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Résumé
Le diagnostic de bon fonctionnement des machines est une
tâche fondamentale dédiée à la surveillance des systèmes
dans un souci de sécurité, de prévention des accidents et de
programmation des opérations de maintenance. Cette tâche
est généralement accomplie grâce à des méthodes d’ana-
lyse de données (recourant par exemple à des modèles sta-
tistiques). Ces méthodes sont appliquées aux séries tempo-
relles décrivant la dynamique du système analysé. Ces sé-
ries temporelles sont sujettes à des changements de régimes
reflétant les changements d’état du système. Dans cet ar-
ticle, nous proposons de modéliser de telles séries tempo-
relles par un nouveau modèle de changement de régimes
Markovien appelé PHMC-LAR (Partially Hidden Markov
Chain AutoRegressive model) où le processus des états dé-
crit l’état de santé du système à chaque pas de temps. Ce
modèle possède la capacité d’inclure des connaissances
partielles sur le processus des états Markovien. La connais-
sance partielle est traduite par la présence d’états observés
à certains pas de temps aléatoires. Les paramètres de notre
modèle sont estimés grâce une variante de l’algorithme
d’Espérance-Maximisation, que nous avons développée. La
procédure d’inférence des états cachés consiste à identifier
la séquence d’états la plus probable pour une série tempo-
relle donnée ; elle est réalisée au moyen de l’algorithme de
Viterbi. Les études expérimentales ont été conduites sur des
données décrivant des états de machine de façon réaliste.
Les résultats montrent que, pour les données utilisées, l’in-
tégration de connaissances partielles sur le processus des
états améliore considérablement les performances de l’in-
férence.

Mots-clés
Séries temporelles, modèle autorégressif, modèle à chan-
gement de régimes, états partiellement observés, chaîne de
Markov, inférence, diagnostic de l’état d’une machine.

Abstract
Machine health diagnosis is a fundamental task dedicated
to monitor systems’ safety in order to prevent incidents,
and to program maintenance operations. Such diagnosis is
achieved through analyzing the system’s features (generally
recorded by sensors and depicted by time series), using data
analytics methods such as statistical models. These time se-

ries are subject to regime switches reflecting changes in the
system health conditions. In this paper, we propose to mo-
del such time series by a new Markov switching autoregres-
sive model called PHMC-LAR (Partially Hidden Markov
Chain AutoRegressive), where the state process depicts sys-
tem health condition at each time-step. This model has the
particularity to include partial knowledge about the Mar-
kovian state process. This partial knowledge is depicted by
the states observed at some (random) time-steps. The pa-
rameters of our model are learnt through a variant of the
Expectation-Maximization algorithm, which we developed.
The inference procedure, that consists in segmenting a gi-
ven time series into the most likely sequence of states, is ad-
dressed by the Viterbi algorithm. Experimental studies are
performed on realistic machine condition data. The results
show that, for the used datasets, the incorporation of partial
knowledge substantially improves inference performance.

Keywords
Time series analysis, autoregressive model, regime-
switching model, Markov chain, inference, machine health
diagnosis, CMAPSS datasets

1 Introduction
Time series subject to switches in regime have been widely
studied in domains such as econometry, finance or meteoro-
logy. The underlying dynamical system of such time series
is associated with a state process which specifies the system
behavior, in other words, its functioning mode at each time-
step. Thus, two dynamics can be highlighted : (i) transitions
from one state to another, which drive the global nonlinear
dynamics of the system and (ii) local stationary dynamics
of the time series that unfold within the regimes. The for-
mer dynamics is usually modelled through Markov models
(HMMs). Linear autoregressive models are widely-used to
capture the latter dynamics [5], hence the name of Markov
switching autoregressive models.
Two categories of models are depicted in the literature. The
first category considers observed states, and corresponds to
a classical Markov mixture model with an autoregressive
dynamics. The second category considers hidden states. In
this case, it is usual to rely on Hidden Markov Models
(HMMs) [12, 2, 8]. Models belonging to the first category
are referred to as observed regime-switching models (OR-
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SARs) [3]. The second category describes hidden regime-
switching models (HRSARs) [9].
In this paper, we present a novel regime-switching auto-
regressive model which implements the intermediate case
where states are partially observed, i.e. they are known at
some random time-steps and hidden at other time-steps.
This model, referred to as the Partially Hidden Markov
Chain Linear AutoRegressive (PHMC-LAR), capitalizes on
the observed states while the hidden states are inferred.
PHMC-LAR is a unification of ORSAR and HRSAR mo-
dels when the state process is a Markov Chain. The contri-
butions reported in this paper are two-fold : (i) design of a
PHMC-LAR learning algorithm, and (ii) analysis of the abi-
lity of PHMC-LAR to infer hidden states on time series ge-
nerated by NASA’ Commercial Modular Aero-Propulsion
System Simulation (CMAPSS) model [18].
This paper is organized as follows. The PHMC-LAR mo-
del is presented in Section 2. Section 3 describes a learning
algorithm that allows to estimate the model’s parameters.
Section 4 presents a hidden state inference algorithm. Sec-
tion 5 depicts the application of the PHMC-LAR model to
real-world datasets, and focuses on state inference. The last
Section concludes our paper.

2 PHMC-LAR model
Let {Xt}t2Z be a time series suject to regime-
switching. Let {St}t2N⇤ the state process of {Xt}
where St 2 K = {1, 2, . . . ,K} stands for the state at
time-step t and K is the number of states. We suppose
that {St} can be observed at some random time-steps. Let
denote by �t ✓ K the set of possible states at time-step
t with �t = K when St is latent and �t = {k} when St

is observed to be state k. Thus, the �t’s represent precise
partial knowledge available about {St}.

The following notations will be used hereinafter :
• Symbol ’:=’ stands for the definition symbol.
• At2

t1
denotes the sequence At1 , At1+1, · · · , At2�1, At2 ,

where t1 and t2 (> t1) are time-steps. At2
t1

may be a
sequence of any kind (e.g., a sequence of random variables,
a sequence of observed values, a sequence of annotations
on a time series).
• By convention, X0

1�p
denotes the p first variables of

process {Xt} ; that is why {Xt} is indexed in Z.
• Symbols in bold are used to indicate nonscalar variables
or vectors of constants.

In this work, the dynamics of the time series {Xt} is captu-
red by a PHMC-LAR model. This model takes into account
the partial knowledge about the state process {St} and ope-
rates in two stages as follows.
- Modelling of state process. In the PHMC-LAR, we use
available partial knowledge (�t’s) to model the state process
{St} through a Partially Hidden Markov Chain (PHMC)
[19, 17]. PHMC is an extension of the classical HMM of
order 1 [11, 12] in which some states have been observed.
PHMC, as classical HMC, is parametrized by a transition

FIGURE 1 Conditional independence graph of the PHMC-
LAR model when the autoregressive order p = 1. Obser-
ved variables (time series and observed states) are displayed
in continued line and hidden states are represented in dash
line. Note that if the state k has been observed at time-step
t � 1 then �t, the set of possible states at this time-step, is
reduced to a singleton (e.g., �t�1 = {k})

matrix
ai,j = P (St = j|St�1 = i), ai,j 2 [0, 1],

KX

j=1

ai,j = 1

and a stationary law
⇡i = P (S1 = i), ⇡i 2 [0, 1],

KX

i=1

⇡i = 1.

- Modelling of the dynamics given the state. Knowing St,
the state-value at time-step t, together with past values of
Xt, we model Xt relying on a linear autoregressive model
(LAR) defined as follows :

Xt |Xt�1
t�p

, St = k := µk +
pX

i=1

⇢i,kXt�i + vk ✏t, (1)

where {✏t} are white noises, p is the number of past values
of Xt to be used in modelling, k is the state at time-step
t. Within each state k, µk is the intercept, (⇢1,k, ..., ⇢p,k)
are the p autoregressive coefficients and vk is the standard
deviation. Note that Eq. 1 is not defined for the p initial
values denoted by X0

1�p
which are modelled by some initial

law g0(x0
1�p

;  ) parametrized by  .
Thus, the PHMC-LAR model is parametrized by (✓, )
where ✓ = (✓(S),✓(X)) with ✓(S) = ((⇡i)i=1,...,K ,
(ai,j)i,j=1,...,K), ✓(X) = (✓(X,k))k=1,...,K and ✓(X,k) =
(µk, ⇢1,k, ..., ⇢p,k, vk). Figure 1 shows the conditional in-
dependence graph of the PHMC-LAR model.

3 Parameter learning
In this section, an approximation of the maximum likeli-
hood estimate (MLE) of the PHMC-LAR model parame-
ters is presented. We consider a training data set of N in-
dependent time series x(1), . . . , x(N), with x(1)

0 , . . . , x(N)
0

the corresponding initial values and ⌃(1), . . . , ⌃(N) (where
⌃(i) = �Ti

t=1) the partial knowledge available on the state
processes. Notice that the x(i)’s have respective lengths
T1, · · · , TN , that are not necessarily equal, and that the x(i)

0

terms have length p where p is the autoregressive order.
MLE is the set of parameters that maximizes the likeli-
hood of the training data. It is well-known that in mo-
dels with latent variables as PHMC-LAR, MLE compu-
tation results in an untractable problem. In this case, it
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is usual to maximize the expectation (w.r.t. the latent
variables) of the complete data likelihood noted Lc.
Lc denotes the evidence/likelihood of the training data
x0 = (x(1)

0 , . . . ,x(N)
0 ) and x = (x(1), . . . ,x(N)) when

latent/hidden variables are set at s = (s(1), . . . , s(N)). The
Lc writes

Lc(✓, ) = P (X0 = x0,X = x,S = s; ✓, )

= P (X = x,S = s |X0 = x0; ✓) ⇥ P (X0 = x0;  )

= Lc
c(✓) ⇥

NY

i=1

g0(x
(i)
0 ;  ),

(2)

with Lc
c

the conditional complete data likelihood and g0
the initial law of Xt.
Since s is unkown (it can take any value in K(

P
i Ti) where

K is the set of possible states), the expectation of Lc with
respect to the posterior distribution of S is considered. In
Eq. 2 the second term does not depend on s. Therefore, it
can be taken out of the expectation.

EP (S=s |X,X0,⌃; ✓)[Lc(✓, )] = EP (S=s |X,X0,⌃; ✓)[Lc

c
(✓)]

⇥
NY

i=1

g0(x
(i)
0 ;  ).

By taking the logarithm of the previous expectation we ob-
tain

 ̂ = argmax
 

NX

i=1

ln g0(x
(i)
0 ;  ). (3)

✓̂ = argmax
✓

ln
�
EP (S=s |X,X0,⌃; ✓)[Lc

c
(✓)]

�
, (4)

where P (S = s |X,X0,⌃; ✓) is the posterior distribu-
tion of S and ⌃ = (⌃(1), . . . ,⌃(N)).
When g0 is assumed to belong to a family of parametric dis-
tributions, Eq. 3 can be easily solved. For instance, suppo-
sing g0 is a multivariate normal distribution Np(m,V) with
mean m 2 Rp, variance-covariance matrix V 2 Rp ⇥ Rp,
and  = (m,V), we can show that

m̂ =
1

N

NX

i=1

x(i)
0 , V̂ =

1

N

NX

i=1

(x(i)
0 � m̂) (x(i)

0 � m̂)
0
,

(5)
where 0 stands for matrix transposition.
In contrast, maximization in Eq. 4 is untractable.
Therefore ✓ is estimated by an instance of the
Expectation-Maximization (EM) algorithm. The main
idea behind EM is to maximize a lower bound of
ln
�
EP (S=s |X,X0,⌃; ✓)[Lc

c
(✓)]

�
. This lower bound, de-

noted by Q and defined in Eq. 6, is obtained by applying
Jensen’s inequality [6]. EM is an iterative algorithm that
alternates between E(xpectation) step and M(aximization)
step. The E-step computes Q. Then Q is maximized in the
M-step. At iteration n, we obtain

E-step. Q(✓, ✓̂n�1) = E
P (S=s |X,X0,⌃; ✓̂n�1)

[lnLc

c
(✓)],

(6)

M-step. ✓̂n = argmax
✓

Q(✓, ✓̂n�1), (7)

with ✓̂n�1 the estimated parameters at iteration n � 1 and
P (S = s |X,X0,⌃; ✓̂n�1) the associated posterior dis-
tribution of S.
Step E of EM. This step consists in computing the expecta-
tion Q(✓, ✓̂n�1). Following the conditional independence
graph of the PHMC-LAR model (Fig. 1), the conditional
complete data likelihood Lc

c
can be written as a product

of marginal and conditional probabilities. We recall that
St only depends on St�1, and that Xt depends on St and
Xt�1

t�p
, hence the two conditional probabilities exhibited in

Eq. 8.

Lc
c(✓) =

NY

i=1

P (X(i) = x(i),S(i) = s(i) |X(i)
0 ; ✓)

=
NY

i=1

h
P (S(i)

1 = s(i)1 ; ✓(S))⇥

TiY

t=2

P (S(i)
t = s(i)t |S(i)

t�1 = s(i)t�1; ✓
(S))⇥

TiY

t=1

P (X(i)
t = x(i)

t | [X(i)]t�1
t�p = [x(i)]t�1

t�p,

S(i)
t = s(i)t ; ✓(X,s

(i)
t ))

�
,

(8)

with ✓(X,k) the parameters of LAR process associated with
state k, and P (X(i)

t
= x(i)

t
| [X(i)]t�1

t�p
= [x(i)]t�1

t�p
, S(i)

t
=

k; ✓(X,k)) the conditional law of X(i)
t

within k.
When the expectation in Eq. 6 is developed and Lc

c
(✓)

is substituted by its expression (Eq. 8), we show that
Q(✓, ✓̂n�1) only depends on the following probabilities

⇠(i)
t

(k, l) = P (S(i)
t�1 = k, S(i)

t
= l | [X(i)]Ti

1�p
= [x(i)]Ti

1�p
,

⌃(i); ✓̂n�1), for t = 2, . . . , Ti, 1  k, l  K.
(9)

�(i)
t

(l) = P (S(i)
t

= l | [X(i)]Ti
1�p

= [x(i)]Ti
1�p

,⌃(i); ✓̂n�1),

for t = 2, . . . , Ti, 1  l  K.
(10)

The ⇠(i)
t

terms will be used to estimate the transition ma-
trix. Intuitively, for (k, l) fixed,

P
t
⇠(i)
t

(k, l) represents the
frequency of occurrence of the two consecutive states k, l.
The �(i)

t
terms are called smoothed marginal probabili-

ties ; they will be involved in the estimation of parameters
✓(X).
The previous probabilities can be computed through an ex-
tension of the forward-backward algorithm designed to ge-
nerate the MLE estimates for HMMs [1]. This extension,
called backward-forward-backward, adds a supplementary
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step to the original algorithm in which available partial
knowledge about the state process is exploited. Further de-
tails about this algorithm can be found in our previous work
[4].
Step M of EM. At iteration n, this step consists in
maximizing Q(✓, ✓̂n�1) with respect to parameters ✓ =
(✓(S),✓(X)). Q(✓, ✓̂n�1) can be decomposed as follows

Q(✓, ✓̂n�1) = QS(✓
(S), ✓̂n�1) +QX(✓(X), ✓̂n�1),

where QS (respectively QX ) only depends on parameters
✓S (respectively ✓X ). Thus, the M-step can be split in two
maximization sub-steps defined as

✓̂(S)
n

= argmax
✓(S)

QS(✓
(S), ✓̂n�1), (11)

✓̂(X)
n

= argmax
✓(X)

QX(✓(X), ✓̂n�1). (12)

On the one hand, cancelling the first derivative of
QS(✓(S), ✓̂n�1) provides the analytical expressions of ✓̂(S)

n

â(n)
k,l

=

P
N

i=1

P
Ti

t=2 ⇠
(i)
t

(k, l)
P

N

i=1

P
Ti

t=1 �
(i)
t

(k)
, ⇡̂(n)

l
=

P
N

i=1 �
(i)
1 (l)

N
,

(13)
for 1  k, l  K, with

�(i)
1 (s) = P (S(i)

1 = s | [X(i)]Ti
1�p

= [x(i)]Ti
1�p

,⌃(i); ✓̂n�1)

=
KX

j=1

⇠(i)2 (s, j).

On the other hand, generally, it is difficult to derive the ana-
lytical expression of ✓̂(X)

n . This is the reason why we are
compelled to use a numerical optimization method (e.g., the
quasi-Newton method) to maximize QX(✓(X), ✓̂n�1).
To set the starting point of the EM algorithm, we first run
instances of EM using several vectors of p initial values
chosen at random. The MLE parameters that provide the
greatest likelihood across these multiple restarts constitute
the starting point.

4 Inference or time series segmenta-
tion

Let ✓̂ a PHMC-LAR model trained on a partially labelled
training dataset. Let x = xT

1 be an observed time series
and x0 = x0

1�p
the associated initial values. As in clas-

sical HMMs, the state process of x is unknown and in-
ference consists in finding the most likely state sequence
s⇤ = (s⇤1, . . . , s

⇤
T
) given x and x0. This is equivalent

to maximizing, with respect to s, the joint probability of
s = (s1, . . . , sT ) and x, given x0

s⇤ = argmax
s

P (S = s,X = x |X0 = x0; ✓̂)

= argmax
s

P (S = s |X = x,X0 = x0; ✓̂).
(14)

Note indeed that P (S = s,X = x |X0 = x0; ✓̂) =
P (S = s |X = x,X0 = x0; ✓̂) ⇥ P (X = x |X0 =
x0; ✓̂), and that the second term in the product does not
depend on S.
Since state sequence s can take KT different values where
K is the number of possible states, the "greedy search" me-
thod that consists in testing all possible values is extremely
costly (O(KT ) operations). Alternatively, the Viterbi algo-
rithm [7] allows to compute the optimal state sequence in
O(TK2) operations.
The Viterbi algorithm operates iteratively, following a dy-
namic programming algorithm. Let �t(l; ✓̂) the maximal li-
kelihood of subsequence (s1, . . . , st = l) that ends within
state l

�t(l; ✓̂) = max
s1,...,st�1

P (Xt

1 = xt

1, S
t�1
1 = st�1

1 , St = l |

X0 = x0; ✓̂), for t = 1, 2, . . . T.
(15)

These probabilities can be iteratively computed as follows

�1(l; ✓̂) = P (X1 = x1 |X0 = x0, S1 = l; ✓(X,l))⇥
P (S1 = l; ✓̂(S)).

(16)

�t(l; ✓̂) = max
k

h
�t�1(k; ✓̂)⇥ P (St = l |St�1 = k; ✓̂(S))

i

⇥ P (Xt = xt |Xt�1
t�p

= xt�1
t�p

, St = l; ✓(X,l)),
(17)

for t = 2, . . . , T .
Therefore, the maximal probability of the complete state se-
quence is given by max

l

�T (l; ✓̂). Accordingly, the optimal
sequence s⇤ is retrieved by backtracking as follows

s⇤
t
= argmax

l

(
�T (l; ✓̂) for t = T

�t(l; ✓̂)⇥ âl,s⇤t+1
for t = T � 1, . . . , 1

(18)

5 Application to machine health
diagnosis

In this section, we assess the added value of using par-
tial knowledge about the state process of Hidden Markov
Chains. This evaluation is carried out on realistic machine
condition data generated by the Commercial Modular Aero-
Propulsion System Simulation (CMAPSS) model [18] de-
veloped at the NASA Army Research Laboratory. Data des-
cription is provided in subsection 5.1. Subsection 5.2 pre-
sents the feature extraction procedure used in our experi-
ments. Then the generation of ground truth segmentations
is explained in subsection 5.3. Subsection 5.4 describes the
experimental setting. Finally, results are presented and dis-
cussed in Subsection 5.5.

5.1 Data description
The CMAPSS model allows to simulate realistic run-to-
failure trajectories of aircraft turbofan engines, under dif-

F. Dama, C. Sinoquet

17 CNIA@PFIA 2021



ferent operational conditions and fault modes. For each si-
mulation, the system begins in healthy state (normal func-
tioning mode) then, at some point, the system health starts
degrading and finishes by breaking down (system failure).
Besides, each trajectory is described through 3 operatio-
nal conditions (velocity, altitude and temperature) depicting
flight conditions, and 21 time series representing as many
system’s features.
The NASA dataset repository provides four CMAPSS data-
sets, with different operational conditions and fault modes
(https://ti.arc.nasa.gov/tech/dash/groups/pcoe/prognostic-
data-repository/#turbofan). Each such dataset consists of a
training dataset and test dataset. The training datasets are
composed of run-to-failure trajectories. In contrast, trajec-
tories within test datasets are stopped before system failure.
In this work, we consider the respective training datasets
of CMAPSS datasets #1 and #3 (namely train_FD001.txt
and train_FD003.txt in the repository). These sets will be
further referred to as #1 and #3, to simplify. Both latter
sets have a single operational condition, one fault mode
for dataset #1, two fault modes for dataset #3 and 100
trajectories each.

5.2 Feature extraction : machine health indi-
cator

Our model cannot be directly applied to CMAPSS trajecto-
ries which are multivariate time series of dimension 21. To
overcome this limitation, we reduce the dimension of our
data by aggregating relevant features into a single variable
called health indicator (HI) [13, 15]. HI is a useful indi-
cator of the system health, computed using the following
theoretical model

HIi(t) ⌘ 1� exp

✓
log(0.05)

0.95Ti

⇥ t

◆
, t 2 [�1,�2], (19)

where Ti is the ith trajectory length and �1 and �2 are res-
pectively set at Ti ⇥ 5% and Ti ⇥ 95% as proposed in
[13]. Note that the theoretical HI roughly decreases from
1 ("healthy") to 0 ("faulty") when t increases (notice that
the term within the exponential is negative).
Then for each trajectory, HI is modelled by a linear regres-
sion model for which the predictors are system’s features
and the response variable is the theoretical HI (Eq. 19) :

HIi(t) = ⌘(i)0 +
qX

j=1

⌘(i)
j

y(i)
t,j

+ �t, (20)

where y(i)
t

= (y(i)
t,1, . . . , y

(i)
t,q
) is the feature vector of the

ith trajectory at time-step t and ⌘(i) = (⌘(i)0 , . . . , ⌘(i)q ) are
the model parameters which can be estimated by the least
square method. �t’s are independent error terms and HIi(t)
is defined in Eq. 19.
Once parameters ⌘(i) have been estimated, HI approxima-
tions, denoted by ĤIi(y

(i)
t
, ⌘̂(i)) are computed following

the linear model (Eq. 20). In our experiments, the sub-
set of features {2, 3, 4, 7, 8, 9, 11, 12, 13, 14, 15, 17, 20, 21}
that display significant variations over time (as illustrated

(a)

(b)

FIGURE 2 Distribution of sensor measurements for the 100
trajectories within (a) training dataset #1, (b) training da-
taset #3. Data have been standardized in order to show the
same scale order across all 21 sensors

(a)

(b)

FIGURE 3 Estimated health indicator for the 100 trajecto-
ries within (a) training dataset #1, (b) training dataset #3

in Fig. 2) is considered for both datasets #1 and #3. For
dataset #3, feature 6 is added to this latter subset (see Fig.
2b). Figure 3 shows the estimated HI for the 100 trajectories
within each of training datasets #1 and #3.

5.3 Ground truth segmentation
To note, in CMAPSS trajectories, system degradation le-
vels or health states are not specified. However, we need
a "ground truth" segmentation of trajectories to both feed
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(a)

(b)

FIGURE 4 Ground truth segmentation for the 100 trajecto-
ries within (a) training dataset #1, (b) training dataset #3.
Three health states or degradation levels are considered : 1
for "healthy", 2 for "intermediate" and 3 for "faulty". Each
trajectory is assigned a specific color

PHMC-LAR with partial knowledge and validate our mo-
dels. Three health states or degradation levels are consi-
dered : 1 for "healthy", 2 for "intermediate" and 3 for
"faulty". For each trajectory, the "ground truth" segmenta-
tion is obtained by deterministically splitting the correspon-
ding health indicator time series (see Fig. 3) into 3 regimes
("healthy", "intermediate" and "faulty") where a regime is
a succession of time-steps having the same health state. In
this work, the automatic segmentation method proposed in
[14, 16] and used by [10] has been considered. This me-
thod relies on linear regression models. Figure 4 shows the
"ground truth" segmentation of the 100 trajectories within
training datasets #1 and #3. Note the high variability of
regime duration from one trajectory to another. This sug-
gests the difficulty for a model to infer the critical moments
where system health degrades.

5.4 Experimental setting
In our experiments, trajectories within file train_FD001.txt
and train_FD003.txt were split into a training dataset (60
trajectories), a validation and test datasets (20 trajectories
each). Gaussian white noises were considered and the initial
law g0 was Gaussian too. The number of states K was set to
3 and a grid of values {1, . . . , 6} was tested for the autore-
gressive order p. For each candidate model, inference per-
formance was evaluated on the validation dataset, relying
on the "ground truth" segmentations (see Fig. 4), and using
the mean percentage error (MPE) score. Then, the model
yielding the highest inference performance was identified.
Finally, the global accuracy for health state inference was

(a)

(b)

FIGURE 5 Partial knowledge about state process of the
13th trajectory within (a) training dataset #1, (b) training
dataset #3. Two windows of length 31 centered around the
switch from regime 1 to regime 2 and regime 2 to regime 3
respectively are considered. The observations outside these
windows are labelled (solid line), whereas dash line denotes
hidden states (within the windows)

assessed by computing the confusion matrix for each test
dataset.
We remind that we wish to assess the added value of using
partial knowledge about the state process of Hidden Mar-
kov Chains. Therefore, two modalities are considered :
(i) the fully unsupervised case, in which no partial know-
ledge is included, referred to as Hidden Markov Chain Li-
near Autoregressive model (HMC-LAR) ; and (ii) the semi-
supervised case denoted by PHMC-LAR. Both HMC-LAR
and PHMC-LAR models are fed with health indicator data
(see Fig. 3). Note that in (ii), partial knowledge is obtained
from the "ground truth segmentations" (see Fig. 4) of the
60 trajectories of previous traning datasets as subsequently
described. Two windows of length 31 centered around the
time-steps at which the system switches from one regime to
another are considered ; the observations outside these win-
dows are labelled (see Figure 5). Note that these windows
represent 22% to 48% of the training trajectories’ lengths
in dataset #1 against 12% to 39% in dataset #3. The rea-
ders’attention is drawn to the fact that the trajectories within
the validation and test datasets are kept fully unlabelled.

5.5 Results
Table 1 displays the MPE (Mean Percentage Error) values
computed on validation dataset, for different values of the
autoregressive order. The results show that in the fully unsu-
pervised tuning (HMC-LAR), the highest inference perfor-
mance (reflected by lowest MPE) is obtained when p = 3
for dataset #1 and p = 5 for dataset #3. However, more
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parsimonious models are selected when partial knowledge
about state process is included, since for both datasets the
best model has an autoregressive order equal to one (p = 1).
Note that for both datasets, we observe that PHMC-LAR
outperforms HMC-LAR with an inference accuracy five
times greater.

For the best HMC-LAR models (p = 3 for dataset #1 and
p = 5 for dataset #3), confusion matrices resulting from
the inference on test trajectories are presented in Table 2.
Notice that low inference accuracies are obtained for both
datasets : 39% for dataset #1 and 45% for dataset #3. The
confusion matrices show that HMC-LAR models globally
fail in identifying the three regimes since too many "heal-
thy" states are inferred as "faulty" and reversely.

Considering the best PHMC-LAR models (p = 1 for both
datasets), confusion matrices are presented in Table 3. Un-
like the fully unsupervised cases (HMC-LAR models), sta-
tisfying global accuracies are reached : 88% for dataset #1
and 89% dataset #3. Moreover, no confusion is made bet-
ween the "healthy" and "faulty" regimes. An analysis of
the transition matrices of PHMC-LAR models shows that
the system health state never steps back : in other words,
transitions "intermediate" ! "healthy", "faulty" ! "inter-
mediate" and "faulty" ! "healthy" have a null probability.
Thus, the terms located above the diagonal in the confusion
matrices represent anticipations of system health degrada-
tion (i.e., the anticipation of the transition from a health
condition to a worse one), whereas those located below the
diagonal depict delays in the detection of system health de-
gradation. Therefore, almost all inference errors are due to
anticipations of system health degradation since the confu-
sion matrices are almost upper triangular. It has to be under-
lined that in the machine health monitoring literature, health
degradation anticipation is a desirable behavior in compa-
rison with models that detect health degradation with some
delay. In a sense, this anticipation allows to prevent serious
incidents and to program maintenance operations.

p
CMAPSS dataset #1 CMAPSS dataset #3

HMC-LAR PHMC-
LAR

HMC-LAR PHMC-
LAR

1 68 ± 9 % 10 ± 5.4 % 75 ± 7.4 % 12 ± 4.4 %
2 69 ± 4.2 % 12 ± 8.1 % 73.9 ± 8.2 % 21 ± 13 %
3 59 ± 10 % 16 ± 12.5 % 73.7 ± 8.2 % 25 ± 13 %
4 71 ± 6.8 % 18 ± 11.2 % 72 ± 9.5 % 52 ± 5.1 %
5 73 ± 1.8 % 26 ± 17 % 60 ± 18.5 % 52 ± 5.2 %
6 64 ± 12 % 55 ± 4.4 % 73 ± 5.7 % 35 ± 12 %

TABLE 1 Mean percentage inference error (MPE) com-
puted on validation datasets (20 trajectories of different
lengths) for both unsupervised case (HMC-LAR) and semi-
supervised case (PHMC-LAR). p is the autoregressive or-
der. The minimum MPE values are displayed in bold

CMAPSS dataset #1
prediction

healthy intermediate faulty

gr
ou

nd
tr

ut
h healthy 1288 1 825

intermediate 697 0 437

faulty 745 4 436

CMAPSS dataset #3
prediction

healthy intermediate faulty

gr
ou

nd
tr

ut
h healthy 1551 271 625

intermediate 755 162 242

faulty 607 183 445

TABLE 2 Confusion matrices of test datasets (20 trajecto-
ries of different lengths) for the best HMC-LAR model. For
dataset #1 : p = 3 with a global accuracy equal to 39%. For
dataset #3 : p = 5 with a global accuracy equal to 45%

CMAPSS dataset #1
prediction

healthy intermediate faulty

gr
ou

nd
tr

ut
h healthy 1964 190 0

intermediate 9 815 310

faulty 0 0 1185

CMAPSS dataset #3
prediction

healthy intermediate faulty

gr
ou

nd
tr

ut
h healthy 2234 293 0

intermediate 0 914 245

faulty 0 7 1228

TABLE 3 Confusion matrices of test datasets (20 trajecto-
ries) for the best PHMC-LAR model : p = 1 for both da-
tasets, with a global accuracy equal to 88% for dataset #1
and 89% for dataset #3

6 Conclusion
In this work, we have presented a new Markov switching
autoregressive model which incorporates partial knowledge
about the state process. This partial knowledge is represen-
ted by the states observed at some random time-steps. This
model, referred to as PHMC-LAR (for Partially Hidden
Markov Chain Linear AutoRegressive) model, is a generali-
zation of the observed regime-switching models (ORSARs)
and the hidden regime-switching models (HRSARs).
In the evaluation, the inference performance of PHMC-
LAR model has been compared to that of the fully unsu-
pervised HMC-LAR (Hidden Markov Chain Linear Auto-
Regressive) model. To this end, realistic machine condition
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data available in NASA’s CMAPSS datasets has been used.
Three health states have been considered ("healthy", "in-
termediate" and "faulty") and "ground truth segmentation"
has been derived. For both models, six values of the au-
toregressive order p (from 1 to 6) have been tested. The
results show that parsimonious models (reflected by small
values of p) are selected in PHMC-LAR model. Moreover,
PHMC-LAR substantially outperforms the fully unsupervi-
sed HMC-LAR model. A further analysis of the confusion
matrices computed on test datasets shows that PHMC-LAR
is more able to anticipate the degradation of system health
than HMC-LAR. Such anticipation capability is a desirable
behavior in the literature of machine health diagnosis.
In future work, the multivariate extension of PHMC-LAR
will be considered. Such exention will allow to directly mo-
del the relevant features of CMAPSS trajectories without
any dimension reduction. On the other hand, following a
case-based reasoning approach, PHMC-LAR can be adap-
ted to failure prognostic task, which consists in predicting
the remaining useful life, that is the number of time-steps
remaining before system failure.
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