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Abstract

The application of supervised deep learning methods in digital pathology is limited due
to their sensitivity to domain shift. Digital Pathology is an area prone to high variability
due to many sources, including the common practice of evaluating several consecutive
tissue sections stained with different staining protocols. Obtaining labels for each stain
is very expensive and time consuming as it requires a high level of domain knowledge.
In this article, we propose an unsupervised augmentation approach based on adversarial
image-to-image translation, which facilitates the training of stain invariant supervised
convolutional neural networks. By training the network on one commonly used staining
modality and applying it to images that include corresponding, but differently stained,
tissue structures, the presented method demonstrates significant improvements over other
approaches. These benefits are illustrated in the problem of glomeruli segmentation in
seven different staining modalities (PAS, Jones H&E, CD68, Sirius Red, CD34, H&E and
CD3) and analysis of the learned representations demonstrate their stain invariance.

Keywords: deep convolutional networks, image-to-image translation, segmentation,
stain invariance

1. Introduction

The introduction of Whole Slide Imaging (WSI) scanners enables the production
of huge amounts of histological image data. A crucial step in the tissue preparation
process is staining, which consists of dyeing the tissue slices with a specific stain in
order to highlight internal structures when viewed under a microscope. Image datasets
in digital pathology often consist of (nearly consecutive) tissue slides stained differently,
each staining providing specific morphological information. As each staining highlights
different components of the tissue, even consecutive sections largely representing almost
identical anatomical structures can take on very different appearances, see Figure 1.
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Preprint submitted to Neurocomputing May 9, 2021

© 2021 published by Elsevier. This manuscript is made available under the CC BY NC user license
https://creativecommons.org/licenses/by-nc/4.0/

Version of Record: https://www.sciencedirect.com/science/article/pii/S0925231221010390
Manuscript_324a29cb58f66179f25cb5ce4f1ab9e0

https://www.elsevier.com/open-access/userlicense/1.0/
https://www.sciencedirect.com/science/article/pii/S0925231221010390
https://creativecommons.org/licenses/by-nc/4.0/
https://www.sciencedirect.com/science/article/pii/S0925231221010390


108 µm

(a) Periodic Acid Schiff (PAS)
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(b) CD3

108 µm

(c) Sirius Red

Figure 1: An example of three consecutive WSIs of a kidney nephrectomy sample with three common
stains. Each staining provides different information on the tissue: general structural information in PAS,
distribution of T lymphocytes in CD3, specific structures such as collagen or muscular fibres in Sirius
Red.

On the other hand, the staining process itself is prone to high variability due to inter-
subject differences, the staining procedure in a specific lab, or scanner characteristics,
leading to different appearances of the tissues coloured with the same stain [25]. The
high variability between different stains as well as within each stain in the appearance of
digital histological images affects the performance of machine learning algorithms when
used for automatic WSI analysis [45].

In specific applications such as the detection or segmentation of objects that maintain
morphological consistency across stains (e.g. nuclei, glomeruli, etc), stain variability could
be considered, from a computer vision viewpoint, as noise that dramatically hampers
the performance of machine learning models. This motivates the development of image
analysis methods that work across different stains in order to solve tasks related to
morphologically consistent structures [5, 13, 17, 23].

Most state-of-the-art computer vision algorithms are sensitive to domain shift [9],
which in the context of digital histopathology can be induced by high stain variability.
This means that models trained for a specific task on histological images of stain A ex-
hibit a significant drop in performance when applied to histological images of stain B
(for the same task) [5, 17, 23] or variability of stain A (e.g. images from other labora-
tories) [45]. Typical solutions consider either fine tuning existing models or training a
new model for each data variation, which requires the acquisition of additional labeled
data. Nevertheless, medical image datasets are often characterised by their scarcity of
annotations [43] and obtaining properly annotated images is time consuming and costly
as expert knowledge is required for most complex annotations. Alternative approaches
such as crowd sourcing are limited by the need of specific task design and intensive train-
ing [16]. Thus, the development of solutions that are able to work in a stain invariant
manner has a huge importance from both clinical and research perspectives.

While plenty of works address the problem of domain shift induced by intra-stain
variation (that is variation in the appearance of the same stain due to different staining
procedures) [3, 11, 20, 21, 24, 28, 33, 40] there are few that address the problem of
inter-stain variation (that is variation in the appearance of different stains, see Figure
1) [5, 13, 17, 23, 32], the latter is more relevant for developing stain invariant solutions.
Some of these existing approaches are able to accomplish the task in a limited manner
[13, 17, 23] however, they either require additional effort such as slide registration [17]
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or post-processing of the test data [13], or do not generalise well and suffer from large
variation in test-time performance [23]. In this article we build upon our existing work
[23] to introduce a new, general approach able to learn stain invariant representations1

from only one annotated stain, without any other additional pre- or post-processing steps.
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Figure 2: Examples of stain-to-stain translated images using a CycleGAN/StarGAN. The first row
contains real patches from each staining. The second two rows represents the translations of a PAS
patch to the target staining using CycleGAN/StarGAN model. The last two rows represents translation
of real target patches to the PAS staining using CycleGAN/StarGAN model.

We focus on the segmentation of glomeruli, a highly relevant functional unit of the
kidney, and consider a dataset that contains WSIs stained with a commonly used staining
in renal pathology—Periodic acid-Schiff reaction (PAS)—as the annotated data (source
stain), in addition to WSIs that are stained with four different stainings—two histo-
chemical (Sirius Red and Jones’ basement membrane stain—Jones H&E) and two im-
munohistochemical stainings (CD34 highlighting blood vessel endothelium, CD68 for
macrophages)—which are considered to be the unannotated datasets (target stains).
The goal is to use the information from the PAS domain in order to learn a model that
is able to segment glomeruli in all stains without additional labeling.

1‘Stain invariant’ refers to the fact that the same model can be applied to multiple stains (possibly
those not seen during training) without the additional acquisition of annotations, modification of the
data at test time, nor adaptation of the model after training.
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Specifically, we train GAN-based stain-translation models [6, 51] in order to achieve
realistic translation between source and target stains. In turn, these allow a segmentation
model to be trained on source data augmented with random translations to the target
stains. Compared to previous state-of-the-art approaches to stain-invariant segmentation
[13, 23] the presented strategy demonstrates a significant improvement in segmentation
performance.

The main contributions of this article are:

• to introduce a general, unsupervised augmentation approach that results in a stain
invariant model, capable of working in unseen stains.

• the proposed method doesn’t require any specific data acquisition strategy (such
as consecutive slides) and it doesn’t rely on any post processing methods, such as
slide registration or stain transfer. Once trained, the model can be directly applied
to the test data.

• to present a discussion on the limitations of GAN-based image-to-image translations
for stain transfer and to raise awareness of the possibility of misinterpretation
during application in clinical practice, particularly, that visual quality assessments
cannot be used as a stopping criteria during training stain transfer models.

The remainder of this article is organised as follows: in Section 2, literature concerned
with stain transfer and stain invariant approaches is reviewed. Section 3 gives a detailed
description of the proposed method and dataset. Section 4 presents the experimental
results with comparison to existing state-of-the-art methods. Finally, Section 5 analyses
the approach in terms of stain invariance, quality of translations, and its limitations.

2. Related work

The occurrence of stain variability can be grouped into intra-stain variability (vari-
ations in appearance of a particular stain) or inter-stain variability (the variability in
appearance due to different stains). As has been shown in the literature, both types of
variation hamper the performance of deep models [23, 45]. When the task at hand is
related to the morphological structures in the tissue (such as glomeruli or nuclei detec-
tion) rather than stain-related markers (such as macrophages) approaches invariant to
inter-stain variation are highly desirable.

Increasing a model’s robustness to general stain variations can be considered a domain
adaptation problem, which can be approached in either pixel-space or feature space.
Adaptation in pixel space offers better interpretation of the model (from a end-user, i.e.
clinician or pathologist, point of view), contrary to mapping them in a feature space, since
the result can be viewed as a histopathological image. This is an important consideration
in medical imaging. Moreover, once the pixel-space has been aligned, any task can be
performed within it.

2.1. Feature space alignment

In feature space, the adaptation is performed by forcing the extraction of domain
invariant features during model training. Inter-stain variability approached from the
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perspective of feature space alignment is addressed in recent work [19, 31] while intra-
stain variability is addressed in [21].

In general, feature space alignment has proven effective in transferring knowledge
from single (or multiple) source domains to a single target domain, i.e. producing a task
and stain specific model [19, 31]. Recently, advances move towards single-source multi-
target approaches [14], however they still rely on task specific features. Most of the work
on unsupervised domain adaption (i.e. no labels in the target domain) are single-source
single-target approaches [19, 31], which fail to leverage knowledge shared across multiple
domains. When the task at hand is solvable in a stain invariant manner (i.e. the structure
is visible under different stains), due to the scarcity of annotations in the medical domain
the preferable solution would be a single-source multi-target approach.

2.2. Pixel space alignment

In pixel space, the adaptation can be performed by modifying the properties of a
target image in order to match characteristics of the source images, so models trained on
the annotated (source) domain can be applied to the modified target images. Conversely
the annotated domain can be translated to match the non-annotated (in a way that
annotations are preserved), and train a model on the transformed source images such
that it is directly applicable in the target domain.

From a pixel-space alignment perspective, stain colour augmentation, stain normali-
sation and stain transfer are commonly used to prevent models from being biased towards
the source stain [42]. Stain normalisation refers to the standardisation of a stain’s visual
appearance and is commonly used as a pre-processing technique to reduce intra-stain
variability [3, 11, 40]. Stain colour augmentation and stain transfer are broader tech-
niques that can address inter-stain variability.

Stain augmentation approaches aim to synthesise new images to enforce colour vari-
ation robustness, assuming that objects of interests are invariant to colour intensity and
illumination. A typical approach is to perturb image pixels in a random or weighted
manner [23, 44, 48]. Alternatively, the stain variation problem can be bypassed by us-
ing grayscale images but several studies show this to be inferior [23, 45]. As recent
studies show [23, 44], colour augmentation can be a promising solution to achieve stain
invariance. Nevertheless, they are usually surpassed by stain transfer approaches [23].

Stain transfer as a virtual staining technique aims to translate an image of tissue
stained with a particular stain (or even unstained tissue [2, 34]) into another stain as
realistically as possible [22, 32, 49]. Earlier methods [28, 36, 46] rely on decomposing
the image into concentration and colour matrices in order to stain new images using
equivalent matrices form a reference image. Despite the use of a reference image, these
approaches suffer from poor translational realism [23]. Recently, GANs [15] have been
used for this purpose due to their ability to synthesize realistic outputs. These are
applied in two settings: unpaired translations [13, 49] and paired translation [32]. The
CycleGAN architecture [51], as a widely used technique for unpaired image-to-image
translation, has recently been applied to stain transfer [5, 13, 32, 49]. And StarGAN
[6], a technique of multi domain image-to-image translation, has recently been applied
to virtual histological staining of bright-field microscopic images [26].

2.3. Stain invariant approaches
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As a recent survey shows [42], there are not many approaches that tackle the problem
of stain invariance. Although some recent works [13, 17, 23] address the problem to some
extent, the resulting model usually requires extensive pre- or post-processing such as
slide registration [17], stain transfer [13], or the model exhibits significant performance
variation at test time [23].

Recent works [5, 13] show that, when applied to the task of histological stain transfer,
CycleGAN is able to produce highly realistic translations, increasing a deep model’s
robustness in both supervised and unsupervised settings. Three approaches have been
proposed that use this to overcome a lack of target domain annotations [13]: 1) train a
segmentation model on source data and apply it to target data translated to the source
domain, referred to as MultiDomain Supervised 1 (MDS1); 2) train on the source stain
translated to the target, and apply the model directly on the target images, MDS2 [5, 13].
Both MDS1 and MDS2 approaches build stain-specific models that can be applied only
to a specific staining. The third approach directly trains the segmentation model by
optimising unpaired image-to-segmentation translations in an adversarial manner [13].
However, due to the specificity of cycle-consistency, this approach requires that additional
information be artificially generated and inserted into the annotation (e.g. cell nuclei).
Furthermore, the performance of such an approach was consistently surpassed by the
MDS approaches.

An alternative approach is to warp the segmentation of one slide to a consecutive,
differently stained slide [17] however, this only works in the case of consecutive slides and
can lead to problems when structures appear/disappear between slides. Furthermore,
since it relies on a stain specific source model, it is not applicable in the general case
where the stain of the source slide may vary.

On the other hand, the approach proposed by Lampert et al. [23] that we build
upon here, and refer to as Unsupervised Domain Augmentation via Stain Decomposition
(UDA-SD), represents the first attempt to achieve stain invariance. Nevertheless, being
based on fixed-vector stain translations [28, 46], it suffers from poor realism and thus
exhibits huge variation over different test stains.

The work proposed herein represents an approach that combines stain augmenta-
tion and stain transfer to form a stain-invariant model capable of direct application to
several stains, even those previously unseen by the model. The presented method is
general, unsupervised, and applicable to any problem that concerns training a segmen-
tation/classification model which tackles morphologically consistent structures in digital
pathology. The only existing similar approach is UDA-SD [23], which we build upon
by using GANs to obtain high-quality translations between annotated and unannotated
stains (Figure 2 presents examples of the translations obtained). These are used to
augment a training set by random translations of the source domain, resulting in one
stain-invariant model capable of segmenting various (unlabeled) domains. As such, this
work proposes an single-source, multi-target unsupervised domain adaptation approach.

3. Method

We propose an approach for training stain invariant Convolutional Neural Networks
(CNNs). It is assumed that annotated WSIs are available for a stain A while WSIs of
other stains B1, B2, . . . , BN are unannotated. The aim is to increase the variability of the
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Phase 1: Unsupervised Phase 2: Supervised

Figure 3: Overall diagram of the proposed approach. Phase 1, translation models are learnt to translate
images from the source domain to the target domains; Phase 2, patches of the source domain are
randomly translated to the target domains during training (U-Net image taken from [37]).

(annotated) training set through augmentation by randomly translating it to the non-
annotated domains (including the original, annotated domain). The overall architecture
of the proposed method is presented in Figure 3.

The method consists of the following steps.
a) Stain Translation - in order to obtain realistic translations of the annotated stain

A to unannotated stains B1, B2, . . . , BN , a GAN-based unsupervised, unpaired image-to-
image translation model is employed. In this study we evaluate both the CycleGAN [51]
and StarGAN [6] models (see Figure 4). Once these translation models are obtained, any
supervised model (for which labels exist in the source domain and tackles morphologically
consistent structures) can be trained. This study focuses on glomeruli segmentation.

b) Segmentation Model - this model is trained on the annotated data after being
translated to a random non-annotated stain. Since translation does not change the
overall structure of the image (Figure 2), the original domain’s label/ground truth is
still valid. Thus, during training, various annotated samples of all available stainings are
presented to the model, forcing it to learn stain invariant features. Once the segmentation
model has been trained, it can be directly applied to the unannotated stains, without
any further translations.

3.1. Stain Translation Model

The problem of stain transfer is posed as an unpaired image-to-image translation,
which is approached using GAN-based models. The overall structure of these approaches
assume the existence of one (or more) generators that translate an image from one do-
main to another, and one (or more) discriminators that distinguish between translated
and real images from corresponding domains. The generator(s) and discriminator(s)
play an adversarial game in which the goal of the generator(s) is to prevent the dis-
criminator(s) from distinguishing between the translated samples and those belonging to
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Figure 4: CycleGAN (a) and StarGAN (b) diagrams.

the real data distribution, while the goal of the discriminator(s) is to distinguish them.
Eventually, this game leads to an equilibrium in which the translated and real samples
are indistinguishable [6, 15, 51]. Since the task of image-to-image translation is usually
applied to natural images, the visual quality and variation of translated samples are very
important. Thus, various architectures have been proposed in order to obtain better
quality translations and greater style transfer capabilities (e.g. StarGAN v2 [7]).

Nevertheless, since the purpose of stain transfer is to translate an image of stain A to
have the appearance of stain B, it is necessary for the translation model to preserve the
image’s global structure (e.g. glomeruli should remain in the same location, regardless
of the target stain). Thus, image-to-image translation architectures which are less con-
strained and allow more diverse translation (including shape change) such as StarGAN v2
[7] are not suitable. The specific architecture used in the CycleGAN and StarGAN mod-
els, combined with the loss functions (particularly cycle-consistency) in practice prevents
geometrical changes [51], as is attested by the number of prior works using CycleGANs
in digital pathology [5, 11, 12, 13, 22, 32, 40].

One such example is given by Gadermayr et al. [12], who uses the CycleGAN for
realistic stain-transfer. StarGAN, however, has thus-far not been used for this purpose
and we observe the same geometrical consistency when applied to stain transfer.

3.1.1. CycleGAN Based Stain Transfer

Separate CycleGAN models, see Figure 4a, are trained to obtain translators between
each target stain (B) and the source stain (A). Each model consists of two generators:
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GAB : A → B and GBA : B → A; and two discriminators DA and DB . The aim of DA

is to distinguish between real source stain patches and those translated from the target
stain to the source; while DB aims to distinguish between real target stain patches and
those translated from the source stain to the target. These are trained using adversarial
least-squared loss, such that

Ladv(GAB , DB , GBA, DA) = Es∼A[(DA(s)− 1)2] + Et∼B [(DA(GBA(t))− 1)2]

+Et∼B [(DB(t)− 1)2] + Es∼A[(DB(GAB(s))− 1)2]. (1)

Moreover, training is constrained by the cycle-consistency and identity losses, which are
formulated as follows:

Lcyc(GAB , GBA) = Es∼A[‖GBA(GAB(s))− s‖1]

+ Et∼B [‖GAB(GBA(t))− t‖1], (2)

and

Lidentity(GAB , GBA) = Es∼A[‖GBA(s)− s‖1]

+ Et∼B [‖GAB(t)− t‖1]. (3)

Thus, the full objective is

LCycleGAN(GAB , GBA, DA, DB) = Ladv(GAB , DB)

+Ladv(GBA, DA) + wcycLcyc(GAB , GBA)

+widLidentity(GAB , GBA), (4)

where wcyc and wid control the relative importance of the cycle-consistency and identity
losses, respectively.

3.1.2. StarGAN Based Stain Transfer

Rather than training a translation model for each pair of stains, StarGAN [6] results in
one, multi-stain translation model, see Figure 4b. This model contains one generator G∗,
conditioned on the domain label (stain), which translates an input image xi from stain i

to image xj , having the characteristics of stain j, i.e. G∗(xi, j) → xj ; and one multi-task
discriminator D∗ that simultaneously distinguishes between real and generated samples
(Dadv) and classifies each patch’s stain label (Dstain), i.e. D∗(x) → (Dstain(x), Dadv(x)).
As such, a single discriminator controls the translation into multiple stains.

We first define the sets Pi as sets of images stained with stain i. The generator G∗ and
discriminator D∗ are then trained in an adversarial manner [15] using the Wasserstein
loss with gradient penalty, such that

Ladv(G∗, D∗) = Ex∼Pj(x)[Dadv(x)]

− E(x∼Pi(x),j)[Dadv(G∗(x, j)))]

− λgpEx̂[(‖∇x̂Dadv(x̂)‖2 − 1)2], (5)
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where x̂ is sampled uniformly between the real and generated images [6] and hyperpa-
rameter λgp controls the effect of the gradient penalty term. The auxiliary classifier
branch of the discriminator is trained using the following classification loss

Lcls(G∗, D∗) = E(x∼Pi(x),j)[− logDstain(j|G∗(x, j))]

+ E(x∼Pi(x))[− logDstain(i|x)]. (6)

Similarly to CycleGAN, the overall training is constrained with a cycle-consistency loss,
defined as

Lcyc(G∗) = Ex∼Pi(x),i,j [‖G∗(G∗(x, j), i)− x‖1]. (7)

The full objective function for training a StarGAN model is therefore given as:

LStarGAN(G∗, D∗) = Ladv(G∗, D∗) + wcycLcyc(G∗)

+wclsLcls(G∗, D∗). (8)

where wcyc and wcls control the relative importance of the cycle-consistency and classi-
fication losses, respectively.

3.2. Segmentation Model

The U-Net [37] is adopted as it has been proven successful in biomedical imaging [27]
and, in particular, glomeruli detection [10]. Glomeruli segmentation is framed as a two
class problem: glomeruli (pixels that belong to glomerulus), and tissue (pixels outside a
glomerulus).

During training, a training patch with a probability of N−1
N

, where N is the number
of stains, is converted into randomly selected stain using the pre-trained translator(s).
Thus, all available stains (including the annotated one) are presented to the network
with equal probability 1

N
, forcing the network to learn more stain invariant features

3.3. Training Details

Throughout the study, patches of size 508 × 508 pixels are used since glomeruli and
part of the surrounding fit within this size of patch at the level-of-detail used, see Section
3.4.

3.3.1. Stain translation

Gadermayr et al. [12] showed that different sampling strategies for the annotated
and unannotated domains could negatively impact a stain transfer model’s performance,
and patches are therefore randomly extracted using a uniform sampling strategy (in an
unsupervised manner).
CycleGAN: The loss weights and architecture are taken from the original paper (wcyc =
10, wid = 5) [51] since they produced realistic output, see Fig. 2. A translation network
with nine ResNet blocks was used, as suggested by the authors for high dimensional data
(above 256× 256 pixels) [51].The models are trained for 50 epochs, with a learning rate
of 0.0002, using the Adam optimiser, and a batch size of 1. From the 25th epoch, the
learning rate linearly decayed to 0, and the cycle-consistency and identity weights halved.
In all experiments, the translation model from last (50th) epoch is used. Moreover, to
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reduce model oscillation, Shrivastava et al.’s strategy [41] of updating the discriminator
using the 50 previously generated samples is adopted. Preliminary experiments showed
that the visual translation quality is not highly dependent on the weight values of Eq.
(4) (although some combinations required more training to obtain realistic translations).
As will be discussed in more detail in Section 5.3.2, visual criteria is not a good proxy
for assessing the quality of stain translation, and so the weighting values proposed by
the original authors [51] are used since they already achieve visually good results.
StarGAN: The generator’s and discriminator’s architecture and training settings were
the same as the CycleGAN model described previously (without instance normalisation
in the discriminator). The loss weights are taken from the original paper (wcyc = 10,
wcls = 1, λgp = 10) [6] since they produced realistic output, as can be seen in Figure
2. The model is trained for 50 epochs and, similarly to the CycleGAN training strategy,
the model from the 50th epoch is used. Again preliminary experiments were conducted
with various values for the weight parameters in Eq. (8). Some combinations lead to
unstable training or required more epochs to produce realistic translations in all stain
combinations. Thus, the parameter values from the original paper were used [6].

3.3.2. U-Net

The same training parameters are used for all experiments: batch size of 8, learning
rate of 0.0001, 250 epochs, and the network with the lowest validation loss is kept.

The slide background (non-tissue) is removed by thresholding each image by its mean
value then removing small objects and closing holes.

All patches are standardised to [0, 1] and normalised by the mean and standard de-
viation of the (labeled) training set.

After translation (or not), the following augmentations are applied with an indepen-
dent probability of 0.5 (batches are augmented ‘on the fly’), in order to further force
the network to learn general features: elastic deformation (σ = 10, α = 100); random
rotation in the range [0°, 180°], random shift sampled from [−205, 205] pixels, random
magnification sampled from [0.8, 1.2], and horizontal/vertical flip; additive Gaussian noise
with σ ∈ [0, 2.55]; Gaussian filtering with σ ∈ [0, 1]; brightness, colour, and contrast en-
hancements with factors sampled from [0.9, 1.1]; stain variation by colour deconvolution
[44], α sampled from [−0.25, 0.25] and β from [−0.05, 0.05].

3.4. Data

Tissue samples were collected from a cohort of 10 patients who underwent tumor
nephrectomy due to renal carcinoma. The kidney tissue was selected as distant as pos-
sible from the tumors to display largely normal renal glomeruli, some samples included
variable degrees of pathological changes such as full or partial replacement of the func-
tional tissue by fibrotic changes (“scerosis”) reflecting normal age-related changes or the
renal consequences of general cardiovascular comorbidity (e.g. cardial arrhythmia, hy-
pertension, arteriosclerosis). The paraffin-embedded samples were cut into 3µm thick
sections and stained with either Jones’ H&E basement membrane stain (Jones), PAS,
Sirius Red or H&E, in addition to three immunohistochemistry markers (CD34, CD68
and CD3), using an automated staining instrument (Ventana Benchmark Ultra). H&E
and CD3 were reserved as unseen stain, therefore the total number of augmentation
stains is N = 5. Whole slide images were acquired using an Aperio AT2 scanner at 40×
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magnification (a resolution of 0.253 µm / pixel). All the glomeruli in each WSI were
annotated and validated by pathology experts by outlining them using Cytomine [29].
The dataset was divided into 4 training, 2 validation, and 4 test patients. The number
of glomeruli in each staining dataset was: PAS - 662 (train.), 588 (valid.), 1092 (test);
Jones H&E - 1043 (test);H&E - 1151; Sirius Red - 1049 (test); CD34 - 1019 (test); CD68 -
1046 (test);CD3 - 1083. The training set comprised all glomeruli from the source staining
training patients (662) plus 4634 tissue (i.e. non-glomeruli) patches (to account for the
variance observed in non-glomeruli tissue).

4. Results

In the following, the proposed approach is referred to as Unsupervised Domain Aug-
mentation using GANs (UDA-GAN), with two variants: with CycleGANs (UDA-CGAN)
and StarGAN (UDA-∗GAN). These are presented and compared to the MDS1 [13], MDS2
[13], Unsupervised Domain Augmentation via Stain Decomposition (UDA-SD) [23] and
vanilla PAS (vPAS), which is the direct application of a model trained on PAS to the
target domains without any adaptation (i.e. the control).

As mentioned, the CycleGAN models obtained after 50 epochs are used, however,
Brieu et al. [5] show that realistic translations are obtained even in early epochs, which
is confirmed in Figure 5. They therefore train a segmentation model using translators
taken from multiple epochs to increased augmentation variability. Therefore we include
the Multi UDA-CGAN model in which translation models from each 5th epoch are used,
resulting in 40 translation models.

Original Translation to PAS

1st Epoch 10th Epoch 20th Epoch

J
o
n
es

H
&
E

C
D
6
8

Figure 5: Jones H&E and CD68 glomeruli patches translated to PAS using CycleGAN models from
different training epochs.

For MDS1 and MDS2, the translated models are trained according to Section 3.1.
Variants of MDS1 and MDS2 using the StarGAN translators were evaluated, and are
referred to as MDS∗1 and MDS∗2. The F1-score, along with precision and recall, are used
to measure the performance. The presented results are the averages of five independent
training repetitions, with corresponding standard deviations.

The experimental results are presented in Table 1. Baseline performances (U-Net
models, as described above, trained and tested on the same stain using each stain’s
ground truth) were determined for each staining and presented in Table 2.
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Training

Strategy
Score

Test Staining

PAS
Jones
H&E

CD68
Sirius
Red

CD34 Overall

vPAS
F1

0.907
(0.009)

0.085
(0.034)

0.001
(0.002)

0.016
(0.018)

0.071
(0.063)

0.043
(0.041)

Precision
0.885
(0.023)

0.055
(0.021)

0.097
(0.129)

0.034
(0.034)

0.257
(0.243)

0.111
(0.101)

Recall
0.932
(0.014)

0.418
(0.316)

0.001
(0.001)

0.073
(0.101)

0.058
(0.039)

0.137
(0.190)

UDA-SD [23]
F1

0.891
(0.007)

0.791
(0.079)

0.147
(0.048)

0.828
(0.046)

0.739
(0.026)

0.679
(0.303)

Precision
0.840
(0.018)

0.699
(0.116)

0.365
(0.238)

0.778
(0.088)

0.695
(0.054)

0.675
(0.183)

Recall
0.950
(0.007)

0.926
(0.015)

0.099
(0.032)

0.892
(0.024)

0.795
(0.059)

0.732
(0.359)

MDS1[13]
F1 -

0.872

(0.016)
0.395
(0.057)

0.828
(0.040)

0.673
(0.033)

0.692
(0.215)

Precision -
0.843
(0.036)

0.447
(0.092)

0.787
(0.071)

0.857
(0.033)

0.734
(0.193)

Recall -
0.904
(0.018)

0.364
(0.071)

0.877
(0.020)

0.556
(0.047)

0.675
(0.261)

MDS2[13]
F1 -

0.869
(0.020)

0.586
(0.059)

0.797
(0.040)

0.739
(0.044)

0.748
(0.121)

Precision -
0.833
(0.049)

0.519
(0.108)

0.699
(0.061)

0.723
(0.051)

0.695
(0.132)

Recall -
0.909
(0.013)

0.697
(0.059)

0.929
(0.004)

0.765
(0.106)

0.825
(0.112)

UDA-CGAN
F1

0.901

(0.011)
0.856
(0.036)

0.705

(0.031)
0.873

(0.025)
0.799
(0.034)

0.827

(0.078)

Precision
0.869
(0.034)

0.800
(0.069)

0.690
(0.059)

0.830
(0.051)

0.754
(0.076)

0.789
(0.069)

Recall
0.936
(0.014)

0.924
(0.012)

0.723
(0.034)

0.922
(0.009)

0.856
(0.036)

0.872
(0.089)

Multi
UDA-CGAN

F1

0.897
(0.010)

0.863
(0.030)

0.684
(0.046)

0.861
(0.021)

0.808

(0.023)
0.822
(0.084)

Precision
0.860
(0.021)

0.812
(0.057)

0.648
(0.098)

0.813
(0.043)

0.764
(0.061)

0.779
(0.081)

Recall
0.937
(0.007)

0.922
(0.009)

0.736
(0.038)

0.917
(0.010)

0.862
(0.032)

0.875
(0.083)

MDS∗1
F1 -

0.756
(0.086)

0.092
(0.055)

0.599
(0.108)

0.751
(0.033)

0.550
(0.314)

Precision -
0.675
(0.136)

0.242
(0.116)

0.496
(0.123)

0.742
(0.092)

0.539
(0.223)

Recall -
0.881
(0.029)

0.061
(0.044)

0.780
(0.099)

0.774
(0.070)

0.624
(0.379)

MDS∗2
F1 -

0.816
(0.060)

0.525
(0.048)

0.837
(0.032)

0.766
(0.030)

0.736
(0.144)

Precision -
0.740
(0.096)

0.874
(0.037)

0.785
(0.059)

0.752
(0.030)

0.787
(0.061)

Recall -
0.918
(0.008)

0.376
(0.046)

0.901
(0.014)

0.785
(0.073)

0.745
(0.253)

UDA-∗GAN
F1

0.890
(0.022)

0.807
(0.031)

0.549
(0.081)

0.792
(0.052)

0.758
(0.076)

0.759
(0.127)

Precision
0.853
(0.043)

0.717
(0.050)

0.794
(0.044)

0.703
(0.085)

0.738
(0.082)

0.761
(0.062)

Recall
0.933
(0.008)

0.926
(0.010)

0.426
(0.090)

0.913
(0.013)

0.796
(0.135)

0.799
(0.216)

Table 1: Quantitative results for each strategy trained on PAS (source staining) and tested
on different (target) stainings. Standard deviations are in parentheses, the highest F1

scores for each staining are in bold (PAS is not included in the vPAS average since it is
the training staining.)
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PAS
Jones

H&E
CD68 Sirius Red CD34 Overall

F1

0.907
(0.009)

0.864
(0.011)

0.853
(0.018)

0.867
(0.016)

0.888
(0.015)

0.876
(0.022)

Precision
0.885

(0.023)
0.824

(0.020)
0.846

(0.027)
0.801

(0.042)
0.862

(0.015)
0.844

(0.032)

Recall
0.932

(0.014)
0.911

(0.005)
0.856

(0.022)
0.957

(0.018)
0.929

(0.011)
0.917

(0.038)

Table 2: Quantitative baseline results (standard deviations are in parentheses).

Despite the fact that the translations obtained using both CycleGAN and StarGAN
look realistic (see Figure 2), it can be observed that the direction of translation (MDS1
vs MDS2) and translation model (StarGAN vs CycleGAN) influence the results. This
is best illustrated with MDS1, in which a model trained on the original PAS data is
applied to target data translated to PAS. It can be observed that in each target stain,
the difference between CycleGAN and StarGAN translations is significant, although there
appears to be no significant difference in the quality of the translations. The proposed
UDA-GAN approaches show more stable performance while the best results are obtained
using UDA-CGAN and Multi UDA-CGAN.

Furthermore, UDA-CGAN reaches almost baseline performance in three out of five
test stainings. Despite the fact that the model has seen data from PAS stain only 20% of
the time during training, the model has baseline performance on this (source) domain.
The model also approaches baseline performance in target stains Jones H&E and Sirius
Red. For stains CD68 and CD34, the model reaches an F1-score of 0.705 and 0.799,
meaning that it gives an improvement of 11.9% and 6% respectively over the next best
CycleGAN method (MDS2). The average performance over the five different stainings
show that UDA-CGAN reaches an average F1-score of 0.827 (0.808 without including
the PAS staining, in order to be fairly compared to the MDS approaches), while MDS2,
as the next best method, reaches an F1-score of 0.748. The biggest relative difference
is observed in staining CD68 where the overall improvement is 55.8% compared to the
original approach [23] and 11.9% compared to the second best performing method in
this stain - (CycleGAN) MDS2. Other than the baseline, UDA-CGAN is the only model
able to achieve acceptable results in this staining. Multi UDA-CGAN does not improve
upon this, although it performs comparable possibly because the 40 different translation
models used in this approach introduce variability that does not necessarily reflect real
stain variability. More discussion about this phenomena is given in Section 5.3.2.

4.1. Unseen Stains

In order to further evaluate the stain invariance of the UDA-GAN approaches, they
are tested on two unseen stains (unseen to both the CycleGAN/StarGAN and UDA-GAN
models), see Figure 6: histological stain H&E (a general overview staining not specific
for a protein) and immunohistochemical stain CD3 (T cell marker). Even though they
highlight similar structures to the ‘virtually’ seen stains, they are visually very different
in appearance. For each stain, images are taken from 3 patients containing 1151 (H&E)
and 1083 (CD3) glomeruli. Table 3 presents the results, averaged over the previously
trained UDA-GAN models.
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H&E CD3

Figure 6: Examples of glomeruli from the unseen stains.

H&E CD3 Average

vPAS

F1

0.126
(0.066)

0.000
(0.000)

0.063

Precision
0.070

(0.041)
0.018

(0.018)
0.044

Recall
0.854

(0.109)
0.000

(0.000)
0.427

UDA-CGAN

F1

0.731
(0.100)

0.658
(0.075)

0.694

Precision
0.781

(0.122)
0.569

(0.124)
0.675

Recall
0.697

(0.123)
0.802

(0.042)
0.750

UDA-∗GAN

F1

0.752
(0.087)

0.650
(0.030)

0.701

Precision
0.824

(0.057)
0.853

(0.065)
0.839

Recall
0.706

(0.147)
0.531

(0.058)
0.618

Table 3: Quantitative results of UDA-GAN models on unseen stains (standard deviations are in paren-
theses).

Although the results are lower than those obtained using stains virtually seen during
training, i.e. stain translation targets during augmentation, they confirm the network’s
capacity for stain invariant segmentation.

On average, both UDA-CGAN and UDA-∗GAN perform equally well on unseen
stains. And when taken in context of Table 1, although they generally achieve lower
results, UDA-∗GAN remains within the range previously seen and UDA-CGAN exhibits
more variance. This phenomena is analysed further in Section 5.2.3.

A high F1 score is achieved when faced with a completely new stain colour profile
(H&E). When faced with a similar stain profile to one virtually seen (CD3, similar to
CD68), the corresponding UDA-CGAN F1 score is similar and UDA-∗GAN improves,
likely because CD3 has more contrast (due to an unspecific reaction of the primary
antibody) when compared to CD68, with which it struggles. It is worth noting that
the models with the best PAS performance (which can be determined since annotations
exist) are also those that perform best on the unseen stains.
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5. Further Analysis and Discussion

In this section the results are analysed in more detail, including calculating additional
statistics and, and related to those found in the literature. Further analysis of the trained
models is presented by visualising their feature distributions and their attention. Finally,
the topic of CycleGAN training is discussed.

5.1. Translation Direction

Gadermayr et al. suggest that translation “should always be performed from the
difficult-to-segment to the easy-to-segment domain” and that MDS1 is the preferred
method [13]. Table 2 shows that the difficult-to-segment stain is CD68 and the easy is
PAS as it results in a more accurate baseline segmentation. It is also observed in Table 1
that MDS1 with PAS as the source domain is in fact surpassed by MDS2 in all but one
target stainings (in which it is equal). These results suggest that the characteristics of
“difficult-to-segment” stainings may vary, and the method/translation direction should
be adjusted to the specific requirements of a given biological question, i.e. the panel of
necessary staining methods.

5.2. Representation Comparison

In the case of staining CD68, neither MDS1, MDS∗1, MDS2, nor, MDS∗2 perform
well. Poor MDS1 (MDS∗1) performance could indicate that the CycleGAN (StarGAN)
translation between the CD68 and PAS domains do not capture the features the PAS
model uses for segmentation. On the other hand, poor MDS2 and MDS∗2 performance
could indicate that the translation between PAS and CD68 contains features that are not
present in real CD68. From the perspective of the image-to-image translation methods
used to achieve stain transfer, this can be explained by the presence of noise injected into
the translations in order to satisfy the cycle-consistency loss (equations 2, 7) due to the
many-to-many mappings which exists in at least one direction of translation, a possibilty
that has been confirmed by various studies on natural images [1, 50]. From a biological
viewpoint, this most likely represents the fact that immunohistochemistry for CD68
highlights just one specific, migratory cell population (macrophages) that is not part
of the pre-existing tissue architecture, with a brown chromogen, while the anatomical
structures are only faintly stained (blue “counterstain” using hemalaun). Strikingly,
immunohistochemistry for CD34, a marker for vascular endothelial cells, labeled with
a red chromogen, performs much better. This can probably be explained by a specific
immunohistochemical labeling of anatomical structures (blood vessels) in addition to
the blueish counterstain, containing more features that are also covered in the other
staining methods (PAS, Jones H&E). This is particularly evident with StarGAN, which
exploits common inter-stain characteristics. Thus, some translation directions require
more hidden noise to be injected in the translation, which is reflected in the performance
of the pre-trained models. In the case of MDS1, the noise that is injected in the PAS
translation represents a domain shift compared to real PAS images, while in case of
MDS2, the model could associate the noise (which does not exist in the real data) with
a decision, which hampers performance on clean (real) data.

Between MDS1 and MDS2 (both CycleGAN and StarGAN translations) the largest
difference is seen in stain CD68, which marks a protein exclusively produced by macrophages.
PAS, as a chemical reaction staining glycolysated proteins in general, highlights a part of
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macrophages (co-located, but not overlapping, with CD68). Thus the translation from
PAS to CD68 (MDS2, MDS∗2) is easier than the reverse (MDS1, MDS∗1), since PAS
contains some (but not all) of the information exposed by CD68.

The fact that UDA-CGAN outperforms both MDS1 and MDS2 using the same trans-
lation functions indicates that it is capable of extracting more general (stain invariant)
features, i.e. it avoids learning stain specific and ‘false’ features introduced by the Cycle-
GAN. This is also the case for UDA-∗GAN but to a lesser extent. UDA-∗GAN uses the
same generator for all translations so it is likely to extract similar features between the
source stain and all target stains. This reduces the impact of the multi-stain augmenta-
tion, which becomes evident when comparing UDA-∗GAN to MDS∗2.

5.2.1. Feature Distributions

In order to visualise the distributions of each model’s extracted features, Figure 7
presents UMAP (Uniform Manifold Approximation and Projection) embeddings [30] of
the penultimate convolutional layer’s activations in the best performing model (over all
stainings) for two hundred random glomeruli and two hundred random tissue patches of
each staining using MDS1, MDS∗1, UDA-CGAN, and UDA-∗GAN (MDS2 and MDS∗2
models are stain specific, therefore cannot be applied to all stainings). For MDS1 and
MDS∗1, the translations to the PAS stain is achieved using CycleGAN and StarGAN
respectively, and UDA-CGAN and UDA-∗GAN are applied to original data without any
modification.

In order to quantitatively measure these distributions, silhouette scores [38] have been
calculated between:

• each stain’s glomeruli class and the union of the glomeruli samples from all other
stains;

• PAS glomeruli and each target stain’s glomeruli;

• each stain’s glomeruli and negative samples.

These are presented in Table 4. The first should favour the UDA-GAN approaches since
their goal is to learn a stain invariant representation, the second should favour MDS1 and
MDS∗1, since their objective is to translate the target stainings to the PAS distribution,
while the third should be the goal of all approaches.

In the first case, the UDA-GAN approaches exhibit larger (or equal) overlap between
the glomeruli in all stainings, indicating greater clustering, which is reflected in the
fact that these models are able to segment all stainings. Higher scores for the MDS1
approaches indicate less concentrated clustering (e.g. Jones H&E , which appears to be
concentrated in one part of the glomeruli space, separate from the other stains).

Since the MDS1 approaches are trained on PAS, they rely on accurate translation
models, which must result in a direct overlap with the PAS distribution. Whereas the
UDA-GAN approaches can tolerate more translation variance (that does not result in
glomeruli - tissue overlap) since they are trained on the translated data. Interestingly the
scores for MDS1 and MDS∗1 for PAS are relatively high, indicating that this approach
fails to completely overlap the target stains with PAS.

In the second case, it can be observed that UDA-GAN approaches have better (or
equal) overlap with the PAS glomeruli in all stainings. The score for MDS∗1 in CD68 is
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UDA-CGAN UDA-∗GAN

MDS1 MDS∗1
(best PAS model) (best PAS model)

CD34 Negative

CD34 Glomeruli

Sirius Red Negative

Sirius Red Glomeruli

CD68 Negative

CD68 Glomeruli

Jones Negative

Jones Glomeruli

PAS Negative

PAS Glomeruli

Figure 7: Two-dimensional UMAP embeddings of the representation learnt, sampled from the penul-
timate convolutional layer using 200 patches per stain per class from the overall best performing PAS
and UDA-GAN models. Each point represents a patch from the respective class and staining (glomeruli
patches are centred on a glomeruli).

much higher then for any other stain, and Figure 7 shows that the CD68 glomeruli class
has been merged with the negative class, explaining the very low recall in Table 1.

In the third case, it can be observed that the UDA-GAN approaches better separate
the glomeruli and tissue classes. This is especially illustrated in the case of CD68 in which
UDA-∗GAN learns to separate the glomeruli and tissue classes, whereas MDS∗1 fails. As
mentioned, MDS∗1 relies on accurate translations, whereas the UDA-GAN approaches
are able to correct for weak translations during training.
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Training

Strategy
PAS

Jones

H&E
CD68

Sirius

Red
CD34

Glomeruli-

Combined

UDA-CGAN
0.069

(0.004)
0.106

(0.008)
0.000

(0.007)
-0.044
(0.003)

-0.019

(0.003)

UDA-∗GAN
0.051

(0.008)
0.094

(0.005)
0.069

(0.010)
-0.041
(0.003)

-0.024
(0.003)

MDS1
0.198

(0.011)
0.176

(0.014)
-0.057
(0.002)

-0.038
(0.004)

-0.070
(0.005)

MDS∗1
0.219

(0.006)
0.048

(0.011)
0.166

(0.004)
-0.027

(0.003)
-0.063
(0.004)

Glomeruli-

PAS

Glomeruli

UDA-CGAN -
0.004

(0.002)
0.123

(0.008)
0.078

(0.003)
0.071

(0.006)

UDA-∗GAN -
0.004

(0.001)
0.179

(0.003)
0.070

(0.002)
0.090

(0.003)

MDS1 -
0.002

(0.001)
0.253

(0.007)
0.175

(0.009)
0.255

(0.003)

MDS∗1 -
0.037

(0.005)
0.477

(0.007)
0.098

(0.003)
0.186

(0.010)

Glomeruli-

Tissue

UDA-CGAN
0.594

(0.009)
0.567

(0.017)
0.533

(0.009)
0.554

(0.012)
0.551

(0.010)

UDA-∗GAN
0.625

(0.016)
0.584

(0.015)
0.475

(0.014)
0.581

(0.012)
0.530

(0.005)

MDS1
0.489

(0.007)
0.481

(0.017)
0.300

(0.009)
0.300

(0.016)
0.424

(0.006)

MDS∗1
0.489

(0.007)
0.456

(0.019)
0.051

(0.004)
0.354

(0.023)
0.449

(0.005)

Table 4: Silhouette scores measuring (averaged over 3 different random samplings): the separation
between the each stain’s glomeruli class and the glomeruli class formed from all other stains (Combined),
the separation between the each stain’s glomeruli class and the PAS glomeruli class (PAS), and the
separation between each stain’s glomeruli class and its negative class. Calculated using the features of
200 random patches per stain per class, extracted from the penultimate convolutional layer: 0 means
total overlap, 1 means total separation, -1 means that samples are more similar to the other class than
their own, therefore values closer to 0 are better (in bold) for Glomeruli-Combined and Glomeruli-PAS
Glomeruli, and 1 is better (in bold) for Glomeruli-Tissue.

5.2.2. Attention

Another approach to illustrate the representations learned is to use attention visuali-
sations. Grad-CAM [39] is used to visualise the attention of the penultimate convolutional
layer, see Figure 8. For fair comparison, the best performing MDS1, MDS∗1, MDS2, and
MDS∗2 model for each staining, and the baseline approaches are used. For UDA-CGAN
and UDA-∗GAN, the overall best-performing model is taken.

The attention of the best-performing MDS1 (and MDS∗1, except CD68 for which
MDS∗1 does not work) models in all stainings are focused on border-like features, which
the model uses in the original PAS domain (on which it was trained). Poor MDS1 and
MDS∗1 performance can be explained by an absence of the specific features on which the
trained model is focused on, and which are not necessarily present in the target domains
nor relevant for the detection of the structures in general. When comparing attention
in all the baseline models, it can be observed that in each staining, the models have
a tendency to focus on stain specific features. The attention of the MDS2 models is
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UDA-CGAN UDA-∗GAN MDS1 MDS∗1 MDS2 MDS∗2 Baseline
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Figure 8: GradCAM visualisation of (column-wise) 1) overall best performing UDA-CGAN model; 2)
overall best performing UDA-∗GAN model; 3) best MDS1 model in each particular stain; 4) best MDS∗1
model in each particular stain; 5) best MDS2 model in each particular stain; 6) best MDS∗2 model in
each particular stain; 7) best baseline model in each particular stain.

more general and close to the stain-invariant model’s attention. According to the results
presented in Table 1, the stain-invariant approach (UDA-CGAN) gives an improvement
in precision, while the recalls of both models are similar (in all stainings except CD34).
Meaning that the stain-invariant model reduces false positives and, to some extent, false
negatives (while both models detect true positives similarly). Thus, attention in the
true positive class is expected to be similar. Both the MDS∗2 and UDA-∗GAN use a
common translation model (StarGAN), which, as previously mentioned, is biased towards
common features between the stains. Thus both models are likely to focus on these
common features, explaining their similar attentions (this is also confirmed in Table 1).
In addition to common features, the MDS2 models can also use stain-specific features
because they are only exposed to one type of image (as is the case with the presented
Jones H&E example).

The main advantage of the UDA-GAN approaches is their ability to properly gener-
alise across different stainings, as the presented attentions represent the features learnt
by one model, while in all other cases a domain (stain) dependent model is obtained.

5.2.3. Multi vs Single Stain Translation

The fact that StarGAN has a single translator may force it to preserve common
features between stains, features that UDA-∗GAN is likely to focus on. It is also likely
that these features are general and present in unseen stains, therefore UDA-∗GAN’s
performance is similar within the virtually seen and unseen stains. Nevertheless, the
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single translator may force StarGAN to ignore hard-to-translate stains, e.g. CD68, and
to minimise its loss upon the other stains. This would cause the general features to
be extracted from the remaining stains. Low recall for CD68 and CD3 indicates that
the model struggles to identify glomeruli, i.e. the general features do not exist in these
stains. This is confirmed in Figure 7, in which the CD68 glomeruli class overlaps the
negative class. UDA-CGAN, on the other hand, is trained using the translators and
has more sources of variation since each augmentation translator is independent. It can
therefore leverage the additional information present in the augmented translations to
achieve higher accuracy during application to them, while still learning a stain invariant
representation.

5.3. Translation Quality

5.3.1. Quality Measure

One way to validate the quality of such translations is to consult a pathologist, how-
ever this is expensive and time consuming. Preliminary validation by a pathologist
confirms that the translations are indistinguishable from real images.

One of the most widely used measures for validating the quality of generated natural
images is the Frećhet Inception Distance (FID) [18].

FID measures the distance between features of the generated and real images ex-
tracted from the Inception network. Since this network is trained on natural images, it is
not directly applicable to the medical domain. Instead, a new network could be trained
on histpathological data and used as a feature extractor. However, due to (relatively)
limited available data (in comparison to the ImageNet database which contains ∼14 mil-
lion training images), it is likely that the trained network will capture dataset specific
features (as confirmed by the experiments presented in this discussion), and thus will not
reflect the accuracy of translated patches.

Moreover, FID is a highly biased estimator [4], and has been shown to not be corre-
lated with classification accuracy [35], as is the concern of this work.

5.3.2. Noise

Since both directions of translation (PAS to target and vice versa) obtain visually
good results, it is unclear why the performance of MDS1 and MDS2 vary so much. Recent
literature [1] indicates that cycle-consistency (Eq. 2) , forces image-to-image translation
models to hide information necessary for proper reconstruction of Arec and Brec in the
form of imperceptible low amplitude, high frequency noise in A′ and B′ (see Figure 4).
This also has been confirmed in a recent study [50]. It is reasonable to assume that such
noise will have an affect on the model’s performance.

To illustrate this phenomena, we use the composition of translations PAS → Target+
N (0, σ) → PAS, where N (0, σ) is a zero mean Gaussian distribution with standard
deviation σ. Figure 9 presents reconstructions of the same PAS image after translation
to each target stain, with different standard deviation of additive noise. This shows that
not all target stain translators encode information in the same way. For example, adding
noise with a standard deviation of 0.5 to the CD68 intermediate stain results in a higher
reconstruction error than adding the same noise in the Jones H&E intermediate stain.
We suspect that the level of noise in each target staining correlates with the difficulty
of translation i.e. harder translations require more noise. StarGAN appears to be more
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Figure 9: Effects of additive zero-mean Gaussian noise added to intermediate representation of PAS
patch to reconstruction.

sensitive to the additive noise than CycleGAN. Potentially because it performs the much
harder task of multi-stain translation. In order to properly reconstruct its input, more
information may need to be hidden and thus it may be more sensitive to additive noise.

In order to quantify this sensitivity to noise, Bashkirova et al. [1] propose the following
measure: the mean pixel difference δ̄ between the translations with and without noise
is measured and is repeated for a range of standard deviations σ. The area under the
resulting σ - δ̄ curve summarises the translator’s sensitivity (lower is better, i.e. less
sensitive). This is calculated here using the target-to-source translations of 100 random
PAS patches from each class and σ ∈ [0, 0.025, 0.05, 0.075, 0.1], see Table 5.

Jones

H&E
CD68

Sirius

Red
CD34

CycleGAN 5.359 14.778 7.423 11.841

StarGAN 11.672 43.602 17.28 16.288

Table 5: Sensitivity to noise calculated for each target stain based on 100 random patches from each
class.

These were derived from the same PAS source patches but the generators were trained
on different target data. Some caution should therefore be taken when comparing be-
tween stains, however, these are as close as possible to being comparable. The orders
of sensitivity correlate with both the MDS1 and MDS∗1 F1 scores presented in Table 1.
It is impossible to do the same analysis for MDS2, i.e. Target → PAS → Target, as the
target datasets are different.

The relatively high sensitivity to noise (therefore potentially high levels of noise
present in the translation) offers an explanation for UDA-CGAN’s relatively low pre-
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cision in CD68 and CD34, and UDA-∗GAN’s relatively low precision overall.
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Figure 10: Glomeruli patches translated to PAS using CycleGAN models from different training epochs
with PAS glomeruli segmentations (i.e. MDS1 approach) and their F1 scores. N.B. images look realistic
but segmentations vary widely.

For further illustration, Figure 10 presents a Sirius Red and CD34 glomerulus patch
translated to PAS using translators taken from different CycleGAN training epochs,
along with its segmentation using the overall best performing PAS model (which, being
trained on PAS, is sensitive to its distribution). Unintuitively, good visual appearance
does not correlate with reliable segmentation (this holds for all stains), which suggests
that there is a limitation on the direct application of cycle-constrained image-to-image
translation methods in clinical practice. Brieu et al. [5] chose the set of training epochs
by visual inspection, however, these findings indicate that this is not a good strategy
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and may lead to the model learning irrelevant features. Furthermore, weakly-supervised
approaches based on the performance of an already trained model may not be a good
alternative, as the learned features may differ between models and are not necessary
task-related.

These analyses, and recent studies on the adversarial nature of CycleGANs [8, 47],
lead to the hypothesis that the translations suffer from invisible artifacts produced by
the CycleGAN. The extent and type of these artifacts could be related to stain differ-
ences. Stains with a greater difference require more complicated translation, forcing the
translators to hallucinate specific features, as confirmed by Mercan et al. [32]. From this
perspective, it can be understood why UDA-CGAN outperforms MDS1 and MDS2 as the
model is forced to be robust to artifacts produced by different translations. In this sense,
the lack of improvement offered by Multi UDA-CGAN model (see Table 1) over UDA-
CGAN can be understood. By analysing their performance, the recall of both models
are almost the same, indicating that Multi UDA-CGAN has no additional information in
order to detect more positive examples. Furthermore, adding multiple translation models
(i.e. those taken from different CycleGAN epochs) does not improve performance because
too much variability related to hidden noise is introduced. This is reflected in a decrease
in precision. In MDS1, these artifacts hamper the performances as translated images
could act as adversarial examples, while in MDS2, these artifacts could be considered by
the model as features. We hypothesise that a mechanism for assessing the quality of the
translation, such as FID [18] in natural images, would offer further improvement.

This only goes to emphasise the care and consideration needed for the direct appli-
cation of unpaired image-to-image translations in the medical domain, and when used in
clinical practice the implications should be held up to even greater scrutiny. Since the
proposed approach merely uses the translations to remove a model’s bias, see Figure 7,
we largely avoid such concerns.

6. Conclusions

To summarise, this article presents a state-of-the-art model, UDA-GAN, that out-
performs all other existing pixel-space alignment approaches in five different stainings.
The model is domain invariant (including to unseen stains), can be easily extended to
new stainings, and the training procedure is general, in that it can be used in different
segmentation and classification tasks.

The usefulness of “translating” stainings has therefore been demonstrated in this
context but it should be emphasised that diagnostically relevant information can be lost
on the way. We should also emphasise that the primary intention of this translation is to
save on resources and time for annotation, not to replace the process of physical staining
modalities.

UDA-GAN’s stain invariance has been shown through quantitative results and by
analysing its feature distribution and attention, which demonstrate that patches from
all stainings are more aligned than with competing approaches. The approach uses pixel
space alignment, which aids in visual interpretation and verification. The results have
been discussed and related to those found in the literature. Namely that choosing trans-
lation model epochs by visual inspection is not the best approach (although no formal
method for selecting the epochs to be used nor evaluating quality exists) and that the
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direction of translation of the data cannot be simply prescribed a priori. Finally, UDA-
GANs limitations were presented; it is still unclear exactly why the model’s performance
degrades with certain stainings despite visually accurate translations. We hypothesise
that some stainings are far from each other in terms of biological structures highlighted, in
particular immunohistochemical staining methods highlighting migratory immune cells
can be far from conventional histology staining methods making the translation task
harder. Therefore, the translation model is forced to introduce hidden information.

Although UDA-GAN approaches diminish these effects to some extent, all these find-
ings indicate that the application of image-to-image translation to medical imaging should
be done with careful consideration.
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