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We report the observation of gravity-capillary waves on a torus of fluid. By means of an original
technique, a stable torus is achieved by depositing water on a superhydrophobic groove with a shallow
wedge-shaped channel running along its perimeter. Using a spatio-temporal optical measurement,
we report the full dispersion relation of azimuthal waves propagating along the inner and outer torus
borders, highlighting several branches modeled as varicose, sinuous and sloshing modes. Standing
azimuthal waves are also studied leading to polygon-like patterns arising on the two torus borders
with a number of sides different when a tunable decoupling of the two interfaces occurs. The
quantized nature of the dispersion relation is also evidenced.

Introduction.— Vortex rings or toroidal droplets are
ubiquitous in nature [1–9], but they are unstable. On flat
surfaces, they break up into droplets or close their central
hole [10–15]. Generating stable tori of fluid thus remains
a formidable challenge. It can nevertheless be achieved
in toroidal plasma [16, 17], in biophysics [18], or in fluid
mechanics by using an unwetting liquid at the periphery
of a cylinder [19], by injecting a liquid within a rotating
fluid [11, 20], or by levitating a liquid over its vapor film
(Leidenfrost effect) on particular substrates [21, 22].

Due to its periodic boundary condition, a stable torus
of fluid is a good experimental system to study the wave
propagation in curved and periodic media. For hydrody-
namic waves, the curved conditions have been achieved
experimentally only for spherical-liquid shells [23–25],
whereas periodic conditions in planar geometry can be
reached (e.g. in an annular water tank [26, 27]), as well
as in curved geometry but without periodicity (e.g. along
the border of a liquid cylinder [28, 29]). In this last case,
the wave dispersion relation found experimentally [28, 29]
and theoretically [30–32] differs from that in planar ge-
ometry [33]. For a fluid torus, the dispersion relation of
waves along the inner and outer torus borders as well as
their interaction, are still unreported to our knowledge,
the only existing experiment [19] and the theoretical pre-
dictions [19, 22] being performed with strong torus con-
straints.

Here, we report an original experimental technique
to create a stable torus of liquid moving almost com-
pletely unconstrained. By means of a simultaneous space
and time resolved measurement, we highlight the dis-
persion relation of azimuthal waves propagating along
the torus borders as well as their interaction. Sev-
eral branches occur with a complex structure reminis-
cent of forbidden gaps in periodic media in condensed-
matter physics [34, 35]. Standing waves are also studied
showing polygon-like patterns. Our system with these
particular boundary conditions (periodic, curved and
one-dimensional) including different propagation modes
could evidence nonlinear waves, solitons or wave turbu-

FIG. 1. Top: Cut-out of the experimental setup showing
the water torus on the groove. Bottom: Profile of the setup
including the teflon plug connected to a shaker and camera
centered above the circular plate.

lence [36, 37] in this geometry.

Experimental setup.— A circular duralumin sub-
strate (19 cm in diameter) is machined to have an ax-
isymmetric wedge-shaped groove, with angle α = 4.5◦ to
the horizontal, running along its perimeter as shown in
Fig. 1. The substrate is coated with a superhydropho-
bic spray providing a liquid/substrate contact angle of
160 − 170◦ [38, 39]. The gentle substrate inclination of
angle α constrains the liquid (distilled water) to move
along the sloped surface, thus preventing the torus from
closing its hole, and experiencing a reduced gravitational
acceleration geff = g sinα with g = 9.81 m · s−2.

After being deposited on the substrate, we excite the
the borders of the torus using a teflon cylinder connected
to a shaker oscillating vertically as shown in Fig. 1. For a
given fluid volume, a frequency-sweep forcing is applied,
i.e., its frequency f is varied linearly in time over 2 min
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FIG. 2. Dispersion relation η̃(kθ, ω) of azimuthal waves along the (a) inner and (b) outer borders of a torus of width W = 3.2 cm,
obtained using sweep-sine forcing. The energy is distributed along distinct branches corresponding to different propagation
modes. The S branch along the inner border (a) is more pronounced than the V branch, in contrast with the outer border (b).
The sloshing Sl i branches are the same for both borders.

from 0 to 20 Hz. The typical amplitude of vibrations is
3 mm. A camera located above the torus records its inter-
face displacements. Using a border detection algorithm
written using OpenCV [40], we extract from the video the
horizontal displacements, η(θ, t), of the two borders with
respect to their stationary positions. The procedure is
repeated by adding water to change the width, W , of the
torus in the range 1.2–3.2 cm, the center of the section
remaining at the groove radius Rc = 7 cm. These values
correspond to torus aspect ratios ξ = (2Rc/W ) from 4.3
to 11.7. For each volume, we perform a 2D fast Fourier
transform on the inner- and outer-border signals, mov-
ing from real space η(θ, t) to Fourier space η̃(kθ, ω). This
leads to the dispersion relation, ω(kθ), of the azimuthal
waves, ω being their angular frequency and kθ their az-
imuthal wave number, that takes integer values n.

Dispersion relation.— As the torus is excited, linear
waves propagate along its borders (see video in Supp.
Mat. [41]). We observe that the injected energy is redis-
tributed in different regions of the Fourier space, local-
ized around several branches (see Fig. 2a for the inner,
and Fig. 2b for the outer border). The dimensionless
wave number kθ is used to compare the wave spectra
along both borders. It takes discrete values because the
system is periodic. We will set Ri = Rc − W/2 and
Ro = Rc +W/2 (see Fig. 1).

The different branches observed in Fig. 2 correspond to
different modes of wave propagation. The branch pass-
ing through zero, denoted V and visible in both spec-
tra, is the dispersive branch stemming from the usual
gravity-capillary waves (see below). The first branch
starting above zero, marked S, has a cutoff frequency

ωS0 ≡ ωS(kθ = 0) which depends on the torus volume
(see below). Other branches (denoted Sl i with i = 1,
2, 3 or 4) correspond to sloshing modes clearly different
from the V and S branches. In Fig. 3, we superim-
pose the two spectra of Fig. 2 to better understand their
structures. All these modes are described below in detail.

V mode.— The V branch is well described by a dis-
persion relation of gravity-capillary waves (see solid line
in Fig. 3) of the form

ω2
V =

(
geff

kθ
Ro

+
σeff

ρ

k3
θ

R3
o

)
tanh

(
kθWRo

2R2
c

)
(1)

with ρ = 1000 kg/m3 the fluid density, geff = g sinα '
0.77 m s−2, and σeff = 60 mN m−1, an effective sur-
face tension inferred by fitting the data (regardless of
W ∈ [1.6, 3.2] cm); geff and σeff are notably linked to the
geometry of the substrate [32]. For kθ → 0, Eq. (1) reads
ωV = Ωϕkθ. The angular phase velocity of gravity waves
Ωϕ is inferred by fitting the V branch in Figs. 2 or 3 near
kθ = 0.

By changing the torus volume, we infer Ωϕ ≡
[ωV (kθ)/kθ]|kθ=0 as a function of the width W , on the
inner and outer borders separately, as shown in the top
inset of Fig. 4. Ωϕ is experimentally found to match for
both borders at a given volume, and to scale as W 1/2. It
is well described (see solid line in top inset of Fig. 4) by

Ωϕ =

√
geffW/2

Rc
(2)

with no fitting parameter, in agreement with Eq. (1)
when kθ → 0.
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FIG. 3. Superimposition of the two spectra of Fig. 2, as well
as the predicted branches. V branch corresponds to Eq. (1)
(solid line), S branch to Eqs. (3) and (4) (dashed line), and
(Sli) branches to Eq. (5) (dot-dashed lines). W = 3.2 cm.

S mode.— The S branch has a very different behav-
ior, intersecting the upper sloshing branches (see Fig. 3).
The S branch is found to display a pure capillary regime
(i.e., ω2 ∼ k3

θ) for kθ � 0, and to be well described (see
dashed line in Fig. 3) by

ω2
S =

(
ωS0
)2

+
σeff

ρ

(
kθ
Ri

)3

. (3)

with no fitting parameter, ωS0 being the cutoff frequency.
The S mode being more significant for the inner border
(see Fig. 2), it is thus consistent that Eq. (3) involves
the inner radius Ri as a length scale. Moreover, ωS0 is
experimentally found to be dependent on the torus width
as W−1/2 (see main Fig. 4 and bottom inset). Since this
cutoff corresponds to the motion of the center of mass of
the torus section, we model it as (see Supp. Mat. [41])

ωS0 =
π

2

√
g sin(2α)

2W
(4)

Eq. (4) is found in good agreement with the data with
no fitting parameter (see dashed line in main Fig. 4 and
bottom inset).

Sloshing modes.— The Sli branches in Fig. 3 are
ascribed to sloshing modes driven by gravity. These
branches are well described (see dot-dashed lines in
Fig. 3) by

ω2
Sli =

(
ω

(i)
0

)2

+ c2
(
kθ
Rc

)2

, (5)

with c =
√
geffRc, and ω

(i)
0 the cutoff frequencies at

kθ = 0. These nondispersive sloshing modes (ω2 ∼ k2
θ)

for kθ � 0 differ from theoretical results on sloshing in

0 1 32

6

8

10

12

14

ω
S 0

[ra
d·

s−
1 ]

0 1
log(W)

2

3

4

5

lo
g(
ω

(i) 0
)

ωS0

ω
ω2 

0 
1 
0

ω3
0

  1 1.5
W1/2 [cm1/2]

0.8

   1

1.2

1.4

Ω
[ra

d·
s−

1 ]

In
Out

 Sinuous
mode

Varicose
mode

W [cm]

FIG. 4. Cutoff frequency ωS
0 of the sinuous S branch versus

the torus width W . Solid line displays Eq. (4) with no fitting
parameter. Bottom inset: Log-log plot of the cutoff frequen-
cies versus W for sinuous and sloshing branches: ωS

0 ∝W−1/2

for the S branch, and ω
(i)
0 ∝W−1 for all Sli sloshing branches.

Top inset: Angular phase velocity Ω of the outer (blue) and
inner (orange) borders for different W (inferred from the V
branch). The solid line corresponds to Eq. (2). Insets: Sinu-
ous and varicose mode schemes for a slim torus.

toroidal containers [42] or in non-rectangular ones [43].

Moreover, the cutoffs are found to scale as ω
(i)
0 ∼ W−1

(see bottom inset of Fig. 4), and are well described (see

solid lines) by ω
(i)
0 = M(i)

√
geffRc/W with M(i) a func-

tion computed numerically (see Supp. Mat. [41]).

Thin torus.— For slim tori, the inner and outer bor-
der motions interact. The S and V branches are then
visible both on the inner and outer border spectra (see
Supp. Mat. [41]). The V branch corresponds to a
varicose mode, i.e., waves propagating along both bor-
ders in anti-phase motion (see inset of Fig. 4). The S
branch is related to a sinuous mode (also called zigzag
mode [44, 45]) for which waves on both borders are in-
phase (see inset of Fig. 4). Indeed, by summing (resp.
subtracting) signals of the outer and inner borders and
taking the spectrum of the resulting signal, the sinuous
(resp. varicose) branch in the total spectrum is removed,
as expected for in-phase (resp. anti-phase) motions. For
wide tori, interaction between the two borders vanishes
for almost all kθ, and these modes are no longer phase
related. The wide torus criterion is W > 2R2

c/(kθRo),
from Eq. (1).

Polygons.— We now force the torus at a fixed fre-
quency, f , to generate standing azimuthal waves along
both borders of the torus. The torus boundary condition
being periodic, the wave dispersion relation is quantized
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(kθ is an integer). This quantization is studied more
closely here, as well as the coupling between the outer
and inner torus borders.

We consider two different torus volumes, a slim one
(W = 1.5 cm), and a wider one (W = 3 cm). For each
f , a short video of the torus is taken (see Supp. Mat.
[41]). Once the standing wave regime is established, a
polygonal pattern is observed (see inset of Fig. 5a). We
then measure the number n of sides of the pattern. By
varying f ∈ [0.8, 3] Hz, we plot n as a function of f .
In the slim case, n is found to be the same for both the
inner and outer borders within this frequency range (see
inset of Fig. 5b). The maximal number of sides that is
possible to observe can be predicted. It occurs when the
wavelength is of the order of the effective capillary length,
i.e., λ = `c =

√
σeff/(ρgeff) ≈ 8 mm. For Ro = 8.5

cm, the maximal number is given by nm = 2πRo/`c =
67. Note that such azimuthal patterns were previously
observed up to n = 25, but only along the outer border
of a torus [19].

The measurements are repeated for a wider torus
where the interaction between both borders is weak. Fig-
ure 5b shows the superimposition of the outer and inner
border wave spectra together with the number of sides n
for a given forcing frequency f . For both borders, they
are the same and follow the V branch, up to a given
frequency (f ≤ 1.2 Hz). Once f is large enough, n be-
comes different on the two borders: the number n for
the outer border (�-symbol) keeps on following the V -
branch, while for the inner border (+-symbol), n switches
to the upper S -branch. This effect is due to a decoupling
between the two interfaces. For the slim torus, energy on
the inner and outer borders is distributed on both S and
V branches (see Supp. Mat. [41]), and n matches only
the V branch as a varicose mode (see inset of Fig. 5b).
For the wide torus, the inner border localizes its energy
much more on the S branch (see Figs. 2a) whereas the
energy on the outer border is mainly distributed on the
V branch (see Figs. 2b). Except for large scales, i.e.,
kθ ≤ 2R2

c/(WRi) or kθ ≤ 6 for W = 3 cm, the two
borders are decoupled (see main Fig. 5b).

Conclusion.— We developed an original technique
to create a stable torus of fluid moving almost com-
pletely unconstrained, and offering a system with atyp-
ical boundary conditions, i.e., periodic, curved and one-
dimensional. We reported direct measurements of the
dispersion relation of azimuthal waves propagating along
the boundaries of this stable torus of fluid. The disper-
sion relation is quantized since the periodicity induces a
wave number selection for a given forcing frequency band.
The wave energy distribution in Fourier space is complex
and exhibits several modes modeled as varicose, sinuous
or sloshing ones. In the future, this new system could
highlight nonlinear phenomena such as nonlinear waves
and solitons in curved geometry. It could also address
the role of finite-system size effects in wave turbulence
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FIG. 5. (a) Polygonal patterns generated as standing waves
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n = 12 (dodecagon). Forcing frequency f = 2.5 Hz. W = 3
cm. Torus is colored in magenta. (b) Number of sides n of
the polygonal pattern on the outer (�) and inner (+) border
of a wide torus (W = 3 cm) for different f , together with the
superimposed dispersion relations. For f ≥ 1.2 Hz, the two
borders decouple and n differs on the two borders: the outer
n keeps following the V branch, while the inner n switches to
the S branch. Inset: Same for a slim torus (W = 1.5 cm): n
on both borders matches for all f .

[36, 37, 46], as well as the coupling of waves propagating
on two curved interfaces [45, 47].
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