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Abstract 
An overview of monitoring schemes from a class called generally weighted moving average 

(GWMA) is provided. A GWMA scheme is an extended version of the exponentially weighted 

moving average (EWMA) scheme with an additional adjustment parameter that introduces more 

flexibility in the GWMA model as it adjusts the kurtosis of the weighting function so that the GWMA 

scheme can be designed such that it has an advantage over the corresponding EWMA scheme in the 

detection of certain shift values efficiently. The parametric and distribution-free GWMA schemes to 

monitor various quality characteristics and its existing enhanced versions (i.e. double GWMA, 

composite Shewhart-GWMA, mixed GWMA-CUSUM and mixed CUSUM-GWMA) have better 

performance than their corresponding EWMA counterparts in many situations; hence, all such 

existing research works discussing GWMA-related schemes (i.e. 61 publications in total) are 

documented and categorized in such a manner that it is easy to identify research gaps. Finally, a 

number of possible future research  ideas are provided. 

 
Keywords: Generally weighted moving average, GWMA, Memory-type scheme, Run-length, Monte 

Carlo Simulation. 

 

1. Introduction 

In any field, a literature review is essential as it gives an overview of what investigations have been 

conducted and what are some of the possible research ideas that can be pursued. In statistical process 

monitoring (SPM) there have been a number of literature reviews that have shed some light on the 

current state of a particular topic and in doing so, made way for many publications thereafter; see for 

instance 
1,2,3,4,5

. Thus, the tradition emphasized by the latter articles is continued with the generally 

weighted moving average (GWMA) monitoring schemes in this paper. The exponentially weighted 

moving average (EWMA) monitoring scheme with an additional adjustment parameter was discussed 

in Sheu and Griffith
6
, Sheu 

7,8
 as an enhancement procedure to further improve the sensitivity of the 

EWMA scheme towards small shifts in the process mean. Thereafter, Sheu and Lin
9
 formally 

introduced this enhancement procedure as a stand-alone monitoring scheme which is simply called the 

GWMA control chart; and they defined it as a moving average of past data where a specific weight is 

assigned to each data point. Moreover, the moving average tends to be a representation of the more 

recent process performance, as larger weights are allocated to the most recent observations. In 

addition, Sheu and Lin
9
 derived the properties that are required to compute the run-length distribution 

and they discussed its importance as well as illustrated its implementation.  

The purpose of this literature review is to acquaint SPM researchers as well as practitioners about 

GWMA schemes which were supposed to be, in essence, replacements of the EWMA-type schemes; 

however, this is not really the case in the literature or in practice; because there are actually way more 
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research output that have been reported on EWMA schemes than on the GWMA schemes from 2003 

to mid-year 2020. Based on different authors who have commented on the latter predicament, they 

have indicated that the implementation of the EWMA scheme is easier as compared to that of the 

GWMA one. By conducting this review, it is also meant to convince researchers and practitioners 

alike that GWMA schemes are not as complex as they are thought to be and to further explain that 

they provide fascinating results when compared to other well-known monitoring schemes, more 

especially, the EWMA monitoring scheme.   

Since 2003, the year of publication of the first article, there have been a total of 61 publications on the 

GWMA-related monitoring schemes and their enhancements. So far, the existing known 

enhancements of the GWMA-related scheme are: 

 the double GWMA scheme – denoted as DGWMA scheme; 

 the composite Shewhart-GWMA scheme;  

 the mixed GWMA-CUSUM scheme and its reverse version, the mixed CUSUM-GWMA 

scheme. 

A DGWMA scheme is a weighted moving average of a weighted moving average; which implies that 

the smoothing process is done twice (this concept was first introduced by Shamma and Shamma
10

 for 

the double EWMA (DEWMA) scheme). A composite Shewhart-GWMA scheme is a combination of 

the Shewhart and GWMA schemes which is an efficient way of harnessing the benefits of these two 

schemes (this concept was first introduced by Lucas
11

 and Lucas and Saccucci
12

 for the Shewhart-

CUSUM and Shewhart-EWMA schemes, respectively). The mixed GWMA-CUSUM scheme is a 

combination of the GWMA and CUSUM schemes where the GWMA statistic is used as input in the 

CUSUM scheme; however, the CUSUM-GWMA scheme uses the CUSUM statistic as input in the 

GWMA scheme (this concept was first introduced by Abbas et al
13

 for the EWMA-CUSUM scheme 

and the reverse version was introduced by Zaman et al
14

). 

The basic properties of the GWMA scheme and its existing enhancements as well as a detailed outline 

of how the review is structured are provided in Section 2. Thereafter, the publications discussing 

research works on GWMA, DGWMA, Shewhart-GWMA and GWMA-CUSUM (as well as its 

reverse version) schemes are reviewed in Sections 3, 4, 5 and 6, respectively. Section 7 provides 

concluding remarks and some possible future research ideas. Finally, Appendices A and B provide an 

illustration of how the weight function kurtosis varies for different design parameters and an outline 

of how the run-length properties are determined for GWMA-related monitoring schemes, 

respectively. 
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2. Basic propeties of GWMA schemes and their enhancements 

2.1 Operation of the GWMA scheme and its enhancements  

The weight structure of the GWMA  ̅ scheme as compared to the corresponding EWMA scheme for 

various design parameters are discussed in Appendix A. Assume that the quality characteristic of 

interest is a subgroup mean, then  ̅  are i.i.d. (independent and identically distributed) normally 

distributed random variables with in-control (IC) mean    and standard deviation 
  

√ 
. In this section, 

the operation of the GWMA scheme and its enhancements are illustrated for the subgroup mean. The 

charting statistic of the GWMA  ̅ scheme is given by 
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where    is defined in Appendix A,        and    > 0. The expected value and standard 

deviation of    are given by 
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Hence, the time-varying upper and lower control limits (denoted as       and      ) of the GWMA 

 ̅ monitoring scheme are calculated as (with    > 0, i.e. a width parameter): 
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Thus, the asymptotic upper and lower control limits (denoted as      and     ): 
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The above derivations given in Equations (1) to (5) are summarized in Table 1. Following a similar 

line of argument, it follows that the charting statistics, design parameters and control limits of the 

DGWMA, Shewhart-GWMA, GWMA-CUSUM and CUSUM-GWMA  ̅ schemes are as shown in 

Table 1. For more details on the properties summarized in Table 1, refer to Sheu and Lin
9
, Lin

15
, Lu

16
 

and, Ali and Haq
17

. 
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Table 1: An illustration of different charting statistics, design parameters and control limits of the GWMA scheme and its existing enhancements when the 

characteristic of interest is the process mean 
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Note that when the underlying process parameters are known (i.e. Case K), control limits can easily 

be calculated and the process monitoring can take place immediately; however, when process 

parameters are unknown (i.e. Case U), a two phases approach needs to be implemented, see Jensen et 

al
18

 and Psarakis et al
19

. In Phase I, monitoring schemes are implemented retrospectively in order to 

estimate the distribution parameters using an IC reference sample. However, in Phase II, monitoring 

schemes are implemented prospectively to continuously monitor any departures from an IC state 

using the parameters estimated in Phase I. The operational procedure of the GWMA  ̅ scheme and its 

enhancements is as outlined in Figure 1. For Case K, only steps 1 to 5 are applicable; whereas in Case 

U, steps 0 to 5 are all applicable. Even though Table 1 and Figure 1 provide properties pertaining to 

GWMA-related schemes for the process mean only, other types of statistics can be done in a similar 

manner.  

 

Step 0 

 

 

Step 1 

 

 

 

Step 2 

 

 

 

 

 

Step 3 

 

 

 

 

Step 4 

 

 

 

 

 

Step 5 

 

 

 

 

 
Figure 1: Flow chart illustrating the operational procedure of the GWMA scheme and its 

enhancements in Phase I and Phase II 

 

 

 

Search for appropriate design parameters so that IC ARL equals the nominal 

𝐴𝑅𝐿  & collect 𝑚 IC samples to estimate the process parameters 

At the next sampling point, collect a sample of size 𝑛 & calculate the 

appropriate charting statistic(s) at time 𝑡 (denoted as CS𝑡) 

Is 𝐶𝑆𝑡 above the upper control limit(s)? 

Is 𝐶𝑆𝑡 below the lower control limit(s)? 

No 

No 

Yes 

Issue an OOC signal; then take corrective action to find and remove 

assignable causes. Thereafter, return to Step 2. 

Yes 

Phase II 

Phase I 

Using process parameters from Phase I or the known ones; setup 

the control limits using appropriate equations from Table 1  
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2.2 Outline of the review 

The manner in which the review is structured by section is shown in Table 2. The “tick symbol” (i.e. 

“”) for items already treated and the “cross symbol” (i.e. “ ”) for items untreated in the SPM 

literature. 

Next, for ease in identifying the different types of GWMA-related schemes or their enhancements, in 

Table 3, these have been categorized with respect to: (i) the statistic of interest (i.e. location, 

variability or the joint location and variability), (ii) whether the underlying parameters are known or 

unknown (i.e. Case K or Case U), (iii) whether the observations are assumed to follow some 

parametric distribution or they are distribution-free, (iv) whether the observations are i.i.d. or 

autocorrelated (i.e., within sample serial correlation). 

The journals or proceedings that have published researches on GWMA-related schemes and / or their 

enhancements are provided in Table 4 (as well as the total number of publications in each journal or 

proceedings). In Table 5, the list of researchers with at least two publications on GWMA-related 

schemes and / or their enhancements have been provided, including their corresponding affiliations. 

 

Table 2: Outline of the review by section 

3 GWMA 

3.1 Parametric 

3.1.1 Location  
3.1.2 Variability  
3.1.3 Joint location & variability  

3.2 Nonparametric 

 Location  
 Scale   
 Joint location & scale   

4 DGWMA 

4.1 Parametric 

4.1.1 Location  
4.1.2 Variability  
4.1.3 Joint location & variability  

4.2 Nonparametric 

 Location  
 Scale   
 Joint location & scale   

5 Shewhart-GWMA 

 Parametric 

5.1 Location  
 Variability   

5.2 Joint location & variability  

 Nonparametric 

 Location   
 Scale   
 Joint location & scale   

6 
GWMA-CUSUM & 

CUSUM-GWMA 

 Parametric 

6.1 Location  
6.2 Variability  

 Joint location & variability   

 Nonparametric 

 Location   
 Scale   
 Joint location & scale   
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Table 3: Classification of articles discussing GWMA-related monitoring schemes in SPM (sorted 

chronologically)  
 Quality 

characteristic 
Parameter(s) Distribution Data type 

Charting statistic 

Paper 
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Sheu and Lin (2003)          GWMA- ̅ 

Sheu and Yang (2006)          GWMA- ̃ 

Sheu and Tai (2006)          GWMA-   

Yang and Sheu (2006)          Multivariate GWMA-Hotelling‟s    

Sheu and Chiu (2007)          GWMA-  
Cheng et al. (2007)          GWMA- ̅ 

Sheu and Lu (2008)          GWMA-Residuals 

Lin (2008)          Shewhart-GWMA-  
Chiu and Sheu (2008)          GWMA-  with FIR & DGWMA-  
Hsu et al. (2009)          GWMA- ̅ 

Sheu and Lu (2009a)          GWMA- ̅ 

Sheu et al. (2009)          GWMA-( ̅&  ) 

Sheu and Lu (2009b)          GWMA-( ̅&  ) 

Sheu and Hsieh (2009)          DGWMA- ̅ 

Chiu (2009)          GWMA- ̅ with FIR 

Tai et al. (2009)          Shewhart-GWMA-( ̅&  ) 

Tai et al. (2010)          DGWMA-( ̅&  ) 

Kang et al. (2010)          GWMA-Demerit 

Hong et al. (2011)          GWMA-CV 

Hong et al. (2012)          GWMA-CV with FIR 

Kang et al. (2012)          GWMA-Demerit with FIR 

Kang and Baik (2012)          DGWMA-Demerit 

Teh et al. (2012)          GWMA-Max for ( ̅&  ) 

Teh and Khoo (2012)          GWMA-Max for ( ̅&  ) 

Sheu et al. (2012)          GWMA-Max for ( ̅&  ) 

Sheu and Lu (2013)          GWMA-   

Sheu et al. (2013)          GWMA-Max for ( ̅&  ) 

Phanyaem (2013)          GWMA-Max for ( ̅&  ) 

Hsu et al. (2013)          Application: GWMA-Max 

Nguyen et al. (2013)          Application: GWMA-Max 

Huang (2014)          GWMA-(Sum of Squares) 

Huang et al. (2014)          DGWMA-(Sum of Squares) 

Huang (2015)          GWMA-(Semi-Circle) 

Chiu and Lu (2015)          GWMA-  & DGWMA-  in steady-state 

Lu (2015)          GWMA-Sign 

Phengsalae et al. (2015)          GWMA-  
Areepong and Sukparungsee (2016)          GWMA-ZIB 

Lu (2016)          GWMA- ̅ with FIR 

Chakraborty et al. (2016)          GWMA-(Signed-rank) 

Mohsin et al. (2016)          GWMA-(TLF) 

Chakraborty et al. (2017)          GWMA-(TBE) 

Aslam et al. (2017)          GWMA-(SNATEV) 

Lu (2017)          GWMA-CUSUM- ̅ & reverse 

Ali and Haq (2017)          GWMA-(SNATCSV) 

Petcharat (2018)          GWMA-Max for ( ̅&  ) 

Ali and Haq (2018a)          GWMA-CUSUM- ̅ 

Ali and Haq (2018b)          GWMA-CUSUM-   

Arif and Aslam (2018)          GWMA   for ( ̅&  ) 

Chakraborty et al. (2018)          GWMA-Exceedance 

Lu (2018)          DGWMA-Sign 

Phanyaem (2018)          DGWMA-Sign with RS 

Sukparungsee (2018a)          GWMA-  

Sukparungsee (2018b)          GWMA-(Signed-rank) using CPM 

Alevizakos et al. (2019)          DGWMA-TBE 

Karakani et al. (2019)          DGWMA-Exceedance 

Alevizakos and Koukouvinos (2020)          GWMA-ZIP 

Huang et al. (2020a)           GWMA- ̅ with RS 

Huang et al. (2020b)          GWMA-CUSUM-   & reverse 

Mabude et al. (2020)          GWMA-(Wilcoxon-rank-sum) 

Chen et al. (2020)          GWMA-Sign with RS 

Haq and Abidin (2020)          GWMA- ̅ with AIB 

Abbreviations: FIR - Fast initial response; CV – Coefficient of variation; TLF - Taguchi‟s Loss Function; TBE - Time between events;  
SNATEDV – Standard normal approximation of transformed exponential variables; RS - Repetitive sampling; SNATCSV – Standard normal 

approximation of transformed chi-squared variables; CPM – Change point model; ZIB – Zero Inflated Binomial; ZIP – Zero Inflated Poisson; AIB – 

Auxiliary-information-based. 
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Table 4: Journals / conference proceedings that published researches on GWMA-related monitoring 

schemes 

Journal / Conference proceedings title 
Number of 

publications 

Quality and Reliability Engineering International 9 

Communications in Statistics – Theory and Methods 9 

Communications in Statistics – Simulation and Computation 6 

Advanced Materials Research 2 

Applied Mechanics and Materials 2 

Computers & Industrial Engineering 2 

Journal of Applied Statistics 2 

Journal of Statistical Computation and Simulation 2 

Quality Engineering  2 

The International Journal of Advanced Manufacturing Technology 2 

Advanced Science Letters 1 

Asia Pacific Journal of Operational Research 1 

Complexity 1 

Expert Systems with Applications 1 

Far East Journal of Mathematical Sciences 1 

International Journal of Industrial Engineering Computation 1 

International Journal of Mathematical, Computational, Physical and Quantum Engineering 1 

International Journal of Quality and Reliability Management 1 

Journal of Computational and Theoretical Nanoscience 1 

Journal of Engineering Manufacture 1 

Journal of Statistics and Management Systems 1 

Matter: International Journal of Science and Technology 1 

Quality Technology & Quantitative Management 1 

Risk and Decision Analysis 1 

Songklanakarin Journal of Science and Technology 1 

Thailand Statistician 1 

Various international conference proceedings 7 

TOTAL 61 

 
Table 5: Researchers in SPM with at least two publications on GWMA-related monitoring schemes 

and their corresponding affiliations 

Author Affiliation 
Number of 

publications 

Sheu, S.-H. National Taiwan University of Science and Technology, Taiwan 15 

Lu, S.-L. Aletheia University, Taiwan 13 

Huang, C.-J. Jinwen University of Science and Technology, Taiwan 8 

Tai, S.-H. Lunghwa University of Science and Technology, Taiwan 5 

Kang, H.W. Hanyang University, Korea 5 

Baik, J.W. Hanyang University, Korea 4 

Chiu, W.-C. Aletheia University, Taiwan 4 

Haq, A. Quaid-i-Azam University, Pakistan 4 

Human, S.W. University of Pretoria, South Africa 4 

Lin, T.-C. Lunghwa University of Science and Technology, Taiwan 4 

Shu, M.-H. National Kaohsiung University of Applied Sciences, Taiwan 4 

Sukparungsee, S. King Mongkut‟s University of Technology North Bangkok 4 

Ali, R. Quaid-i-Azam University, Pakistan 3 

Aslam, M. King Abdulaziz University, Saudi Arabia 3 

Balakrishnan, N. McMaster University, Canada 3 

Chakraborty, N. University of Pretoria, South Africa 3 

Chen, J.-H. Shih Chien University, Taiwan 3 

Hsieh, Y.-T. Lunghwa University of Science and Technology, Taiwan 3 

Hsu, B.-M. Cheng Shiu University, Taiwan 3 

Kang, C.W. Hanyang University, Korea 3 

Areepong, Y. King Mongkut‟s University of Technology North Bangkok 2 

Alevizakos, V. National Technical University of Athens, Greece 2 

Hong, E.P. Hanyang University, Korea 2 

Hsu, T.-S. National Taiwan University of Science and Technology, Taiwan 2 

Jun, C.-H. POSTECH, Republic of Korea 2 

Khoo, M.B.C. Universiti Sains Malaysia, Malaysia 2 

Koukouvinos, C. National Technical University of Athens, Greece 2 

Nam, S.H. Korea Institute of Industrial Technology, Korea 2 

Nguyen, T.-L. National Kaohsiung University of Applied Sciences, Taiwan 2 

Phanyaem, S. King Mongkut‟s University of Technology North Bangkok, Bangkok 2 

Teh, S.Y. Universiti Sains Malaysia, Malaysia 2 

Yang, L. St John‟s University, Taiwan 2 
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3 GWMA schemes 

 3.1 Parametric schemes 

3.1.1 Location 

Process mean  

Apart from introducing the GWMA scheme to the SPM literature, Sheu and Lin
9
 showed that when 

  =1, the GWMA  ̅ scheme reduces to the EWMA  ̅ scheme; whereas when   =1 and   =0 it 

reduces to the Shewhart  ̅ scheme. The latter holds for all different types of GWMA-related schemes. 

Apart from showing that the GWMA  ̅ scheme outperforms the corresponding EWMA  ̅ scheme in 

many situations, Sheu and Lin
9
 demonstrated that it also outperforms the Shewhart  ̅ scheme with 

and without runs-rules. The performance of the GWMA  ̅ scheme is compared with the 

corresponding Shewhart, EWMA and CUSUM  ̅ schemes in Cheng et al
20

 and Hsu et al
21

; and it is 

observed that it has a better performance in many situations as compared to the others. Note that Hsu 

et al
21

 is a similar, but extended version of Cheng et al
20

„s study. Next, Chiu
22

 investigated numerous 

asymptotic and time-varying GWMA schemes with different fast initial response (FIR) strategy to 

remedy start-up problems. Using the ARL and SDRL metrics, it is observed that time-varying GWMA 

 ̅ schemes are excellent for small shifts detection, and those with FIR are best for large shifts 

detection. The GWMA scheme based on a regression-type estimator of the process mean with 

auxiliary-information-based (AIB) variable under some specific conditions of correlation is 

investigated in Haq and Abidin
23

. For processes with start-up problems, a FIR approach is also 

incorporated and it is shown that it uniformly outperforms the basic GWMA scheme; however, it 

outperforms the EWMA  ̅ scheme with AIB in most situations. 

Except where stated differently, the existing GWMA-related schemes are based on simple random 

sampling (SRS) with none on structured sampling methods. Hence, Huang et al
24

 provides a thorough 

discussion on how to implement a repetitive sampling procedure for the GWMA  ̅ scheme. Using the 

ARL and average sample size (ASS) metrics, it is shown that it outperforms the corresponding GWMA 

and hybrid EWMA schemes based on the SRS method in detecting small shifts. Moreover, it is also 

shown that the GWMA scheme based on SRS is associated with higher sampling costs. 

For non-normal data, Aslam et al
25

 proposed a GWMA  ̅ scheme with a standard normal 

transformation of observations collected from an exponentially distributed data. Using the ARL 

metric, they showed that their scheme outperforms the corresponding EWMA scheme in many 

situations. 

There is a single publication on multivariate GWMA (MGWMA) scheme and it is reported in Yang 

and Sheu
26

; where they noted that SPM aims to reduce variability by monitoring and eliminating 

assignable causes of variation; while engineering process control (EPC) aims to minimize variability 

by adjusting process variables to keep the process output on target. Moreover, it is shown in Yang and 

Sheu
26

 that the multivariate EPC (MEPC) combined with the MGWMA scheme has a better small 
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shifts detection ability in the mean vector than the corresponding MEPC combined with the 

multivariate EWMA as well as the MEPC combined with the Hotelling‟s chi-square schemes.  

The abovementioned articles in this subsection are based on i.i.d. observations used to compute the 

process mean. However, in real-life, sequentially sampled observations tends to exhibit serial 

dependence or autocorrelation. Thus, Sheu and Lu
27

 and Lu
28 

proposed GWMA  ̅ schemes to monitor 

the mean of observations from an autoregressive moving average process of order (1,1), denoted as 

ARMA(1,1) without and with FIR, respectively. The GWMA  ̅ scheme with FIR detects OOC 

observations faster than the one without FIR; however, for high levels of autocorrelation, these are 

similar in performance. 

Process median 

Unlike the process mean, the process median tends to be preferred in some situations due to its 

outlier-resistant property. Sheu and Yang
29

 showed that the GWMA median scheme outperforms the 

corresponding EWMA (including the one with FIR) and the Shewhart median schemes in many 

situations. Note though, the GWMA  ̅ scheme has a better OOC detection ability while the GWMA 

median scheme performs best when the process is subjected to outliers. Moreover, the quality cost 

model implemented with contaminated normal distribution shows that the GWMA median scheme is 

more economical with respect to the average quality cost as compared to the GWMA  ̅ scheme. 

Time-between-events 

To ensure ARL-unbiased OOC performance, Chakraborty et al
30

 proposed a one-sided GWMA 

scheme for monitoring time-between-events (TBE) based on the gamma distribution for Cases K and 

U. It is observed that the estimation of the unknown parameter from an IC Phase I sample affects the 

GWMA TBE scheme‟s performance in Phase II. Using the ARL, SDRL and percentile run-length 

(PRL), it is shown that the GWMA TBE scheme is better than the corresponding EWMA and 

Shewhart schemes in both Cases K and U.  

Attributes data 

When the characteristic to be monitored is in the form of count data and under the assumption of a 

Poisson distribution; using simulation, Sheu and Chiu
31

 showed that while the GWMA   scheme 

outperforms the corresponding Shewhart and EWMA   schemes in detecting all shifts values, it 

outperforms the DEWMA   scheme in detecting small-to-moderate shifts only. However, using 

Markov chain approach discussed in Brooks and Evans
32

, Phengsalae et al
33

 showed that for different 

nominal ARL0 values, the GWMA   scheme tend to outperform the EWMA   scheme for small shifts 

only. Moreover, the simulation approach tends to be time consuming in terms of CPU time as 

compared to Markov chain approach, i.e. takes 10-to-60 minutes per case study for simulation as 

compared to 1-to-2 minutes for Markov chain approach. Next, Chiu and Sheu
34

 investigated numerous 

asymptotic and time-varying GWMA   schemes with different FIR features to remedy start-up 

problems. Using the zero-state ARL and SDRL metrics, it is observed that the GWMA   scheme with 
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time-varying limits or FIR features are best for large shifts detections. When the characteristic to be 

monitored is in the form of number nonconforming and under the assumption of a binomial 

distribution; using both Markov chain and simulation approaches, Sukparungsee
35

 proposed the 

GWMA   scheme and showed that it outperforms the corresponding EWMA   scheme for small 

shifts. Also, the Markov chain approach is computationally time efficient than the simulation 

approach.   

In the case of high quality processes, where a large number of zero nonconforming observations exist, 

the   and   schemes result in excessive false alarms, hence a zero-inflated Poisson (ZIP) distribution 

is often used to model and monitor count data with such a large number of zeros. In a ZIP model, 

some random shocks occur independently with probability   and the number of nonconformities 

follows a Poisson distribution with parameter  . Thus, the GWMA ZIP scheme is proposed by 

Alevizakos and Koukouvinos
36

 to monitor p and   in Cases K and U for upwards shifts. A comparison 

with the corresponding upper-sided Shewhart, CUSUM and DEWMA schemes indicates that, in 

many situations, the GWMA ZIP scheme is more effective when both parameters are monitored. 

However, the CUSUM ZIP scheme is more efficient for small shifts when either p or   is of interest; 

while either the Shewhart or GWMA ZIP scheme is always more efficient for large shifts. Similarly, 

the zero-inflated binomial (ZIB) distribution has two parameters, i.e. excess zeros occur 

independently with probability   and the number of nonconformities follows a binomial distribution 

with parameter  . Hence, Areepong and Sukparungsee
37

 proposed a GWMA ZIB scheme using both 

Markov chain and simulation approaches and observed that they yields approximately the same run-

length results. Moreover, the GWMA ZIB scheme outperforms the EWMA ZIB scheme in detecting 

small-to-moderate parameter shifts in Case K. Finally, the Markov chain approach is computationally 

time efficient than the simulation approach.   

Demerit system 

A demerit scheme is used to monitor a demerit system containing different types of defects in an 

inspection unit. For instance, defects are classified in terms of categories or classes, e.g. „Very 

serious‟, „Serious‟, „Moderately serious‟ and „Minor‟. Kang et al
38

 proposed the GWMA demerit 

scheme to monitor the mean demerit number per unit by classes. It is shown that, in many situations, 

the GWMA demerit scheme has a better OOC performance than the Shewhart and EWMA demerit 

schemes. Next, Kang et al
39

 investigated the GWMA demerit scheme with a FIR feature (i.e. 50% 

head-start feature). Using ARL and SDRL, they showed that the GWMA demerit scheme with a FIR 

feature is more effective than the Shewhart, EWMA and GWMA demerit schemes without a FIR 

feature. 

3.1.2 Variability 

Sheu and Tai
40

 proposed the GWMA    scheme and showed that it outperforms the corresponding 

EWMA scheme in detecting OOC observations especially for small shifts. Next, Sheu and Lu
41

 used 
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an unbiased estimator of the process variance to propose the one-sided GWMA    scheme and 

showed that it yields better ARLs than the basic EWMA and exponential weighted mean square 

deviation schemes. Next, Ali and Haq
42

 proposed a one- and two-sided GWMA    schemes which are 

based on applying the normal approximation to the distributions of the logarithms of the weighted 

sum of chi-squared random variables. The EWMA version with these types of weighted scores was 

first discussed in Huwang et al
43

. It is observed that a properly designed one- or two-sided GWMA    

scheme has a better OOC performance than the corresponding EWMA schemes in detecting small 

shifts. Finally, it is worth mentioning that Chakraborty et al
30

 briefly discussed how the GWMA TBE 

scheme can be used to monitor downwards shifts in the variance for normally distributed data in Case 

K and they commented on how this can be extended to the Case U scenario. 

3.1.3 Location and Variability 

Mean and variance using separate charting statistics 

The combined GWMA ( ̅&  ) scheme to jointly monitor the process mean and variability of i.i.d. 

observations using separate charting statistics at each sampling point was proposed by Sheu et al
44

. It 

is shown that, in many situations, it has a better OOC ARL performance as compared to the 

corresponding combined EWMA ( ̅&  ) scheme. Next, the corresponding studies to jointly monitor 

the process mean and variability of residuals & autocorrelated actual observations were investigated 

in Sheu and Lu
45,46

, respectively; assuming an ARMA(1,1) model for the time series data. In each 

investigated instance, the GWMA schemes were shown to have a better OOC ARL performance than 

the corresponding EWMA schemes.  

Mean and variance using a single charting statistic 

Both papers by Sheu et al
47

 and Teh et al
48

 proposed a GWMA scheme to monitor the mean and 

variance of i.i.d. observations using a single plotting statistic; which is based on either the maximum 

of the transformed mean or variance, i.e. a GWMA Max scheme. The transformed mean and variance 

values of the Max statistic are obtained using an inverse standard normal distribution and a chi-square 

distribution, respectively. Note though, Sheu et al
47

 compared the GWMA Max scheme to the EWMA 

Max scheme; while Teh et al
48 

compared it to the GWMA ( ̅&  ) scheme for separately monitoring 

the mean and variance by Sheu et al
44

. In many situations the GWMA Max scheme has a better OOC 

ARL and SDRL performance; however, they have the same diagnostic ability (source of the assignable 

cause(s) and the direction of the shift) as their competitors. Real-life case studies of the GWMA Max 

scheme can be found in Nguyen et al
49

 and Hsu et al
50

 using the thickness of the coating layer of 

tablets and the quality of displays from Thin Film Transistor – Liquid Crystal Display (TFT-LCD) 

datasets, respectively. Next, Teh and Khoo
51

 considered the Log-Normal and Gamma distributions to 

study the robustness and the effect of skewed distributions on the GWMA Max scheme. In many 

situations, the results showed that the GWMA Max scheme has lower false alarm rates (or similarly, 

higher IC ARLs) for more levels of skewness when compared to the EWMA Max scheme. Some 
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additional comparisons between the performance of the GWMA and EWMA Max schemes when the 

underlying observations are from i.i.d. and autoregressive of order    {2,3} processes can be found 

in Phanyaem
52

 and Petcharat
53

, respectively. 

Similar to Teh et al
48

 and Sheu et al
47

, another GWMA Max scheme; however, with a different 

plotting statistics was proposed by Sheu et al
54

. This latter Max statistic is based on 

max{(
 

  
)
 
 (
 

  
)
 
}, while that of Teh et al

48
 and Sheu et al

47
 is based on max*| | | |+, where   and 

  are the transformed values of GWMA statistics for the transformed mean and variance derived via 

the inverse standard normal and chi-square distributions, and    &    are their corresponding 

standard deviations, respectively. Sheu et al
54

 showed that the GWMA Max scheme has a better ARL 

performance than the EWMA Max scheme; note though, the diagnostic analysis was not considered. 

Huang
55,56

 proposed a GWMA scheme with a single statistic which is based on the sum of squares 

(SoS) of the GWMA statistics and the semi-circle (SC) concept, respectively. Using the ARL and 

SDRL, it is shown that the GWMA schemes have a better detection ability than the corresponding 

EWMA schemes, especially for small shifts; however, they have similar diagnostics abilities. Next, 

Mohsin et al
57

 proposed a GWMA scheme based on the Taguchi‟s loss function (TLF) using a single 

statistic (which has a non-central chi-squared distribution) in Case U. The GWMA TLF scheme 

outperforms the fixed parameter EWMA SC scheme; while in some situations, it is outperformed by 

the VSI EWMA scheme - the authors stated that this is due to the added VSI feature. 

Since the inverse erf function has a better performance than the power transformation or the Box-Cox 

transformation when the Weibull distribution parameter is larger than one; hence, Arif and Aslam
58

 

used the inverse erf function to transform the Weibull distributed data to approximately normally 

distributed ones. Thereafter, a GWMA range scheme is used to monitor the range of either the 

transformed mean or variability, i.e.    max*| | | |+ and    min*| | | |+, where   and   are the 

transformed values of GWMA statistics for the mean and variance; so that      . Using the ARL 

and SDRL, it is shown that the GWMA range scheme is more efficient than its EWMA counterpart in 

many situations. 

Coefficient of variation 

For processes where the mean and variability parameters vary in a fixed proportional way when the 

process is IC, it is more reasonable to monitor the coefficient of variation (CV). Hong et al
59

 showed 

that the Shewhart CV scheme is inefficient in monitoring small shifts; hence, they proposed the 

GWMA CV scheme. Using the ARL, SDRL and ratios of the ARLs, it is shown that, in many 

situations, the GWMA CV scheme has a better OOC performance as compared to the EWMA and 

DEWMA CV schemes. Next, Hong et al
60

 incorporated a FIR feature to the GWMA CV scheme and 

they showed that it has a significantly improved OOC performance compared to the DEWMA and 

GWMA schemes without a FIR feature.    
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3.2 Nonparametric schemes  

Currently, the only contributions that consider the monitoring of a nonparametric statistic using a 

GWMA scheme are all dedicated to the monitoring of the process location. As far as we know, no 

contribution has been devoted so far to the monitoring of the process dispersion that combines a 

nonparametric statistic and a GWMA scheme. 

A GWMA sign scheme was proposed by Lu
61

 who showed that it is a good alternative to a parametric 

GWMA  ̅ scheme. Moreover, (for certain values of   and  ) it has a better OOC detection ability 

than the GWMA  ̅ scheme in many situations. However, for processes with a distribution that is 

skewed to the right, the GWMA sign scheme is not as effective as the GWMA  ̅ scheme in detecting 

assignable causes. Distributions that were used are Normal, Laplace, Uniform and Gamma. Chen et 

al
62

 proposed a GWMA sign scheme using repetitive sampling and they showed that it yields a lower 

number of repetitive samples than its competitors. Taking into account the shapes of the Normal, 

Student‟s  - and Gamma distribution, Chen et al
62

 used the ARL and ASS metrics to show that the 

GWMA sign scheme with repetitive sampling outperforms the corresponding EWMA scheme based 

on SRS and repetitive sampling methods as well as the GWMA scheme based on SRS in detecting 

small shifts. Also, it has better small shifts detection ability as compared to the double sampling 

EWMA sign scheme; but for other levels of shifts, the converse is true. 

Chakraborty et al
63

 proposed a GWMA signed-rank scheme and showed that it is IC robust (so is the 

GWMA sign scheme), while the GWMA  ̅ scheme is not. Using the Normal, Student‟s  -, Logistic 

and Uniform distributions, it is shown that the GWMA signed-rank scheme outperforms the GWMA 

sign scheme in many situations; however, when using the Laplace distribution, the GWMA sign 

scheme has a slightly better small shifts detection ability. Next, using the Exponential, Gamma, Log-

Normal and Weibull distributions, Sukparungsee
64

 studied its IC robustness and taking into account 

the change-point model to calculate the OOC ARLs. The GWMA signed-rank scheme is shown to 

have a uniformly better OOC performance than the GWMA sign scheme for all considered 

distributions and shift values. While the GWMA signed-rank scheme is superior for shifts of size 0.25 

or less; the corresponding EWMA signed-rank scheme outperforms it for moderate-to-large shifts 

(this is inconsistent with the results in Table 3 of Chakraborty et al
63

). Note that Sukparungsee
64

 

considered more shift values as compared to Chakraborty et al
63

. 

When parameters are unknown, the median test (i.e. sign or signed-rank) schemes are not applicable. 

As an alternative to the two-sample location shift parametric t-test, the Exceedance (EX) and 

Wilcoxon rank-sum (WRS) tests are usually recommended when the underlying process distribution 

is non-normal. The GWMA scheme based on the exceedance statistic (two-sample tests based on the 

number of observations from one of the samples that exceed a specified r
th
 order statistic of the other 

sample) was proposed by Chakraborty et al
65

. An OOC performance is conducted (with r = 0.25, 0.5, 

0.75) using the ARL and MRL metrics. The GWMA EX scheme is shown to outperform the EWMA 
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EX and Shewhart  ̅ schemes using the Normal, Logistic, Uniform, Laplace and Gamma distributions 

in many situations. Moreover, the Case U GWMA  ̅ scheme is shown to be not IC robust especially 

for skewed distributions while the GWMA EX scheme is IC robust to non-normality and has a better 

performance than the EWMA EX scheme in many situations. Next, the GWMA WRS scheme was 

proposed by Mabude et al
66

, with the Normal, Student‟s t-, Gamma, Log-logistic and Weibull 

distributions used to show the IC robustness and to study the OOC performance. It is shown that the 

GWMA WRS scheme has a significantly better OOC performance than the corresponding parametric 

and nonparametric Shewhart, EWMA and CUSUM schemes. Also, the effect of the Phase I reference 

sample size on the Phase II test samples‟ OOC performance is provided.  

 

4. DGWMA schemes 

 4.1 Parametric schemes 

The only research works that exist for DGWMA parametric schemes are on monitoring location as 

well as jointly monitoring location and variability. 

4.1.1 Location 

Process mean  

Sheu and Hsieh
67

 proposed an extension to the GWMA scheme called the DGWMA  ̅ scheme. Using 

ARL and SDRL metrics, this extension is shown to be superior to the GWMA  ̅ scheme in detecting 

medium-to-large shifts; but for small shifts, the converse is true. Note though, compared to the 

DEWMA scheme, the DGWMA scheme is superior for small-to-moderate shifts; and the converse is 

true for large shifts. Chiu
22

 showed that the DGWMA scheme has the best performance for moderate 

shifts detections as compared to the time-varying GWMA scheme which is excellent for small shifts 

as well as the GWMA scheme with FIR which is the best scheme for large shifts detection. 

Time-between-events 

Alevizakos et al
68

 proposed the one-sided ARL-unbiased DGWMA TBE scheme and they showed that 

it is not IC robust and it has uniformly better zero-state ARL values as compared to the DEWMA TBE 

scheme. Also, it has a better steady-state ARL performance than the DEWMA TBE scheme for small-

to-moderate shifts; but the converse is true for other shifts. In some situations, the GWMA TBE 

scheme has a slight advantage over the DGWMA TBE scheme for (very small)-to-small shifts, but the 

converse is true for other shifts. 

Attributes data  

Chiu and Sheu
34

 studied the zero-state performance of the DGWMA   scheme, where it is shown that 

it is preferred for small downwards shifts over the GWMA   scheme with time-varying limits or FIR 

feature. The corresponding steady-state performance is discussed in Chiu and Lu
69

, where it is shown 

that it is preferred for downward shifts, while the GWMA   scheme is more competitive for upward 

shifts.   
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Demerit system 

Kang and Baik
70

 proposed the DGWMA demerit scheme and they showed that, in many situations, it 

has better performance in detecting small shifts in the mean demerit number per unit by classes than 

the GWMA, EWMA and Shewhart schemes discussed in Kang et al
38

.  

4.1.2 Location and variability 

Tai et al
71

 proposed a DGWMA ( ̅&  ) scheme and showed that, in many situations, it has a better 

OOC ARL performance as compared to the corresponding GWMA ( ̅&  ) scheme by Sheu et al
44

. 

Next, Huang et al
72

 proposed a DGWMA SoS scheme and showed that it has a better ARL and SDRL 

detection ability than the corresponding DEWMA and GWMA SoS schemes in many situations. 

4.2 Nonparametric schemes 

The research works that exist for DGWMA-type nonparametric schemes are on monitoring the 

location parameter only. 

Lu
73

 proposed a DGWMA sign scheme and showed that it is more sensitive than the corresponding 

EWMA, GWMA and DEWMA schemes in many situations. Phanyaem
74

 briefly discussed the 

DGWMA sign scheme with repetitive sampling and showed that it is more sensitive than the 

corresponding DEWMA sign scheme in many situations. Next, Karakani et al
75

 proposed the 

DGWMA EX scheme to monitor unknown median shifts in a process (with r = 0.25, 0.5, 0.75). 

Moreover, for comparison purpose, the DEWMA EX scheme is also proposed and it is shown to be 

inferior as compared to the former in many situations. Using the ARL and MRL, it is shown that the 

DGWMA  ̅ scheme in Case U is not IC robust, while the DGWMA EX scheme is IC robust to non-

normality. The same distributions as those in Chakraborty et al
65

 are considered and the DGWMA EX 

scheme is observed to have more favourable results than the GWMA and EWMA EX schemes. 

 

5. Shewhart-GWMA schemes 

Currently, no research work exists for nonparametric Shewhart-GWMA schemes. However, for 

parametric ones, some based on monitoring location as well as location and variability exist. 

5.1 Location 

Process mean 

The composite Shewhart-GWMA  ̅ scheme (with and without runs-rules) was first studied in Sheu 

and Lin
9
 and shown to be more sensitive than the Shewhart schemes (with and without runs rules) and 

the GWMA scheme. Due to the complexity in implementation and excessive false alarms along with a 

very minor OOC improvement, the use of composite Shewhart-GWMA  ̅ schemes with runs-rules is 

not advised. 

Attributes data 

Lin
15

 showed that the composite Shewhart-GWMA   scheme integrated with the sensitizing rules by 

Nelson
76

 does increase the detection ability; however, it simultaneously degrades the IC values so that 
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the scheme yields excessive false alarms. Since the implementation of the composite Shewhart-

GWMA   scheme is relatively complex, it is neither not advised to use it in real-life applications. 

 5.2 Location and variability 

Tai et al
77

 proposed a composite Shewhart-GWMA ( ̅&  ) scheme using separate charting statistics 

at each sampling point and they showed that it is more effective in quickly detecting OOC 

observations compared to the corresponding composite Shewhart-EWMA ( ̅&  ) scheme.    

 

6. GWMA-CUSUM schemes and its reverse version 

Currently, no research work exist for nonparametric statistics using GWMA-CUSUM schemes. 

However, for parametric ones, some based on monitoring location and monitoring variability exist. 

6.1 Location 

Lu
16

 proposed the mixed GWMA-CUSUM  ̅ scheme and its reverse version (CUSUM-GWMA  ̅ 

scheme) to monitor individual observations. It is shown (using ARL only) that, in many situations, this 

scheme provides better OOC detection ability than the basic GWMA, EWMA and CUSUM schemes, 

as well as the mixed EWMA-CUSUM and CUSUM-EWMA  ̅ schemes. Moreover, the CUSUM-

GWMA scheme is shown to yield a slightly better OOC ARL performance over the corresponding 

GWMA-CUSUM scheme in many situations. At the same time, but independently, Ali and Haq
17

 also 

proposed the GWMA-CUSUM  ̅ scheme to monitor the process mean; however, of subgroup 

observations. Note though, Ali and Haq
17

 did not consider the reverse CUSUM-GWMA  ̅ scheme. 

6.2 Variability 

Ali and Haq
78

 proposed the mixed GWMA-CUSUM    scheme (with and without FIR) to monitor 

upwards shifts for subgroup observations and showed that it yields better OOC detection ability than 

the CUSUM and mixed CUSUM-EWMA    schemes. Note that Ali and Haq
78

 did not consider the 

mixed CUSUM-GWMA    scheme. Next, Huang et al
79

 proposed the mixed GWMA-CUSUM    

scheme and the reverse version to monitor upwards shifts using individual observations. Both of the 

mixed schemes have better small shifts detection ability than many competitors, including those 

discussed in Ali and Haq
42

 and, Sheu and Lu
41

. More importantly, it is observed that the CUSUM-

GWMA    scheme has a slight advantage over the corresponding GWMA-CUSUM    scheme in 

many situations. 

 

7. Concluding remarks  

The GWMA scheme is an extended version of the EWMA scheme with an additional adjustment 

parameter. The adjustment parameter allows designing a GWMA scheme in order to optimally detect 

a particular shift more efficiently than its EWMA counterpart. A thorough review of 61 publications 

on the GWMA and GWMA-related (i.e. DGWMA, Shewhart-GWMA, GWMA-CUSUM and 

CUSUM-GWMA) schemes are documented and, based on the discussion, it is observed that while the 
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operation and implementation of the basic and enhanced GWMA-related schemes are slightly more 

complicated, they nevertheless have excellent detection ability as compared to their corresponding 

basic and enhanced EWMA schemes. More importantly, the GWMA-related monitoring schemes can 

be useful for quality practitioners in a variety of applications where the EWMA-related schemes are 

being currently used, as replacements. Note that, with the aid of computer programs, the complexity 

in implementation can be significantly simplified.   

Finally, it is worth mentioning that more needs to be done to address the research gaps that exist for 

GWMA schemes and hence, we provide below a summary of some topics that have not yet been 

addressed: 

1. Ali and Haq
42

 showed that the hybrid EWMA    scheme has a better OOC performance than the 

corresponding GWMA    scheme. Moreover, Huang et al
24

 observed that the GWMA  ̅ scheme 

based on repetitive sampling outperforms the hybrid EWMA  ̅ scheme based on SRS; the hybrid 

approach needs to be added to the basic GWMA model to monitor location, variability and joint 

location and variability. 

2. For comparison purpose with the nonparametric GWMA schemes with unknown median 

parameter (i.e. Exceedance and Wilcoxon rank-sum statistics), Chakraborty et al
65

, Karakani et 

al
75

 and Mabude et al
66

 partially considered the GWMA  ̅ scheme in Case U, more thorough 

investigations are required. Hence a stand-alone paper on the latter is required addressing a 

variety of issues; for instance, (i) the effect of Phase I sample size on the performance of the 

Phase II scheme, (ii) the extent of the negative effect of estimating parameters as compared to 

when they are assumed known, etc. 

3. As observed in Table 2, no nonparametric GWMA scheme research exists to monitor either the 

scale or the joint location and scale parameter(s); hence more needs to be done to address this 

gap. Readers are referred to the special issue on nonparametric schemes, edited by Chakraborti et 

al
80

 and the recent chapter contributed book on nonparametric schemes, edited by Koutras and 

Triantafyllou
81

.   

4. While the EWMA scheme has been studied in the case of structured sampling techniques; e.g. 

ranked set sampling (RSS), double RSS, etc. Moreover, adaptive EWMA schemes also exist in 

SPM literature (i.e. variable sample size (VSS), variable sample interval (VSI), variable sampling 

size and interval (VSSI)). Note though, no research work has been done in the case of GWMA 

scheme combined with these enhancements. 

5. A variety of parametric and nonparametric synthetic EWMA schemes for unstructured and 

structured sampling techniques has been reported in the literature; see for example, Haq et al
82

 

and Haq 
83

. The latter schemes yield better OOC detection ability than their non-integrated 

schemes. An investigation towards the effect of using parametric and nonparametric synthetic 
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EWMA schemes to monitor a variety of quality characteristics using RSS, double RSS, etc., are 

recommended. 

6. Measurement errors are very common in SPM application and have been shown to yield a 

negative effect on the performance of any monitoring scheme. Moreover, auxiliary-information-

based (AIB) estimators for the process mean have also been shown to yield a better OOC 

performance. Note though, so far in the SPM literature, there is no work addressing measurement 

errors or AIB. 

7. For joint monitoring of the process mean and variability, there are many test statistics used (i.e. 

Max, Semi-circle, Sum of squares, separate charting statistics, etc.). However, in the literature 

there is no clear indication of which of these statistics has the best OOC performance as 

compared to all other GWMA schemes; hence, this and other similar questions in the GWMA 

literature need to be addressed.  

8. As discussed in Sheu and Lin
9
, Sheu and Yang

29
, Lu

61
, Chakraborty et al

30,65
, Karakani et al

75
, it 

is very difficult to evaluate the Markov chain or exact formulas of the run-length distribution for 

the GWMA-related schemes; hence, more thorough researches are seriously needed to simplify 

the evaluation of the run-length properties using either the exact formulas or Markov chain 

methodologies. As a starting point see for instance Phengsalae et al
33

, Areepong and 

Sukparungsee
37

 and Sukparungsee
35

. Moreover, R programs or any other commercial / open 

source statistical software for any general charting statistic need to be made readily available so 

that more research can be fast-tracked for GWMA-related monitoring schemes. 

9. Effort needs to be paid to demonstrating how to monitor real-life datasets using the different 

GWMA-related schemes discussed herein. One other way, this can be done by programming the 

GWMA model and its enhancements into some of the well-known software programs to monitor 

quality characteristics in real-time. 

10. Only a few attribute GWMA monitoring schemes have been proposed. More investigations on 

attribute GWMA schemes specifically based on fraction nonconforming (GWMA p scheme), 

number of nonconformities (GWMA np scheme) as well as high-yield processes are needed. 

11. There is no study on the economic and economic-statistical designs of the GWMA monitoring 

schemes that has been done in the literature so far. Therefore, researchers are encouraged to 

investigate these topics under both i.i.d. and correlated observations as well as for Case U.  

12. Only one publication on multivariate schemes is available in the literature. Given the relevance 

of multivariate schemes in real-life applications, there is a lot of research works on GWMA 

schemes that need to be done based on parametric and nonparametric settings. 
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Appendix 

Appendix A: Design parameters and weight structure of the GWMA scheme 

The EWMA scheme has two design parameters, i.e.       and    > 0; the corresponding 

extension to the GWMA monitoring scheme has three parameters, i.e.       ,    > 0 and    > 0, 

with        and    is not necessarily equal to   . Moreover, the    coefficient is used to fix the 

predefined nominal IC     value,    is the smoothing parameter and    is an additional adjustment 

parameter. Note that the supplemental adjustment parameter    introduces more flexibility in the 

GWMA model as it adjust the kurtosis of the weighting function to ensure that it has an advantage 

over the EWMA monitoring scheme. The manner that observations are weighted within the Shewhart, 

CUSUM, EWMA and GWMA charting statistics is illustrated graphically in Figure A1; see similar 

illustration in Sheu and Lin
9
, Cheng et al

20
 and Hsu et al

21
. The Shewhart schemes are memoryless; 

hence, at the  th sampling point, the weight used to compute the charting statistic is equal to 1 for the 

 th observation and zero for all the previous ones. However, the CUSUM scheme uses equal weights 

for all previous observations. The weight structure of the observations for the EWMA and GWMA 

schemes are similar, i.e., geometrically decreasing; however, the weights structure or weight function 

kurtosis used by the GWMA scheme differs from that EWMA scheme due to the additional 

adjustment parameter. Note though, the EWMA weight function is a special case of the GWMA one, 

i.e. when   =1. 

 
Figure A1: Observations weighting within the Shewhart, CUSUM, EWMA and GWMA charting 

statistics 

 

In illustrating how the weights and charting statistics are determined for the GWMA procedure, Sheu 

and Lin
9
 proceeded as follows:  

Let     (    ) denote the probability of the occurrence of an OOC signal at some 

sampling point   for the first time, or since the last occurrence of the OOC signal; where the 

random variable    denotes the number of samples until an OOC signal, with   

*         +. Moreover, let  ̅   (    ) be the probability that the OOC signal does not 
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occur in the first   samples. With the latter, it follows that  (    )   ̅     ̅ . In 

essence, the sequence of values { (    )} are regarded as weights in the weighted moving 

average with  (    ) represents the weight value for the current sample,  (    ) is the 

weight value for the previous sample, and so on; and  (    ) is the weight value for the 

target value of the process mean, denoted as   . The most weight is generally given to the 

current sample and the weights decrease geometrically with the age of the sample.  

Next, Sheu and Lin
9
 denoted each weight function as  ̅    

    and it follows that,  (    )  

  
(   )     

   . Therefore, the summation of the weight function is as follows, 

∑  (    )

 

   

  (    )   (    )     (    )   (    ) 

 (  
      

   )  (  
      

   )    (  
(   )  

   
   )    

    

    

Figures A2 and A3 provide graphical illustrations of the following weight functions:  ̅    
    

(marginal weight function) and  (    )    
(   )  

   
    (weights allocated to observations), 

with    {0.25,0.5,0.75,0.95} and    {0.25,0.75,1,1.25,1.75}. Hence, for different values of   , it is 

observed that when     1, the influence of recent samples is higher and the weight structure 

decreases at a faster rate as compared to that of    = 1. However, when     1, the influence of 

recent samples is not as pronounced as the latter case, and the weight structure decreases at a slower 

rate as compared to that of    = 1. 
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Figure A2: Individual weights function (i.e.  (    )) for different values of 

   {0.25,0.5,0.75,0.95} and    {0.25,0.75,1,1.25,1.75} 
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Figure A3: Weights assigned to observations for different values of    {0.25,0.5,0.75,0.95} 

and    {0.25,0.75,1,1.25,1.75} 
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Appendix B: Run-length properties of the GWMA-related schemes 

The number of charting statistics to be plotted on a monitoring scheme before an OOC signal is 

observed is called the run-length (RL). Numerous RL properties have been used to evaluate the 

performance of GWMA-related schemes; these are the average run-length (ARL), the standard 

deviation of the run-length (SDRL) and some percentile run-length (PRL) such as the median, 5
th
, 25

th
, 

75
th
, 95

th
 percentiles. So far in the SPM literature, Monte Carlo simulations have been the most used 

method to compute the RL distribution of the GWMA schemes; with no publications yet using the 

exact formulas. This is because the theoretical expressions that are required to be evaluated are very 

complex; see for instance Chakraborty et al
30,65

 and Karakani et al
75

. Note that Phengsalae et al
33

, 

Areepong and Sukparungsee
37

 and Sukparungsee
35

 used the Markov chain approach to evaluate the 

run-length properties of the GWMA schemes and observed that they are closer in magnitude to those 

that are obtained via simulation; however, simulation approach takes longer as compared to Markov 

chain in terms of computer processing unit (CPU) computational time. The popularity of the Monte 

Carlo simulations stems from the fact that no matter how complicated the RL distribution, it can easily 

and accurately be calculated with computer simulations, provided that the number of simulation runs 

is large enough. 

Next, the computation of the IC and OOC RL properties for the GWMA  ̅ scheme in the case of a 

standard normal distribution using   simulation runs are described. The computation is done in two 

stages. In the first stage, a search for the design parameter(s) that gives an attained IC ARL as close as 

possible to the nominal      is conducted. If such design parameters exist, they are called the 

optimal design parameters. In the second stage, these optimal design parameters are used to compute 

OOC ARL values. Hence, when the parameters of the distribution are known or have already been 

estimated from Phase I, the RL properties of the GWMA  ̅ schemes can be computed using the 

following Monte Carlo algorithm: 

Stage 1 - Search of the optimal design parameter   : 

1. Specify the nominal     , n,  ,    and   .  

2. (a) Fix a first value of    and calculate the control limits and go to Step 3. 

(b) If required, increase (or decrease)    and recalculate the control limits so that the attained IC 

ARL get closer to the nominal     . 

3. Randomly generate a sample from the N(0,1) distribution. Calculate the charting statistic and 

compare it to the control limits found in Step 2. If the charting statistic plots between the control 

limits, then collect the next subgroup and calculate its charting statistic and compare it to the 

control limits. Continue this process until a sample point plots beyond the control limits. Then 

record the number of subgroups plotted until an OOC signal occurs, this represents one value of 

the IC RL (   ) distribution. Repeat Step 3 a total of   times to find the (   )     vector. 
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4. Once the     vector is obtained, calculate the attained IC ARL ( 
 

 
∑     
 
   ). If the attained IC 

ARL is equal or much closer to the nominal     , go to Step 5. Otherwise, go back to Step 2(b) 

(i.e., since the attained IC     is considerably greater (smaller) than the nominal value, then 

update the control limit(s) narrower (wider) and repeat again Steps 3 and 4). 

5. The design parameter    found in Step 4 is called the optimal design parameter. Record the 

optimal    and its corresponding control limits. Thus, the search of the optimal    is completed.  

Stage 2 - Computation of the characteristics of the OOC RL (   ): 

6. For a specific shift   (   0), randomly generate a test sample from the N( ,1) distribution. 

Calculate the charting statistic(s) and compare to the control limit(s) found in Step 5. If the 

charting statistic plots between the control limits, then collect the next subgroup and calculate its 

charting statistic and compare it to the control limits. Continue this process until a sample point 

plots beyond the control limits. Then record the number of subgroups plotted until an OOC signal 

occurs. This number represents one value of the     distribution. Repeat Step 6 a total of   times 

to find the (   )     vector. 

7. Once the     vector is obtained, calculate the OOC ARL value ( 
 

 
∑     
 
   ).  

8. The computation of the characteristics of the     is completed. 

Note that: (i) in Steps 4 and 7, other characteristics of the RL such as the SDRL, the 5
th
, 25

th
, 50

th
, 75

th
 

and 95
th
 PRL can also be computed; (ii) the extension for other statistics (median, variance, range, 

etc.) and other distributions can be done in a similar way by modifying the distribution and the 

charting statistic computed in Steps 3 and 6, accordingly.  
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