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ABSTRACT: Small nonspherical particles settling in a quiescent fluid tend to orient so that their broad side faces down

because this is a stable fixed point of their angular dynamics at small particle Reynolds number. Turbulence randomizes the

orientations to some extent, and this affects the reflection patterns of polarized light from turbulent clouds containing ice

crystals. An overdamped theory predicts that turbulence-induced fluctuations of the orientation are very small when the

settling number Sv (a dimensionless measure of the settling speed) is large. At small Sv, by contrast, the overdamped theory

predicts that turbulence randomizes the orientations. This overdamped theory neglects the effect of particle inertia.

Therefore, we consider here how particle inertia affects the orientation of small crystals settling in turbulent air.We find that

it can significantly increase the orientation variance, even when the Stokes number St (a dimensionless measure of particle

inertia) is quite small. We identify different asymptotic parameter regimes where the tilt-angle variance is proportional to

different inverse powers of Sv. We estimate parameter values for ice crystals in turbulent clouds and show that they cover

several of the identified regimes. The theory predicts how the degree of alignment depends on particle size, shape, and

turbulence intensity, and that the strong horizontal alignment of small crystals is only possible when the turbulent energy

dissipation is weak, on the order of 1 cm2 s23 or less.

KEYWORDS: Turbulence; Stochastic models; Microscale processes/variability; Ice particles; Cloud microphysics

1. Introduction

As ice crystals settle through turbulent air, the turbulent

velocity gradients tend to randomize their orientations.

However, sometimes the crystals appear to align as they settle,

so that they fall with a marked horizontal orientation. The

effect can be observed in the form of light patterns above street

lights during snowfall (Sassen 1980), known as ‘‘light pillars,’’

caused by specular reflection from the aligned ice-crystal

platelets. The width of a light pillar is determined by the de-

gree to which the crystal orientations are randomized.

The alignment of ice crystals in turbulent clouds has been

systematically studied using lidar measurements (Sassen 1991;

Noel and Chepfer 2004; Bréon and Dubrulle 2004). In cirrus

clouds, the fluctuations of the crystal orientation with respect

to the horizontal can be less than a few degrees (Sassen and

Benson 2001; Noel and Chepfer 2004; Noel and Sassen 2005;

Westbrook et al. 2010). Baran (2012) points out that aligned

ice crystals affect the way in which clouds reflect radiation.

High-altitude cirrus clouds tend to contain large ice mass. When

such clouds cover a nonnegligible part of Earth’s atmosphere,

ice-crystal alignment could affect its radiation balance, but the

magnitude of this effect remains to be understood.

Hydrodynamic torques due to shape asymmetries or fluid

inertia can align the ice crystals. Rapidly settling particles

experience a locally uniform flow component (equal to the

negative settling velocity). The resulting fluid-inertia torque

tends to orient small fore–aft symmetric and axisymmetric

particles so that they fall with their broad sides down (Brenner

1961; Cox 1965; Khayat and Cox 1989; Dabade et al. 2015;

Candelier and Mehlig 2016; Roy et al. 2019).

Turbulence, on the other hand, may upset the alignment.

Early work concluded that turbulence has at most a minor

effect on the alignment (Cho et al. 1981). The more recent

analysis of Klett (1995) was carried out under the assumption

that turbulent torques act as a white noise signal on the settling

particles. The resulting diffusion approximation simplifies the

analysis, but it is justified at very high settling speeds only.

A systematic approach for small particles (Kramel 2017;

Menon et al. 2017; Gustavsson et al. 2019; Anand et al. 2020)

leads to the prediction of two very different regimes: at small

settling speeds the orientation is random, while the particles

are almost completely aligned at larger settling speeds. This

theory assumes that the dynamics is overdamped, in other

words, that particle inertia is negligible. In this extreme limit,

the particles move in such a way that the instantaneous force

and torque vanish, and the overdamped theory predicts amuch
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stronger alignment at large settling speeds than the theory of

Klett (1995). Is this difference due to the effect of particle in-

ertia, neglected in the overdamped theory, but considered by

Klett (1995)? After all, ice crystals are approximately 1000

times heavier than air, so particle inertia could have a signifi-

cant effect upon their orientations.

To answer this question, we have investigated the effect of

particle inertia upon the alignment of nonspherical particles

settling through a turbulent flow, by analyzing a statistical

model of the effect. The main result of our analysis is that

particle inertia may lead to significant fluctuations of the ‘‘tilt

angle’’ (Fig. 1). This effect results from a coupling between the

fluctuations in the translational dynamics induced by turbu-

lence, and the angular degrees of freedom. We find that the

overdamped approximation applies only in a small region in

the parameter plane. Even when particle inertia (measured by

the ‘‘Stokes number’’ St) is weak, it may nevertheless have a

substantial effect on the particle orientation. This is the case

when the settling speed is large (large ‘‘settling number’’ Sv).

Klett’s theory fails in this regime because it does not take into

account translational particle inertia.

In short, the tilt-angle variance is much larger than previ-

ously thought. Particle inertia may increase typical tilt angles

by several orders ofmagnitude comparedwith the overdamped

limit, even at small St, and the theory predicts how typical tilt

angles depend upon turbulence intensity, particle size, and

shape. We validate the predictions of our new theory by nu-

merical computations using statistical-model simulations and

direct numerical simulations (DNS) of turbulence.

The general conclusion is diametrically opposite to that of

Cho et al. (1981), who concluded that turbulence does not

upset the alignment under realistic cloud conditions, in

agreement with the prediction of the overdamped theory.

Instead, properly taking into account particle inertia, we see

that turbulence tends to misalign the orientations of the set-

tling crystals, unless the turbulence level is very weak. This is

consistent with the very strong alignment observed in cirrus

clouds (Noel and Chepfer 2004; Noel and Sassen 2005), be-

cause these clouds have a very low turbulence intensity

(Gultepe and Starr 1995).

Our theory for ice-crystal platelets may also explain why

only a small fraction of ice crystals appears to align in more

turbulent clouds (Bréon and Dubrulle 2004): the spatially

varying conditions must be just right for strong alignment. A

caveat, however, is that, for example, crystals come in a wide

variety of shapes, symmetric but also asymmetric, even fractal,

and sometimes hollow (Heymsfield 1973). The fraction of

aligned ice crystals, and their average tilt-angle variance must

depend on the distribution of shapes, sizes, and mass–density

inhomogeneities.

The remainder of this paper is organized as follows. In

section 2 we give some background. Our model is summarized

in section 3, including a brief account of the overdamped the-

ory (Kramel 2017; Menon et al. 2017; Gustavsson et al. 2019;

Anand et al. 2020). Section 4 explains our method, an expan-

sion in small tilt angles (Klett 1995). In section 5 we describe

the different physical regimes caused by particle inertia. Our

theoretical results are summarized in section 6 and discussed

in section 7, which also contains a detailed comparison with

the theory of Klett (1995). Section 8 contains our conclusions.

A complete summary of our calculations is given in supple-

mental material.

2. Background

Ice crystals come in different shapes (Noel et al. 2006).

Frequently observed shapes are columns (rodlike crystals) and

platelets (disks) that exhibit discrete rotation symmetry with

respect to a symmetry axis n̂. Such platelets correspond to class

P1a in the classification of Magono and Lee (1966). Commonly

such crystals exhibit fore–aft symmetry. This means that par-

ticle shape is symmetric under n̂/2n̂.

A small particle falling in a fluid experiences a mean flow

corresponding to its negative settling velocity, plus fluctuations

if the fluid is in motion (or is set into motion by the settling

particle). Both mean flow and fluctuating fluid-velocity gradi-

ents give rise to torques that affect the orientation of a non-

spherical particle. The relative importance of the two torques

depends upon the settling speed, and on the shape of the

particle.

The mean flow causes a small axisymmetric particle with

fore–aft symmetry and homogeneous mass distribution to align

with respect to the direction of the gravitational acceleration g

(Brenner 1961; Cox 1965; Khayat and Cox 1989; Dabade et al.

2015; Candelier and Mehlig 2016), so that n̂? g for columns,

and n̂ k g for platelets. The tilt angle is defined as cosu56n̂ � ĝ
(Fig. 1). We denote its deviations from the steady-state value

by du, that is, u 5 du for platelets and u 5 p/2 1 du for

columns.

Several approaches have been proposed to study how tur-

bulence affects the alignment of settling crystals. Motivated by

the observation that crystal orientation determines the rate at

which crystals are electrically charged, Cho et al. (1981)

FIG. 1. (left) Platelet and (right) column settling in a turbulent

flow. The particle symmetry axis is n̂, and the particle velocity is

denoted by v. Gravity g5 gĝ points downward. The tilt angle is

defined as cosu56n̂ � ĝ (see text). In a quiescent fluid small col-

umns fall with steady-state orientation n̂ � ĝ5 0, while platelets fall

with steady-state orientation n̂ � ĝ561 (see text).
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focused on the vorticity fluctuations in the fluid, neglecting the

effect of the turbulent strain, and concluded that turbulence

only weakly affects the crystal orientation. Klett (1995) for-

mulated an elegant and more quantitative model describing

the effect of turbulent vorticity and strain (Jeffery 1922) upon

the orientation of settling crystals. The model determines how

typical tilt angles depend on particle size and turbulent inten-

sity. Klett’s theory predicts that the tilt angle has a narrow

distribution. For small particles, its variance decreases as

hdu2i; a2

n

E
W2

(1)

as the settling speedW increases. Here a is the particle size, n is

the kinematic viscosity of air, and E is the turbulent dissipation

rate per unit mass. Klett’s theory uses an approximate model

for the inertial torque for nearly spherical particles (Cox 1965),

valid at small particle Reynolds number in steady flow. The

theory is based on an expansion of the inertial angular dy-

namics in small du. Consistency with Eq. (1) requires the set-

tling speed to be large so that du remains small. The theory also

assumes that fluctuations in the settling speed due to transla-

tional particle inertia are negligible, and that the turbulent

torques fluctuate very rapidly so that diffusion approximations

can be used.

Gustavsson et al. (2019) computed the orientation variance

in the opposite limit assuming that the angular dynamics is

overdamped and that the turbulent fluid-velocity gradients

experienced by the particle change slowly compared with the

angular dynamics. In this persistent limit they found for

spheroidal columns

hdu2i;C(b)
E n

W4
, (2)

assuming that correlations between n̂ and the turbulent fluid

velocities are negligible. The shape parameter C(b) in Eq. (2)

is independent of the largest particle dimension a, but it de-

pends on particle shape through the particle aspect ratio b. For

spherical particles b / 1, and in this limit C(b) tends to zero.

The slender-body limit corresponds to b / ‘. In this limit

Eq. (2) was derived by Kramel (2017) and Menon et al. (2017),

yielding C(b); (32/375) log(b)2. For platelets (b , 1), the

overdamped approximation works in the same way, resulting

again in Eq. (2), but with a different prefactor (Anand

et al. 2020).

At smaller settling speeds, the settling particles are ap-

proximately randomly oriented (Kramel 2017; Gustavsson

et al. 2019). In this case, the distribution of ng 5 n̂ � ĝ is uniform,

so that one can compute the distribution of tilt angles via a

change of variables. The resulting tilt-angle variance is of or-

der unity:

hdu2i5O(1) . (3)

The transition between Eqs. (2) and (3) is quite sharp. Roughly

speaking, the overdamped theory says that the crystals are

either randomly distributed or well aligned.

Kramel (2017) measured the orientation variance of nearly

neutrally buoyant ramified particles in turbulence, triads made

out of three slender rods. At larger settling speeds the exper-

imental results are roughly consistent with Eq. (2), although

the data lie somewhat below the theory. Kramel attributed this

to the fact that the particles are larger than the Kolmogorov

length and tend to average over small-scale turbulent fluctua-

tions, reducing their effect. Lopez and Guazzelli (2017) mea-

sured the orientation distribution of slender columns settling

in a two-dimensional steady vortex flow. They showed that the

overdamped approximation describes the measured orienta-

tion distribution reasonably well. Both experiments were

conducted in water with nearly neutrally buoyant particles,

rp/rf ’ 1.15 (Kramel 2017) and rp/rf ’ 1.038 and 1.053 (Lopez

and Guazzelli 2017).

Equation (2) predicts a much faster decay of the orientation

variance than (1) as the settling speed W increases. The ques-

tion is how to reconcile the two estimates. For ice crystals in air

the density ratio is large, rp/rf ’ 1000, so that the overdamped

approximation leading to (2) may break down. Indeed, Eq. (2)

predicts tilt-angle variances that are several orders of magni-

tude smaller than those observed in turbulent clouds (Bréon
and Dubrulle 2004). Simulations of a statistical model for

heavy nonspherical particles settling in turbulence indicate

that particle inertia causes Eq. (2) to fail (Gustavsson et al.

2019). Klett’s theory takes into account rotational particle in-

ertia, but it also fails to describe the simulation results of

Gustavsson et al. (2019), possibly because the theory does not

take into account translational particle inertia, which might

affect the alignment indirectly since translation and rotation

are coupled.

In summary, it is likely that rotational and translational

particle inertia both have a substantial effect upon the orien-

tation distribution of small crystals settling in a turbulent flow.

Yet there is no theory for the effect of particle inertia that is

consistent with known limits, and with results of statistical-

model simulations. Earlier studies of particles settling in tur-

bulence (Siewert et al. 2014a,b; Gustavsson et al. 2017; Jucha

et al. 2018; Naso et al. 2018) included particle inertia but dis-

regarded the fluid-inertia torque.

3. Model

a. Turbulent fluctuations

Turbulent flows involve many eddies, covering a wide range

of spatial and temporal scales. The smallest eddies are of the

size of the ‘‘Kolmogorov length’’ hK 5 ðn3/E Þ1/4. The fastest

time scale associated with the smallest eddies is the

Kolmogorov time, defined as tK 5 [2hTr S2i]21/2, where S is the

strain-rate matrix, the symmetric part of the fluid-velocity

gradient matrix. Equivalently, one can simply estimate the

Kolmogorov time by tK 5 ðn/E Þ1/2.
We use a statistical model (Gustavsson andMehlig 2016) for

the turbulent fluctuations. In this model, the fluid-velocity field

is represented as an incompressible Gaussian random function

with correlation length ‘, Eulerian correlation time t, and

Lagrangian correlation time tK 5 ‘/(
ffiffiffi
5

p
u0) (Kolmogorov

time). Here u0 is the root-mean-square turbulent velocity. The

model for the turbulent velocity and gradient correlations is

described in the online supplemental material, see Eq. (S25).
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The correlation length ‘ is identified with the Taylor scale l in

turbulence. Since small eddies are swept by larger ones, fluid

elements advected in turbulent flow decorrelate on the

Lagrangian time scale, tK, not on the Eulerian time scale. The

statistical model has the same time scale tK if the Kubo num-

ber, Ku5 t/(tK
ffiffiffi
5

p
) is large. In this limit, the statistical model is

therefore expected to work well (Gustavsson and Mehlig

2016), provided that the particles are small enough, with sizes

in the dissipative range of turbulence, on the order of ‘ and

smaller. Otherwise inertial-range turbulent fluctuations might

affect the particle dynamics, and such fluctuations are not

taken into account in the statistical model.

Inertial-range turbulent fluctuations are contained in our

model calculations based on DNS of turbulence, performed

using the model for the particle dynamics described in

section 3c. The simulations employ a fully dealiased pseudo-

spectral code that solves the Navier–Stokes equations in a box

with periodic boundary conditions, as described, for example,

by Jucha et al. (2018). The size of the simulation domain was L

’ 6.3 cm, the viscosity was n5 0.113 cm2 s21, and the turbulent

dissipation rate E ’ 1 cm2 s23. Our simulations were run with a

grid of size 1283. This means that they were well resolved, as

can be judged by the value of kmaxhK ’ 3, where kmax is the

largest wavenumber kept in the Fourier decomposition. The

corresponding Taylor-scale Reynolds number is Rel ’ 56.

b. Parameters and dimensionless numbers

We consider particles with rotational and fore–aft symme-

try. Commonly observed ice-crystal shapes (columns, plate-

lets) fall into this class (Noel et al. 2006), although more

complex shapes have been reported (Heymsfield et al. 2002a).

The dimensions of the settling particle are characterized by the

half-length of its symmetry axis ak and by the half-length of an

orthogonal axis a?. The particle aspect ratio is defined as

b5 ak/a?. In the following we consider prolate as well as oblate
spheroids, b . 1 (columns) and b , 1 (platelets), because the

hydrodynamic resistance tensors are exactly known for such

particles. This simplification is quite common also in theories

regarding other aspects of ice-crystal microphysics, such as

crystal growth by vapor deposition (Chen and Lamb 1994), and

provide a useful approximation to estimate the light reflection

properties of crystals (Yang et al. 2013). We expect that the

theory should work qualitatively for more general columnar

and platelike shapes (Fries et al. 2017). We define the largest

particle dimension as

a5maxfak, a?g, (4)

and assume that the particles have uniform mass density rp.

Note, however, that there are ice crystals in the atmosphere

with nonuniform mass densities (Heymsfield et al. 2002b).

In addition to the Reynolds number Rel of the turbulent

flow, the problem has at least six additional dimensionless

parameters, summarized in Table 1. Particle shape is param-

eterized by its aspect ratio b. Particle size is parameterized by

a/hK. In the following we assume that this parameter is small,

and we also assume that the particle is much heavier than

the fluid

a/h
K
� 1 and r

p
/r

f
� 1: (5)

The Stokes number St 5 tp/tK is a dimensionless measure of

particle inertia, where

t
p
[ (2aka?rp)/(9nrf ) (6)

is an estimate of the particle-response timewhen rp/rf� 1. The

settling number Sv 5 gtptK/hK is a dimensionless measure of

the settling speed (Devenish et al. 2012). The last parameter is

the turbulent correlation length ‘/hK.

c. Equations of motion

Consider a small spheroidal particle settling through tur-

bulent air, accelerated by the gravitational acceleration g. The

particle is subject to a hydrodynamic force fh and to a hydro-

dynamic torque th. Its translational motion is determined by

Newton’s second law:

d

dt
x5 v, m

d

dt
v5 f

h
1mg . (7)

Here m is the particle mass, x is the spatial position of the

particle, and v is its velocity. Particle orientation is defined by

the unit vector n̂ along the symmetry axis of the particle, and its

angular velocity is denoted by v. The angular equations of

motion read

d

dt
n̂5v ^ n̂, m

d

dt
[I(n̂)v]5 t

h
, (8)

where I(n̂) is the rotational inertia tensor per unit mass in the

laboratory frame (see the supplemental material).

A major difficulty lies in determining appropriate expres-

sions for the hydrodynamic force and torque. Here we adopt

a simplified model (Klett 1995; Kramel 2017; Lopez and

Guazzelli 2017; Menon et al. 2017; Gustavsson et al. 2019),

adding small inertial corrections due to convective fluid inertia

to the standard expressions for fh and th in the creeping-flow

limit. In this limit the hydrodynamical force is just Stokes force:

f
(0)
h 5 6pa?mA(n̂)(u2 v) , (9)

where u[ u(x, t) is fluid velocity at the particle position x, and

A(n̂) is a resistance tensor relating f
(0)
h and the slip velocity

W5 v2 u (Kim and Karrila 1991). Its elements depend on

b and n̂ (supplemental material). Since they are of order unity

TABLE 1. Dimensionless parameters. The time scale tp is the

particle response time, Eq. (6). The Kolmogorov scales of the

turbulence are denoted by hK and tK, and g is the magnitude of

the gravitational acceleration.

Parameter Description

b5 ak/a? Particle aspect ratio

a/hK Particle size

rp/rf Particle-to-fluid density ratio

St 5 tp/tK Stokes number (particle inertia)

Sv 5 gtptK/hK Settling number (settling speed)

‘/hK Turbulent correlation length
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for platelets, Eq. (9) shows that Eq. (6) is a natural estimate of

the particle response time for platelets of mass m} rpaka
2
?.

The hydrodynamic torque in the creeping-flow limit is

(Jeffery 1922):

t
(0)
h 5 6pa?m[C(V2v)1H:S] . (10)

Here v2V is the angular slip velocity, and V5 (1/2)$ ^ u is

half the fluid vorticity at the particle position. It is related to the

asymmetric part O of the matrix of fluid-velocity gradients by

the relation Or5V ^ r. The symmetric part of the matrix of

fluid-velocity gradients is denoted by S, as mentioned above.

The tensors C(n̂) and H(n̂) determine the coupling of the hy-

drodynamic torque to vorticity and strain (Kim and Karrila

1991). They depend on the instantaneous particle orientation n̂

and on b (supplemental material).

Equations (9) and (10) neglect that the particle accelerates

the surrounding fluid as it settles through the flow. For a par-

ticle falling through a fluid with a steady settling velocity, the

slip velocity W generates fluid accelerations; it acts as a ho-

mogeneous background flow. To leading order in the particle

Reynolds number

Re
p
5 aW/n (a5maxfak, a?g), (11)

the resulting steady convective-inertia corrections to the force

and torque in a quiescent fluid are (Brenner 1961; Cox 1965;

Khayat and Cox 1989; Dabade et al. 2015):

f
(1)
h 52(6pa?m)

3

16

aW

n
[3A2 1(Ŵ � AŴ)]AW , (12a)

t
(1)
h 5F(b)m

a3W2

n
(n̂ � Ŵ)(n̂ ^ Ŵ) . (12b)

Here,W5 jWj is the modulus of the slip velocity, Ŵ5W/W

is its direction, 1 is the unit matrix, and F(b) is a shape

factor computed by Dabade et al. (2015). For slender col-

umns, in the limit of b / ‘, the shape factor tends to

F(b);25p/[3(logb)
2
]. In this limit Eq. (12b) reduces to

the slender-body limit derived by Khayat and Cox (1989).

For nearly spherical particles the shape factor behaves

as F(b); 7 811p«/560 for small eccentricity «, defined by

setting b 5 1 1 « for prolate particles, and b 5 (1 2 «)21 for

oblate particles.

For a particle settling through a fluid, one must in principle

consider the inertial effect due to gradients of the undis-

turbed fluid, parameterized by the shear Reynolds number

Res 5 a2s/n, where s is the shear rate (Subramanian and Koch

2005; Einarsson et al. 2015; Rosén et al. 2015). If we estimate

typical turbulent shear rate by t21
K , we see that the model re-

quires small particles, with particle sizes on the order of hK or

smaller (Candelier et al. 2016).

We also neglect possible effects of unsteady fluid inertia, a

common approximation in the literature, and simply assume

that force and torque on the settling particle are given by

adding the steady inertial contributions (12) to Stokes force

and Jeffery torque (Klett 1995; Kramel 2017; Lopez and

Guazzelli 2017; Menon et al. 2017; Gustavsson et al. 2019).

Lopez and Guazzelli (2017) demonstrated that this model can

qualitatively describe the unsteady angular dynamics of rods

settling in a vortex flow. The same model was used first by

Klett (1995) to study the angular dynamics of nearly spherical

particles settling in turbulence (we discuss the relation be-

tweenKlett’s and our own theory in section 7a).When the slip

velocity varies rapidly, the steady model for the inertial tor-

que may fail because the unsteady term in the Navier–Stokes

equations may be equally or more important than the con-

vective terms. We address this limitation of the model in our

discussion, section 7d.

We nondimensionalize Eqs. (7) to (12) with tK and hK: t
0 5

t/tK, x
0 5 x/hK. To simplify the notation we drop the primes.

The dimensionless equations of motion read

d

dt
x5 v, St

d

dt
v52AW1Svĝ , (13a)

d

dt
n̂5v ^ n̂, St

d

dt
v5 StL(n̂ �v)(v ^ n̂)

1 I21
C(V2v)1 I21

H: S1A 0(n̂ �W)(n̂ ^W) ,

(13b)

with dimensionless parameters St, Sv, and b. The tensors I, A,

C, and H are given in the supplemental material. The shape

factor A 0 is defined as

A 0 5
5

6p
F(b)

max(b, 1)3

b2 1 1
, (14)

and the parameter L5 (b2 2 1)/(b2 1 1) was defined by

Bretherton (1962). In Eq. (13) we neglected the inertial con-

tribution (12a) to the hydrodynamic force but kept the con-

tribution (12b) to the hydrodynamic torque. In the theory and

in the statistical-model simulations, the force corrections are

not taken into account. Our numerical simulations with DNS

of turbulence were performed both with and without the

correction (12a).

d. Overdamped limit

Gustavsson et al. (2019) analyzed the overdamped limit of a

prolate spheroid settling in turbulence by taking the limit of

St/ 0 in Eq. (13), as suggested by Lopez andGuazzelli (2017).

While Gustavsson et al. (2019) considered arbitrary aspect

ratios for columns, b. 1, an equivalent approach was pursued

by Kramel (2017) and by Menon et al. (2017) in the slender-

body limit b / ‘. In the overdamped limit St / 0, the

equations of motion (13) take the form:

W5W(0)(n̂)5SvA21(n̂)ĝ , (15a)

v5V1L(n̂ ^ Sn̂)1A Sv2(n̂ � ĝ)(n̂ ^ ĝ) , (15b)

d

dt
n̂5 n̂ ^v . (15c)

Here W(0)(n̂) is the steady slip velocity in the creeping-flow

limit, of a spheroid subject to the gravitational acceleration g.

The shape factor A is given by

A5A 0I?/(AkA?C?) , (15d)
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where A 0 was defined in Eq. (14). The remaining coefficients

are elements of the particle-inertia tensor I and the resistance

tensors A and C (supplemental material).

Equation (15b) illustrates how the fluid-velocity gradients

compete with the torque due to convective fluid inertia. In the

absence of flow, the angular dynamics is consistent with earlier

results (Cox 1965; Khayat and Cox 1989; Dabade et al. 2015;

Candelier andMehlig 2016): for prolate particles, it has a stable

fixed point at n̂ � ĝ5 0. This means that rods settle with their

symmetry vector orthogonal to the direction of gravity, n̂? ĝ,

as mentioned above. For oblate particles there are two stable

fixed points at n̂ � ĝ561, so that disks settle with their sym-

metry vector parallel with gravity, n̂ k ĝ. In short, the effect of

weak convective fluid inertia causes a small spheroid in a

quiescent fluid to settle with its broad side first.

Turbulent velocity gradients modify the instantaneous fixed

points of the angular dynamics, they change as the particle

settles through the flow. The particle orientation n̂ follows the

fixed points quite closely if the fluid-velocity gradients change

slowly compared to the stability time of the fixed point. This

condition is satisfied for small St and large Sv. At first sight this

may seem surprising because the fluid-velocity gradients vary

very rapidly when Sv is large. But note that the stability time is

even smaller, because of the Sv2 factor in Eq. (15b). In this limit

the variance of the tilt angle du follows from the statistics of

the fluid-velocity gradients. For columns Gustavsson et al.

(2019) found

hdu2i5 hO2
12i1L2hS2

12i
(ASv2)

2 }
E n

W4
. (16)

At large settling numbers, one may neglect preferential sampling

to obtain hO2
12i5 (5/3)hS2

12i5 1/12 for isotropic homogeneous

flows. Using W; jW(0)(ĝ)j5Sv/A? determines the shape pa-

rameter in Eq. (2), namely C(b)5 [(51 3L2)/60]A22A24
? for

columns. As b / ‘ we obtain C(b); (32/375) log(b)
2
, so that

Eq. (16) is consistentwith the slender-body limit derived earlier by

Kramel (2017). In homogeneous isotropic flows, C(b) is twice as

large for platelets, compared with columns (Anand et al. 2020).

4. Small-angle expansion

When Sv is large, we expect the inertial torque to dominate

the angular dynamics, leading to strong alignment of the set-

tling crystals. In this limit the tilt-angle distribution is sharply

peaked around u* 5 p/2 for columns, and around u* 5 0 for

platelets. In this case, it is sufficient to consider small deviations

du* 5 u 2 u* from the steady-state angle, and to expand

Eq. (13) for jduj � 1 as first suggested by Klett (1995). In the

following we restrict the range of u to 0 # u , p for columns,

and to 2p /2 # u , p/2 for platelets. Negative values of

u correspond to n̂ � ĝ, 0.

A convenient coordinate system for the analysis is illustrated

in Fig. 2. Namely, we take as coordinate axes gravity (ĝ5 g/jgj),
the projection p̂ of n̂ onto the plane perpendicular to gravity (so

that n̂5 ĝ cosu1 p̂ sinu for u. 0), and ŝ5 ĝ ^ p̂. In this coor-

dinate system, the components of n̂ are ng, np, and ns 5 0. We

denote the corresponding components of other vectors and

tensors using similar subscripts. We assume that the gravita-

tional acceleration points in the ê1 direction. The components

of the particle-symmetry axis n̂ read

n̂5 sgn(u)

2
4 cosu

sinu cosu

sinu sinu

3
5 . (17)

The orientation vector n̂ is determined by two angles, the tilt

angle u, and the angle u describing the orientation of the

particle-symmetry vector n̂ in the plane orthogonal to gravity.

The factor sgn(u) is not strictly necessary, but it is convenient

because it allows us to use Eq. (17) to parameterize n̂ for both

columns and for platelets.

We project the angular dynamics (13b) onto the basis vec-

tors ĝ, p̂, and ŝ, and expand to linear order in du. For platelets
this gives

d

dt
du5v

s
,

d

dt
u52v

p
/du ,

d

dt
v
s
5

C?
I?St

(2v
s
1Y

gp
2Y

gg
du)1v2

p/du ,

d

dt
v
p
5

C?
I?St

(2v
p
2Y

gs
)2v

p
v

s
/du ,

d

dt
v
g
5

Ck
IkSt

(2v
g
1V

g
)1

du
St

C?
I?

Y
gs
.

(18a)

For columns we obtain

d

dt
du5v

s
,

d

dt
u5v

g
,

d

dt
v

s
5

C?
I?St

(2v
s
1Y

gp
2Y

gg
du) ,

d

dt
v

p
5

Ck
IkSt

(2v
p
1V

p
) ,

d

dt
v

g
5

C?
I?St

(2v
g
2Y

sp
1 duY

gs
) .

(18b)

In this small-du expansion, we neglected all terms of second

and higher order in du. Among the terms linear in du we kept

only those proportional toWg, in keeping with our assumption

FIG. 2. Coordinate system for angular dynamics: direction of

gravitational acceleration ĝ5 ê1, projection p̂ of n̂ onto the plane

perpendicular to gravity, and ŝ5 ê1 ^ p̂.
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that Sv is large. Among the quadratic terms in the angular

velocity, we kept only those terms that are multiplied by du21;

the other quadratic terms are negligible unless St is large.

Finally, we simplified the u dynamics for platelets, Eq. (18a),

neglecting a term proportional to vg that is negligible com-

pared to 2vp/du when du is small.

Equations (18) are driven by the matrix Y, representing

fluctuations of the fluid-velocity gradients (O and S), and of the

slip velocity W. In the Cartesian basis, the elements of Y read

Y
ij
5 jAjA(g)A(p)W

i
W

j
2O

ij
2 jLjS

ij
. (19)

We see that Y represents two distinct origins of stochasticity.

The first term on the rhs of Eq. (19) stems from the fluctuations

of the slip velocity W. The two remaining terms model the

effect of the turbulent fluid-velocity gradients, through the

elements Oij and Sij of O and S.

5. Analysis of time scales and physical regimes

Equation (18) has four relevant time scales. First, the

Kolmogorov time tK (equal to unity in our dimensionless units)

determines the magnitude of the fluid-velocity gradients. When

the settling number Sv is small, tK also determines the order of

magnitude of the Lagrangian correlation time of tracer parti-

cles, of the same order as tK, but usually somewhat larger.

Second, when Sv is large, the fluid velocity and the gradients

seen by the settling particle decorrelate on the settling time

scale ts. Gustavsson et al. (2019) and Kramel (2017) estimated

ts as the time it takes to fall one flow-correlation length ‘ with

the settling velocity, Eq. (15a), in the steady-state orientation

in a quiescent fluid:

t
s
5A(g)‘/Sv. (20)

Third, tu describes the time scale of the fluid-inertia torque.

In the overdamped limit the angular dynamics is determined by

Eq. (15b). Because the fluid-velocity gradients are of order

t21
K 5 1, the fluid-inertia torque dominates when jAjSv2 � 1.

Gustavsson et al. (2019) used

tu [ 1/(jAjSv2) , (21)

the time it takes the overdamped angular dynamics to ap-

proach its steady state in a frozen flow. We expect that this

remains a reasonable estimate of tu even outside the over-

damped limit, provided that St is not too large. This time scale

is related to tsed considered by Kramel (2017), averaged over

orientations.

Finally, the damping time scale describes the time scale of

inertial effects in Eq. (18). In dimensionless units this time

scale equals St, up to a prefactor determined by the shape

coefficients in Eq. (18):

t
d
5

�
St/A(g) translation,

I?St/C? rotation.
(22)

As long as b is not too large, the coefficientsA(g) andC?/I? are

of the same order for spheroids, so that t
(tr)
d and t

(rot)
d are of the

same order. Where the quantitative difference matters we

distinguish these time scales, otherwise we just write td. We

remark that even though t
(tr)
d and t

(rot)
d are of the same order,

they may in certain cases affect the rotational and translational

dynamics differently. This is discussed below.

The dependence of these time scales upon the dimensionless

parameters Sv, St, b, and ‘ is summarized in Table 2.

Comparing the time scales, we identify a number of asymptotic

regimes of the angular dynamics (18) with qualitatively dif-

ferent physical behaviors. The different regimes are summa-

rized in Fig. 3. The figure also shows the tilt-angle variance

obtained from numerical statistical-model simulations of

Eq. (13) (color-coded contour plot), as well as the asymptotic

statistical-model predictions derived in the following sec-

tions. We see that the variance ranges over four orders of

magnitude for the parameter ranges considered, and that

there are five different asymptotic regimes with different

mechanisms at work, leading to distinct scaling predictions

for the variance.

a. Random orientation (regime 1)

When Sv is small so that tu � 1, the crystals are essentially

randomly oriented as described in section 2. In this regime

the particle orientations are randomized by the turbulent

fluid-velocity gradients. The symmetry-breaking torque due

to settling does not matter, so that the tilt angles are randomly

distributed with hdu2i;O(1), Eq. (3).

b. Overdamped dynamics (regime 2)

When tu � 1 and in addition td � min{tu, ts} then both

angular and translational dynamics are overdamped. The

persistent limit analyzed by Gustavsson et al. (2019) corre-

sponds to tu � ts (ts � tu can only occur for nearly spherical

particles; see section 7a). When tu is much smaller than ts, the

fluid-velocity gradients remain constant during the time it

takes for the tilt angle to adjust to its fixed point. The tilt-angle

variance is determined by a balance between the turbulent

fluid-velocity gradients and the inertial torque, and the vari-

ance is given by Eq. (16) for columns.

c. Underdamped center-of-mass dynamics (regime 3)

The asymptotic regime 3 is delineated by the inequalities tu
� td � ts and td � 1. Since td � min(1, ts), the angular dy-

namics is overdamped. But since td � tu, the overdamped

approximation (15a) for the slip velocity does not apply be-

cause the center-of-mass (c.o.m.) dynamics does not have time

to adjust to the rapid changes in du. In this regime the tilt-angle

variance is determined by the fluctuations of the underdamped

TABLE 2. Time scales for Eq. (13) at large Sv (see text).

Time scale Parameter dependence

Fluid-velocity gradients tK 5 1

Settling ts 5A(g)‘/Sv

Fluid-inertia torque tu 5 1/(jAjSv2)
Damping t

(tr)
d 5St/A(g) (translation)

t
(rot)
d 5 I?St/C? (rotation)
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c.o.m. dynamics, and therefore the variance depends only

weakly on Sv, but strongly on St. The Jeffery torque, Eq. (10),

plays no role in this regime.

d. Underdamped angular and c.o.m. dynamics, mean-field

theory (regime 4)

Passing from regime 3 to 4 in Fig. 3, td becomes larger than

ts. As a consequence, both c.o.m. and angular dynamics are

underdamped. In this case the fluid velocity seen by the particle

fluctuates more rapidly than the damping time scale. Within a

mean-field theory (MFT), see section II.C in the supplemental

material, we find that the tilt–angle variance decays as Sv22,

just like Eq. (1). But the prefactor is different from Klett’s

prediction [the Jeffery torque, Eq. (10), does not matter in

this regime].

e. Underdamped angular and c.o.m. dynamics (regime 5)

Regime 5 in Fig. 3 corresponds to tu � 1 and td � 1. So the

fluid-inertia torque dominates in this regime, and both c.o.m.

and angular dynamics are underdamped. When in addition

td � ts, then the variance of the tilt angle decays as Sv21. We

note that this asymptote is only reached for the largest St in

Fig. 3. The opposite case, td � ts, is very difficult to realize

when td � 1 and tu � 1.

In summary, the asymptotic regimes in Fig. 3 exhibit dif-

ferent power-law dependencies of the tilt-angle variance upon

the settling number Sv. The different power-law scalings are

visible as evenly spaced vertical or horizontal level curves in

Fig. 3 (see also Fig. S1 in the online supplemental material,

which shows the power laws more clearly). Since Sv } tp } a2,

these statistical-model predictions translate into different

power laws as a function of particle size. The overdamped re-

gime 2 has the strongest dependence on particle size,

hdu2i} a28. However, Fig. 3 shows that regime 2 is quite nar-

row, and in regimes 3 and 4 the variance decays more slowly

with increasing particle size. The same conclusion holds for the

transition from regime 1 to 5.

6. Results

To determine the tilt-angle variance in regimes 3, 4, and 5,

we solved the angular dynamics (18) together with that of Yij

[Eq. (19)]. A brief yet complete account of our calculations is

given in the supplemental material. The result is

hdu2i5 f
L

�
A(g)2

Sv2
C

u
(0)1

A(g)2

A(p)2jAj2Sv4 CB
(0)

1
A(g)

jAj2StSv4
ð‘
0

dte2A(g) t/St

��
12

A(g)2

A(p)2

�
C

B
(t)

12A(g)jAjSvC
X
(t)2A(g)2jAj2Sv2C

u
(t)]g

. (23)

Here fL 5 2 for L, 0 (platelets) and fL 5 1 for L. 0 (col-

umns). Equation (23) is expressed in terms of correlation

functions of fluid velocities and fluid-velocity gradients

evaluated along settling trajectories, CB(t)5 hO12(t)O12(0)1
2jLjO12(t)S12(0)1L2S12(t)S12(0)i, Cu(t)5 hu2(t)u2(0)i and

CX(t)5 hu2(t)[O12(0)1 jLjS12]i. For the statistical model, the

correlation functions are given in the supplemental material.

We remark that the average of the tilt angle and all higher odd-

order moments must vanish, because positive and negative

values of sgn(du) are equally likely.

Equation (23) shows how translational particle inertia affects

the tilt-angle variance. The flow-velocity correlations in Eq. (23)

can be tracedback to the effect of the fluctuating settling velocity

due to particle inertia [first term on the rhs of Eq. (19)]. The

gradient correlations in Eq. (23) stem from the Jeffery torque

(10), corresponding to the other two terms on the rhs of Eq. (19).

Equation (23) simplifies to (16) when translational inertia is

negligible, in regime 2 inFig. 3. This canbe seenby taking the limit

St/A(g) / 0 in Eq. (23). Using (A(g)/St)e2tA(g)/St ; 2d(t) gives

hdu2i; f
L

hO2
12i1L2hS2

12i
(ASv2)

2
, (24a)

for columns as in Eq. (16). For platelets, the variance is twice as

large, consistent with the result of Anand et al. (2020). This

difference in the prefactor between columns and platelets is a

direct consequence of the different dynamics of p̂.

In regimes 3 and 4, fluctuations of the translational slip ve-

locity dominate. This follows from taking the limit tu / 0 in

Eq. (23), where contributions from the fluid-velocity gradients

disappear. We distinguish two cases.

First, in regime 3, we use tu � 1 to simplify Eq. (23).

Integration by parts, rescaling the integration variable with td,

and using td� ts� 1 to expand the correlation functions gives

FIG. 3. Phase diagram of asymptotic regimes for the tilt-angle

variance hdu2i in the statistical model, together with results of

numerical statistical-model simulations of Eqs. (13) for platelets

with b 5 0.1, ‘5 10, and Ku 5 10 (color coded, see legend). The

conditions separating the different regimes are discussed in the

text: tu 5 1 (dotted line), tu 5 t
(tr)
d (solid line), t

(tr)
d 5 ts (dashed

line), and t
(rot)
d 5 1 (dash–dotted line).
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hdu2is; f
L

St2

A(g)2
hA2

21i . (24b)

Equation (24b) shows that the variance of the tilt angle forms

an Sv-independent plateau in regime 3. In this regime, the

angular dynamics is overdamped. The St dependence is caused

by fluctuations in the translational slip velocity, due to particle

inertia.

Second, regime 4 corresponds to ts / 0 at finite

td 5St/A(g) � 1. Now the rotational dynamics is under-

damped. Nevertheless, Eq. (23) continues to hold, as demon-

strated by the mean-field analysis described in section II.C in

the supplemental material.

Using the statistical-model correlation functions given in the

supplemental material, we find

hdu2i; f
L

A(g)2

Sv2
hu2

2i . (24c)

In dimensionless units, for homogeneous isotropic turbulent

flows, hu2
2i’Rel ’ ‘2/

ffiffiffiffiffi
15

p
. Accordingly, Eq. (24c) predicts

that the tilt-angle variance is proportional to Sv22 in regime 4.

Finally, we can evaluate Eq. (23) in closed form for the

statistical model, exhibiting how the variance depends on

the dimensionless parameters St, Sv, and b (details in the

supplemental material).

Our time-scale analysis in section 5 led to the phase diagram

Fig. 3, describing the asymptotic behaviors of the tilt-angle

variance. We obtain the same asymptotic boundaries by com-

paring the corresponding limits of our theory. For example,

since hu2
2i; ‘2hA2

21i, Eqs. (24b) and (24c) are equal when ts ;
td, the boundary between regimes 3 and 4. Similarly, Eqs. (24b)

and (16) are equal when td; tu, that is, the boundary between

regimes 2 and 3.

To obtain an asymptotic law in regime 4 we took the

limit Sv / ‘. It is important to note that the steady approxi-

mation for the convective-inertia torque breaks down whenW

varies too rapidly (too-large Sv gives too-small ts). The model

requires that ts is much larger than the viscous time, a2/n. We

discuss this constraint further in section 7d.

Equation (23) does not apply in regime 5 where both c.o.m.

and angular dynamics are underdamped. The settling velocity

is large (ts is small). When ts is the smallest time scale we ap-

proximate the du-dynamics as Langevin equations. Solving the

corresponding Fokker–Planck equation for the moments of du
we find in regime 5 for the statistical model:

hdu2i5 f
L

ffiffiffiffiffiffi
2p

p

60
jAjA(g)A(p)‘3

A(g)

Sv
(25)

(details in the supplemental material). The same caveat as for

regime 4 applies: the settling time ts must be larger than the

viscous time a2/n.

Figure 4 shows how the tilt-angle variance depends on the

particle aspect ratio, keeping St/A(g) and Sv/A(g) constant. The

theoretical prediction, (23), for regimes 2 to 4 is shown for three

different Stokes numbers (colored solid lines). The overdamped

approximation, (16), is plotted as a black solid line. We see that

it is accurate only in regime 2, for b approximately between

0.8 and 1.2 when St/A(g) 5 0.11. For larger Stokes numbers

this range is even narrower. Outside regime 2, particle inertia

matters. We see that particle inertia increases the tilt-angle

variance by a large factor compared to the overdamped ap-

proximation, by several orders of magnitude for slender

columns and thin disks. Also, the tilt-angle variance is inde-

pendent of b, unless b is close to unity. This follows from the

fact that among all time scales in Table 2, only tu exhibits a

significant b dependence at constant Sv/A(g) and St/A(g).

Since tu matters only in regime 2, it follows that the tilt-angle

variance does not depend on b in regimes 3 and 4, as long as

Sv/A(g) and St/A(g) are kept constant.

Also shown are results of numerical simulations of Eqs. (7)–

(12) usingDNS of turbulence. Tomaintain tp/A
(g) constant, we

adjusted the particle size as we changed b. We performedDNS

with the inertial correction, (12a), to the translational dynamics

(open symbols) and without (filled symbols). The Reynolds

number was Rel ’ 56. For the comparison with the theory we

identified ‘ with the Taylor scale and used, in dimensional

variables, l/hK 5 151/4
ffiffiffiffiffiffiffiffiffi
Rel

p
’ 14:7.

Figure 4 demonstrates that our theory, (23), describes the

DNS results very well, without any fitting parameter. For the

smaller Stokes numbers [St/A(g) 5 0.11 (circles) and 0.45

(squares)], the inertial correction, (12a), to the translational

dynamics is quite small, except at very small and very large

values of b—where Rep is largest. A simple order-of-

magnitude estimate explains that the Oseen correction,

(12a), has only a small effect on h(du)2i for the parameters

considered here (Gustavsson et al. 2019): the inertial cor-

rection is smaller than the Stokes force, (9), by the small

factor a/hK.

Looking in more detail, we infer from Fig. 4 that the

Oseen correction appears to decrease the tilt-angle variance

FIG. 4. Tilt-angle variance as a function of particle aspect ratio

b keeping St/A(g) and Sv/A(g) constant. Results obtained using

DNS of turbulence: open symbols are with the inertial drag cor-

rection, (12a); filled symbols are without this correction. The

overdamped approximation, (16), is shown as a black solid line.

Also shown is the theoretical prediction, (23), for regimes 2 to 4 for

‘5 14:7 (colored lines). Other parameters: Sv/A(g)5 22 and St/A(g)

5 0.11 (red, s), 0.45 (green, u), and 2.2 (blue, e).
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somewhat in regimes 2, 3, and 4. This is explained by the fact

that the Oseen correction increases the translational drag

and therefore reduces the slip-velocity fluctuations. Yet the

difference remains small for the parameters in Fig. 4, as

mentioned above.

The data for the largest Stokes number agrees less well with

Eq. (23). This is expected because the values St/A(g) 5 2.2 and

Sv/A(g) 5 22 lie near the boundary to regime 5 where Eq. (23)

begins to fail [the Stokes number is not yet large enough for

Eq. (25) to work].

We also see that the inertial correction, (12a), to the trans-

lational dynamics makes a substantial difference in regime 5,

where the tilt-angle variance is much larger when the drag

correction is included. In part this can be attributed to a larger

particle Reynolds number, but in regime 5 we do not under-

stand the effect of the correction, (12a), in detail.

7. Discussion

a. Comparison with Klett’s theory

The main assumptions underlying Eq. (1) are that transla-

tional particle inertia is negligible, that the particles are nearly

spherical, and that the driving of the angular dynamics is

white noise.

The time-scale analysis in section 5 says that translational

inertia can only be neglected in regimes 1 and 2. In regime 1,

the inertial alignment torque is negligible (tu � 1). Therefore,

this discussion concentrates on the case tu� 1, where not only

translational but also rotational inertia is negligible.

In Fig. 3 we stipulated that tu� ts in regime 2. But for nearly

spherical particles, as considered by Klett, one can have ts �
tu, so that td� ts� tu� 1. In this limit, td is the smallest time

scale. Therefore, the dynamics is overdamped as in regime 2.

But since ts� tu, the fluid-velocity gradients varymore rapidly

than the inertial torque. Therefore they can be approximated

by white noise, as assumed by Klett. Using the asymptotic

forms of the resistance coefficients for nearly spherical parti-

cles, we find that the condition ts � tu is difficult to satisfy, it

requires
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4480/ð811jb2 1j)p � Sv � 4480/(811‘jb2 1j).

In this white noise limit, we obtain that hdu2i;Sv23. This

result differs from Eq. (1) by a factor of Sv21. The missing

factor comes from the fact that the time scale of the fluid-

velocity gradients is ts for large Sv, not tK. As a consequence,

the variance catches the additional factor Sv21.

In regime 4, on the other hand, the tilt-angle variance is

proportional to Sv22 in the statistical model, just like Eq. (1).

But the angular dynamics is driven by slip-velocity fluctuations,

the Jeffery torque (10) does not matter. This leads to a dif-

ferent parameter dependence of the prefactor. In dimensional

variables, our statistical-model result for regime 4 [Eq. (24c)]

reads hdu2i;Rel
ffiffiffiffiffiffiffi
E n

p
/W2.

In summary there are three difficulties with Eq. (1). First, it

accounts for particle inertia in the angular dynamics but not for

translational particle inertia. Our analysis shows that transla-

tional particle inertia cannot be neglected in general, only if

also rotational inertia is negligible. Second, Eq. (1) assumes

that the stochastic driving is isotropic white noise. When td �
ts, the fluid-velocity gradients seen by the particle can be

approximated by white noise, but their diffusion time scale is

given by ts, not tK. Third, this white noise limit is difficult to

achieve unless b is close to unity.

b. Estimates of dimensionless parameters

Parameter values for different experimental and theoretical

studies of nonspherical, platelet-shaped crystals settling in

turbulence are shown in Fig. 5. Note that the locations of the

boundaries tu 5 1 and tu 5 td depend on b, but only weakly

unless b is close to unity. The boundaries are drawn for b5 0.1

in Fig. 5, but for slender platelets the precise value of the aspect

ratio does not matter as far as the phase boundaries are

concerned.

The boundaries of regimes 2 and 4 are affected by the value

of the turbulent Reynolds number Rel, because it determines

the correlation length ‘, as explained above. Since ts depends on

‘, a larger value of ‘ restricts regime 4 to yet larger values of Sv.

Moreover, since hu2
2i; ‘2hA2

21i, a larger value of ‘ reduces the

prefactor of the result in regime 2, where flow gradients domi-

nate, compared to the result in regime 3, where the fluid velocity

dominates. It is likely that ‘ is of the same order for the different

datasets, but not the same. We simply set ‘5 10 in Fig. 5.

Which values of the dimensionless parameters St and Sv are

relevant for ice-crystal platelets in clouds? Both Sv and St are

proportional to tp, see Table 1, which in turn depends on the

size and the shape of the platelet through the product a
ffiffiffi
b

p
, on

the turbulent energy dissipation rate E , as well as upon the

fluid viscosity n, mass–density ratio rp/rf, and the gravitational

acceleration g. Using typical values for ice crystals in clouds,

FIG. 5. Phase diagram, similar to Fig. 3 for platelet-shaped

crystals, for ‘5 10. Symbols show the values of the dimensionless

parameters corresponding to experimental and numerical studies

of nonspherical crystals settling in turbulence (details in supple-

mentalmaterial). Dimensionless parameters estimated fromBréon
and Dubrulle (2004) (u); numerical study of collisions between

disks settling in turbulence (Jucha et al. 2018) (e); and experiments

by Kramel (2017) (∎) and Esteban et al. (2020) (r). Blue solid

lines show contours of constant turbulent dissipation rate,

E 5 0:1, 1, 10, 100 cm2 s23, using Eq. (26) with n 5 0.1 cm2 s21,

rp/rf 5 1000, and g 5 980 cm s22. Red solid lines show contours

of constant a
ffiffiffi
b

p
5 10, 20, 40mm (see text).
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n ’ 0.1cm2 s21, rp/rf ’ 1000, and g ’ 980 cm s22, we can ex-

press St and Sv in terms of the dimensional parameter com-

binations E and a
ffiffiffi
b

p
as

St/A(g) ’ 8200(a
ffiffiffi
b

p
)
2 ffiffiffiffi

E
p

and Sv’ 550�23/4St . (26)

Figure 5 shows four blue lines corresponding to fixed values of

turbulence intensity E , covering the range observed in clouds

(Grabowski and Vaillancourt 1999), and three red lines at

three fixed values of a
ffiffiffi
b

p
[for platelets, this is the only de-

pendence on the value of b because A(g) is approximately

constant for b , 0.1, A(g) ’ 0.85; see Table S1 in the supple-

mental material].

We took parameter values relevant to platelets settling in

turbulent flows from Bréon and Dubrulle (2004); Jucha et al.

(2018); open symbols in Fig. 5. The corresponding Stokes

number ranges from St/A(g) ’ 1022 to 3, and the settling

number ranges from Sv/A(g) ’ 1 to 100. So the first conclusion

of our analysis is that particle inertia matters in a large range of

the parameter space, not only for platelets settling in clouds,

but also for other experiments: Fig. 5 also shows values of St

and Sv from recent experiments measuring nonspherical par-

ticles settling in turbulent water (Kramel 2017; Esteban

et al. 2020).

Note also that the lines of constant a
ffiffiffi
b

p
in Fig. 5 are parallel,

in the log-log representation of the Figure, to the phase

boundary between regimes 2 and 3. Therefore, only the

smallest platelets, with a
ffiffiffi
b

p � 18mm, exhibit overdamped

dynamics (regime 2).

In conclusion, many of the relevant parameter values lie in

the center of the parameter plane where the different asymp-

totic regions meet. In these cases, the tilt-angle variance is

determined by a combination of different mechanisms, and we

do not expect its dependence upon the settling velocity or

particle size to be of power-law form. This is the second main

conclusion of our analysis.

c. Comparison with observations

Our analysis shows how the tilt angle depends on particle

size and on the turbulent dissipation rate E . The results shown

in Fig. 3 indicate that the tilt angle depends quite weakly upon

particle shape b at constant St/A(g) and Sv/A(g).

Observations (Noel and Chepfer 2004; Noel and Sassen

2005) indicate that crystals settling in cirrus clouds align very

well, with fluctuations hdu2i1/2 no larger than ’18, or equiva-
lently log10hdu2i,23:5. Our Fig. 3 shows that such small

values of hdu2i can only occur at very small turbulence inten-

sities, on the order of E ; 1 cm2 s23 or smaller. Available

measurement of the kinematic energy dissipation in cirrus

clouds is consistent with this conclusion: values in the range

0.1–1 cm2 s23 are observed in such clouds (Gultepe and Starr

1995; Westbrook et al. 2010).

Figure 9 of Bréon and Dubrulle (2004) indicates that typical

tilt angles of quite large ice-crystal platelets (;1mm) at rea-

sonably high cloud-turbulence levels, with E ; 1000 cm2 s23,

are on the order of a few degrees. Our model (Fig. 4) predicts

that the variance ranges from hdu2i; 1023rad2 for small

Stokes numbers to ;0.1 rad2 for larger Stokes numbers,

corresponding to typical tilt angles between 28 and 188. So at

larger Stokes numbers ourmodel gives amuch higher tilt-angle

than the average estimated by Bréon and Dubrulle (2004).

Thus, contrary to the predictions of Cho et al. (1981), our re-

sults point to a strong effect of turbulence upon alignment.

How can our estimate for the tilt-angle variance be recon-

ciled with the much smaller one of Bréon and Dubrulle

(2004)? One possibility is that crystals strongly align only in

regions where the turbulence intensity is much weaker. This

might explain the relatively low fraction of crystals observed

to align. Another possibility is that our model becomes in-

accurate for the relatively large crystals considered by

Bréon and Dubrulle (2004). We discuss the limitations of

the model next.

d. Limitations of the model

The model equations assume that Rep remains small, be-

cause we neglected Rep corrections to the c.o.m. dynamics and

considered only the lowest-order Rep expression for the con-

vective inertial torque, assuming that Rep is less than unity.

The parameter values of Bréon and Dubrulle (2004) corre-

sponding to the largest Stokes numbers have particle Reynolds

numbers larger than 10, and the experiments of Esteban et al.

(2020) correspond to still larger particle Reynolds numbers (all

parameter values are summarized in the supplemental mate-

rial). In our numerical computations using DNS of turbulence

we kept the linear Rep corrections to the c.o.m. dynamics. The

results indicate that these corrections do notmake a qualitative

difference in regimes 2, 3, and 4, for the chosen parameters. At

large Stokes numbers (in regime 5), by contrast, our simula-

tions show that the correction (12a) can make a substantial

difference. At present we do not know how to describe this

effect in regime 5.

Higher-order Rep corrections to the convective inertial

torque are known in closed form only for slender columns

(Khayat and Cox 1989; Lopez and Guazzelli 2017). Jiang et al.

(2021) quantified how well Eq. (12b) works at larger Rep, for

spheroids in a steady homogeneous flow. For particle Reynolds

numbers up to Rep on the order of 10 the angular dependence

remains accurate, but the numerical prefactor is smaller than

predicted by Eq. (12b). In regime 2, this leads to a larger var-

iance. In regime 5, by contrast, Eq. (25) implies that the tilt-

angle variance decreases, at least when the statistical model

applies. In regimes 3 and 4, it is less clear what happens because

the asymptotic expressions (24b) and (24c) are independent of

the inertial-torque amplitude A. Finally, smaller values of the

torque imply that the condition tu ; 1, which defined the

transition from regime 1, is shifted to higher values of

Sv extending the parameter range where the tilt angle is

uniformly distributed.

As Rep increases, the dynamics of disks settling in a quies-

cent fluid becomes unstable (Auguste et al. 2013; Esteban et al.

2020), because the symmetry of the disturbance flow is broken,

and because it becomes unsteady. Our model cannot describe

these effects due to fluid inertia.

The model uses a steady approximation for the convective

inertial torque (Kramel 2017; Menon et al. 2017; Lopez and

Guazzelli 2017; Gustavsson et al. 2019; Sheikh et al. 2020). The
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experiments by Lopez andGuazzelli (2017) indicate that this is

at least qualitatively correct for rods settling in a cellular flow,

although the slip velocityW(t) fluctuates as a function of time.

In general, however, the steady model must break down when

W(t) fluctuates too rapidly (Candelier et al. 2019). For the

steady model to hold in our case, it is necessary that ts is much

larger than the viscous time, ts � a2/n (in this section we use

dimensional variables). Otherwise, unsteady effects may arise,

analogous to the Basset–Boussinesq–Oseen history force for

the c.o.m. motion of a sphere in a quiescent fluid. For the

cellular flow with correlation length ‘ (Lopez and Guazzelli

2017) we require ‘/W � a2/n. Using Rep 5 Wa/n this means

‘/(Repa) � 1. In the experiments, ‘; 1 cm, a ; 1 mm, and

the largest Reynolds number is Rep ; 10. So the condition is

marginally satisfied for the largest Rep. In the statistical

model, using ts/tK 5 (A(g)/Sv)(‘/hK) (in dimensional vari-

ables), the condition translates to Sv � A(g)‘hK/a
2, consis-

tent with the constraint (5).

The model also neglects the convective-inertial torque due

to fluid shears (Subramanian and Koch 2005; Einarsson et al.

2015; Rosén et al. 2015). This is justified if a/hK� 1 (Candelier

et al. 2016), but for larger particles the shear-induced torque

might matter. This torque has a different physical origin from

the convective-inertial torque due to finite slip. The former is

determined by the disturbance flow close to the particle,

while the latter is due to far-field effects, where the presence

of the particle is approximately taken into account by a sin-

gular source term. As a first approximation, one could

therefore simply superimpose the torques due to shear and

due to slip.

Ourmodel assumes that the ice crystals are homogeneous, in

other words that the mass density is the same throughout the

crystal. With this constraint, the choice of model parameters is

overall consistent with known properties of ice crystals in

clouds. The values of b chosen in Fig. 5 for crystals of diameter

300mm (open diamond symbols), 0.01 # b # 0.05, lead to

settling velocities consistent with those reported in laboratory

studies (Kajikawa 1972; Pruppacher and Klett 1997). The open

square symbols are taken from the study of Bréon and

Dubrulle (2004), and also correspond to realistic settling ve-

locity of crystals, consistent with known results (Auer andVeal

1970; Heymsfield 1972).

In reality, the microscopic growth processes of cloud crystals

may result in inhomogeneous mass densities (Heymsfield

1973). The crystals may even contain hollow regions and may

exhibit irregular shapes (Korolev et al. 2000; Heymsfield et al.

2002a). How such imperfections affect the dynamics of ice

crystals is not considered in our model. An inhomogeneous

mass distribution results in an additional gravitational torque

that could affect the angular dynamics. This is well studied for

nearly neutrally buoyant marinemicroorganisms settling in the

turbulent ocean (Kessler 1985; Durham et al. 2013; Gustavsson

et al. 2016), but little is known for heavy particles settling in air.

Shape irregularities can affect the inertial contribution to the

torque (Khayat and Cox 1989; Candelier and Mehlig 2016).

The highly idealized model of Candelier and Mehlig (2016)

shows that such asymmetries have a negligible effect on the

dynamics of slender columns if da?/a? � bRep, their Eq.

(4.11). The experiments and the refined analysis of Roy et al.

(2019) bear out this qualitative prediction. Conversely, if

da?/a? � bRep, then the asymmetry dominates the angular

dynamics. Slender columns settle vertically in this limit,

aligned with gravity. This is not observed for columnar crystals

in clouds.

8. Conclusions

Particle inertia increases the tilt-angle variance of small

crystals settling through a turbulent cloud because it gives rise

to additional fluctuations in the angular equation of motion.

Even at very small Stokes numbers this can be a significant

effect, since the overdamped theory (Kramel 2017; Menon

et al. 2017; Gustavsson et al. 2019; Anand et al. 2020) predicts a

very small variance. For neutrally buoyant particles the over-

damped theory works fairly well. But for ice crystals that are

about 1000 times heavier than air it can underestimate the

variance by a large factor. Moreover, we found that particle

inertia matters in a large region in parameter space (Fig. 5).

The problem has four relevant time scales (Table 2). As a

consequence, there are many different asymptotic regimes

where the tilt-angle variance displays different dependencies

on the dimensionless parameters (Table 1), in particular dif-

ferent power laws as a function of the settling number Sv.

Relevant dimensionless parameters tend to lie in a central

region in the parameter plane where the different asymptotic

regimes meet, so that the tilt-angle variance is determined by a

combination of different physical mechanisms. In this case

there are no simple power-law dependencies on the settling

velocity [Eqs. (1) or (2)].

Our results are based on a small-angle expansion, as first

used by Klett (1995) for this problem. Other assumptions of his

theory are not satisfied in the regimes we studied, so that its

main prediction (1) does not describe our simulation results.

Our analysis shows that the very strong alignment of ice

crystals in cirrus clouds, with typical tilt angles hu2i1/2 ; 18 or
less (Noel and Chepfer 2004; Noel and Sassen 2005) is only

possible when the turbulence intensity is low, on the order of

0.1–1 cm2 s23. This is generally consistent with the known

value of turbulent energy dissipation rate in such ice clouds

(Gultepe and Starr 1995). In fact, an important future test of

our theory is to correlate the presence of strongly oriented

ice crystal (Noel and Chepfer 2010) with the local level of

cloud turbulence. Another test is to calculate what a satellite

sensor would detect, starting from the size distribution of

either columns or platelets obtained by aircraft observations

(Heymsfield et al. 2002a), together with estimates of local

cloud-turbulence levels.

Such tests are important because the model was derived

under a number of assumptions. First, we assumed that the

particle Reynolds number is small. Second, we assumed that

the torque is obtained by simply superimposing the fluid-

inertia torque and the Jeffery torque. But as we discussed,

there are additional contributions to the torque when turbulent

shears give rise to convective fluid inertia. For crystals

smaller than the Kolmogorov length, these contributions

are negligible because the shear Reynolds number is small
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(Candelier et al. 2016), but for larger crystals they may be-

come important. Third, Eq. (12b) was derived in the steady

limit. For the steady model to hold it is necessary that the

fluctuations of the slip velocity are slow compared with the

viscous time. At very large settling numbers this constraint

is broken. It remains a question for the future to describe the

effect of unsteady torques.

In our discussion of the results we focused on the variance of

the tilt angle u, the angle between the particle-symmetry vector

and the direction of gravity. But to compute the effect of particle

inertia we needed to consider a second angle u that describes

how the particle-symmetry vector rotates in the plane perpen-

dicular to the direction of gravity. Regarding the dynamics of

u we found significant differences between columns and plate-

lets, described in the supplemental material. For the tilt-angle

variance these differences do not matter much, but they are

likely to be important for collisions between ice crystals, a

question that remains to be explored (Sheikh 2020).

We remark that although this study focused on the variance

of the tilt angle, the method leading to Eq. (23) and outlined in

the supplemental material, can straightforwardly be extended

to calculate higher-order moments or correlation functions of

the tilt angle.

When particle inertia becomes important, preferential

sampling may affect the statistics of observables such as the

tilt angle. This is well known for heavy spherical particles in

turbulence (Gustavsson and Mehlig 2016). Our results show

that preferential sampling is a weak effect, at least for the

parameters considered here.

Finally, we assumed that the particles are much heavier than

the fluid; this is the limit relevant for ice crystals in clouds,

but recent experimental studies (Kramel 2017; Lopez and

Guazzelli 2017) used nearly neutrally buoyant particles. In this

case, one expects the effect of particle inertia to be weaker. It

remains an open question under which circumstances particle

inertia may nevertheless make a noticeable difference.
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