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Partial Extended Observability Certification and
Optimal Design of Moving Horizon Estimators

Mazen Alamir

Abstract— This paper addresses the observability anal-
ysis and the optimal design of observation parameters in
the presence of noisy measurements and parametric uncer-
tainties. The notion of almost !-observability is introduced
and a systematic procedure to assess its satisfaction for
a given system with a priori known measurement noise
statistics and parameter discrepancy is sketched. More-
over, the concept of observation-target quantities is intro-
duced in order to analyze the precision with which specific
chosen expressions of the state and the parameters can
be reconstructed. The overall framework is exposed and
validated through an illustrative example.

Index Terms— Nonlinear Systems, Moving-Horizon Esti-
mation, Partial Observability, Observation target, Certifica-
tion via randomized optimization.

I. INTRODUCTION

IN nowadays data-focused period, there are still many
engineering problems that require the design of state

observers in the traditional sense [8], namely those which
are based on knowledge-driven models. Indeed, data-driven
models only involve those variables for which sensors are
available on-board. Engineering problems however, involve
quite often formulations that refer to real-life variables that
are not directly accessible via sensors. Knowledge-based
models involve parameters with rather badly known values.
The lack of precise knowledge of these values added to
the measurement noise may have drastic consequences
on the quality of the reconstruction process. When facing
such situations, the available solutions can be split into
the following three categories: In the first category, only
measurement noise with zero mean is considered. The
observability is then analyzed in noise-free context using Lie-
algebra local tools [13] or thanks to structural dedicated high
gain [7] or sliding modes [10] observability assumptions. In
the second category, parametric uncertainties are considered.
Typical frameworks involve interval analysis [12], [17]
which is conducted to derive worst-case bounds on the
estimation error [2] at the price of structural assumptions
that generally involve the existence of bounding behavior
for the uncertain system [16]. The third category is related
to moving horizon estimation schemes [5], [18], [19], [21].
This approach corresponds to a very rich literature starting
from the early works [18], [20] were the foundations of this
optimization-based estimation approach have been laid in
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the deterministic setting. Since, many improving refinements
have been proposed (see [21] and the reference therein).

As far as uncertainty handling is concerned, one of the
more advanced MHE frameworks has been recently proposed
in [19] which improved a family of early works [4], [5], [14],
[22] that mainly derive a gain-bounded error between the
additive bounded disturbance term and the resulting estimation
error. The results of [19] extended the previous results to
models with non necessarily additive disturbances term via
less conservative estimation of the disturbance-to-error gain.
The positioning of the present contribution compared to the
previously cited MHE works can be summarized by the
following items:

1) As far as the estimation error bound is concerned in
MHE works, existing results are based on a worst-case
analysis via Lipschitz-like upper bounds that induce, as
acknowledged by the author of [19], too pessimistic (if not
useless) results in some cases. In the present contribution, a
different angle of attack is chosen by focusing the interest
on the computation of tight probabilistic assessment of the
estimation error excursion during the estimation process in
the presence of non vanishing uncertainties on the model’s
parameters. This is done using a formulation that enables
probabilistic certification tools to be deployed..

2) In all previous MHE works, the underlying assumption
is that the system is globally detectable in the conventional
sense. This means that the underlying paradigm is that of total
state (or extended state) detectability. The analysis of partial
reconstruction of specific functions of the problem’s variables
and parameters is not a straightforward extension and needs
new results to be worked out from scratch. By opposition,
the present contribution is totally built around the concept of
partial estimation and the numerical investigation underlines
its relevance by showing that different precision levels might
be certifiable for different estimation targets z = T (x, p)
where T returns an expression that might contain only a
part of the state, a part of the parameter vector or some
nonlinear combination of x and p such as some designed
state-feedback to cite an example. To say it shortly one would
be satisfied with the extended state/parameter vector being
non precisely reconstructible from the measurement provided
that the expression of interest z = T (x, u), called hereafter
the observation target, can be reconstructed with acceptable
precision.
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The idea of estimating a function of the system’s variable
and not the whole state is not new as it is in the heart of
the investigations regarding the so-called functional observers
(see [15], [23], [24] and the references therein). Although the
majority of the related works concern linear systems or linear
functions of the state to be reconstructed rather than the
whole state, some few works apply to nonlinear dynamics.
Almost invariably, the solutions amount at constructing a
reduced order observer that is build after exhibiting a lower
dimensional dynamics having the same dimension as the
function to be estimated. The settings are deterministic
and the underlying construction heavily relies on structural
assumptions on the mathematical equations of the model.

It is worth underlying here that this paper is not about
proposing a new numerical scheme to implement MHE. This
can be efficiently done by many available tools [6]. The
contribution aims at providing a method for the estimation of
the size of possible regions of partial indistinguishability. In
other words, when the proposed approach fires a high risk
of indistinguishability, this risk materializes regardless of
the formulation of any specific observer. More precisely,
the result of the proposed method gives a probabilistically
assessed boundary of the point-wise estimation error
should the observer be able to achieve global optimization
successfully.

Finally, it is worth mentioning that, although the proposed
framework concerns constant unknown parameters, it
obviously also fits the case of slowly varying parameters
(within the observation window).

This paper is organized as follows: First some notation
and definitions are introduced in Section II together with
basic recalls regarding the definition of Moving Horizon
Estimators (MHE). Section III introduces the concept of
ε-observability of an observation target and shows that its
satisfaction requires a robust constraints satisfaction condition.
This condition is relaxed in Section IV which introduces
the less stringent concept of almost ε-observability and
shows how this concept can be assessed using randomized
optimization frameworks. Section V proposes an illustrative
example while Section VI concludes the paper and gives
some suggestions for future investigation.

II. DEFINITIONS AND NOTATION

We consider nonlinear systems that are governed by a dynam-
ical equation of the form:

xk+1 = f(xk, uk, p) (1)

where xk ∈ X ⊂ Rnx , uk ∈ U ⊂ Rnu stand for the
values, at sampling instant k, of the state and the input vectors
respectively while p ∈ P stands for the vector of imperfectly
known parameters of the model. It is also assumed that some
vector of ny measurements (including the input) is available
that is linked to the state and the control vector through noisy
measurement, namely:

yk = h(xk, uk, p) + νk (2)

where yk ∈ Rny stands for the sensor output at instant k
which is corrupted by the noise realization νk. We assume
that one is interested in reconstructing the value of some so-
called observation-target variable:

z = T (x, p) (3)

where T : Rnx ×Rnp → Rnz is some known map. Given any
vector signal

s =

!

"#
s[1]

...
s[ns]

$

%& ∈ Rns

the forward/backward profiles of s at some instant k over some
window of length N (in terms of sampling periods) is denoted
as follows :

s+k :=
'
sk sk+1 . . . sk+N−1

(
∈
'
Rns

(N
(4)

s−k :=
'
sk−N sk−N+1 . . . sk−1

(
∈
'
Rns

(N
(5)

which is a condensed expression gathering the profiles of
all the components of s that would be denoted individually
according to:

s
[i]+
k :=

)
s
[i]
k s

[i]
k+1 . . . s

[i]
k+N−1

*
∈ RN (6)

s
[i]−
k :=

)
s
[i]
k−N s

[i]
k−N+1 . . . s

[i]
k−1

*
∈ RN (7)

Using the above notation of control profile, it is now possible
to define the future state prediction at instant k + i given the
current state xk at instant k, a given control profile u+

k ∈
UN and some vector of parameters p by using the following
notation:

(∀i ∈ {0, . . . , N}) x̂k+i = Xi(xk,u
+
k , p) (8)

which simply refers to the simulation based on (1) with xk as
initial state, u+

k as control profile and p as the parameter vector
value. The same notation is used to refer to the predicted noise
free output, namely:

(∀i ∈ {0, . . . , N}) ŷk+i = Yi(xk,u
+
k , p) (9)

Moreover, the resulting predicted output profile is simply
denoted by:

Y (xk,u
+
k , p) :='

Y0(xk,u
+
k , p) . . . YN−1(xk,u

+
k , p)

(
∈ [Rny ]N (10)

Given a candidate initial state ξ at instant k − N , an input
profile u−

k that has been applied over the previous time
interval [k − N, k) and a candidate value p̂ of parameter
vector, a predicted trajectory Y (ξ,u−

k , p̂) can be obtained and
compared to the truly measured one y−

k to define the output
prediction error profile by:

ek = y−
k − Y (ξ,u−

k , p̂) ∈
)
Rny

*N
(11)

and assuming that the input is measured so that u−
k can be

viewed as a part of y−
k , the last relation can be rewritten

shortly as follows:

ek := E(ξ,y−
k , p̂) (12)
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In order to explicitly acknowledge the presence of measure-
ment errors and parametric uncertainties, we follow here the
suggestion made in [1] which amounts at introducing a dead-
zone when evaluating the output prediction error, namely,
given an error profile e[i] on the output component i, we define
the uncertainty-aware distance-to-zero d as follows (in which
⌊r⌋+ = max{0, r}):

d(e[i], ζi) :=
+
| 1
N

N,

j=1

e
[i]
j |− ζi

-r
+

(13)

where r is an integer that shape the penalty outside the dead-
zone. r = 1 is used in the numerical investigation section.
Based on this definition, the overall output prediction penalty
is defined by:

d(e, ζ) :=

ny,

i=1

d(e[i], ζi) (14)

Gathering together equations (14) and (12), it is possible to
define at each instant k a cost function:

J(ξ, p̂ | y−
k , ζ) := d

.
E(ξ,y−

k , p̂), ζ
/

(15)

This cost function might be used in an extended MHE that
first solves the optimization problem

(ξ!, p!) = arg min
(ξ,p)∈X×P

J(ξ, p | y−
k , ζ) (16)

and then uses the solution to reconstruct the observation target
according to

ẑk = T
.
XN (ξ!,u−

k , p
!), p!

/
(17)

The raison d’être of the dead zone is to make the cost
function J equal to 0 when taken at the pair (ξ, p) that issued
the output measurment y = Y (ξ,u, p) + ν. For this to hold,
the dead zone size ζ should be taken high enough. This leads
to the following concept:

DEFINITION 1: [Dead-Zones Consistency] The vector of
dead zones sizes ζ ∈ Rny

+ is said to be consistent if for any
admissible state x ∈ X, any admissible control profile u ∈ UN

and any possible realization of the vector of parameters p ∈ P,
the following equality is satisfied for any realization ν ∈ VN

of the noise profile:

J(x, p | Y (x,u, p) + ν, ζ) = 0 (18)

which simply means that the correct pair (x, p) corresponds
to a vanishing computed cost for any noise and any possible
realization of the uncertain parameter vector p.

III. THE ε-OBSERVABILITY OF AN OBSERVATION TARGET

In the remainder of this contribution, we shall use the follow-
ing notation:

q :=

!

""#

x
p
u
ν

$

%%& =:

!

""#

qx
qp
qu
qν

$

%%& ∈ Q ⊂ X× P× UN × VN (19)

where the second equality is to be considered component-wise,
namely, x = qx, p = qp and so on. This enables to rewrite
(18) in the following more condensed form:

(∀q ∈ Q) J1(q, ζ) := J(qx, qp |Y (qx, qu, qp) + qν , ζ) = 0
(20)

Note that each element q ∈ Q completely defines a simulation
scenario with an associated measurement noise profile. The
following definition associates elements of Q that share the
same exogenous information, namely the control input profile
and the measurement noise realization:

DEFINITION 2 (COMPARABLE PAIRS): We shall say that
two elements q(1), q(2) ∈ Q are comparable if and only if they
share the components u and ν. This is denoted as follows:

q(1) ⊲⊳ q(2) ⇔ (q(1)u = q(2)u ) and (q(1)ν = q(2)ν ) (21)

Such two elements obviously define two simulations that can
differ only by the initial state and/or the vector of parameters
while the input profile and the measurement noise are the
same.
The next definition introduces the indistinguishability
relationship on the set Q :

DEFINITION 3 (INDISTINGUISHABLE PAIRS):
We shall say that an element q(2) is indistinguishable from
q(1) ∈ Q (with the notation q(1) ≡ q(2)) if and only
if it induces 0 output prediction error cost when using as
measurement the noisy output generated by q(1), namely

J(q(2)x , q(2)p |Y (q(1)x , q(1)u , w(1)
p ) + q(1)ν , ζ) = 0 (22)

meaning that (q
(2)
x , q

(2)
p ) might as well explain the noisy

measurement corresponding to the scenario q(1).

In the ideal situation, no comparable but distinct values of
q can be indistinguishable. In this case, one obtains perfect
estimation of the state AND the parameter vector. This might
be unnecessary in the case where only observation-target
variable needs to be reconstructed. That is the reason why
the following definition is introduced:

DEFINITION 4 (ε-OBSERVABILITY):
Given an observation-target z = T (x, p), we shall say that z
is ε-observable on Q if and only if

1) There exists a dead-zone size vector ζ ∈ Rny

+ that is
consistent over Q in the sense of Definition 1,

2) The following implication holds for any pair
(q(1), q(2)) ∈ Q2:

.
q(1) ⊲⊳ q(2)

/
AND

.
q(1) ≡ q(2)

/
⇒ ‖q(1)z −q(2)z ‖ ≤ ε (23)

where qz := T (qx, qp) is the observation-target variable asso-
ciated to q. In other words, only pairs with ε-distant observable
targets can be both comparable and indistinguishable.

The condition (23) can be written equivalently as follows
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thanks to (22):
.
q(1) ⊲⊳ q(2)

/
AND

.
‖q(1)z − q

(2)
z ‖ > ε

/

⇓
J(q

(2)
x , q

(2)
p |Y (q

(1)
x , q

(1)
u , q

(1)
p ) + q

(1)
ν , ζ) ∕= 0

(24)

This implication can be written in the following more compact
form:

∀q ∈ Q ∀(ξ, p) ∈ Z̄ε(q)

J(ξ, p | Y (qx, qu, qp) + qν , ζ) ∕= 0 (25)

where Z̄ε(q) is the complement of Zε(q) defined by:

Zε(q) :=
0
(ξ, p) ∈ X× P s.t. ‖T (ξ, p)− T (qx, qp)‖ ≤ ε

1

and introducing the notation:

w :=

!

#
q
ξ
p

$

& ∈ W := Q× X× P (26)

W̄(ε) :=
0
w =

!

#
q
ξ
p

$

& | (q, ξ, p) ∈ Q× Z̄ε(q)
1

(27)

J2(w, ζ) := J(ξ, p | Y (qx, qu, qp) + qν , ζ) (28)

one gets the following result:

PROPOSITION 1 (FIRST FORMULATION): An observation-
target variable z is ε-observable on Q using the deadzone
vector ζ if and only if the following conditions hold true:

1) The dead-zone sizes vector is consistent in the sense of
Definition 1, namely:

(∀q ∈ Q) J1(q, ζ) = 0 (29)

2) The ε-distinguishability property holds true, namely

(∀w ∈ W̄(ε)) J2(w, ζ) ∕= 0 (30)

where W̄(ε) is defined by (27) while J1 and J2 are defined
by (20) and (28) respectively.

Note that the condition (29) can also be written using the
notation wq that extracts the first vector q in the vector w [see
(26)] so that one can write the condition (29) as follows:

(∀w ∈ W̄(ε)) J1(wq, ζ) = 0 (31)

This enables to regroup the two conditions (29) and (30) in a
single condition that involves the parameter w, namely:

(∀w ∈ W̄(ε))

C(w, ζ) :=

2
0 if J1(wq, ζ) = 0 and J2(w, ζ) ∕= 0
1 otherwise

(32)

This enables Proposition 1 to be reformulated in a more
compact form that will be more convenient for the formulation
of the probabilistic certification step:

PROPOSITION 2 (SECOND FORMULATION): An observa-
tion target variable z is ε-observable on W with the dead-zone
vector ζ if and only if the following condition holds true:

(∀w ∈ W̄(ε)) C(w, ζ) = 0 (33)

For technical reasons, we need to perform a last transformation
by observing that the condition (30) that concerns only those
values of w that belong to W̄(ε) can be transformed into a
condition on all possible values of w ∈ W := Q× X× P by
writing

(∀w ∈ W) g(w, ε, ζ) = 0

where

g(w, ε, ζ) :=3
45

46

0 if J1(wq, ζ) = 0 and w /∈ W̄(ε)

0 if J1(wq, ζ) = 0 and
.
w ∈ W̄(ε) and J2(w, ζ) ∕= 0

/

1 otherwise
(34)

Note that in above formulation the pair defined by θ := (ε, ζ)
is viewed as a design parameter vector for the probabilistic
certification setting. The same notation θε = ε and θζ = ζ
will also be used to invoke the individual components of this
design vector. The above notation enables to formulate the
final form of the ε-observability formulation:

PROPOSITION 3 (FINAL FORMULATION): The
observation target is ε-observable on W with the dead-
zone vector ζ if and only if the pair θ = (ε, ζ) satisfies the
following condition:

(∀w ∈ W) g(w, θ) = 0 (35)

The condition (35) is called a robust constraints satisfaction
condition as the satisfaction of the constraint g(w, θ) = 0 is
required for all possible realizations of the argument w and
this, regardless of its probability of occurrence. This drawback
is handled by the probabilistic certification framework leading
to the concept of η-almost ε-observability which is introduced
in the following section.

IV. THE η-ALMOST ε-OBSERVABILITY

In order to avoid these difficulties and to come with a realistic
assessment of the observability, the following less stringent
concept of observability is introduced:

DEFINITION 5: [η-Almost ε-observability] Given a prede-
fined observation-target variable z, given a small η ∈ (0, 1)
and assuming some probability distribution W governing
the dispersion of the context parameter w we say that the
observation target z is η-almost ε-observable if and only if
there is a design parameter θ = (ε, ζ) such that the following
inequality holds true:

PrW
)
g(·, θ) ∕= 0

*
≤ η (36)

meaning that the ε-observability condition (35) is satisfied with
a high probability (1-η).

Although the formulation of (36) is less stringent that (35),
it is still difficult to manipulate. That is why probabilistic
certification approaches have been developed [3], [9] which
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introduces a SECOND STEP consisting in approximating (36)
via numerical averaging over a high number Ns(η, δ,m) of
sampled realizations of the stochastic variable w. This number
Ns(η, δ,m) depends on the previously introduced precision η,
a parameter δ ∈ (0, 1) representing the confidence with which
[namely with probability 1-δ], the certification result can be
stated and the number of accepted failures among the drawn
Ns(η, δ,m) samples, namely:

Ns(δ,η,m),

i=1

g(w(i), θ) ≤ m (37)

Based on the above notation, the probabilistic certification
of the ε-observability concept is given by the following
proposition [2]:

PROPOSITION 4 (CERTIFICATION OF ε-OBSERVABILITY):
Consider the following setting’s components:

• A given discrete set Θ ⊂ R2
+ containing nΘ values of

the design parameter θ := (ε, ζ).
• A certification confidence parameter δ ∈ (0, 1)
• A certification precision parameter η ∈ (0, 1)
• A maximum number of failures m ∈ N∗
• An integer Ns satisfying:

Ns ≥
1

η

)
m+ ln(

nΘ

δ
) + (2m ln(

nΘ

δ
))

1
2

*
(38)

• Ns realizations {w(i)}Ns
i=1 of the vector w drawn ran-

domly according to W inside W.
If there is an element θ! = (ε!, ζ!) ∈ Θ such that the
following inequality holds true:

Ns,

i=1

g(w(i), θ!) ≤ m (39)

Then the condition

PrW
.
g(·, θ!) ∕= 0

/
≤ η (40)

is satisfied with a probability greater than 1−δ. In other words,
if the condition (39) holds for Ns satisfying (38) then the
observation target is η-almost ε!-observable in the sense of
Definition 5.

Based on the above discussion, the randomized optimization
framework amounts at solving:

min
θ∈Θ

)
cost(θ)

*
under

Ns,

i=1

g(w(i), θ) ≤ m (41)

where Ns is defined by (38). In our case, the cost function
in (41) that is defined in terms of the decision variable θ :=
(ε, ζ) is obviously given by: cost(θ) := ε since the objective
is to get a certification results with the lowest state estimation
error on the observation target variable while ζ is simply a
design parameter of the MHE. Before we examine a specific
illustrative example, some general comments and discussion is
proposed relative to different aspects of the implementation.

A. The design set
For each considered configurations of sampling statistics,

Ns samples are drawn with Ns satisfying the inequality (38).
The probabilistic certification requires finding θ! = (ε∗, ζ∗)
such that the inequality (39) holds over the set of sampled
w(i), except at most m instances, where θ! belongs to a before
hand defined discrete set Θ of cardinality nΘ. In what follows
the structure of the set of design parameter Θ is taken of the
form:

Θ := L(σε, σ̄ε, nε)× L(σζ , σ̄ζ , nζ) (42)

where L(σ, σ̄, n) is the set of n logarithmically uniformly
spaced numbers, namely1:

L(σ, σ̄, n) = logspace(σ, σ̄, n)

:=
0
10ri | ri = σ +

(σ̄ − σ)i

n− 1
i ∈ {0, . . . , n− 1}

1

This obviously leads to a cardinality nΘ = nεnζ

B. Implementation and complexity analysis
It is shown shortly that the specific observability problem
leads to a specific complexity analysis but in a more general
settings of (41), since we are using a discrete set Θ of
admissible values of θ, the worst case analysis involves a
number of simulations that is equal to NsnΘ = Nsnεnζ

simulations which corresponds to an exhaustive search. For
the specific certification problem of almost ε-observability, it
turns out that the structure of the constraint function g(w, θ)
takes the following form g(w, θ) = G(e(w), θ) where e is
the output prediction error before dead-zone clipping while
G is a very cheap map that mainly consists in clipping
followed by conditional summation over the resulting profiles.
Consequently, an exhaustive search is more affordable than
in the general case since the computation consists in three
successive steps which are:

1) Simulating the Ns scenarios using the set {w(i)}Ns
i=1

sampled instances to get the set

{e(i) := e(w(i))}Ns
i=1

2) Computing for each θ ∈ Θ the resulting cost and
constraints for each e(i) using G(e(i), θ)

3) Select among all values of θ satisfying the constraints
the one that corresponds to the lowest ε = θ1.

The whole certification framework is summarized in Algo-
rithm 1.

V. ILLUSTRATIVE EXAMPLE

Consider the example of the nonlinear continuous stirred-tank
reactor with parallel reaction R → (P1, P2) [11]: that can be
described by the following set of dimensionless energy and
material balances:

ẋ1 = 1− p1x
2
1e

−1/x3 − p2e
−p3/x3 − x1 (43)

ẋ2 = p1x− 12e−1/x3 − x2 (44)
ẋ3 = u− x3 (45)

1As an example, L(−2, 0, 5) ≈ {0.01, 0.032, 0.1, 0.32, 1.]}
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Algorithm 1 The certification algorithm
1: Given:

• The maps f and h ⊲ [see (1) and (2))
• η, δ,m ⊲ Certification parameters [see (38)]
• X,P,U,V ⊲ Working sets
• σε, σ̄ε,σζ , σ̄ζ , nε, nζ ⊲ Design Set parameters (42)
• Sampling rule W on W = Q× X× P

2: nΘ ← nε · nζ ⊲ Cardinality of the design set Θ
3: Compute Θ := {θ(j)}nΘ

j=1 by (42) in alphabetic order
4: Ns ← Ns(δ, η,m, nΘ) by (38) ⊲ Number of scenarios
5: Generate Ns scenarios inputs {w(i)}Ns

i=1 using W
6: for i ∈ {1, . . . , Ns} do
7: Compute e(i) ⊲ non clipped error for w(i)

8: end for
9: success ← False ⊲ No solution θ! found yet

10: for j ∈ {1, . . . , nΘ} do
11: nb failures ←

7Ns

i=1 g(w
(i), θ(j))

12: if nb failures≤ m then
13: success ← True ⊲ Optimal solution found
14: θ! ← θ(j). Break. ⊲ Stop the loop
15: end if
16: end for
17: Output: If success return θ!

where x1 and x2 represent the concentrations of R and P1

while x3 stands for the temperature of the mixture in the reac-
tor. P2 represents the waste product. This reactor is controlled
by the manipulated variable u ∈ U := [0.049, 0.449] (which
represents the reaction temperature) in order to maximize the
production of x2 = P1. Note that the above dynamics involves
np = 3 parameters p1, p2 and p3 whose nominal values are
commonly considered to be pnom = (104, 4 × 102, 0.55). It
is assumed that x2 is measured together with u while x1 and
x3 has to be estimated by the observer. The above settings is
applied with the following definition of the subset X ⊂ R3:

X := [0, 0.6]× [0, 0.3]× [0.05, 0.2]

which contains realistic evolutions of the state during
realistic operational context. The discrete design
set Θ containing the candidate values of the pair
(ε, ζ) ∈ {10−4, . . . , 1}×{10−4, . . . , 10−2} that are uniformly
distributed on a lorarithmic scale leading to a cardinality
nΘ = 200.

In order to completely define the statistics W , we need
to define the sampling rules of all the sets involved in the
definition of W, namely, X, P, U and V. The choices used
in the numerical investigation of this paper are defined as
follows: Regarding the state, a uniform distribution over the
hypercube X. As for P, two possibilities are investigated,
namely: A uniform distribution over P or a Gaussian
distribution around the nominal value. Two possibilities
are also investigated regarding the control sequences set
UN : A uniform distribution over UN or a truncated Fourier
series projected into the admissible set. Finally, the noise
profile realizations have been generated using the uniform

distribution over [−ν̄,+ν̄]. Three observation-targets are
investigated which are z1 = x, z2 = x1 or z3 = x3.

A. Results

Different aspects are successively examined in terms of
their impact on the certification results. The results are
shown through data frames in which the signification of
the columns are as follows: eps1, eps2, eps3: The certified
reconstruction precision ε on z1, z2 and z3 respectively.
zeta1, zeta2, zeta3: The optimal computed dead-zone sizes.
More precisely (eps1, zeta1), (eps2, zeta2) and (eps3, zeta3):
The solutions of (41) when the observation-target variable is
z1, z2 or z3 respectively. N: The observation horizon. noise:
The noise level ν̄ mentioned above. rho: The size ρ of the
hyper-box as invoked in when the uniform distribution of the
parameters is used (This corresponds to the value uniform in
the column entitled p mode).std p. std: used in the gaussian
distribution of the parameters around the nominal values.
(This corresponds to the value gaussian in the column entitled
p mode). u mode. The type of input used in the certification
(can be Fourier or rand).

Impact of the observation horizon. Figure 1 shows that
one needs to use N = 20 in order to achieve the certification
with the lowest values ε = 10−4 considered in the design set
Θ over the three observation-target variables zi, i = 1, 2, 3.
Otherwise, indistinguishability might occur.

Impact of the measurement noise. Starting from the last
setting of Figure 1, the noise level is increased from 0.001 to
0.003. This leads to a sensitive degradation in the certifiable
reconstruction precision. Figure 2 shows that by increasing
the observation horizon up to N = 100 it is possible to
recover the levels of precision of the second setting of Figure
1 which was achievable with N = 10 and the previous level
(0.001) of the noise. This clearly shows that the higher the
noise is the longer the observation horizon should be to
achieve the same level of certifiable reconstruction precision.

Impact of the parametric uncertainty level and statistics.
The comparison between the first two lines of Figure 3
shows that the configuration with uniform distribution of the
parameter vector with a level ρ = 0.05 is more inconvenient
to certifiable reconstruction precision than the gaussian
distribution with std = 0.2.

Impact of the input. In the previous results, the control
profile was systematically taken to be a randomly sampled
truncated Fourier series. Figure 4 shows the results for
uniformly randomly generated profiles inside the admissible
set [0.049, 0.449]. It can be observed by comparing the first
lines of Figures 3 and 4 that random profiles seem to enhance
the observability at least for the setting that is common to
these two lines.

Impact of the certification precision parameter. Figure 5
shows how the results change when the targeted precision
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Fig. 1. Impact of the observation horizon on observability.

Fig. 2. Impact of the measurement noise level on observability.

Fig. 3. Impact of the parameter uncertainties level and distribution on observability.

Fig. 4. Checking observability with random input.

η of the probabilistic certification is degraded. As expected,
one can see that under the settings of this figure (the same
for all values of η), a certification precision of η = 10−3

seems to lead to a certifiable upper bounds on the estimation
errors on the observation-target variables which are quite
high (roughly useless given the definition of the set X). This
is obviously due to the high level of parameter dispersion
std = 0.3. The certifiable reconstruction error decreases when
η is increased meaning that the part of the pairs over which
the reported reconstruction error are guaranteed is a smaller
set of admissible pairs. For instance, the last line of Figure
5 indicates that up to 5% of the samples correspond to the
presence of indistinguishable pairs. For the remaining 95% of
the cases, an almost zero reconstruction error can be certified
(provided that the optimization problem is correctly solved).

B. Computation times and scalability

As it has been mentioned in Section IV-B, the computation
time is the sum of the CPU times needed for two successive
tasks, namely:

• dt1: the time needed to generate the scenarios
• dt2: the time needed to find the optimal design parameter.

These times are mainly impacted by the following parameters:
1) The number of scenarios to be simulated which linearly
affects dt1 but not dt2.
2) The time needed to simulate a single scenario which is for

a given system depends on the observation horizon N that
linearly impacts the CPU time dt1 when fixed step integration
scheme is used to integrate ODE’s models.
3) The search algorithm that is adopted to find the optimal
design parameter. In the above computation, a simple
alphabetic search is adopted with increasing ε = θ1.

Note that the formulae (38) does not depend on the
state or the parameter vector’s dimension. This means that the
size of the system and the number of its uncertain parameters
do not lead to an exponential increase in the computation
time, only the simulation time would affect linearly the
computation time of the certification scheme. Note also that
both nΘ and δ appears logarithmically in the expression
(38). This same expression shows clearly that increasing the
confidence of the certification be reducing δ linearly increases
the number of scenarios.

As far as the example is concerned, Figure 6 shows
the computation times for the certification scheme as a
function of the observation horizon or as a function of
the certification precision η. The certification confidence
parameter δ = 0.001 and the number of scenarios with
failures m = 10 are used. Note how the CPU time for the
second task (optimizing the design parameter) decreases with
the observation horizon as the number of values to be visited
(in alphabetic order) is reduced because of the observability
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Fig. 5. Impact of the precision η required in the probabilistic certification.

Fig. 6. Computation times using δ = 0.001, m = 10. (left) CPU (sec)
versus the observation horizon N for η = 0.01. (right) CPU (sec) versus
η for an observation horizon of N = 20.

gained by the use of higher observation horizon.

VI. CONCLUSION AND FUTURE POSSIBLE
INVESTIGATION

This paper proposes a general scalable scheme for the
analysis of observability and parameter reconstruction in the
context of nonlinear dynamical systems that are subjected to
parametric uncertainties and measurement noise. The observ-
ability is taken in a more general sense than the standard
(extended) observability commonly used in the sense that it
is the possibility and the precision to which it is possible
to reconstruct specific expressions of the state/parameter that
can be investigated by the proposed scheme. A possible
continuation of the present work concerns the investigation
of the regions of the space of state and parameters where
the certification constraint does not hold leading to degraded
certification results. This can be an important step in the
analysis since these regions of the space might have been
wrongly included while they are obviously to be excluded by
the very definition of the operational space of the system.
In such cases, these regions should be removed and the
computation re-done in order to come out with more consistent
results. Another undergoing work consists in applying the
proposed scheme to standard models that are widely used in
control and analysis of biological systems (diabetes, cancer,
HIV, pandemics propagation models, etc) since these systems
are by nature defined up to the knowledge of a high number
of highly uncertain parameters.

REFERENCES

[1] M. Alamir, J. S. Welsh, and G. C. Goodwin. Redundancy versus multiple
starting points in nonlinear system related inverse problems. Automatica,
45(4):1052 – 1057, 2009.

[2] T. Alamo, J.M. Bravo, and E.F. Camacho. Guaranteed state estimation
by zonotopes. Automatica, 41(6):1035 – 1043, 2005.

[3] T. Alamo, R. Tempo, and E.F. Camacho. Randomized strategies for
probabilistic solutions of uncertain feasibility and optimization prob-
lems. Automatic Control, IEEE Transactions on, 54(11):2545–2559,
Nov 2009.

[4] A. Alessandri, M. Baglieto, G. Battistelli, and V. Zavala. Advances in
moving-horizon estimation for nonlinear systems. In Proceedings of the
IEEE Conference on Decision and Control, pages 5681–5688, 2010.

[5] A. Alessandri, M. Baglietto, and G. Battistelli. Moving-horizon state
estimation for nonlinear discrete-time systems: New stability results and
approximation schemes. Automatica, 44:1753–1765, 2008.

[6] Gillis J. Horn G. et al Andersson, J.A.E. Casadi: a software framework
for nonlinear optimization and optimal control. Journal of Theoretical
Biology, 384:59 – 69, 2015.

[7] D. Astolfi and L. Marconi. A high-gain nonlinear observer with limited
gain power. IEEE Transactions on Automatic Control, 60(11):3059–
3064, 2015.
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state estimation. In Frank Allgöwer and Alex Zheng, editors, Nonlinear
Model Predictive Control, pages 45–69, Basel, 2000. Birkhäuser Basel.
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