not attacked by any extension.

• Deg S G (a) = 0 iff a does not belong to any extension and is attacked by at least one extension.

Note that the above definition distinguishes between two types of rejected arguments: those that are attacked by at least one extension, and those that are not attacked by any extension. We generalize the previous definition by replacing the "magic numbers" 0.3 and 0.5 with β and α respectively such that 0 < β < α < 1. The results of our analysis (see Table 1) are independent of the exact values of the two parameters.

So far, we have shown how strengths of arguments can be computed in weighted graphs with existing preferencebased argumentation frameworks. We are thus ready to analyse the proposed semantics against the set of principles described in this paper. Table 1 summarizes the properties of grounded, complete, preferred and stable semantics. It shows that most principles, including Strict Weakening, are violated by the four semantics. Remember that Strict Weakening principle defines formally the role of attacks. It states that each attacked argument should lose weight. The four semantics violate this principle, and an argument may not lose weight even when attacked by an alive attacker. Maximality is also violated since those semantics manipulate the preference relation issued from basic weights rather than the basic weights themselves. The table also shows that in the case of a dilemma between the quality and the quantity of attackers, the four semantics allow compensation. Finally, while preferred and complete semantics satisfy and violate the same principles, preferred and stable do not behave in the same way regarding Independence, Directionality and Neutrality. The grounded semantics satisfies two more principles than preferred semantics: Neutrality and Weakening Soundness.

In [START_REF] Cayrol | Acceptability semantics accounting for strength of attacks in argumentation[END_REF][START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF][START_REF] Dunne | Computation with varied-strength attacks in abstract argumentation frameworks[END_REF], the input is a finite set A of arguments, an attack relation R between arguments, and weights from the unit interval [0, 1] assigned to attacks. It was shown in [START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF] that when all attacks are assigned weight 1, the framework coincides with Dung's one [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF], namely a simple flat argumentation graph whose arguments are evaluated by extension semantics. Furthermore, a flat argumentation graph can be seen as a weighted graph whose arguments are all assigned a basic weight equal to 1. The properties of grounded, complete, stable, preferred semantics in the case of flat graphs were already investigated in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF]. Obviously, every principle violated by a semantics in the flat case is also violated by the same semantics in the weighted case and in the settings of [START_REF] Cayrol | Acceptability semantics accounting for strength of attacks in argumentation[END_REF][START_REF] Dunne | Weighted argument systems: Basic definitions, algorithms, and complexity results[END_REF][START_REF] Dunne | Computation with varied-strength attacks in abstract argumentation frameworks[END_REF]. Among the violated principles we mention Independence by stable semantics, Equivalence and Weakening Soundness by complete, stable and preferred semantics, Strict Proportionality and Resilience by the four semantics. It was shown in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF] that under the four semantics, attacks either completely kill their targets (the targets get degree 0) or have no effect.

The second family of semantics deals with basic weights, defines functions assigning a numerical degree to each argument, computes arguments' degrees in an iterative way, and does not resort to the intermediate step of computing extensions. The first semantics of this family is Trust-based (TB) which has been proposed by Da Costa et al. [START_REF] Da Costa Pereira | Changing one's mind: Erase or rewind?[END_REF]. TB takes as input a weighted argumentation graph G = A, w, R where w(.) expresses the degree of trustworthiness of argument's source. It assigns to each argument a ∈ A a strength, which is the limit reached by the scoring function f defined as follows:

Deg T B G (a) = lim i→+∞ f i (a)
, where

f i (a) = 1 2 f i-1 (a) + 1 2 min[w(a), 1 -max bRa f i-1 (b)] (1) 
It is worth mentioning that the strengths of arguments satisfy equation 1, namely

Deg T B G (a) = 1 2 Deg T B G (a) + 1 2 min[w(a), 1 -max bRa Deg T B G (b)],
hence

Deg T B G (a) = min[w(a), 1 -max bRa Deg T B G (b)]. (2) 
However, the equation ( 2) may have more than one solution meaning that it is not a characterization of TB. To illustrate, consider the weighted argumentation graph below with both arguments having basic weight 1: • . . . 1 shows that TB follows the compensation strategy in the case of a dilemma between quality and quantity of attackers. However, it satisfies more principles than the four previous semantics. It violates the key principle of Strict Weakening meaning that an argument may not lose weight even if it is seriously attacked. Similarly, it violates Strict Invariance showing that the number of attackers does not necessarily impact the strengths of arguments. This is not surprising since TB extends the labelling approach of extension semantics with weights on arguments.

Like extension semantics, Table

Gabbay and Rodrigues [START_REF] Gabbay | Equilibrium states in numerical argumentation networks[END_REF] developed a semantics, called Iterative Schema (IS), for evaluating arguments in weighted argumentation graphs (G = A, w, R ), where basic weights of arguments may represent different issues. Like TB, this semantics aims at extending the labelling approach of extension-based semantics by taking labels from the unit interval [0, 1] rather than {in, out, und}. Like TB, IS returns a single labelling for every graph. In this labelling, the value of each argument is the limit reached by iterative applications of a scoring function g. At the initial step, this function assigns to each argument a its basic weight (w(a)), and at each step, it recomputes the value of a on the basis of its value and those of its attackers at the previous step.

g i (a) = (1 -g i-1 (a)) min{ 1 2 , 1 -max bRa g i-1 (b)} + g i-1 (a) max{ 1 2 , 1 -max bRa g i-1 (b)}
Once the single labelling is computed, IS returns a single extension which contains all the arguments that get value 1.

Table 1 shows that IS and Mbs (which will be introduced in the next section) are the only semantics that satisfy Quality Precedence. However, IS violates key principles like Maximality, and thus may return counter-intuitive results. Assume a graph made of a single argument a, which is not attacked and whose basic weight is 0. IS returns a single extension, {a}, thus declaring a as accepted.

Another semantics of the second family is Simple Product (SP), which was proposed by Leite and Martins [START_REF] Leite | Social abstract argumentation[END_REF]. It takes as input a set of arguments, positive and/or negative votes on each argument, and an attack relation between arguments. The basic weight w(.) can be seen as an aggregation of the votes on an argument. Like TB, the semantics uses a scoring function which assigns values to arguments in an iterative way. In their paper, Leite and Martins conjecture that the function converges and assigns a single value to each argument. A counter-example was unfortunately found recently in [START_REF] Amgoud | A note on the uniqueness of models in social abstract argumentation[END_REF] showing that the semantics may assign more than one value to an argument. Hence, the semantics is not compatible with Definition 5 and will not be investigated here. Table 1 summarizes the results concerning semantics that deal with cyclic weighted argumentation graphs.

Theorem 5. The properties of Table 1 hold.

Baroni et al. [START_REF] Baroni | Automatic evaluation of design alternatives with quantitative argumentation[END_REF] focused on bipolar acyclic graphs, i.e., graphs where arguments may be attacked and supported but without forming cycles. Those graphs are weighted since each argument has a basic weight, which may represent different issues. The authors developed a semantics called QuAD, which was later extended to DF-QuAD by Rago et al. [START_REF] Rago | Discontinuity-free decision support with quantitative argumentation debates[END_REF]. The two semantics coincide when the support relation is empty, i.e., in the case of weighted argumentation graphs as studied in our paper. In what follows, we study the properties of DF-QuAD in the particular case of a weighted argumentation graph G = A, w, R . The strength of any a ∈ A is defined as follows: Like all the semantics reviewed so far, (DF-)QuAD follows the compensation strategy but it satisfies more principles. Note also that with (DF-)QuAD, an argument may lose its entire strength (i.e., get strength 0).

Deg DF -QuAD G (a) = w(a) × bRa (1 -Deg DF -QuAD G (b)). (3) 

Three Novel Semantics

We have previously seen that all existing semantics violate the resilience principle. This section introduces three novel semantics that satisfy the principle: one for each of the three incompatible principles (QP, CP, Compensation). Weighted max-based semantics satisfies Quality Precedence, Weighted cardinality-based semantics satisfies Cardinality Precedence, and weighted h-Categorizer satisfies Compensation.

Weighted Max-Based Semantics (Mbs)

The first semantics satisfies quality precedence, thus it favors the quality of attackers over their cardinality. It is based on a scoring function which follows a multiple step process. At each step, the function assigns a score to each argument. In the initial step, the score of an argument is its basic weight. Then, in each step, the score is recomputed on the basis of the basic weight as well as the score of the strongest attacker of the argument at the previous step. Definition 8 (f m ). Let G = A, w, R ∈ WAG. We define the weighted max-based function f m from A to [0, 1] as follows: for any argument a ∈ A, for i ∈ {0, 1, 2, . . .},

f i m (a) =    w(a) if i = 0 w(a) 1+ max b∈Att G (a) f i-1 m (b) otherwise By convention, max b∈Att G (a) f i m (b) = 0 if Att G (a) = ∅.
The value f i m (a) is the score of the argument a at step i. This value may change at each step, however, it converges to a unique value as shown in the next theorem.

Family of semantics

Extension semantics

Gradual semantics Contraction-based Change-based 

Grd Stb Prf Com Grd Stb Prf Com TB IS Mbs Cbs Hbs Anonymity • • • • • • • • • • • • • Independence • × • • • × • • • • • • • Directionality • × • • × × × × • • • • • Maximality × × × × × × × × • × • • • Weakening × × × × × × × × • × • • • Strict Weakening × × × × × × × × × × • • • Weakening Soundness • × × × • × × × • • • • • Resilience × × × × × × × × × × • • • Proportionality • • • • × × × × • • • • • Strict Proportionality × × × × × × × × × × • • • Monotony • • • • × × × × × • • • • Neutrality • • × × × × × × • • • • • Reinforcement × × × × × × × × • • • • • Strict Reinforcement × × × × • • × × × • • • • Symmetry • • • • × × × × • • • • • Equivalence × × × × × × × × • • • • • Invariance × × × × × × × × • • • • • Strict invariance × × × × × × × × × × × • • Cardinality Precedence × × × × × × × × × × × • × Quality Precedence × × × × × × × × × • • × × Compensation • • • • • • • • • × × × • Counting × × × × × × × × × × × • •
The next result states that equation ( 4) is not just a property of weighted max-based semantics, but also its characterization. Indeed, it is the only function satisfying the equation. Due to this characterization, equation ( 4) represents an alternative definition of weighted max-based semantics (Definition 9).

Theorem 9. Let G = A, w, R ∈ WAG and D : A → [0, 1]. If D(a) = w(a) 1+ max b∈Att G (a) D(b) , for all a ∈ A, then D ≡ Deg Mbs G .
Weighted max-based semantics satisfies Quality Precedence as well as all the principles which are compatible with it. It violates Strict Invariance since by definition, this semantics focuses only on the strongest attacker of an argument, and neglects the remaining ones. 

Weighted Card-Based Semantics (Cbs)

The second semantics, called weighted card-based, favours the number of attackers over their strength. It considers only founded arguments, i.e., arguments with a strictly positive basic weight. This restriction is based on the consideration that unfounded arguments are worthless and their attacks are ineffective.

Definition 10 (Founded Argument). Let G = A, w, R ∈ WAG and a ∈ A. The argument a is founded iff w(a) > 0. It is called unfounded otherwise. Let AttF G (a) denote the set of founded attackers of a.

Weighted card-based semantics is based on a recursive function f c , which assigns a score to each argument on the basis of its basic weight, the number of its founded attackers, and their scores. The latter (i.e., scores) are considered in order to ensure the Reinforcement principle, that is to take into account the strength of attackers when it is not in conflict with their number.

Definition 11 (f c ). Let G = A, w, R ∈ WAG. We define the weighted card-based function f c from A to [0, 1] as follows: for any argument a ∈ A, for i ∈ {0, 1, 2, . . .},

f i c (a) =      w(a) if i = 0, w(a) 1 + |AttF G (a)| + b∈AttF G (a) f i-1 c (b) |AttF G (a)| otherwise.
By convention, b∈AttF G (a)

f i-1 c (b) = 0 if AttF G (a) = ∅.
The value f i c (a) is the score of the argument a at step i. This value converges to a unique value as i becomes high.

Theorem 12. The function f i c converges as i approaches infinity.

The strength of each argument is the limit reached using the scoring function f c . 

We also show that equation ( 5) represents an alternative definition of weighted card-based semantics, i.e., Deg Cbs G is the only function which satisfies the equation (2). As shown next, the weighted card-based semantics satisfies Cardinality Precedence as well as all the principles that are compatible with it. Table 1 also shows that Cbs is the first semantics in the literature that satisfies CP and deals with weighted argumentation graphs. In [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF], two ranking semantics (Burden-based semantics (Bbs) and Discussion-based semantics (Dbs)) that satisfy CP were proposed but for flat (i.e., non-weighted) graphs. As with the max-based semantics, an argument gets value 0 iff its basic weight is already 0.

Corollary 2. Let G = A, w, R ∈ WAG and a ∈ A. For any a ∈ A, Deg Cbs G (a) = 0 iff w(a) = 0.

Weighted h-Categorizer Semantics (Hbs)

Weighted h-Categorizer semantics is based on h-Categorizer, initially proposed by Besnard and Hunter [START_REF] Besnard | A logic-based theory of deductive arguments[END_REF] for nonweighted and acyclic graphs. It extends the definition of h-Categorizer to account for varying degrees of basic weights, and any graph structure. Like the two previous semantics (Mbs and Cbs), Hbs follows a multiple step process. In the initial step, it assigns to every argument its basic weight. Then, in each step, all the scores are simultaneously recomputed on the basis of the attackers' scores in the previous step.

Definition 13 (f h ). Let G = A, w, R ∈ WAG. We define the weighted h-Categorizer function f h from A to [0, 1] as follows: for any a ∈ A, for i ∈ {0, 1, 2, . . .},

f i h (a) =    w(a) if i = 0; w(a) 1+ b∈Att G (a) f i-1 h (b) otherwise. By convention, if Att G (a) = ∅, b∈Att G (a) f i-1 h (b) = 0.
Like the two previous scoring functions, the function f i h converges.

Theorem 17. The function f i h converges as i approaches infinity.

According to weighted h-Categorizer, the strength of each argument in a weighted argumentation graph is the limit reached using the function f h . In weighted argumentation graphs where each argument is attacked by at most one argument, the two semantics Mbs and Hbs coincide, that is they return the same values for the arguments. From the previous result, it follows that Hbs assigns the same strengths as Mbs to the arguments of the three weighted argumentation graphs G 1 , G 2 and G 3 . However, the two semantics assign different values to argument a of the graph G 4 .

Definition 14 (Hbs).

Example 4 (Cont) Consider the weighted argumentation graph G 4 . Since the graph is acyclic, the strengths can be calculated in two steps as follows: i a b c d g h j 0 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1 0.33 0.50 0.50 0.50 1.00 1.00 1.00 2 0.50 0.50 0.50 0.50 1.00 1.00 1.00

The strengths of the arguments according to Hbs are as follows: Deg Hbs G4 (g) = 1.00, Deg Hbs G4 (h) = 1.00, Deg Hbs G4 (c) = 0.50, Deg Hbs G4 (d) = 0.50, Deg Hbs G4 (a) = 0.50, Deg Hbs G4 (j) = 1.00, Deg Hbs G4 (b) = 0.50. Note that Deg Hbs G4 (a) = Deg Hbs G4 (b), thus Hbs follows a compensation strategy. We now show that the limit scores of arguments (thus their strengths) satisfy the equation of Definition 13.

Theorem 18. For any

G = A, w, R ∈ WAG, for any a ∈ A, Deg Hbs G (a) = w(a) 1 + b∈Att G (a) Deg Hbs G (b) . (6) 
The following theorem states that equation ( 6) is a characterization of weighted h-Categorizer semantics, i.e., it is the only function satisfying the equations (3) (one equation per argument). The weighted h-Categorizer semantics satisfies compensation as well as all the principles that are compatible with it. Table 1 shows that Hbs is the only semantics in the literature that satisfies all the principles compatible with compensation, and for any structure of graphs. In the particular case of acyclic graphs, the (DF-)QuAD semantics satisfies the same principles except Resilience. Indeed with DF-QuAD, an argument may lose its entire strength (i.e., get strength 0) while this is not possible with Hbs unless the basic weight of the argument is 0. Like the two previous semantics, an argument gets value 0 with Hbs iff its basic weight is already 0.

Corollary 3. Let G = A, w, R ∈ WAG and a ∈ A. For any a ∈ A, Deg Hbs G (a) = 0 iff w(a) = 0.

Experimental Analysis

In order to check the performance of the three novel semantics (Mbs, Cbs, Hbs), we experimentally investigated, for each semantics, the number of iterations and the time needed to calculate the strengths of arguments. We used Algorithm 1 to calculate the result.

Input: a weighted graph, precision , maximal number of steps maxSteps Result: the score of each argument set the number of iterations to 0; initialize the current scores of arguments by setting the score of each argument to its initial weight; calculate new scores by using the corresponding formula (from equation 4, 5 or 6); while there exists an argument a i s.t. the difference between the current and new score of a i is greater than do number of iterations = number of iterations + 1; current scores = new scores; update new scores by using the corresponding formula (from equation 4, 5 or 6); if the number of iterations is equal to maxSteps then break; end if number of iterations < maxSteps then we successfully calculated the scores with precision ; else we reached the maximal number of iterations before reaching the desired precision; end Algorithm 1: Algorithm used to calculate arguments' scores An important step consists of choosing the set of benchmarks, i.e., the set of argumentation graphs on which the three semantics will be applied. There exist two families of benchmarks in the argumentation literature. The first is used for testing the performance of solvers on Dung's semantics in the International Competition on Computational Models of Argumentation [START_REF] Thimm | The first international competition on computational models of argumentation: Results and analysis[END_REF]. The second family of benchmarks in [START_REF] Da Costa Pereira | Fuzzy labeling for abstract argumentation: An empirical evaluation[END_REF] is used for testing the performance of gradual semantics. In our work, we use the latter since our semantics are gradual. More precisely, we consider four datasets: Erdős-Rényi dataset, Barabási-Albert dataset, Kleinberg dataset, and Sophia Antipolis dataset. The first three are well-known random graph models with respectively 100 to 300 arguments, 30 to 20000 arguments, and 9 to 900 arguments. The concrete graphs we used were generated by Bistarelli [START_REF] Bistarelli | A first comparison of abstract argumentation reasoning-tools[END_REF] and are freely downloadable 4 . The fourth dataset was generated by Pereira et al. [START_REF] Da Costa Pereira | Fuzzy labeling for abstract argumentation: An empirical evaluation[END_REF] by combining different argumentation patterns from the literature. It can also be found online 5 . Its graphs contain between 5000 and 100000 arguments. A common feature of the graphs of the four datasets is that they are flat, i.e., arguments do not have basic weights.

We implemented the three semantics in Java, and the solvers ran on a cluster of identical computers with two processors Intel XEON E5-2643 -4 cores -3.3 GHz running CentOS 6.0 x86 64 with 32 GB of memory, using the tool runsolver [START_REF] Roussel | Controlling a solver execution with the runsolver tool[END_REF].

It is worth mentioning that our goal was not to produce the fastest possible solver but to check two aspects: the average number of iterations needed to get the strengths of arguments, and the general tendency in time when the number of arguments increases. For that purpose, we run the experiments twice: once we attributed random basic weights to arguments, and once we attributed the basic weight 1 to all arguments. Furthermore, the iterative algorithms stop when the difference in scores between two successive iterations is less than 0.001 for each argument. The results are shown in Figures 5678910111213141516. Note that we used the following abbreviations: max (for weighted max-based semantics), card (for weighted card-based semantics), h (for weighted h-Categorizer semantics), iter (for number of iterations needed to calculate the scores), time (for time needed to calculate the scores), rand (for arguments are given random initial weights), eq (for each argument's basic weight is set to 1). For example, max-iter-rand stands for the number of iterations needed to calculate the scores when using max-based semantics and when arguments are assigned random basic weights.

Considering the Erdős-Rényi dataset, Figure 5 shows that the number of iterations is limited to 18. The least number of iterations is needed for card-based semantics, max-based semantics is in the middle and h-Categorizer semantics needs the greatest number of iterations in order to calculate the scores. Using random basic weights results in slightly smaller number of iterations. Figure 6 shows the time in milliseconds needed to calculate the result when arguments are attributed random initial weights. The fastest semantics is the card-based one, h-Categorizer is in the middle, whereas the max-based semantics is the slowest one. Figure 7 shows the time in milliseconds needed to calculate the result when arguments are attributed equal initial weights. Max-based and card-based semantics still show quasi linear behavior, but there are six graphs with 150 arguments where h-Categorizer took more time than would be expected.

Considering the Barabási-Albert dataset, Figure 8 shows that the number of iterations is limited to 8. All three semantics give similar results. Figures 9 and10 show the time (in thousands of seconds) needed to calculate the result in function of the number of arguments (in thousands). The three semantics have similar performances that do not change a lot in function of the initial weights (random or equal).

Considering the Kleinberg dataset, Figure 11 shows that the number of iterations is limited to 18. The least number of iterations is needed for card-based semantics, max-based semantics is in the middle and h-Categorizer semantics needs the greatest number of iterations in order to calculate the scores. Using random initial weights results in slightly smaller number of iterations. Figures 12 and13 show the time in milliseconds needed to calculate the result. The convergence is very fast. We see that h-Categorizer is clearly the slowest semantics in the case of equal initial weights, whereas this cannot be said for the case with random initial weights. However, all the semantics converge very fast and we do not think this difference is significant.

Considering the Sophia Antipolis dataset, Figure 14 shows that the number of iterations is limited to 12. The least number of iterations is needed for card-based semantics, max-based semantics is in the middle and h-Categorizer se- mantics needs the greatest number of iterations in order to calculate the scores. Using random initial weights results in slightly smaller number of iterations. Figures 15 and16 show the time (in thousands of seconds) needed to calculate the result in function of number of arguments (in thousands). We see that h-Categorizer is clearly the slowest semantics in both cases, whereas the card-based semantics is the fastest.

To sum up, the number of iterations is always less then 20, even for graphs with 100000 arguments. It seems that the number of iterations is constant with respect to the graph size, which shows that our algorithms scale well. The time needed is low, and what is especially important, all graph topologies are treatable even for big graph sizes. Namely, no instances timed-out or crashed. Our algorithms always converge. The worst run time (i.e. h-Categorizer on the graphs with 100000 arguments) was around 2250 seconds. There is a tendency for all three semantics to converge slightly faster when initial weights are attributed in a random way. Note that the difference is not very big (around 10%).

Related Work

There are some notable works in the literature that have been concerned by the definition and/or analysis of principles. Baroni et al. [START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF] discussed principles for weighted bipolar graphs. They focused on principles that were suggested in different papers in the literature, namely in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Evaluation of arguments from support relations: Axioms and semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. In those papers, we defined principles as elementary properties that cannot be further decomposed into more elementary ones. Some of those principles were generalized in [START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF] for dealing with other scales of argument strength, and others were grouped into meta-level properties. In the present paper, we still prefer elementary principles to meta-level ones because they allow a clear understanding of the set of rules underlying semantics, and a better comparison of semantics. Assume for instance a meta-level principle P which implies two elementary ones P1 and P2. Assume also two semantics S1 and S2 that violate P but S1 satisfies P1 and S2 instead satisfies P2. Note that the two semantics cannot be distinguished by P. However, the two elementary properties clarify the rules underlying each semantics and specify the difference between S1 and S2. To summarize, while our paper is more concerned with proposing concrete principles and studying whether they are satisfied by semantics, the goal in [START_REF] Baroni | From fine-grained properties to broad principles for gradual argumentation: A principled spectrum[END_REF] is not necessarily to define novel principles but rather to show how to represent in a compact way existing ones within a generalized framework.

Bonzon et al. [START_REF] Bonzon | A parametrized ranking-based semantics compatible with persuasion principles[END_REF] introduced a novel principle for ranking semantics, which states that the longer a line of defence of an argument, the less it has impact on the argument. They argued that this principle is suitable in persuasion dialogues. In [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF], they used the principles proposed in [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF][START_REF] Cayrol | Graduality in Argumentation[END_REF][START_REF] Matt | A game-theoretic measure of argument strength for abstract argumentation[END_REF] for comparing existing pure ranking semantics, i.e., ranking semantics that do not compute numerical/qualitative strengths of arguments. In our paper, we rather focused on gradual semantics, i.e. those that compute strengths. The second main difference with [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF] lies in the fact that most principles considered in [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF] are high-level properties. For instance, they use counter-transitivity (CT) from [START_REF] Amgoud | Ranking-based semantics for argumentation frameworks[END_REF] which states that the more an argument is attacked and the stronger its attackers, the weaker it is. We have shown that CT is a consequence of a couple of elementary principles. As a third difference, in [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF] the authors considered flat graphs, i.e., arguments do not have basic weights while we focused on weighted graphs. In [START_REF] Amgoud | Gradual semantics accounting for varied-strength attacks[END_REF], the authors extended the principles we presented in [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] for dealing with argumentation graphs whose arguments and attacks are weighted. They also introduced a novel one that captures sensitivity of a semantics to weights of attack relations. Finally, they extended in various ways our three novel semantics (Hbs, Mbs, Cbs).

More recently, the discussion around similarity in argumentation is gaining more and more interest (e.g. [START_REF] Misra | Measuring the similarity of sentential arguments in dialogue[END_REF][START_REF] Stein | Report of dagstuhl seminar debating technologies[END_REF][START_REF] Konat | Rephrase in argument structure[END_REF][START_REF] Budan | Similarity notions in bipolar abstract argumentation[END_REF]). This is mainly due to noteworthy presence of similar arguments in online debate platforms and also between logical arguments [START_REF] Amgoud | Equivalence in logic-based argumentation[END_REF]. Consequently, the authors in [START_REF] Amgoud | Gradual semantics accounting for similarity between arguments[END_REF][START_REF] Amgoud | A general setting for gradual semantics dealing with similarity[END_REF] investigated gradual semantics that take as input a similarity measure. They extended some of our principles (like Reinforcement and Monotony) and defined novel ones that are specific to sensitivity to similarity. In our paper, we assume that arguments are pairwise independent.

In the last few years, there has been an increasing interest in probabilistic argumentation whose aim is handling uncertainty in an argumentation context. Two approaches are distinguished in [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF]: the constellation approach and the epistemic one. The former handles uncertainty about the topology of an argumentation graph [START_REF] Dung | Towards (probabilistic) argumentation for jury-based dispute resolution[END_REF][START_REF] Li | Probabilistic argumentation frameworks[END_REF]. For instance in [START_REF] Li | Probabilistic argumentation frameworks[END_REF], the input is an argumentation graph and two functions assigning respectively for each argument and each attack the likelihood of its existence. These probabilities are used for generating probabilities over sub-graphs of the initial graph before computing its extensions (à la Dung [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF]). When all arguments and all attacks have probability 1, we get the original Dung's framework. This work is different from what we investigated in this paper. Indeed, in our setting the argumentation graph is fixed, and thus its arguments and attacks exist. The value w(.) expresses the intrinsic strength of each argument and not the probability of its existence. Thus, our principles are not suitable in this probabilistic setting.

In the epistemic approach, Thimm [START_REF] Thimm | A probabilistic semantics for abstract argumentation[END_REF] considered as input a flat argumentation graph, and then generalized Dung's semantics [START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF] with probabilities. The idea is to assign a probability to each possible extension, and consequently to each argument. Thus, unlike our work, the strength of an argument is a probability of membership to extensions. The motivation and spirit of this work are very similar to the equational approach by Gabbay [START_REF] Gabbay | Introducing equational semantics for argumentation networks, in: Symbolic and Quantitative Approaches to Reasoning with Uncertainty[END_REF], where the labelling of a graph is made by more than the three classical values: in, out, und. Both works generalize Dung's semantics, which were already investigated in [START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF].

Hunter [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF] discussed another epistemic approach for probabilistic argumentation. The input is a fixed weighted argumentation graph G = A, w, R , where w(.) expresses a probability of believing an argument. As argued in [ [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF], page 7], this probability is seen as an extra meta-level information about the quality of an argument's components (premises, link). The function w satisfies the following "rationality" condition: if an argument a attacks another argument b and w(a) > 0.5, then w(b) ≤ 0.5. In terms of arguments' evaluation, an epistemic extension E is built for each graph such that E = {a ∈ A | w(a) > 0.5}. Finally, a two-valued qualitative status is assigned to each argument as follows: an argument is accepted if it belongs to E and rejected otherwise. This approach is very different from ours. First, basic weights of arguments depend on attacks, while in our approach the two are completely independent. Second, the approach generalizes Dung's semantics, in that if an argument is not attacked, then it is assigned probability 1 and thus accepted. In our setting, such arguments get their basic weights.

More recently, Hunter and Thimm [START_REF] Hunter | Probabilistic reasoning with abstract argumentation frameworks[END_REF] presented a new probabilistic framework where they combined the ideas of their two papers [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF][START_REF] Thimm | A probabilistic semantics for abstract argumentation[END_REF]. The input is a fixed flat argumentation graph and they assign a probability to each argument representing the degree of belief that the argument is acceptable. The authors presented some examples of what is an acceptable argument, and basically the idea is that the premises of the argument are true and its logical link is correct. The probability of an argument captures the uncertainty inherent to the argument. In our paper, such information is captured by the function w, i.e., the basic weight of the argument and not by the strength. Furthermore, in all the provided examples, the probability is given as an extra information, thus it cannot be the output of a semantics.

Conclusion

The paper investigated the issue of evaluating arguments in weighted argumentation graphs, i.e., graphs where arguments have initial weights. It proposed a set of principles that serve as guidelines for defining, theoretically analysing and comparing semantics. Some principles like Anonymity are mandatory while others, like Strict Invariance and Resilience, are optional as they are suitable in some applications and not in others. Finally, the last three principles (Quality Precedence, Cardinality Precedence, Compensation) define three incompatible strategies that a semantics may follow when it encounters a dilemma between the quality and the quantity of attackers.

The second contribution of the paper consists of using the principles for comparing ten semantics that were proposed in the literature for evaluating arguments in weighted graphs. We studied 8 extension semantics and 2 gradual semantics. We compared i) semantics of different families (extension vs gradual), ii) the two approaches that deal with preferences in argumentation (contraction vs change), and iii) semantics of the same family (e.g. , Trust-based and Iterative Schema). Table 1 summarizes the current landscape, and shows that the ten semantics are different in that they made different design choices. It reveals also the kind of semantics that are missing in the literature. For instance, there is no semantics that satisfies all the compatible principles as well as compensation, there is no semantics that satisfies Cardinality Precedence, and there is no semantics that satisfies all the principles which are compatible with Quality Precedence. This led to our third contribution, which is the introduction of three novel semantics Mbs, Cbs, Hbs, one for each of the three previous strategies (QP, CP, and compensation). Like IS, Mbs satisfies Quality Precedence. However, unlike IS, it satisfies all the principles which are compatible with QP. Cbs is the sole semantics that satisfies Cardinality Precedence. Hbs is the sole semantics that satisfies compensation as well as all the other compatible principles, and that deals with any graph structure. The three semantics were also analysed experimentally. The study revealed that the three semantics are very efficient. Indeed, they compute the strengths of arguments in few iterations, and in very short time. This is true even for big graphs with 100000 arguments, which means that the semantics scale well.

Future work consists of characterizing families of semantics that satisfy all or subsets of the proposed principles. Another line of research consists of applying the new semantics in different contexts, namely for defining argumentbased paraconsistent logics, and argument-based decision systems.

Appendix

This appendix contains the proofs of the results presented in the paper. Note that the order in which we prove our results is not exactly the same as the order in which we present them. Namely, we first need to prove Lemma 1, Propositions 1, 3, 6, 9, 10 and 11, and then Theorem 1 and Proposition 12. Later, we prove the other results, by the order of their appearance.

Proof of Proposition 1. Let us prove the two items. From Resilience, the eight arguments have strictly positive degree Deg S G (. Thus, there exists a bijective function

) > 0. From Maximality, Deg S G (c) = 1 and from Strict Weakening, Deg S G (a) < 1. Thus, by Strict Reinforcement, Deg S G (a ) > Deg S G (c ). Case Deg S G (a ) > Deg S G (b ): From Quality Precedence, Deg S G (a) > Deg S G (b). Thus, from Strict Reinforcement Deg S G (b ) > Deg S G (a ), which is impossible. Case Deg S G (b ) > Deg S G (a ): From Strict Reinforcement, we obtain Deg S G (b) > Deg S G (y). Note that • Att G (y) = Att G (c) ∪ {b } and • Att G (a) = Att G (x) ∪ {b }.
which is impossible. Case Deg S G (a ) = Deg S G (b ): Note that • Att G (b) = Att G (c) ∪ {a } and • Att G (a) = Att G (x) ∪ {b }. Since Deg S G (x) < Deg S G ( 
f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), f (x) = x, thus Deg S G (x) = Deg S G (f (x)). From Equivalence, Deg S G (a) = Deg S G (b).
Let S satisfy Independence, Directionality, Invariance, and Maximality. Let us show that S satisfies Equivalence. Let G = A, w, R ∈ WAG and a, b ∈ A such that:

• w(a) = w(b), and • there exists a bijective function From Proposition 9, it holds that Deg S G1 (a) = Deg S G1 (b). Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain that for any x ∈ A, Deg S G1 (x) = Deg S G (x). Thus, Deg S G (a) = Deg S G (b).

f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) = Deg S G (f (x)), Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a , b }, for any x ∈ A, w 1 (x) = w(x), w 1 (a ) = w 1 (b ) = w(
Assume that S satisfies in addition Neutrality, and let us prove that it satisfies Weakening Soundness. Suppose a semantics S which satisfies the five principles. Assume also a weighted argumentation graph

G = A, w, R . Let a ∈ A. From Proposition 11, if for every b ∈ Att G (a), Deg S G (b) = 0, then Deg S G (a) = w(a).
Weakening Soundness follows from the previous property by contraposition.

Let S be a semantics which satisfies Independence, Directionality, Invariance, Maximality and Weakening. Let us show that it satisfies Monotony. Let G = A, w, R ∈ WAG and a, b ∈ A such that:

• w(a) = w(b), • Att G (b) = Att G (a) ∪ X.
Note that according to what we already proved in this proposition, Independence, Directionality, Invariance and Maximality imply Equivalence, which implies Symmetry. Thus, S satisfies Symmetry. If X = ∅, Att G (b) = Att G (a), and so from Symmetry, Deg S G (a) = Deg S G (b). Assume now that X = ∅, and consider a new graph

G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a , b }, for any x ∈ A, w 1 (x) = w(x), w 1 (a ) = w 1 (b ) = w(a) = w(b), and R 1 = R∪{(x, b ) | x ∈ X}. Note that Att G1 (a ) = ∅ and Att G1 (b ) = X. From Maximality, it holds that Deg S G1 (a ) = w(a). From Weakening, it holds that Deg S G1 (b ) ≤ w(b ). Since w 1 (a ) = w 1 (b ), then Deg S G1 (a ) ≥ Deg S G1 (b ). 
From Proposition 9, it follows that Deg S G1 (a) ≥ Deg S G1 (b). Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain that for any x ∈ A

Deg S G1 (x) = Deg S G (x).
Thus, Deg S G (a) ≥ Deg S G (b).

Proof of Proposition 3. Suppose that A \ U = {b 1 , . . . , b n }, for some n ≥ 1 (the case when U = A is trivial). Let us denote the graph G| U by G 0 . Next we define G 1 , . . . , G n such that every G k is obtained by adding the argument b k to G k-1 together with its weight. In other words, for every k ∈ {1, . . . , n}, if

G k-1 = A k-1 , w k-1 , R k-1 , then G k = A k , w k , R k is such that • A k = A k-1 ∪ {b k } • w k (a) = w(a) for every a ∈ A k • R k = R k-1 .
Using Independence, we obtain that Deg S G k (a) = Deg S G k-1 (a) for every a ∈ U and every k ∈ {1, . . . , n}. Consequently,

Deg S Gn (a) = Deg S G| U (a)
for every a ∈ U . Note that G n = A, w, R ∩ (U × U )) . Now we consider the attacks from G that are not from

G| U . If R \ (R ∩ (U × U )) = ∅, then G n = G, which completes the proof. Let R \ (R ∩ (U × U )) = ∅. Suppose that R \ (R ∩ (U × U )) = {(c 1 , d 1 ), . . . , (c m , d m )}, for some m ≥ 1.
Then we define the graphs G n+1 , . . . , G n+m such that every G n+k is obtained by adding the attack

(c k , d k ) to G n+k-1 . Formally, for every k ∈ {1, . . . , m}, if G n+k-1 = A, w, R k-1 , then G n+k = A, w, R k-1 ∪ {(c k , d k )} . Note that G n+m = G.
Next we prove that Deg S G n+k (a) = Deg S G n+k-1 (a) for every a ∈ U and every k ∈ {1, . . . , m}. Let us chose an arbitrary a ∈ U . For an arbitrary attack (c k , d k ) ∈ R \ (R ∩ (U × U )), from the fact that it is impossible that both c k and d k belong to U , and the assumption that U is unattacked, we obtain that

d k / ∈ U (otherwise, if d k ∈ U , then c k / ∈ U , so U would not be unattacked since (c k , d k ) ∈ R).
Then, from the fact that U is unattacked we obtain that there is no path from d k to a. Using Directionality, we obtain that Deg S G n+k (a) = Deg S G n+k-1 (a) for every every k ∈ {1, . . . , m}. Consequently,

Deg S Gn+m (a) = Deg S Gn (a)
for every a ∈ U . Since we proved that Deg S Gn (a) = Deg S G| U (a) for every a ∈ U , from G n+m = G we obtain

Deg S G (a) = Deg S G| U (a)
for every a ∈ U .

Proof of Proposition 4. Let G = A, w, R ∈ WAG and let a, b ∈ A be two arguments such that w(a) ≥ w(b), and there exists a bijective function

f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) = Deg S G (f (x)). Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that • A 1 = A ∪ {c}, • for any x ∈ A, w 1 (x) = w(x), w 1 (c) = w(a), • R 1 = R ∪ {(x, c) | x ∈ Att G (b)}}.
Using Equivalence we obtain Deg S G1 (a) = Deg S G1 (c), and from Proportionality we obtain Deg S G1 (c) ≥ Deg S G1 (b). Therefore, we have that Assume a new graph

Deg S G1 (c) ≥ Deg S G1 (b). Note that A is unattacked in G 1 ,
G 1 = A 1 , w 1 , R 1 ∈ WAG such that • A 1 = A ∪ {c}, • for any x ∈ A, w 1 (x) = w(x), w 1 (c) = w(a), • R 1 = R ∪ {(x, c) | x ∈ Att G (b)}}.
Using Equivalence we obtain Deg S G1 (a) = Deg S G1 (c), and from Strict Proportionality we obtain Deg S G1 (c) > Deg S G1 (b). Therefore, we have that

Deg S G1 (a) > Deg S G1 (b). Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain Deg S G (a) = Deg S G1 (a) and Deg S G (b) = Deg S G1 (b). Consequently, Deg S G (a) > Deg S G (b).
Lemma 1. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. For any

G = A, w, R ∈ WAG, for all a, b ∈ A, for any x ∈ A \ Att G (a), if • w(a) = w(b), • Att G (b) = Att G (a) ∪ {x} with Deg S G (x) = 0, then Deg S G (a) = Deg S G (b).
Proof Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. Let G = A, w, R ∈ WAG and a, b ∈ A such that:

• w(a) = w(b), Proof of Proposition 6. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Neutrality. • w(a ) = w(b ),

• Att G (b) = Att G (a) ∪ {x} with x ∈ A \ Att G (a) and Deg S G (x) = 0, Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a , b }, for any x ∈ A, w 1 (x) = w(x), w 1 (a ) = w 1 (b ) = w(
Let G = A, w, R ∈ WAG, and let a, b ∈ A, such that X ⊆ A \ Att G (a), if • w(a) = w(b), • Att G (b) = Att G (a) ∪ X such that X = ∅ and for any x ∈ X, Deg S G (x) = 0, Let X = {x 1 , . . . , x n }. Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a 1 , . . . , a n-1 }, for any x ∈ A, w 1 (x) = w(x), for any i ∈ {1, . . . , n -1}, w 1 (a i ) = w(a), and 
R 1 = R ∪ n i=1 {(x, a i ) | x ∈ Att G (a)} ∪ n i=1 {(x j , a i ) | x j ∈ X, j ≤ i}. Note that Att G1 (a 1 ) = Att G (a) ∪ {x 1 } and for 1 < i < n, Att G1 (a i ) = Att G1 (a i-1 ) ∪ {x i } and Att G1 (a n ) = Att G (b) ∪ {x n }.
• Att G (a) \ Att G (b) = {x}, • Att G (b) \ Att G (a) = {y}, and • Deg S G (y) ≥ Deg S G (x) > 0, Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a , b }, w 1 (z) = w(z) for every z ∈ A, w 1 (a ) = w 1 (b ) = w(
• Att G (a ) = Att G (a) ∪ X, • Att G (b ) = Att G (b) ∪ Y ,
• there exists a bijective function - Let G (1) = A (1) , w (1) , R (1) be such that A (1) = A ∪ {b 1 , . . . , b n }, for all t ∈ A , w (1) (t) = w (t), w (1) 

f from X to Y such that ∀x ∈ X, Deg S G (x) = Deg S G (f (x)), Let X =
R 1 = R ∪ {(x, a i ) | x ∈ Att G (a)} ∪ {(x j , a i ) | x j ∈ X, j ≤ i} ∪ {(x, b i ) | x ∈ Att G (b)} ∪ {(f (x j ), b i ) | x j ∈ Y, j ≤ i}. Note that for a i , b i ∈ A 1 , Att G1 (a i ) = Att G (a)
Let Deg S G (y) = Deg S G (x). Let G = A , w , R ∈ WAG such that A = A ∪ {a 2 , b 2 }, for all t ∈ A w (t) = w(t), w (a 2 ) = w (b 2 ) = w(a) = w(b), R = R ∪ {(t, a 2 ) | t ∈ X} ∪ {(t, b 2 ) | t ∈
(b 1 ) = • • • = w (1) (b n ) = w(b) and R (1) is such that • for all t ∈ A , Att G (1) (t) = Att G (t) • for every i ∈ {1, . . . , n}, Att G (1) (b i ) = (Att G (1) (b i-1 ) \ {f (x i )}) ∪ {x i }.
Note that A is unattacked in G (1) , and that (G (1) )| A = G . From Proposition 3 we obtain that for all t ∈ A , Deg S G (1) (t) = Deg S G (t). Thus, in order to prove the proposition, it is sufficient to show that

Deg S G (1) (b i ) ≥ Deg S G (1) (b i-1 )
for every i ∈ {1, . . . , n}. For each i we consider two possible cases:

• If Deg S G (x i ) = 0, then using Proposition 7 we obtain (1) ∪ {c i }, for all t ∈ A (1) , w (i) (t) = w (1) (t),

Deg S G (1) (b i ) ≥ Deg S G (1) (b i-1 ). • If Deg S G (x i ) = 0, let S i = Att G (1) (b i ) ∩ Att G (1) (b i-1 ). Note that Att G (1) (b i ) = S 1 ∪ {x i } and Att G (1) (b i-1 ) = S 1 ∪ {f (x i )}. Let G (i) = A (i) , w (i) , R (i) be such that A (i) = A
w (i) (c i ) = w(b) and R (i) = R (1) ∪ {(t, c i ) | t ∈ S i }. From Proposition 6 we obtain Deg S G (i) (b i ) = Deg S G (i) (c i ), and from Proposition 2 we have Deg S G (i) (c i ) ≥ Deg S G (i) (b i-1 ). Thus, Deg S G (i) (b i ) ≥ Deg S G (i) (b i-1
). Finally, note that A (1) is unattacked in G (i) , and that (G (i) )| A (1) = G (1) . From Proposition 3 we obtain Deg S G (1)

(b i ) ≥ Deg S G (1) (b i-1 ).
To see that stable semantics violates Weakening Soundness, it is sufficient to consider a graph containing two arguments a and b such that w(a) = w(b) = 1 and R = {(b, b)}. Since there is no stable extension, the degree of a is β.

Let us now show that grounded semantics satisfies weakening soundness. Let G = A, w, R ∈ WAG, G = A, R is its revised graph, and GE(G ) the grounded extension of G . Let a ∈ A such that w(a) > 0. Assume also that Deg G (x) = 0, then by definition of grounded extension, a should belong to the extension. Hence, there exists at least one attacker whose degree is greater than 0.

Neutrality is satisfied by grounded and stable semantics. Let G = A, w, R ∈ WAG and a, b ∈ A be such that:

• w(a) = w(b), • Att G (a) = ∅, • Att G (b) = {x} with Deg S G (x) = 0.
Let us first present the proof for grounded semantics. Since a is not attacked, then a belongs to the grounded extension and thus Deg g G (a) = 1. From Deg g G (x) = 0, the argument x is attacked by the grounded extension. Since all the attackers of b are attacked by the extension, b belongs to the extension. Thus Deg g G (b) = 1. Let us show that stable semantics satisfies Neutrality. If there are no stable extensions, Deg st G (a) = Deg st G (b) = β. Else, suppose that there exists at least one stable extension. Since a is not attacked, it belongs to all extensions and then Deg st G (a) = 1. Since Deg st G (x) = 0, then x does not belong to any extension. From the definition of stable semantics, this means that x is attacked by all the extensions. Since x is the only attacker of b, this means that b is not attacked by any extension. Hence, b belongs to all extensions. Consequently, Deg st G (b) = 1. Neutrality is violated by complete and preferred semantics. Consider the graph below. Namely, the degree of a is equal to 1 whereas the degree of b is α, even if the degree of x is 0. • Case Deg S G (b) = 1. This means that b is in all extensions. Let E be an extension, hence b ∈ E. Observe that E defends b, hence E defends a. Moreover, E ∪ {a} is conflict-free. Hence a ∈ E. This means that a belongs to all the extensions and Deg S G (a) = 1.

• Case Deg S G (b) = α. Thus, b belongs to at least one extension E. Like in the previous item, we have a ∈ E. Hence a belongs to at least one extension and Deg S G (a) ≥ α.

• Case Deg S G (b) = β. Thus, b is not attacked by any extension. Consequently, a is not attacked by any extension. Hence, Deg S G (a) ≥ β.

• Case Deg S G (b) = 0 is trivial.

Counting is violated by the four semantics. Consider the graph depicted below. In case of complete, preferred or stable semantics, all arguments have degree α. In case of grounded semantics, all arguments have degree β. For every of the four semantics, Deg ). Let v be the degree of the strongest attacker of a. Corollary 2.5 by Gabbay and Rodrigues [START_REF] Gabbay | Equilibrium states in numerical argumentation networks[END_REF] shows that IS returns only three values (0, 0.5, 1). • Att G (a) = {x},

If v = 1, then Deg S G (a) = Deg S G (b) = 0. If v = 0.5, then Deg S G (a) = Deg S G (b) = 0.5. If v = 0, then Deg S G (a) = Deg S G (b) = 1. Invariance is satisfied. Let G = A, w, R ∈ WAG, a, b, a , b , x, y ∈ A such that • w(a) = w(a ) = w(b) = w(b ), • Att G (a ) = Att G (a) ∪ {x} with x / ∈ Att G (a), • Att G (b ) = Att G (b) ∪ {y} with y / ∈ Att G (b), • Deg S G (x) = Deg S G (y). Since Deg S G (a) ≥ Deg S G (b), then max x∈Att G (a) Deg S G (x) ≤ max x ∈Att G (b) Deg S G (x ). Since Deg S G (x) = Deg S G (y), then max x∈Att G (a ) Deg S G (x) ≤ max x ∈Att G (b ) Deg S G ( 
• Att G (b) = {y}, • Deg S G (y) ≥ Deg S G (x) > 0.
Since arguments get unique scores, we have:

Deg S G (a) = (1 -Deg S G (a)).A + Deg S G (a).B (11) 
Deg S G (b) = (1 -Deg S G (b)).C + Deg S G (b).D (12) 
Compensation is violated since QP is satisfied.

Proof of Theorem 6. Let us recall the definition of a degree of an argument with respect to DF-Quad, in the case of a graph without supports:

Deg DF -QuAD G (a) = w(a) × bRa (1 -Deg DF -QuAD G (b)). (13) 
Anonymity follows from the fact that (13) does not use the names of the arguments. Independence follows from the fact that the degree of an argument does not depend on the arguments that are not connected to it.

Directionality follows from the fact that (13) uses the degrees of parents, their parents, and so on but not the other arguments.

Maximality follows from (13) since if an argument a has no attackers, we obtain Deg Proof It is obvious from the definition that f i m is nonnegative for each i, so 1 + max b∈Att G (a)

f i-1 m (b) ≥ 1.
Proof of Theorem 7. Let A, w, R ∈ WAG and assume an enumeration A = {a 1 , . . . , a n } of the arguments. We denote by f i m (A) the vector (n-tuple) (f i m (a 1 ), . . . , f i m (a n )), for every i ∈ N. We need to prove that f i m (A) converges in the vector space R n . First, note that if w(a i ) = 0, then f k m (a i ) = 0 for every k ∈ N; otherwise f k m (a i ) = 0 for every k ∈ N. Also note that an attack of an argument whose weight is zero doesn't affect the scoring value of attacked arguments. Thus, without any loss of generality, in this proof we can assume that w(a i ) > 0 for all i ∈ {1, . . . , n}. Let us define the function F : [0, 1] n → [0, 1] n by F ((x 1 , . . . , x n ) = (F 1 (x 1 , . . . , x n ), . . . , F n (x 1 , . . . , x n )), where

F i (x 1 , . . . , x n ) = w(a i ) 1 + max j:aj ∈Att(ai) x j (14) 
for every i ∈ {1, . . . , n}. We also define the partial order ≤ on R n in the following way: if x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ), then x ≤ y iff for every for every i ∈ {1, . . . , n} the inequality x i ≤ y i holds. Then it is clear that F is a non-increasing function with respect to ≤, i.e., that F (x) ≥ F (y) whenever x ≤ y. Consequently, the function

G = F • F is non-decreasing, since F (x) ≥ F (y) implies F (F (x)) ≤ F (F (y)). Note that for every i ∈ N we have f i+1 m (A) = F (f i m (A)). Since f 0 m (A) = (w(a 1 ), . . . , w(a n )), by Lemma 2 we obtain both f 1 m (A) ≤ f 0 m (A) (15) 
and

f 2 m (A) ≤ f 0 m (A). (16) 
Applying the non-increasing function F to the inequality ( 16), we also obtain

F (f 2 m (A)) ≥ F (f 0 m (A)), i.e., f 1 m (A) ≤ f 3 m (A). (17) 
F i (αx) = w(a i ) 1 + max j:aj ∈Att(ai) αx j = w(a i ) 1 + α max j:aj ∈Att(ai) x j = w(a i ) (α -α) + 1 + α max j:aj ∈Att(ai) x j = w(a i ) (1 -α) + α(1 + max j:aj ∈Att(ai) x j ) = w(a i ) (1 -α) + α w(ai) Fi(x) • F i (x) F i (x)
It follows that

F i (αx) = w(a i ) (1 -α)F i (x) + αw(a i ) F i (x). (21) 
If we apply [START_REF] Bonzon | Argumentation ranking semantics based on propagation[END_REF] to the inequality (20), we have that for every i ∈ {1, . . . , n} and k ∈ N

f 2k+2 m (a i ) ≤ w(a i ) (1 -π k )F i (f 2k m (A)) + π k w(a i ) F i (f 2k m (A)),
or, equivalently,

f 2k+2 m (a i ) ≤ w(a i )f 2k+1 m (a i ) (1 -π k )f 2k+1 m (a i ) + π k w(a i ) . (22) 
Let us rewrite [START_REF] Bonzon | A parametrized ranking-based semantics for persuasion[END_REF] as

f 2k+3 m (a i ) ≥ f 2k+3 m (a i )[(1 -π k )f 2k+1 m (a i ) + π k w(a i )] w(a i )f 2k+1 m (a i ) f 2k+2 m (a i ). (23) 
Since

π k+1 = sup{α | f 2k+3 m (A) ≥ αf 2k+2 m
(A)}, we conclude that π k+1 is the maximal number β such that for every i ∈ {1, . . . , n} we have

f 2k+3 m (a i ) ≥ β • f 2k+2 m (a i ).
Combining this observation with [START_REF] Dondio | Ranking semantics based on subgraphs analysis[END_REF] we conclude that for every k ∈ N there is i(k) ∈ {1, . . . , n} such that

f 2k+3 m (a i(k) )[(1 -π k )f 2k+1 m (a i(k) ) + π k w(a i(k) )] w(a i(k) )f 2k+1 m (a i(k) ) ≤ π k+1 . (24) 
Here we wish to use the fact that all the indexes of the weighted max-based function f m on the left hand side of the inequality [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF] are odd, and to apply lim k→+∞ to the both side of the inequality. The problem is that, although the sequence {f 2k+1 m (A)} k∈N converges, the sequence {f 2k+1 m (a i(k) )} k∈N doesn't necessarily converge since indexes i(k) may take different values for different k. For that reason, note that the set {1, . . . , n} is finite and that there is at least one number from the set that appears infinitely many times in the sequence {i(k)} k∈N . Without any loss of generality, suppose that one such number is j. Denote by f j m the j-th projection of the vector f m . Using the fact that if a sequence converges, then its subsequences converges as well, we apply limit to the inequality (24) using the subsequence obtained by taking only those k for which i(k) = j. Then we obtain

f j m [(1 -π)f j m + πw(a j )] w(a j )f j m ≤ π. (25) 
We can rewrite [START_REF] Van Der Torre | The principle-based approach to abstract argumentation semantics[END_REF] as

(1 -π)f j m + πw(a j ) ≤ πw(a j ). (26) 
Note that from w(a j ) > 0 and

1 + max b∈Att G (aj ) f i-1 m (b) ≤ 2 we obtain that f k m (a j ) ≥ w(aj )
2 , for all k, so f j m > 0. Since f j m = 0, from ( 26) we obtain 1 -π ≤ 0, i.e., π ≥ 1. Finally, from π ≤ 1 we obtain π = 1. We proved that for every k ∈ N we have

f 2k+1 m (A) ≤ f 2k m (A). Together with the inequality f 2k+1 m (A) ≥ π k f 2k m (A) it gives us π k f 2k m (A) ≤ f 2k+1 m (A) ≤ f 2k m (A). (27) 
Now we let k → +∞ and obtain 

1 • f m (A) ≤ f m (A) ≤ f m (A). Thus, lim k→+∞ f 2k m (A) = f m (A) = f m (A) = lim
for every a ∈ A. Since the function D is nonnegative, we obtain that

D(a) ≤ w(a) 1 + 0 = w(a), ∀a ∈ A. (29) 
Let A = {a 1 , . . . , a n } and let F : [0, +∞) n → [0, +∞) n be the function such that F ((x 1 , . . . , x n ) = (F 1 (x 1 , . . . , x n ), . . . , F n (x 1 , . . . , x n )), where F i 's are defined by the equalities [START_REF] Baroni | Scc-recursiveness: a general schema for argumentation semantics[END_REF] in the proof of Theorem 8. From [START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF] it follows that F (D(a 1 ), . . . , D(a n )) = (D(a 1 ), . . . , D(a n )).

(

) 30 
Recall that F is a non-increasing function and G = F • F is a non-decreasing function, and that (f i+1 m (a 1 ), . . . , f i+1 m (a n )) = F (f i m (a 1 ), . . . , f i m (a n ))

• Case i > 0. We have that f i m (x) = w(x) 1 + max z∈Att G (x) f i-1 m (z) and g i m (x) = w(x) 1 + max z∈Att G (x) g i-1 m (z)

.

Since R = R ∪ {(a, b)}, we have that Att G (x) = Att G (x). From x / ∈ p(b) we deduce that for every z ∈ Att G (x) we have z / ∈ p(b), so f i-1 m (z) = g i-1 m (z) by P (i -1). Thus we proved that max z∈Att G (y)

f i-1 m (z) = max z∈Att G (y)
g i-1 m (z), so f i m (x) = g i m (x).

Letting i → +∞, we obtain our result. Weakening Soundness is satisfied by Mbs. Indeed, we showed that it satisfies Directionality, Independence, Invariance, Maximality and Neutrality, so it must also satisfy Weakening Soundness, by Proposition 2.

Resilience: Follows directly from Theorem 11. Proof of Theorem 12. Let G = A, w, R ∈ WAG. Similarly as in the proof of Theorem 7, we assume an enumeration A = {a 1 , . . . , a n } of the arguments and we denote by f i c (A) the vector (f i c (a 1 ), . . . , f i c (a n )) (for every i ∈ N). We can also use the same argument as in that proof to assume, without loss of generality, that all the arguments have positive basic weight. We define the function F : [0, 1] n → [0, 1] n by F ((x 1 , . . . , x n ) = (F 1 (x 1 , . . . , x n ), . . . , F n (x 1 , . . . , x n )), where

F i (x 1 , . . . , x n ) = w(a i ) 1 + |AttF G (a i )| + j:a j ∈AttF G (a i ) xj |AttF G (ai)| (35) 
for every i ∈ {1, . . . , n}. Then for every i ∈ N we have f i+1 c (A) = F (f i c (A)). In the same way as in the proof of Theorem 7, we:

1. define the partial order ≤ on R n and show that F is a non-increasing function with respect to ≤; 

1 + |AttF G (a i )| + α( w(ai) Fi(x) -1 -|AttF G (a i )|) = w(a i ) (1 -α)(1 + |AttF G (a i )|) + α w(ai) Fi(x) = w(a i ) (1 -α)(1 + |AttF G (a i )|)F i (x) + αw(a i ) F i (x)
Now we combine this result with the inequality 4(c) and we obtain that for every i ∈ {1, . . . , n} and k ∈ N

f 2k+2 c (a i ) ≤ w(a i ) (1 -π k )(1 + |AttF G (a i )|)F i (f 2k c (A)) + π k w(a i ) F i (f 2k c (A)), so f 2k+2 c (a i ) ≤ w(a i )f 2k+1 c (a i ) (1 -π k )(1 + |AttF G (a i )|)f 2k+1 c (a i ) + π k w(a i )
.

This inequality can be transformed to

f 2k+3 m (a i ) ≥ f 2k+3 m (a i )[(1 -π k )(1 + |AttF G (a i )|)f 2k+1 m (a i ) + π k w(a i )] w(a i )f 2k+1 m (a i ) • •f 2k+2 m (a i ).
So, for every k ∈ N there is j ∈ {1, . . . , n} such that Similarly as in the proof of Theorem 7, we choose one j ∈ {1, . . . , n} such that previous inequality holds for infinitely many k's, and we apply lim k→+∞ to all those inequalities in which j appears. If we denote by (f 1 c , . . . , f n c ) the vector lim 

This is equivalent to

(1 -π)(1 + |AttF G (a j )|)f j c + πw(a j ) ≤ πw(a j ).

Since (1 + |AttF G (a j )|)f j c > 0, either 1 -π ≤ 0 or f j c = 0. Since w(a j ) > 0 and 

From ( 37) and ( 38) we conclude Proof of Theorem 17. The proof is straightforward modification of the proof of Theorem 7, obtained by replacing the function f i m with f i h . We will only prove the equation (analogous to the equation ( 21))

F i (αx) = w(a i ) (1 -α)F i (x) + αw(a i ) F i (x),
where F i (x) = w(a i ) 1 + j:aj ∈Att(ai)

x j ,

x = (x 1 , . . . , x n ) ∈ R n and α ∈ (0, 1].

Definition 5 (

 5 Semantics). A semantics is a function S transforming any weighted argumentation graph G = A, w, R ∈ WAG into a weighting Deg S G on A (i.e., Deg S G : A → [0, 1]). For any a ∈ A, Deg S G (a) represents the strength of a.

25 Figure 1 :

 251 Figure 1: Weighted graph G 1

  ). A semantics S satisfies directionality iff, for any G = A, w, R ∈ WAG, for all a, b ∈ A, for any G = A , w , R ∈ WAG such that A = A, w = w, and R = R ∪ {(a, b)}, the following holds: for any x ∈ A, if there is no path from b to x, then Deg S G (x) = Deg S G (x).

Example 1 (

 1 Cont) If a given semantics S satisfies Maximality, then Deg S G1 (b) = 0.90. If in addition S satisfies Weakening, then Deg S G1 (c) ≤ 0.25 while if it satisfies Strict Weakening, then Deg S G1 (c) < 0.25.

Principle 8 (

 8 Resilience). A semantics S satisfies resilience iff, for any G = A, w, R ∈ WAG, for any a ∈ A, if w(a) > 0, then Deg S G (a) > 0. Example 1 (Cont) Consider the graph G 1 . If a semantics S satisfies Resilience, then Deg S G1 (c) > 0.

  G 2 be the weighted argumentation graph depicted in Figure 2. If a semantics S satisfies Proportionality, then Deg S G2 (a) ≥ Deg S G2 (b). Assume that S satisfies Resilience. Then, Deg S G2 (a) > 0. If S satisfies Strict Proportionality, then Deg S G2 (a) > Deg S G2 (b).

2 Figure 2 :

 22 Figure 2: Weighted graph G 2

Example 3 . 25 Figure 3 :

 3253 Figure 3: Weighted graph G 3

Example 4 .

 4 Consider the weighted argumentation graph G 4 in Figure 4. The argument a has two weak attackers (each attacker is attacked). The argument b has only one but strong attacker. The question is which of a and b is stronger?

1 .

 1 Cardinality Precedence, Quality Precedence, Maximality and Resilience are incompatible. 2. Resilience, Strict Reinforcement, Maximality, Strict Weakening, Strict Invariance and Quality Precedence are incompatible.

Proposition 8 .

 8 Let S be a semantics which satisfies Independence, Directionality, Maximality, Weakening, Invariance, Strict Invariance and Strict Reinforcement. For any G = A, w, R ∈ WAG, for all a, b ∈ A, If • w(a) = w(b),

Proposition 12 .

 12 If a semantics S satisfies Independence, Directionality, Neutrality, Maximality, Strict Weakening, Invariance, and Strict Invariance, then it satisfies Counting.

Theorem 1 .

 1 If a semantics S satisfies Independence, Directionality, Invariance, Neutrality, Maximality, and Weakening, then for any G = A, w, R ∈ WAG, for any a ∈ A, Deg S G (a) ∈ [0, w(a)]. The next result delimits the subset of arguments in a weighted argumentation graph which may impact the strength of a given argument. Before introducing the formal result, let us first introduce the notion of attack structure of an argument. Definition 7 (Attack Structure). For any G = A, w, R ∈ WAG, for any a ∈ A, the attack structure of a in G is Str G (a) = {a} ∪ {x ∈ A | there is a path from x to a}. Example 5. Consider the weighted argumentation graph G 5 depicted below, where each argument has basic weight equal to 1. The attack structure of a is Str G5 (a) = {a, d, h}.

Theorem 2 .

 2 If a semantics S satisfies Independence and Directionality, then for any G = A, w, R ∈ WAG, for any a ∈ A, the following holds:Deg S G (a) = Deg S G| Str G (a) (a).Example 5 (Cont) The previous theorem ensures that only h and d are taken into account in the evaluation of a by any semantics satisfying Independence and Directionality.

Theorem 4 .

 4 If a semantics S satisfies Independence, Directionality, Invariance, Reinforcement, Maximality, Neutrality, and Weakening, then for any G = A, w, R ∈ WAG and any a, b ∈ A, if • w(a) = w(b),

R

  c = {(a, b) | (a, b) ∈ R and b a}.

R

  r = {(a, b) | (a, b) ∈ R and b a} ∪ {(b, a)|(a, b) ∈ R and b a}.

  single value to each argument, namely Deg T B G (a) = Deg T B G (b) = 0.5. However, it is easy to check that equation (2), simplified into Deg T B G (a) = 1 -max bRa Deg T B G (b), has several solutions including: • Deg T B G (a) = Deg T B G (b) = 0.5, • Deg T B G (a) = 1 and Deg T B G (b) = 0, • Deg T B G (a) = 0 and Deg T B G (b) = 1,

  If an argument a has no attackers, then Deg DF -QuAD G (b) = 0, and hence Deg DF -QuAD G (a) = w(a). It is worth noticing that (DF-)QuAD is not applicable for graphs containing cycles since it does not guarantee uniqueness of strength for each argument. Consider the previous two-length cycle. The degrees of the two arguments a and b are as follows:Deg DF -QuAD G (a) = 1 -Deg DF -QuAD G (b) Deg DF -QuAD G (b) = 1 -Deg DF -QuADG (a) Solving the two equations amounts to solving Deg DF -QuAD G (a)+Deg DF -QuAD G (b) = 1. The latter has several solutions including Deg DF -QuAD G (a) = 1, Deg DF -QuAD G (b) = 0 and Deg DF -QuAD G (a) = 0, Deg DF -QuAD G (b) = 1. The following result summarizes the list of principles satisfied/violated by DF-QuAD. Theorem 6. (DF-)QuAD violates Strict Invariance, Strict Proportionality, Resilience, QP and CP. It satisfies all the remaining ones.

Theorem 7 .Theorem 8 .

 78 The function f i m converges as i approaches infinity.Weighted max-based semantics is based on the previous scoring function. The strength of each argument is the limit reached using the scoring function f m . Definition 9 (Mbs). The weighted max-based semantics is a function Mbs transforming any G = A, w, R ∈ WAG into a weighting Deg Mbs G on A such that for any a ∈ A, Deg Mbs G (a) = lim i→+∞ f i m (a).In what follows, the values are rounded to two decimal places. Example 1 (Cont) The strengths of the three arguments of the weighted argumentation graph G 1 according to Mbs are as follows: Deg Mbs G1 (a) = 0.01, Deg Mbs G1 (b) = 0.90, Deg Mbs G1 (c) = 0.13. Thus, Deg Mbs G1 (b) > Deg Mbs G1 (c) > Deg Mbs G1 (a). Note that even if a is not attacked, it is weaker than c because of its weak basic weight. Example 2 (Cont) The strengths of the three arguments of the weighted argumentation graph G 2 according to Mbs are as follows: Deg Mbs G2 (a) = 0.31, Deg Mbs G2 (b) = 0.12, Deg Mbs G2 (c) = 0.60. Example 3 (Cont) The strengths of the four arguments of the weighted argumentation graph G 3 according to Mbs are as follows: Deg Mbs G3 (a) = 0.50, Deg Mbs G3 (b) = 0.17, Deg Mbs G3 (c) = 0.90, Deg Mbs G3 (d) = 0.13. Example 4 (Cont) Consider the graph G 4 . Since the graph is acyclic, the strengths can be calculated in two steps as follows: 67 0.50 0.50 0.50 1.00 1.00 1.00 The strengths of the seven arguments of the weighted argumentation graph G 4 according to Mbs are as follows: Deg Mbs G4 (g) = 1.00, Deg Mbs G4 (h) = 1.00, Deg Mbs G4 (c) = 0.50, Deg Mbs G4 (d) = 0.50, Deg Mbs G4 (a) = 0.67, Deg Mbs G4 (j) = 1.00, Deg Mbs G4 (b) = 0.50. Note that Deg Mbs G4 (a) > Deg Mbs G4 (b).We show next that the limit scores of arguments satisfy the equation of Definition 8. For any G = A, w, R ∈ WAG, for any a ∈ A,

Theorem 10 .

 10 Weighted max-based semantics satisfies all the principles except Strict Invariance, CP and Compensation. It also violates Counting. From the previous result, weighted max-based semantics satisfies Resilience, thus an argument cannot lose its entire basic strength. The next result goes further by showing that an argument cannot lose more than half of its basic weight with this semantics. Theorem 11. For any G = A, w, R ∈ WAG, for any a ∈ A, Deg Mbs G (a) ∈ [ w(a) 2 , w(a)]. From the previous result it follows that an argument gets value 0 iff its basic weight is already 0. Corollary 1. Let G = A, w, R ∈ WAG and a ∈ A. For any a ∈ A, Deg Mbs G (a) = 0 iff w(a) = 0.

Definition 12 (Theorem 13 .

 1213 Cbs). The weighted card-based semantics is a function Cbs transforming any G = A, w, R ∈ WAG into a weighting Deg Cbs G on A such that for any a ∈ A, Deg Cbs G (a) = lim i→+∞ f i c (a). Example 1 (Cont) Consider the weighted argumentation graph G 1 . The strengths of the three arguments according to Cbs are as follows: Deg Cbs G1 (a) = 0.01, Deg Cbs G1 (b) = 0.90, Deg Cbs G1 (c) = 0.08. Example 2 (Cont) Consider the weighted argumentation graph G 2 . The strengths of the three arguments according to Cbs are as follows: Deg Cbs G2 (a) = 0.19, Deg Cbs G2 (b) = 0.07, Deg Cbs G2 (c) = 0.60. Note that Deg Cbs G2 (a) > Deg Cbs G2 (b) even if the two arguments are attacked by the same argument. As we will show next, this semantics satisfies (Strict) Proportionality, that is the intensity of an attack depends on the basic weight of the target. The stronger the target, the more resistant it is to attacks. Example 3 (Cont) Consider now the weighted argumentation graph G 3 . The strengths of the four arguments according to Cbs are as follows: Deg Cbs G3 (a) = 0.50, Deg Cbs G3 (b) = 0.10, Deg Cbs G3 (c) = 0.90, Deg Cbs G3 (d) = 0.08. Note that b and d have the same basic weight but d loses more weight since its attacker is stronger than the attacker of b. This shows, as we will see, that the semantics satisfies (Strict) Reinforcement. Example 4 (Cont) Consider the weighted argumentation graph G 4 . Since the graph is acyclic, the strengths can be calculated in two steps as follows: The strengths of the arguments according to Cbs are as follows: Deg Cbs G4 (g) = 1.00, Deg Cbs G4 (h) = 1.00, Deg Cbs G4 (c) = 0.33, Deg Cbs G4 (d) = 0.33, Deg Cbs G4 (a) = 0.30, Deg Cbs G4 (j) = 1.00, Deg Cbs G4 (b) = 0.33. Note that Deg Cbs G4 (b) > Deg Cbs G4 (a).We show next that the limit scores of arguments satisfy the equation of Definition 11. For any G = A, w, R ∈ WAG, for any a ∈ A,

Theorem 14 .

 14 Let G = A, w, R be a finite WAG, and letD : A → [0, 1]. If D(a) = w(a) 1 + |AttF G (a)| + b∈AttF G (a) D(b) |AttF G (a)|, for all a ∈ A, then D ≡ Deg Cbs G .

Theorem 15 .

 15 Weighted card-based semantics satisfies all the principles except Quality Precedence and Compensation. The next result follows from the two theorems 13 and 1. It shows the lower and upper bounds of the strength of an argument, as obtained with Cbs. Theorem 16. For any WAG G = A, w, R , for any a ∈ A, Deg Cbs G (a) ∈ [ w(a) 2+|AttF G (a)| , w(a)].

  The weighted h-Categorizer semantics is a function Hbs transforming any G = A, w, R ∈ WAG into a weighting Deg Hbs G on A such that for any a ∈ A, Deg Hbs G (a) = lim i→+∞ f i h (a).

Proposition 14 .

 14 Let G = A, w, R ∈ WAG be a weighted argumentation graph such that for any a ∈ A, |Att G (a)| ≤ 1. For any a ∈ A, Deg Hbs G (a) = Deg Mbs G (a).

Theorem 19 .

 19 Let G = A, w, R ∈ WAG, and D : A → [0, 1]. If D(a) = w(a) 1+ b∈Att G (a) D(b) , for all a ∈ A, then D ≡ Deg Hbs G .

Theorem 20 .

 20 Weighted h-Categorizer semantics satisfies all the principles except CP and QP. The lower and upper bounds of the strength of each argument are identified. Theorem 21. Let G = A, w, R ∈ WAG. For any a ∈ A, Deg Hbs G (a) ∈ [ w(a) 1+|Att G (a)| , w(a)].
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 5 Figure 5: Number of iterations on Erdős-Rényi dataset. The x axis shows the number of arguments. The y axis shows the number of iterations.
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 6 Figure 6: Time on Erdős-Rényi dataset when arguments are attributed random initial weights. The x axis shows the number of arguments. The y axis shows the time in milliseconds.

Figure 7 :

 7 Figure 7: Time on Erdős-Rényi dataset when arguments' initial weights are set to 1. The x axis shows the number of arguments. The y axis shows the time in milliseconds.
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 8 Figure 8: Number of iterations on Barabási-Albert dataset. The x axis shows the number of arguments in thousands. The y axis shows the number of iterations.
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 9 Figure 9: Time on Barabási-Albert dataset when arguments are attributed random initial weights. The x axis shows the number of arguments in thousands. The y axis shows the time in thousands of seconds.

Figure 10 :

 10 Figure 10: Time on Barabási-Albert dataset when arguments' initial weights are set to 1. The x axis shows the number of arguments in thousands. The y axis shows the time in thousands of seconds.

Figure 11 :

 11 Figure 11: Number of iterations on Kleinberg dataset. The x axis shows the number of arguments. The y axis shows the number of iterations.

Figure 12 :

 12 Figure 12: Time on Kleinberg dataset when arguments are attributed random initial weights. The x axis shows the number of arguments. The y axis shows the time in milliseconds.

Figure 13 :

 13 Figure 13: Time on Kleinberg dataset when arguments' initial weights are set to 1. The x axis shows the number of arguments. The y axis shows the time in milliseconds.

Figure 14 :

 14 Figure 14: Number of iterations on Sophia Antipolis dataset. The x axis shows the number of arguments in thousands. The y axis shows the number of iterations.

Figure 15 :

 15 Figure 15: Time on Sophia Antipolis dataset when arguments are attributed random basic weights. The x axis shows the number of arguments in thousands. The y axis shows the time in thousands of seconds.

Figure 16 :

 16 Figure 16: Time on Sophia Antipolis dataset when arguments' basic weights are set to 1. The x axis shows the number of arguments in thousands. The y axis shows the time in thousands of seconds.

1 .

 1 Suppose that there exists a semantics S, which satisfies Cardinality Precedence, Quality Precedence, Resilience and Maximality. Consider the argumentation graph G = A, w, R with A = {x, y, z, a, b}, w(x) = w(y) = 0.5, w(z) = w(a) = w(b) = 1 and R = {(x, a), (y, a), (z, b)}. From Maximality we obtain Deg S G (x) = Deg S G (y) = 0.5 and Deg S G (z) = 1. By Resilience, both Deg S G (a) > 0 and Deg S G (b) > 0. Now, using Cardinality Precedence we conclude that Deg S G (b) > Deg S G (a), while Quality Precedence implies Deg S G (a) > Deg S G (b), contradiction. 2. Let S be a semantics which satisfies Resilience, Strict Reinforcement, Maximality, Strict Weakening, Strict Invariance and Quality Precedence. Consider the graph G depicted below, and assume that the basic weight of each argument is equal to 1.

  Since Deg S G (c) = 1 (by Maximality), Deg S G (x) < 1 (by Strict Weakening), we obtain Deg S G (x) < Deg S G (c). Thus, from Strict Invariance, obtain Deg S G (a) < Deg S G (y). Consequently, Deg S G (a) < Deg S G (b). Thus, from Strict Reinforcement Deg S G (a ) > Deg S G (b )

  c) (by Maximality and Strict Weakening), from Strict Invariance we obtain Deg S G (a) < Deg S G (b). Thus, from Strict Reinforcement Deg S G (a ) > Deg S G (b ) which is impossible. Proof of Proposition 2. Let S be a semantics which satisfies Equivalence, and let us show that it also satisfies Symmetry. Let G = A, w, R ∈ WAG and a, b ∈ A such that: • w(a) = w(b), and • Att G (a) = Att G (b).

  a), and R 1 = R. Note that Att G1 (a ) = Att G1 (b ) = ∅. From Maximality, it holds that Deg S G1 (a ) = w 1 (a ) and Deg S G1 (b ) = w 1 (b ). So, Deg S G1 (a ) = Deg S G1 (b ).

  and that (G 1 )| A = G. From Proposition 3 we obtain Deg S G (a) = Deg S G1 (a) and Deg S G (b) = Deg S G1 (b). Consequently, Deg S G (a) ≥ Deg S G (b). Proof of Proposition 5. Let G = A, w, R ∈ WAG and let a, b ∈ A be two arguments such that w(a) > w(b), there exists a bijective function f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) = Deg S G (f (x)), and Deg S G (a) > 0.

  a), and R 1 = R ∪ {(x, b )}. Note that Att G1 (a ) = ∅ and Att G1 (b ) = {x}. From Neutrality, it holds that Deg S G1 (a ) = Deg S G1 (b ). From Proposition 9, it follows that Deg S G1 (a) = Deg S G1 (b). Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain ∀x ∈ A, Deg S G1 (x) = Deg S G (x). Hence, Deg S G (a) = Deg S G (b).

  By applying several times Lemma 1, we get Deg S G1 (a) = Deg S G1 (a 1 ) = . . . Deg S G1 (a n-1 ) = Deg S G1 (b). Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain Deg S G1 (a) = Deg S G (a) and Deg S G1 (b) = Deg S G (b). Hence, Deg S G (a) = Deg S G (b) Proof of Proposition 7. Let S be a semantics which satisfies Independence, Directionality, Invariance, and Reinforcement. Let G = A, w, R ∈ WAG and a, b, x, y ∈ A such that: • w(a) = w(b),

  a), and R 1 = R ∪ {(x, a ), (y, b )}. Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain Deg S G (z) = Deg S G1 (z) for every z ∈ A. From Reinforcement, it holds that Deg S G1 (a ) ≥ Deg S G1 (b ). From Proposition 9, we get Deg S G1 (a) ≥ Deg S G1 (b). Consequently, Deg S G (a) ≥ Deg S G (b).Proof of Proposition 8. Let S be a semantics that satisfies Independence, Directionality, Maximality, Weakening, Invariance, Strict Invariance and Strict Reinforcement. Let G = A, w, R ∈ WAG and a, b, x, y ∈ A such that:• w(a) = w(b),• Deg S G (a) > 0, • Att G (a) \ Att G (b) = {x}, • Att G (b) \ Att G (a) = {y}, and • Deg S G (y) > Deg S G (x) > 0, Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a , b }, w 1 (z) = w(z)for every z ∈ A, w 1 (a ) = w 1 (b ) = w(a), and R 1 = R∪{(x, a ), (y, b )}. Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain Deg S G (z) = Deg S G1 (z) for every z ∈ A. Since Att G1 (a ) ⊆ Att G1 (a), then from Proposition 2 it holds that Deg S G1 (a ) ≥ Deg S G1 (a) = Deg S G (a). From the condition Deg S G (a) > 0, we obtain Deg S G1 (a ) > 0. From Strict Reinforcement, it holds that Deg S G1 (a ) > Deg S G1 (b ). From Proposition 10, we get Deg S G1 (a) > Deg S G1 (b). Consequently, Deg S G (a) > Deg S G (b). Proof of Proposition 9. Let S be a semantics which satisfies Independence, Directionality, and Invariance. Let G = A, w, R ∈ WAG, a, b, a , b ∈ A, X, Y ∈ P(A) \ ∅ such that: • w(a) = w(b),

  {x 1 , . . . , x n }. Assume that Deg S G (a) ≥ Deg S G (b). Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a 1 , . . . , a n-1 , b 1 , . . . , b n-1 }, for any x ∈ A, w 1 (x) = w(x), for any i ∈ {1, . . . , n -1}, w 1 (a i ) = w(a), w 1 (b i ) = w(b), and

  ∪ {x 1 , . . . , x i } and Att G1 (b i ) = Att G (b) ∪ {f (x 1 ), . . . , f (x i )}. By applying several times Invariance, we get Deg S G1 (a 1 ) ≥ Deg S G1 (b 1 ), . . ., Deg S G1 (a n-1 ) ≥ Deg S G1 (b n-1 ), and Deg S G1 (a ) ≥ Deg S G1 (b ). Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain that for any x ∈ A,Deg S G1 (x) = Deg S G (x). Hence, Deg S G (a ) ≥ Deg S G (b ).Proof of Proposition 10. Similar as the proof of Proposition 9.Proof of Proposition 11. Suppose a semantics S which satisfies Independence, Directionality, Invariance, Neutrality and Maximality. Let G = A, w, R be a weighted argumentation graph anda ∈ A such that Att G (a) = ∅ and ∀x ∈ Att G (a), Deg S G (x) = 0. Let G 1 = A 1 , w 1 , R 1 be another weighted argumentation graph such that A 1 = A ∪ {b} (b / ∈ A), for any x ∈ A, w 1 (x) = w(x), w 1 (b) = w(a), and R 1 = R. Note that Att G1 (b) = ∅. Hence, from Proposition 6 it holds that Deg S G1 (a) = Deg S G1 (b). From Independence, Deg S G1 (a) = Deg S G (a). Hence, Deg S G (a) = Deg S G1 (b). From Maximality it holds that Deg S G1 (b) = w(a). So, Deg S G (a) = w(a).Proof of Proposition 12. Let S be a semantics satisfying Independence, Directionality, Neutrality, Maximality, Strict Weakening, Invariance, and Strict Invariance. Let G = A, w, R ∈ WAG, and a, b, x ∈ A, such that• w(a) = w(b), • Att G (b) = Att G (a) ∪ {x} with x / ∈ Att G (a) and Deg S G (x) > 0 • Deg S G (a) > 0 Assume a new graph G 1 = A 1 , w 1 , R 1 ∈ WAG such that A 1 = A ∪ {a , b , c, y}, w 1 (z) = w(z) for every z ∈ A, w 1 (a ) = w 1 (b ) = w 1 (c) = w(a), w 1 (y) = 0, and R 1 = R ∪ {(x, b ), (y, a )}. Note that Att G1 (a ) = {y}, Att G1 (b ) = {x} and Att G1 (y) = Att G1 (c) = ∅. Note that A is unattacked in G 1 , and that (G 1 )| A = G. From Proposition 3 we obtain that for every z ∈ A, it holds that Deg S G (z) = Deg S G1 (z). Then, Deg S G1 (a) = Deg S G (a) and Deg S G1 (b) = Deg S G (b). Maximality ensures Deg S G1 (y) = w(y) = 0 and Deg S G1 (c) = w(a). Neutrality ensures Deg S G1 (c) = Deg S G1 (a ) = w(a). From Theorem 1, it follows that 0 ≤ Deg S G (a) ≤ w(a). Since Deg S G (a) > 0, then w(a) > 0. Since Deg S G (x) > 0 and Deg S G1 (x) = Deg S G (x), then Deg S G1 (x) > 0, and Strict Weakening leads to Deg S G1 (b ) < w(a). Then, Deg S G1 (a ) > Deg S G1 (b ). From Proposition 10, it follows that Deg S G1 (a) > Deg S G1 (b). Consequently, Deg S G (a) > Deg S G (b).Proof of Proposition 13. Let S be a semantics which satisfies Anonymity, Independence, Directionality, Neutrality, Monotony, Invariance, and Reinforcement. Let G = A, w, R ∈ WAG and a, b ∈ A such that:• w(a) = w(b),• Att G (a) \ Att G (b) = {x}, • Att G (b) \ Att G (a) = {y}, • Deg S G (y) ≥ Deg S G (x) • Deg S G(a) = 0. Let us show that Deg S G (b) = 0. There are two cases: • Deg S G (x) > 0. From Proposition 7, it follows that Deg S G (a) ≥ Deg S G (b). Since Deg S G (b) ∈ [0, 1] by definition of a semantics, then Deg S G (b) = 0. • Deg S G (x) = 0. This case has two sub-cases. -Let Deg S G (y) > Deg S G (x). G = A , w , R ∈ WAG such that A = A ∪ {b 1 }, for all t ∈ A, w (t) = w(t), w (b 1 ) = w(b), R = R ∪ {(t, b 1 ) | t ∈ X}, where X = Att G (a) \ {x}. Note that A is unattacked in G , and that (G )| A = G. From Proposition 3 we obtain that for each t ∈ A, Deg S G (t) = Deg S G (t). From Lemma 1, Deg S G (a) = Deg S G (b 1 ). From Monotony, Deg S G (b) ≤ Deg S G (b 1 ). Consequently Deg S G (b) = Deg S G (b) ≤ Deg S G (b 1 ) = Deg S G (a) = Deg S G (a) = 0.

Case 1 .

 1 X} , where X = Att G (a) \ {x}. Since a 2 and b 2 have the same attackers in G , from Anonymity, Deg S G (a 2 ) = Deg S G (b 2 ). From Invariance, Deg S G (a) = Deg S G (b). Note that A is unattacked in G , and that (G )| A = G. From Proposition 3 we obtain that for each t ∈ A, Deg S G (t) = Deg S G (t). Thus, Deg S G (a) = Deg S G (a) and Deg S G (b) = Deg S G (b). Hence, Deg S G (b) = Deg S G (a) = 0. Proof of Theorem 1. Let S be a semantics which satisfies Independence, Directionality, Neutrality, Invariance, Weakening and Maximality. Let G = A, w, R be a weighted argumentation graph and a ∈ A. There are two cases: Att G (a) = ∅. From Maximality, Deg S G (a) = w(a).

Case 2 .

 2 Att G (a) = ∅. There are again two sub-cases: Case 2.1. ∀x ∈ Att G (a), Deg S G (x) = 0. From Proposition 11, Deg S G (a) = w(a). Case 2.2. ∃x ∈ Att G (a) such that Deg S G (x) > 0. From Weakening, it follows that Deg S G (a) ≤ w(a).Proof of Theorem 2. Let S be a semantics which satisfies Independence and Directionality, letG = A, w, R ∈ WAG and a ∈ A. Let G 0 = A 0 , w 0 , R 0 = G| Str G (a) ⊕ G| A\Str G (a) . By Independence, Deg S G0 (a) = Deg S G| Str G (a) (a). Note that A 0 = A and w 0 = w , while R 0 ⊆ R. If R 0 = R, then G 0 = G and Deg S G (a) = Deg S G| Str G (a) (a). If R \ R 0 = ∅,then for every (x, y) ∈ R \ R 0 exactly one argument from {x, y} belongs to Str G (a). If we suppose that y ∈ Str G (a) and x ∈ A \ Str G (a), then there exists a path π form y to a, and the concatenation of the path (x, y) and π would be a path from x to a, which is impossible sincex / ∈ Str G (a). Consequently, letting R \ R 0 = {(x 1 , y 1 ), . . . , (x n , y n )}, it holds that x i ∈ Str G (a) and y i ∈ A \ Str G (a) for every i ∈ {1, . . . , n}. If G i = A, w, R i , where R i = R 0 ∪ {(x 1 , y 1 ), . . . , (x i , y i )} for every i ∈ {1, . . ., n}, then by Directionality Deg S G0 (a) = Deg S G1 (a) = • • • = Deg S Gn (a). Note that G n = G. Now the claim follows from Deg S G0 (a) = Deg S G| Str G (a) (a). Proof of Theorem 3. Let S be a semantics which satisfies Anonymity, Independence and Directionality, let G = A, w, R ∈ WAG and a, b ∈ A such that there exists an isomorphism f : G| Str G (a) → G| Str G (b) with f (a) = b. By Anonymity, Deg S G| Str G (a) (a) = Deg S G| Str G (b) (b). From Theorem 2 we obtain both Deg S G (a) = Deg S G| Str G (a) (a) and Deg S G (a) = Deg S G| Str G (b) (b). Consequently, Deg S G (a) = Deg S G (b). Proof of Theorem 4. Let S be a semantics which satisfies Independence, Directionality, Invariance, Reinforcement, Maximality, Neutrality, and Weakening. Let G = A, w, R be a weighted argumentation graph and a, b ∈ A such that w(a) = w(b) and there exists an injective function f from Att G (a) to Att G (b) such that ∀x ∈ Att G (a), Deg S G (x) ≤ Deg S G (f (x)). Let us show that Deg S G (a) ≥ Deg S G (b). The case Deg S G (b) = 0 is trivial; this is why in the remainder of the proof we suppose Deg S G (b) > 0. Let G = A , w , R be a weighted argumentation graph such that A = A ∪ {b 0 }, for all t ∈ A, w (t) = w(t), w (b 0 ) = w(b) and R = R ∪ {(f (t), b 0 ) | t ∈ Att G (a)}. Note that A is unattacked in G , and that (G )| A = G. From Proposition 3 we obtain that for all t ∈ A, Deg S G (t) = Deg S G (t). From Proposition 2 we have that S satisfies Monotony, so Deg S G (b 0 ) ≥ Deg S G (b). Thus, it remains to prove that Deg S G (a) ≥ Deg S G (b 0 ). If Att G (a) = ∅, then Att G (a) = Att G (b 0 ) = ∅. From Maximality and w (b 0 ) = w (a) we obtain Deg S G (a) ≥ Deg S G (b 0 ). If Att G (a) = ∅, let Att G (a) = {x 1 , . . . , x n }, for some n ≥ 1.

  g G (a) < w(a). Thus, Deg g G (a) < 1. Consequently, either Deg g G (a) = 0 or Deg g G (a) = β. Assume that Deg g G (a) = 0, then by definition, there exists x ∈ GE(G ) such that xR a, hence xRa. Furthermore, Deg g G (x) = 1. Assume now that Deg g G (a) = β. Clearly Att G (a) = ∅ (otherwise a would belong to the grounded extension of G ). If ∀x ∈ Att(a), Deg g

5 5 StrictFor

 55 Symmetry is satisfied by the four semantics. Let G = A, w, R ∈ WAG and G = G = A, R c its revised version. Let us show that for any a, b ∈ A, such that w(a) = w(b) and Att G (a) = Att G (b), it holds that Att G (a) = Att G (b). Let (x, a) ∈ R. There are two cases: Case w(x) ≥ w(a) By definition of R c , it holds that (x, a) ∈ R c . Since w(a) = w(b), then w(x) ≥ w(b). Since (x, b) ∈ R, then (x, b) ∈ R c . Case w(x) < w(a) By definition of R c , it holds that (x, a) / ∈ R c . Since w(a) = w(b), then w(x) < w(b). Since Att G (a) = Att G (b), then (x, b) / ∈ R c . Hence, Att G (a) = Att G (b).For each extension E, we have a ∈ E if and only if b ∈ E. Hence, a and b have the same degrees. Equivalence is violated by the four semantics. Consider the graph depicted below. Note that Deg S G (c) = Deg S G (e) = 1 while Deg S G (a) = 0 and Deg S G (b) = 1 for any S ∈ {s, g, c, p}. Since b is strictly stronger than e, we obtain the following graph which has a unique stable / preferred / complete / grounded extension: {a, c, b, b , e}. Note that Deg S G (a) = Deg S G (b) = 1 while Deg S G (a ) = 0 < Deg S G (b ) = 1. Invariance is violated by the four semantics. Consider the following graph. all four semantics, Deg S G (a) = 1 whereas all the other arguments get the degree α. Thus Deg S G (a) > Deg S G (b) and Deg S G (a ) = Deg S G (b ). Consequently, Strict Invariance is violated. Monotony is satisfied by all the four semantics. Let G = A, w, R ∈ WAG and a, b ∈ A be such that w(a) = w(b) and Att G (a) ⊆ Att G (b). Let us prove that Deg S G (a) ≥ Deg S G (b).

1

 1 S G (x) > 0, Deg S G (a) > 0 but Deg S G (a) = Deg S G (b). Thus, Counting is violated. Reinforcement is violated by the four semantics. Consider the argumentation graph depicted below. Monotony is satisfied since for any a, b ∈ A such that w(a) = w(b) and Att G (a) ⊆ Att G (b), it holds that max x∈Att G (a) Deg S G (x) ≤ max x∈Att G (b) Deg S G (x). Hence, Deg S G (a) ≥ Deg S G (b). Symmetry is satisfied. Indeed, for G = A, w, R ∈ WAG, for a, b ∈ A such that w(a) = w(b) and Att G (a) = Att G (b), for every i, g i (a) = g i (b). Thus, Deg S G (a) = Deg S G (b). Equivalence is satisfied. Let G = A, w, R ∈ WAG and a, b ∈ A such that w(a) = w(b) and there exists a bijection f from Att G (a) to Att G (b) such that for each x ∈ Att G (x), it holds that Deg S G (x) = Deg S G (f (x)

5 Reinforcement

 5 x ). Thus, Deg S G (a ) ≥ Deg S G (b ). Strict Invariance is violated. Consider the graph depicted below. Clearly, Deg S G (a) = 1, Deg S G (b) = 0.5 and Deg S G (a ) = Deg S G (b ) = 0. Counting is violated as shown on the following example. Indeed, Deg S G (a) = Deg S G (b) = 0.5. is satisfied. Let G = A, w, R ∈ WAG and a, b, x, y ∈ A such that: • w(a) = w(b),

Lemma 2 .

 2 DF -QuAD G (a) = w(a) × 1. Weakening and Strict Weakening follow from (13) since of an argument a has an attacker b such that Deg DF -QuAD G (b) > 0, we obtain Deg DF -QuAD G (a) = w(a) × α, with 0 < α < 1.The other proofs also follow directly from equation[START_REF] Dung | On the Acceptability of Arguments and its Fundamental Role in Non-Monotonic Reasoning, Logic Programming and n-Person Games[END_REF]. We now present the counter-examples.Strict Invariance: Let G = A, w, R , where A = {a, a , b, b , c, d, x, y}, w(a) = w(a ) = w(b) = w(b ) = 1, w(c) = 0.5, w(d) = 0.8, w(x) = 1, w(y) = 1, R = {(c, a), (c, a ), (x, a ), (d, b), (d, b ), (y, b )}. It is easy to check that Deg S G (a) = 0.5 > Deg S G (b) = 0.2 while Deg S G (a) = Deg S G (b) = 0. Strict Proportionality: Let G = A, w, R , where A = {a, b, x}, w(a) = 0.5, w(b) = 0.3, w(x) = 1, R = {(x, a), (x, b)}. Strict Proportionality is not satisfied since Deg S G (a) = Deg S G (b) = 0. Resilience: Let G = A, w, R , where A = {a, x}, w(a) = 0.5, w(x) = 1, R = {(x, a)}. Resilience is not satisfied since Deg S G (a) = 0. CP: Let G = A, w, R , where A = {a, b, x, y 1 , y 2 }, w(a) = 1, w(b) = 1,w(x) = 0.9, w(y 1 ) = 0.1,w(y 2 ) = 0.1, R = {(x,a), (y 1 , b), (y 2 , b)}. We have Deg S G (a) = 0.1 and Deg S G (b) = 0.81, thus CP is not satisfied. QP: Let G = A, w, R , where A = {a, b, x 1 , x 1 , y}, w(a) = 1, w(b) = 1,w(x 1 ) = 0.4, w(x 2 ) = 0.4,w(y) = 0.5, R = {(x 1 , a), (x 2 , a), (y, b)}. We obtain Deg S G (a) = 0.36 and Deg S G (b) = 0.5, thus QP is not satisfied. Let G = A, w, R ∈ WAG and a ∈ A. For any i ∈ {0, 1, . . .}, f i m (a) ≤ w(a).

.

  , so the sequence {f k m (A)} k∈N converges. Proof of Theorem 8. Let G = A, w, R ∈ WAG and a ∈ A. Letting i → +∞ in the equality fact that arithmetical operations and max are continuous functions, we obtain lim Proof of Theorem 9. Let G = A, w, R ∈ WAG and suppose that D : A → [0, 1] is the function such that

Maximality:.G

  Let G = A, w, R ∈ WAG. By definition, ∀a ∈ A such that Att G (a) = ∅, for every i ∈ N we have f i m (a) = w(a), so Deg Mbs G (a) = w(a). Weakening: Let G = A, w, R ∈ WAG and a ∈ A. If w(a) = 0, then Deg Mbs G (a) = 0 by Theorem 8. If w(a) > 0, then Deg Mbs G (a) < w(a), since the semantics satisfies Strict Weakening (see below). Strict Weakening: Let G = A, w, R ∈ WAG and a, b ∈ A such that Deg Mbs G (b) > 0. By Theorem 8, Assume that ∃b ∈ Att G (a) such that Deg Mbs G (b) > 0. Thus, max b∈Att G (a) Deg Mbs G (b) > 0. So, 1 + max b∈Att G (a) (b) < w(a) and Deg Mbs G (a) < w(a).

Proportionality:G

  Let G = A, w, R ∈ WAG and a, b ∈ A such that w(a) ≥ w(b) and Att G (a) = Att G (b). If w(a) = w(b), then Deg Mbs G (a) = Deg Mbs G (b), since Mbs satisfies Symmetry (see below). Suppose that w(a) > w(b). Then w(a) > 0, so Deg Mbs G (a) > 0, since Mbs satisfies Resilience. From the fact that Mbs also satisfies Strict Proportionality (see below), we obtain Deg Mbs G (a) > Deg Mbs G (b).Strict Proportionality:Let G = A, w, R ∈ WAG and a, b ∈ A such that i) Deg Mbs G (a) > 0, ii) w(a) > w(b), and iii) Att G (a) = Att G (b). Since Att G (a) = Att G (b), then (bi) . From ii), Deg Mbs G (a) > Deg Mbs G (b).Neutrality: Follows directly from Theorem 8.Reinforcement: Let G = A, w, R ∈ WAGand a, b, x, y ∈ A such that w(a) = w(b), Att G (a) = {x}, Att G (b) = {y} and Deg S G (y) ≥ Deg S G (x) > 0. If Deg S G (y) = Deg S G (x), then Deg S G (a) = Deg S G (b) since Mbs satisfies Equivalence (see below). Suppose that Deg S G (y) > Deg S G (x). If Deg S G (a) > 0, then Deg S G (a) > Deg S G (b) since Mbs satisfies Strict Reinforcement (see below). Otherwise, if Deg S G (a) = 0, from Theorem 8 we obtain w(a) = 0 and Deg S G (a) = Deg S G (b) = 0. Strict Reinforcement: Let G = A, w, R ∈ WAG, and a, b, x, y ∈ A such that w(a) = w(b), Deg S G (a) > 0, Att G (a) = {x}, Att G (b) = {y}, and Deg S G (y) > Deg S G (x) > 0. From Theorem 8 and Deg S G (a) > 0 we obtain thus Deg Mbs G (a) > Deg Mbs G (b). Compensation: Since Mbs satisfies Quality Precedence, then it violates Compensation. Proof of Theorem 11. It is direct consequence of Theorem 8. Indeed, since the function Mbs maps arguments to unit interval of reals, for every a ∈ A, we obtain 1 ≤ 1 + max b∈Att G (a) Deg Mbs G (b) ≤ 2, and using the equation (1) we have

2 .

 2 show that the sequence {f 2i c (A)} i∈N is monotonically non-increasing, and{f 2i+1 c (A)} i∈N is monotonically nondecreasing in R n ; 3. show that f 2i+1 c (A) ≤ f 2i c (A) for every i ∈ N, so lim i→+∞ π k := sup{α k | f 2k+1 c (A) ≥ α k f 2k c (A)} and we note that: (a) the sequence {π k } k∈N is non-decreasing in R; (b) π = lim k→+∞ π k ≤ 1; (c) f 2k+2 m (A) ≤ F (π k f 2k m (A))Then for i ∈ {1, . . . , n}, x = (x 1 , . . . , x n ) and α ∈ (0, 1] we have

F

  i (αx) = w(a i ) 1 + |AttF G (a i )| + j:a j ∈AttF G (a i ) αxj |AttF G (ai)| = w(a i ) 1 + |AttF G (a i )| + α j:a j ∈AttF G (a i ) xj |AttF G (ai)| = w(a i )

  )[(1 -π k )(1 + |AttF G (a j )|)f 2k+1 m (a j ) + π k w(a j )] w(a j )f 2k+1 m (a j ) ≤ π k+1 .

  1 -π)(1 + |AttF G (a j )|)f j c + πw(a j )] w(a j )f j c ≤ π.

1 + 36 ) 2 . 1 , 1 +≤ 1 .< 1 +

 13621111 |AttF G (a j )| + b∈AttF G (aj ) f i-1 c (b) |AttF G (a j )| ≤ |AttF G (a j )| + 2we obtain thatf k c (a j ) ≥ w(a j ) |AttF G (a j )| + 2 ,for all k, so f j c > 0. Since f j c = 0, we obtain π ≥ 1. Together with 4(b), it gives π = 1. We can use that fact to prove that lim ), in the same way as we proved the analogous statement for max-based function in the proof of Theorem 7.Proof of Theorem 13. Analogous to the proof of Theorem 8.Proof of Theorem 14. Analogous to the proof of Theorem 9.Proof of Theorem 15. The proofs that Cbs satisfies Anonymity, Independence, Directionality, Maximality, Weakening, Strict Weakening, Weakening Soundness, Proportionality, Strict Proportionality, Reinforcement, Strict Reinforcement, Symmetry, Equivalence and Invariance are very similar to the corresponding ones in Theorem 10.Resilience: LetG = A, w, R ∈ WAG and a ∈ A such that w(a) > 0. Note that b∈AttF G (a) Deg Cbs G (b) ≤ |AttF G (a)|, so w(a) 1 + |AttF G (a)| + b∈AttF G (a) Deg Cbs G (b) |AttF G (a)| ≥ w(a) 1 + |AttF G (a)| + 1 . Thus, Deg Cbs G (a) ≥ w(a)2+|AttF G (a)| (by Theorem 13), and, consequently, Deg Cbs G (a) > 0.Strict Invariance: Let G = A, w, R ∈ WAG and suppose that a, b, a , b , x, y ∈ A are arguments such that:1. w(a) = w(a ) = w(b) = w(b ), 2. Att G (a ) = Att G (a) ∪ {x}, 3. Att G (b ) = Att G (b) ∪ {y}, 4. Deg Cbs G (x) = Deg Cbs G (y), and 5. Deg Cbs G (a) > Deg Cbs G (b). We need to show that Deg Cbs G (a ) > Deg Cbs G (b ). Since w(a ) = w(b ), by Theorem 13 it is sufficient to show 1 + |AttF G (a )| + t∈AttF G (a ) Deg Cbs G (t) |AttF G (a )| < 1 + |AttF G (b )| + z∈AttF G (b ) Deg Cbs G (z) |AttF G (b )| . (From the conditions 1 and 5 we obtain, using Theorem 13, that 1+|AttF G (a)|+ t∈AttF G (a) Deg CbsG (t) |AttF G (a)| < 1+|AttF G (b)|+ z∈AttF G (b) Deg Cbs G (z) |AttF G (b)|. Note that this directly implies[START_REF] Bistarelli | A first comparison of abstract argumentation reasoning-tools[END_REF] if Deg Cbs G (x) = Deg Cbs G (y) = 0. Thus, in the rest of the proof we assume Deg CbsG (x) = Deg Cbs G (y) > 0. Note that |AttF G (a)| > |AttF G (b)| is not possible, since it would imply, together with z∈AttF G (b) Deg Cbs G (z) |AttF G (b)| ≤ 1, that 1 + |AttF G (a)| ≥ 1 + |AttF G (b)| + z∈AttF G (b) Deg Cbs G (z) |AttF G (b)|. We distinguish two possible cases:1. Suppose that |AttF G (a)| = |AttF G (b)|. Then t∈AttF G (a) Deg Cbs G (t) |AttF G (a)| < z∈AttF G (b) Deg Cbs G (z) |AttF G (b)|, and, consequently,t∈AttF G (a) Deg Cbs G (t) < z∈AttF G (b) Deg Cbs G (z). From the conditions 2-4, we obtain t∈AttF G (a ) Deg Cbs G (t) < z∈AttF G (b ) Deg Cbs G (z). From |AttF G (a )| = |AttF G (a)| + 1 = |AttF G (b)| + 1 = |AttF G (b )|, we obtain (36). Suppose that |AttF G (a)| < |AttF G (b)|. Then |AttF G (a)| + 1 ≤ |AttF G (b)|, so, since t∈AttF G (a ) Deg Cbs G (t) |AttF G (a )| ≤ we have |AttF G (a)|+ t∈AttF G (a ) Deg Cbs G (t) |AttF G (a )| ≤ |AttF G (b)|. From z∈AttF G (b ) Deg Cbs G (z) |AttF G (b )| > 0 we obtain |AttF G (a)|+ t∈AttF G (a ) Deg Cbs G (t) |AttF G (a )| < |AttF G (b)| + z∈AttF G (b ) Deg Cbs G (z) |AttF G (b )| . Finally, from |AttF G (a )| = |AttF G (a)| + 1 and |AttF G (b )| = |AttF G (b)| + 1, we obtain[START_REF] Bistarelli | A first comparison of abstract argumentation reasoning-tools[END_REF].Monotony: Let G = A, w, R ∈ WAGand a, b ∈ A such that w(a) = w(b) and Att G (a) ⊆ Att G (b). From Theorem 13, it holds that |AttF G (b)| + y∈AttF G (y) Deg Cbs G (y) |AttF G (b)| . Since Att G (a) ⊆ Att G (b), it holds that AttF G (a) ⊆ AttF G (b). There are two cases: Case where AttF G (a) = AttF G (b), then from condition w(a) = w(b), it follows that Deg Cbs G (a) = Deg Cbs G (b). Case where AttF G (a) ⊂ AttF G (b). Hence, |AttF G (a)| < |AttF G (b)| and |AttF G (b)| = |AttF G (a)| + x, with x ≥ 1. Furthermore, t∈AttF G (a) Hence, 1 + |AttF G (a)| + t∈AttF G (a) Deg Cbs G (t) |AttF G (a)| |AttF G (a)| + x + t∈AttF G (b) Deg Cbs G (t) |AttF G (b)| . Since w(a) = w(b), then Deg Cbs G (a) ≥ Deg Cbs G (b). Counting: It follows from Proposition 12. Cardinality Precedence: Let G = A, w, R ∈ WAG and let a, b ∈ A be two arguments such that • w(a) = w(b),• Deg Cbs G (b) > 0,• |{x ∈ Att G (a) | Deg Cbs G (x) > 0}| > |{y ∈ Att G (b) | Deg Cbs G (y) > 0}|,First, note that, by the third condition, there existsx 1 ∈ Att G (a) such that Deg Cbs G (x 1 ) > 0, so x∈AttF G (a) Deg Cbs G (x) |AttF G (a)| > 0.(37) From Theorem 13, we have that for any argument c, Deg Cbs G (c) > 0 iff w(c) > 0. Thus, AttF G (a) = {x ∈ Att G (a) | Deg Cbs G (x) > 0} and AttF G (b) = {y ∈ Att G (b) | Deg Cbs G (y) > 0}. Then, by the third condition, |AttF G (a)| > |AttF G (b)|, so |AttF G (a)| ≥ |AttF G (b)| + 1. Since y∈AttF G (b) Deg Cbs G (y) |AttF G (b)| ≤ 1, we obtain |AttF G (a)| ≥ |AttF G (b)| + y∈AttF G (b) Deg Cbs G (y) |AttF G (b)| .

1 +

 1 |AttF G (a)| + x∈AttF G (a) Deg Cbs G (x) |AttF G (a)| > 1 + |AttF G (b)| + y∈AttF G (b) Deg Cbs G (y) |AttF G (b)| .Then, by Theorem 13, Deg Cbs G (a) < Deg Cbs G (b).

Finally, since 1 +

 since1 Cbs satisfies CP, Maximality and Resilience, it does not satisfy QP, by Proposition 1. It also does not satisfy Compensation. Proof of Theorem 16. Let G = A, w, R ∈ WAG and a A. Let us show that Deg Cbs G (a) ∈ [ w(a) 2+|AttF G (a)| , w(a)]. From Theorems 1 and 15, it follows that Deg Cbs G (a) ≤ w(a). From Theorem 13, |AttF G (a)| + b∈AttF G (a) |AttF G (a)| . For each x ∈ A, it holds that Deg Cbs G (x) ∈ [0, 1]. Hence, 0 ≤ b∈AttF G (a) |AttF G (a)| ≤ 1. Thus, 1 + |AttF G (a)| ≤ 1 + |AttF G (a)| + b∈AttF G (a) |AttF G (a)| ≤ 2 + |AttF G (a)| and Deg Cbs G (a) ∈ [ w(a) 2+|AttF G (a)| , w(a)].

Table 1 :

 1 The symbol • (resp. ×) stands for satisfied (resp. violated).

There are some approaches where an argument contains more components, e.g. the Toulmin's model of argument[START_REF] Toulmin | The Uses of Argument[END_REF].

We use the term quality exclusively to emphasise that the strength of an attacker influences the quality of the corresponding attack.

We also include Counting (introduced in Definition 6) in the table since it is considered to be a principle in several papers in the literature[START_REF] Amgoud | Axiomatic foundations of acceptability semantics[END_REF][START_REF] Amgoud | Acceptability semantics for weighted argumentation frameworks[END_REF]. The goal is to allow the reader to have a full overview in the same table.

http://www.dmi.unipg.it/conarg/dwl/networks.tgz
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c:0.7 a:0.5 e:0.3 b:0.5Invariance is violated by all the four semantics. Consider the graph depicted below.
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Proof of Theorem 5. Contraction-based approach: grounded, stable, preferred and complete semantics Anonymity is satisfied by the four semantics. This follows straightforwardly from the definitions of the semantics.

Independence is satisfied by grounded, preferred and complete semantics. Let G = A, w, R , G = A , w , R ∈ WAG be such that A ∩ A = ∅. Since grounded, complete and preferred semantics satisfy Directionality as defined by Baroni and Giacomin [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF], we have that for any x ∈ {g, c, p}, Ext Directionality is satisfied by grounded, preferred and complete semantics. Let G = A, w, R ∈ WAG and G = A, w, R ∈ WAG be such that R = R ∪ {(a, b)}. We denote by A = {x ∈ A | there is a path from b to x with respect to R}. Let A = A \ A . Note that A does not attack A with respect to R. A fortiori, A does not attack A with respect to the revised attack relation. Since grounded, preferred and complete semantics satisfy Directionality as defined by Baroni and Giacomin [START_REF] Baroni | On principle-based evaluation of extension-based argumentation semantics[END_REF], the status of x is the same in G and G .

To see that (our) Directionality principle is not satisfied by stable semantics, consider the graph G depicted below. This graph has one stable extension {a, b}, hence Deg st G (b) = 1. If now we add an attack from a to itself (thus a attacks itself), the new graph has no stable extension, thus Deg st G (b) = β even if there is no path from a to b. Maximality is violated by the four semantics. Consider the argument a of Example 1. The four semantics assign the value 1 to this argument while its basic weight is 0.01.

Weakening and Strict Weakening are violated by the four semantics. Consider the graph depicted below. The preference-based approaches based on Dung's semantics [START_REF] Bench-Capon | Persuasion in practical argument using value-based argumentation frameworks[END_REF][START_REF] Amgoud | A reasoning model based on the production of acceptable arguments[END_REF][START_REF] Modgil | Reasoning about preferences in argumentation frameworks[END_REF] remove the attack from a to b since w(a) < w(b).

The new graph has one grounded, complete, stable and preferred extension {a, b}. Hence, both a and b get degree 1. Note that Deg S G (b) > w(b).

Weakening Soundness is violated by stable, preferred and complete semantics. To see why preferred and complete semantics violate Weakening Soundness, consider the graph depicted below. Both arguments b and c have degree 0 since they are rejected and each of them is attacked by an extension. The argument a has a basic weight equal to 1 but its strength is equal to β < 1. When preferences are taken into account, the attack from y to b is ignored and we obtain the following graph:

x:0.7 a:0.5 y:0.3 b:0.5

There is a unique stable / preferred / complete / grounded extension: {x, y, b}. Thus Deg S G (x) = Deg S G (y) and Deg S G (a) < Deg S G (b), which means that Reinforcement is violated by the four semantics.

Strict Reinforcement is violated by all the four semantics. Consider the counter-example below.

x:0.5 a:0.5 y:0.3 b:0.5

When preferences are taken into account, the attack from y to b is ignored and we obtain the following graph:

x:0.5 a:0. Resilience is violated by the four semantics. It is sufficient to consider the graph consisting of two arguments, a and x and one attack (x, a), where both arguments have the same weight 1. We have w(a) = 1 and Deg S G (a) = 0.

QP is violated by the four semantics as shown with the graph depicted below on the left-side. Its revised version, on the right-side, has one stable/preferred/complete/grounded extension {z, y, a, b}. Hence, CP is violated by the four semantics as shown with the graph depicted below. Note that this graph is identical to its revised version. Under preferred, complete and stable semantics, all the arguments get degree α while they all get degree β under grounded semantics. Compensation is satisfied by the four semantics since they all violate CP and QP.

Change-based approach: Grounded, Stable, Preferred and Complete semantics Anonymity is satisfied by the four semantics (from the definitions of the four semantics).

Independence: the proof is the same as for the contraction-based approach. The counter-example for stable semantics is also the same. Maximality is violated by the four semantics. As in the case of contraction-based approach, consider the argument a of Example 1. The four semantics assign value 1 to this argument while its basic weight is 0.01.

Weakening and Strict Weakening are violated by the four semantics. Consider the graph below. Both arguments get the degree α in the case of stable, preferred and complete semantics. They both get degree β in case of grounded semantics. In all cases, their degree is strictly greater than their initial weight.

Weakening Soundness is violated by stable, preferred and complete semantics. It is sufficient to consider the same counter-example as for contraction-based semantics. Weakening Soundness is satisfied by grounded semantics and the proof is similar to the one for contraction-based approach.

Neutrality is violated by the four semantics. Consider the graph below. Equivalence is violated by the four semantics. This can be seen on the two counter-examples given for symmetry.

Invariance is violated by the four semantics. Consider the following counter-example for grounded semantics. It can be checked that the grounded extension of its revised version is {a, b, z}. The following example shows that Invariance is violated by stable, preferred and complete semantics. Arguments a, b, b , x and y get the degree α whereas a gets the degree 0. Strict Invariance is violated by the four semantics (consider the same counter-example as for the contraction-based approach).

Monotony is violated by all the four semantics (consider the same counter-examples as for symmetry).

Counting is violated by the four semantics (consider the same counter-example as for the contraction-based approach).

Reinforcement is violated by the four semantics. Consider the graph depicted below on the left-side and its revised version at the right-side. The grounded extension is {z}, then Deg Strict Reinforcement is satisfied by stable and grounded semantics and violated by preferred and complete semantics. To see why preferred and complete semantics violate Strict Reinforcement, consider the following counter-example. Note that Deg S G (y) > Deg S G (x) (since y is credulously accepted and x is rejected). However, Deg S G (a) = Deg S G (b) since they are both credulously accepted (note that in the revised graph, z attacks a). Let us now show that Strict Reinforcement is satisfied by stable and grounded semantics. Assume that G = A, w, R ∈ WAG, a, b, x, y ∈ A such that:

We Strict Proportionality is violated by the four semantics. We can use the same counter-example as for contractionbased approach.

Resilience is violated by the four semantics. We can use the same counter-example as for contraction-based approach.

QP is violated by the four semantics as shown by the graph depicted below. CP is violated by the four semantics. It is sufficient to consider the counter-example given for the contraction-based approach.

Compensation is satisfied by the four semantics since they all violate CP and QP.

TB semantics: Let us recall the definition of TB:

Recall also that the following equation is satisfied:

Anonymity is satisfied since the above equations do not take into account arguments' names but only the topology of the graph.

Independence: Since equation (7) only takes into account direct attackers, independence is satisfied. Directionality: We see from equation [START_REF] Hunter | A probabilistic approach to modelling uncertain logical arguments[END_REF] that the strength of an argument is fully determined by the strengths of its ancestors (i.e., the parents, parents' parents and so on). Hence, adding the attack (a, b) does not impact the strength of argument x if there is no path from b to x.

Maximality is satisfied since from (9) we obtain Compensation is satisfied by TB since the latter violates both CP and QP.

Iterative Schema (IS) semantics:

Anonymity is obviously satisfied. Independence is satisfied since the strength of an argument is a function of the strengths of its direct attackers. Directionality is satisfied since the strength of an argument depends on its parents, grand-parents, and so on. Maximality is violated. Consider a graph with only one argument a such that w(a) = 0 and the attack relation is empty. The strength of a is 1. where

From equation 11 (respectively 12), we obtain:

Corollary 2.5 by Gabbay and Rodrigues [START_REF] Gabbay | Equilibrium states in numerical argumentation networks[END_REF] shows that IS returns only three values (0, 0.5, 1). Hence, it must be that Deg S G (y) = 1 and Deg S G (x) = 0.5. Furthermore, • Deg S G (a) > 0, 

there is a path in G , so we use the same notation p(b) for both graphs). Let f i m and g i m be the weighted max-based functions of G and G , respectively. We show by induction that ∀ i ∈ {0, 1, . . .}, the following holds:

. Let i ∈ {0, 1, . . .} and suppose that ∀ j ∈ {0, 1, . . . , i -1}, P (j) holds. We show that P (i) holds.

• Case i = 0. We have that ∀ x / ∈ p(b), f 0 m (x) = g 0 m (x) = w(x). Thus, P (0) holds. 

The rest of the proof is identical to the proof of Theorem 7.

Proof of Proposition 14. Obvious since each argument is attacked by at most one argument. Then, the strongest attacker of each argument is its single attacker.