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Tabulated EOS and solution of the Riemann problem for diphasic water
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1 Equation of state for diphasic water.

Formalism

 or Corot [4 ,p.158] :

Result : Let ߬ and ߝ be given : 1. Assume there exists ൫߬

Introduction

For real materials, the Riemann Problem has been considered in the pioneering work by R. Menikoff & B. Blohr [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF]. In particular, they show that when the isentropes in the (p,߬) plane are convex, then the Riemann problem has a unique solution. As we shall see, for water, we get convex isentropes. The main reason comes from the following diagram https://demonstrations.wolfram.com/TemperatureEntropyDiagramForWater/ This diagram shows that when one follows a given isentrope, the saturation line can be crossed only once : from the liquid to the diphasic domain or from the steam to the diphasic domain. Since the sound speed is higher in the liquid domain than in the diphasic domain and also higher in the steam domain than in the diphasic domain, we shall deduce that for water, isentropes are convex in the ሺ, ߬ሻ domain. The Van Der Waals model is the simplest EOS taking phase transition into account. However, people working far from the critical point don't use it since it is not sufficiently accurate. Of course they could use the IAPSW97 EOS for water [START_REF] Wagner | International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97[END_REF]. This one is very accurate, but very costly as regards computing time. See more details in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]. People rather use stiffened gas EOS for pure liquid water and another one for pure steam water. Then they apply thermodynamic laws to obtain an EOS in the diphasic domain, as explained in [START_REF] Després | Numerical Methods for Eulerian and Lagrangian Conservation Laws[END_REF][START_REF] Helluy | Simulation numérique des écoulements multiphasiques: de la théorie aux applications[END_REF]. This induces a computational cost, and this is the reason why people build look-up tables as in [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF] or [START_REF] Saurel | A numerical study of cavitation in the wake of a hypervelocity underwater projectile[END_REF].

In the present paper, we use a stiffened gas EOS for pure liquid water, a perfect gas for pure steam water and, for the diphasic domain, a table provided by Faccanoni [6]. This table gives ܶ, ሺܶሻ, ߬ ሺܶሻ, ߬ ௩ ሺܶሻ, ߝ ሺܶሻ, ߝ ௩ ሺܶሻ, ݏ ሺܶሻ, ݏ ௩ ሺܶሻ

where ሺܶሻ is the saturation pressure, ߬ ሺܶሻ, .ݏ݁ݎ‪ሺ ߬ ௩ ሺܶሻሻ is the specific volume at saturation in the liquid (resp. steam) phase, ߝ ሺܶሻ, ߝ ௩ ሺܶሻ (resp. ݏ ሺܶሻ, ݏ ௩ ሺܶሻ)are similarly the specific energy (resp. entropy) at saturation. In §1 we show how to use our table to derive an EOS in the diphasic domain.

In §2, we show how to combine our diphasic EOS with a stiffened gas EOS in the pure liquid domain.

In §3, we show how to combine our diphasic EOS with a perfect gas EOS in the steam domain.

In §4 we address the solution of the Riemann problem with our combined equations of state.

We show that the isentropes we obtain in the (p,߬) plane are convex, which, according to [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF], proves that the Riemann problem has a unique solution.

Like in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] we use a graphical method for solving the Riemann problem.

Finally we give some specific examples in connection with depressurization.

If we have an EOS for each phase, this result is used to evaluate the specific volume, the internal energy and the entropy of each phase at saturation. However if we know them, this result can also be used to find , ܶ and ,ݏ when ߬ and ߝ are given.

We use numerical values given by Faccanoni [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF].

There are 99 lines in her 

ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ௦ ሺܶሻ = ൫ݏ -ݏ ௩ ሺܶሻ൯ ቀݏ ሺܶሻ -ݏ ௩ ሺܶሻቁ ൗ
The details are left to the reader. ∎ Method C : to compute ߝ, when ߬ and  are given : This is still easier :  being given, first we evaluate ܶ and then compute

ݕ * = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ So that ߝ = ݕ * ߝ ሺܶሻ + ሺ1 -ݕ * ሻ ߝ ௩ ሺ ܶሻ. ∎
Test of our equation of state.

We let ߝ = ݂ሺ߬, ݏሻ : a well-known result in thermodynamics (see e.g. [START_REF] Corot | Numerical simulation of shock waves in a bi-fluid flow: application to steam explosion[END_REF]) is that we should have

డ డఛ = - (1) 
To check that this is the case, we have selected ݏ = 4.4957 and 5.81494≤ ߬ ≤ 10.46689. We compute the derivative of ߝ w.r.t ߬ both by forward and backward difference. The curve "depsdtau1" is obtained by forward difference. The other one by backward difference. The results given in Fig. 1 show a rather good agreement that make us confident with the validity of our equation of state.

Sound speed

We notice on Fig. 1 that, if we write  = ݂ሺ߬, ݏሻ, for fixed ,ݏ ݂ሺ߬, ݏሻ is a decreasing function of ߬, so that the sound speed exists :

Fig.1 pressure p vs -߲ߝ ߲߬ ⁄

We have

(2) ܿ = ߬ ඥ-߲ ߲߬ ⁄
provided we use international units for each variable. When we select ߬, ߝ as the primitive thermodynamic variables, we use that

(3) ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄
also in international units.

In the following test we replace partial derivatives by finite differences, and we get the results given in We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it is of the order of 800 to 1200 m/s. This result is well known.

Equation of state for the liquid phase

For the pure liquid phase, we shall use a stiffened gas EOS. [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] (4)

 = ߛ- ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ From(3), we have ܿ = ߬ ඥ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ From (4) we get ߲ ߲ߝ ⁄ = ሺߛ -1ሻ/߬ ߲ ߲߬ ⁄ = -ሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ܿ ଶ = ߬ ଶ ሺ. ߲ ߲ߝ ⁄ -߲ ߲߬ ⁄ ሻ = ߬ ଶ ሺ-ߛሺߛ -1ሻ  ஶ ߬ ⁄ + ߛሺߛ -1ሻሺߝ -ݍሻ/߬ ଶ ሻ = ߛ߬ሺ-ߛ ஶ +  ஶ + ሺߛ -1ሻሺߝ -ݍሻ/߬ሻ = ߛሺ +  ஶ ሻ߬ So that we get ܿ = ඥߛሺ+ ஶ ሻ߬

Remark :

In [START_REF] Faccanoni | Étude d'un modèle fin de changement de phase liquide-vapeur[END_REF] Faccanoni shows that, when ߬ and ݏ are selected as the primitive variables, the SG equation of state can be written

 = - ஶ + ሺߛ -1ሻ ߬ ିఊ exp ሺሺݏ -݉ሻ ܥ ௩ ሻ ⁄
Along the isentrope, we have

+ ஶ = ሺ +  ஶ ሻ ቀ ఛ బ ఛ ቁ ఊ so that డ డఛ  = డ డఛ ሺ +  ஶ ሻ ቀ ఛ బ ఛ ቁ ఊ = ሺ-ߛሻ߬ ିଵ ሺ +  ஶ ሻ ሺ߬ ሻ ఊ ߬ ିఊ = ሺ-ߛሻ߬ ିଵ +‪ሺ ஶ ሻ
Another way to compute the sound speed is to use (2) which gives

ܿ = ߬ ඥ-߲ ߲߬ ⁄ = ඥߛሺ+ ஶ ሻ߬. ∎
In what follows, we shall select  = 5.664 ܽܲܯ and ߬ = 1.3083 ݃݇/ܮ which correspond to saturated liquid water at ܶ = 545 ,ܭ and ݏ = 2.9935 kJ/kg/K . To define our equation of state we just have to select  ஶ and ߛ.

We have selected  ஶ = 186 ܽܲܯ and ߛ = 2.79, but other choices are possible (see [START_REF] Quibel | Simulation of water-vapor two-phase flows with non-condensable gas[END_REF]).

Our sub-saturated fluid will be initially at specific volume ߬ ଵ = 1.30098 .݃݇/ܮ We complement our isentrope in the two-phase mixture domain by using the second method described in §1. We get the result shown on Fig. 3. Obviously the isentrope is continuous but there is a strong slope discontinuity between both parts. This corresponds to a strong discontinuity of the sound speed ܿ. Note that such an isentrope is convex. It has a slope discontinuity on the saturation line. But since the slope depends on ܿ ଶ and since ܿ decreases, the isentrope is globally convex.

Equation of state for the steam phase

For the pure steam phase, we have selected a perfect gas with ߛ = 1.21 ([10] chooses ߛ = 1.15 ). We have checked that the sound speed is higher in the pure steam domain than in the diphasic domain. For example at ߬ = ,݃݇/ܮ535.43  = 5.664 ܽܲܯ the isentrope is shown on Fig. 4 Note that for  > 5.664 ܽܲܯ we are in the pure steam domain and for  < 5.664 ܽܲܯ in the diphasic domain.

At the slope discontinuity we easily compute by (2) that ܿ = 486 ݏ/݉ on the pure steam side and ܿ = 441 ݏ/݉ on the diphasic side.

This proves that the isentrope is also convex as can be seen on Fig.

4 We shall first consider the case where we have the same diphasic fluid with two different states separated by a diaphragm which is to be removed at time t=0.

We then have ݑ ோ = ݑ = 0 and we shall assume that  ோ >  .

We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave propagating to the right.

For t > 0 we shall have an intermediate constant state ݑ * ,  * , itself subdivided in 2 parts separated by a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have ߬ = ߬ ଵ (resp. ߬ = ߬ ଶ ).

We have 4 unknowns ݑ * ,  * , ߬ ଶ , ߬ ଵ , and we need 4 scalar equations.

First we shall use the fact that the following Riemann invariant is constant along a 3-rarefaction wave. We remind the reader that in Eulerian coordinates

߲ ݐ߲ ቆ ߬ ݑ ߝ ቇ + ൭ ݑ -߬ 0 ߬  ఛ ݑ ߬  ఌ 0 ߬ ݑ ൱ ߲ ݔ߲ ቆ ߬ ݑ ߝ ቇ = 0
Let us call λ ଵ , λ ଶ and λ ଷ the 3 eigenvalues of the matrix of this hyperbolic system they satisfy

ሺݑ -λሻ ଷ + ߬ ଶ .  ఛ . ሺݑ -λሻ -߬ ଶ . .  ఌ . ሺݑ -λሻ = 0 So that ሺݑ -λሻሾሺݑ -λሻ ଶ -߬ ଶ ሺ.  ఌ - ఛ ሻሿ = ሺݑ -λሻሾሺݑ -λሻ ଶ -ܿ ଶ ሿ
And we get the well-known result that λ ଵ = ݑ -ܿ, λ ଶ = ,ݑ λ ଷ = ݑ + ܿ.

Riemann invariants :

We check that

ݎ ଷ = ൭ -߬ ܿ  ߬ ൱ is the eigenvector associated to λ ଷ indeed ൭ -ܿ -߬ 0 ߬  ఛ -ܿ ߬  ఌ 0 ߬ -ܿ ൱ ൭ -߬ ܿ  ߬ ൱ = ൭ 0 -߬ ଶ  ఛ -ܿ ଶ +   ఌ ߬ ଶ 0 ൱ = ൭ 0 0 0 ൱ A function ܴ = ܴሺ߬, ,ݑ ߝሻ is a 3-Riemann invariant iff ∇ܴ. ݎ ଷ = 0 i-e -ܴ߬ ఛ + ܿ ܴ ௨ + ߬ ܴ ఌ = 0 Then ܴ = ݑ -݃ሺ߬ሻ is a 3-Riemann invariant iff ܿ = ߬ ݃ ᇱ ሺ߬ሻ or ݃ ᇱ ሺ߬ሻ = ܿ ߬ ⁄
As a second Riemann invariant we can choose the entropy ݏ which is constant in a rarefaction wave. Let ݏ ோ denote the entropy of the right state, we let

ܿ ோ ሺ߬ሻ = ܿሺ߬, ݏ ோ ሻ We can choose ݃ሺ߬ሻ =  ܿ ோ ሺߪሻ ߪ ⁄ ݀ߪ ఛ ఛ బ
We now get our first two equations :

(5)

ݑ * -݃ሺ߬ ଶ ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0 (6)  * -݂ሺ߬ ଶ ሻ = 0
Remark : uL, pL, τL uR, pR, τR 1°/ By using Method B introduced in §1, we can tabulate the isentrope associated to ݏ ோ . More precisely, we compute a 5-column table such that we find ߬, , ,ݕ ܿ and ݃ in the 5 columns. So that we have tabulated values for ݃ሺ߬ሻ, but also for  = ݂ሺ߬ሻ By assuming linear interpolation, we can also evaluate ݃ ᇱ ሺ߬ሻ and ݂ ᇱ ሺ߬ሻ. 2°/ Knowing the velocity ݑ ோ ,for all values of ߬, we can compute ݑ = ݑሺ߬ሻ by using ݑሺ߬ሻ -݃ሺ߬ሻ -൫ݑ ோ -݃ሺ߬ ோ ሻ൯ = 0.

We still call "isentrope" the so obtained curve ߬ → ሼݑሺ߬ሻ, ሺ߬ሻሽ. ∎

Hugoniot curves.

Now what happens along the 1-shock ?

We have the Rankine-Hugoniot relations. Let ߪ denote the speed of the shock, we should have ( 7)

ߩ ଵ ݑ ଵ -ߩ ݑ = ߪሺߩ ଵ -ߩ ሻ (8) ሺߩ ଵ ݑ ଵ ଶ +  * ሻ -ሺߩ ݑ ଶ +  ሻ = ߪሺߩ ଵ ݑ ଵ -ߩ ݑ ሻ (9) ሺߩ ଵ ܧ ଵ +  * ሻݑ * -ሺߩ ܧ +  ሻݑ = ߪሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ
where (noting

ݑ ଵ = ݑ * ሻ ܧ ଵ = ߝ ଵ + ଵ ଶ ݑ ଵ ଶ ܧ = ߝ + ଵ ଶ ݑ ଶ
Proceeding as DESPRÉS B. [5, p.155], we introduce :

݆ = ߩ ሺߪ -ݑ ሻ = ߩ ଵ ሺߪ -ݑ ଵ ሻ So that ݑ = ߪ -݆߬ and ݑ ଵ = ߪ -݆߬ ଵ ݑ ଵ -ݑ = ݆ሺ߬ -߬ ଵ ሻ or ݆ = -ሾݑሿ/ሾ߬ሿ
Then from ( 8) we get

ሺߩ ଵ ݑ ଵ ଶ +  ଵ ሻ -ሺߩ ݑ ଶ +  ሻ = ߩ ଵ ߪ ݑ ଵ -ߩ ݑߪ = ሺߩ ଵ ݑ ଵ + ݆ሻ ݑ ଵ -ሺߩ ݑ + ݆ሻ ݑ = ߩ ଵ ݑ ଵ ଶ + ݑ݆ ଵ -ߩ ݑ ଶ -jݑ
So that we get :

 ଵ - = ݆ሺݑ ଵ -ݑ ሻ or ݆ = ሾሿ/ሾݑሿ
We also have

(10) ሺ ଵ - ሻ ௨ భ ା௨ ಽ ଶ = ݆ ௨ భ మ ି௨ ಽ మ ଶ
Finally from (9) we get 11) defines a (so called Hugoniot) curve in the plane (߬, ሻ. We denote by  ଵ =  ுை ሺ߬ ଵ ሻ the relation so obtained between  ଵ et ߬ ଵ .

ሺߩ ଵ ܧ ଵ +  ଵ ሻݑ ଵ -ሺߩ ܧ +  ሻݑ = ߪሺߩ ଵ ܧ ଵ -ߩ ܧ ሻ = ሺߩ ଵ ݑ ଵ + ݆ሻܧ ଵ -ሺߩ ݑ + ݆ሻܧ  ଵ ݑ ଵ - ݑ = ݆ሺܧ ଵ -ܧ ሻ Finally ܧ ଵ -ܧ = ߝ ଵ -ߝ + ଵ ଶ ሺݑ ଵ ଶ -ݑ ଶ ሻ So that  ଵ ݑ ଵ - ݑ = ݆ሺܧ ଵ -ܧ ሻ = ݆ሺߝ ଵ -ߝ ሻ + ݆ ௨ భ మ ି௨ ಽ మ ଶ = ݆ሺߝ ଵ -ߝ ሻ + ሺ ଵ - ሻ ௨ భ ା௨ ಽ ଶ ݆ሺߝ ଵ -ߝ ሻ =  ଵ ݑ ଵ - ݑ -ሺ ଵ - ሻ ௨ భ ା௨ ಽ ଶ = ଵ ଶ ሾ ଵ ݑ ଵ - ݑ - ଵ ݑ +  ݑ ଵ ሿ = ଵ ଶ ሺݑ ଵ -ݑ ሻሺ ଵ +  ሻ = ଶ ሺ߬ -߬ ଵ ሻሺ ଵ +  ሻ Hence (11) ሺߝ ଵ -ߝ ሻ + ଵ ଶ ሺ ଵ +  ሻሺ߬ ଵ -߬ ሻ = 0 Since ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ equation (
On Fig. 5 we compare the isentrope passing at ߬ = 313.7083 ݃݇/ܮ ; ܲ = 0.15 ܽܲܯ ; ݑ = 0 and the Hugoniot curve starting at the same point. (ܲ ଵ in MPa and ߬ ଵ in L/kg). We notice that both curves are very close to each other around the point ሼ߬ , ܲ ሽ, but this is a well known result.

Note that on Fig 5 the isentrope starts from a saturated liquid state ሼ1.3083 ,݃݇/ܮ 5.664 ܽܲܯሽ Remark : From relations ݆ = -ሾݑሿ/ሾ߬ሿ and ݆ = ሾሿ/ሾݑሿ we get that ሾሿሾ߬ሿ + ሾݑሿ ଶ = 0.

The parameter ݆ is called the Lagrangian velocity of the shock. If ݆ < 0 we have a 1-shock, whereas with ݆ > 0 a 3-shock (and for ݆ = 0 we have a contact discontinuity).

We have ݆ ଶ = -ሾሿ/ሾ߬ሿ which proves that the Hugoniot curve is decreasing.∎

Remark : Lax's entropy condition for a 1-shock requires that

ߪ < ݑ -ܿ ܽ݊݀ ݑ ଵ -ܿ ଵ < ߪ < ݑ ଵ
For a 3-shock, we have 

ݑ ଵ + ܿ ଵ < ߪ ܽ݊݀ ݑ < ߪ < ݑ + ܿ . ∎

Convexity of the Hugoniot curves

An example is shown in [START_REF] Menikoff R | Riemann Problem for fluid flow of real materials[END_REF] where the Hugoniot curves both in the ሼ߬, ሽ plane and the ሼ,ݑ ሽ plane are not convex. This is not what we find here. We shall consider 2 examples : -The first one is a case where the Hugoniot curve is crossing the saturation curve on the steam side -The second one is a case where the Hugoniot curve is crossing the saturation curve on the liquid side

݈݁݉ܽݔܧ 1 ∶
On Fig. 6, we represent the Hugoniot curve crossing the saturation line in ሼ34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ.

L/kg

The steam saturation line is in grey. The Hugoniot curve is made of a blue part (in the diphasic domain) and a red part (in the pure steam domain. Both are almost tangent. In any case the curve is convex. We have assumed that steam is a perfect gas with ߛ = 1.21 but it does not change significantly if we take ߛ = 1.4. For the pure liquid phase we have selected ߛ = 2 and  ஶ = 215,863 .ܽܲܯ The Hugoniot curve in the diphasic (resp. liquid) domain is in blue (resp. grey). The saturation curve is in red. We see that the Hugoniot curve is continuous, but it has a slope discontinuity when it crosses the saturation curve. However it is convex. To graphically solve the Riemann problem, we just have to find the intersection in the plane ሼ,ݑ ሽ of the "isentrope" starting from the state ሼ߬ ோ ,  ோ , ݑ ோ ሽ and the "Hugoniot" starting from the state ሼ߬ ,  , ݑ ሽ.

Graphical solution to the Riemann problem

Here We note that the rarefaction wave propagates relatively slowly (~50 m/s) to the right. We also note that, on this specific case, ߬ has a weak jump at the contact discontinuity. This is due to the fact that we have selected the right state and the left state with the same entropy. 

Another Case

Case where we have air on the left and subsaturated water on the right.

For air we choose a perfect gas equation of state.

In such a case we use ሺ, ߬ሻ = ఛ ఊିଵ , with ߛ=1.4 to evaluate ߝ ଵ = ݂ሺ߬ ଵ ,  ଵ ሻ in [START_REF] Wagner | International Steam Tables: Properties of Water and Steam Based on the Industrial Formulation IAPWS-IF97[END_REF].

Here are the results when we start from a depressurization case found in [ We can see that the rarefaction wave is made of 2 parts :

-a fast wave propagating at about 800 m/s in the pure liquid phase which reduces its pressure from 15 MPa to the saturation pressure (11.4 MPa) on the same isentrope. -a slow wave propagating at about 50 m/s in the high pressure domain. This phenomenon explains some facts about the Chernobyl accident (see [START_REF] Mercier | A simplified analysis of the Chernobyl accident[END_REF] ).

Conclusion :

We have shown that, with a simple tabulated EOS for water in the diphasic domain, a stiffened gas EOS for pure liquid water and a perfect gas EOS for pure steam, we obtain both convex isentropes and convex Hugoniot curves so that the Riemann problem has a unique solution and can be solved easily. We have given examples which are useful to understand the depressurization process in a tube. 

Fig 2

 2 Fig 2 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x (there are 2 superposed curves)

Fig 3 Fig 4 4 :

 344 Fig 3 Isentrope in a ߬,  diagram. The SG part is shown in blue. The diphasic part in red.

Fig. 5

 5 Fig.5 Hugoniot curve and Isentrope starting from the same point ሼ߬ ,  ሽ.

Fig 6 Fig 7 2 ∶

 672 Fig 6 Hugoniot curve crossing the steam saturation line in ሼ 34.53 ,݃݇/ܮ 5.664 ܽܲܯሽ in ሼ߬, ሽ axes.

Fig 8

 8 Fig 8 Hugoniot curve crossing the liquid saturation line in ሼ1.3083 ,݃݇/ܮ 5.664 ܽܲܯሽ in ሼ߬, ሽ axes.

From

  the so obtained Hugoniot curve ߬ →  ுை ሺ߬ሻ we can deduce another Hugoniot curve in the plane ሼ,ݑ ሽ by ߬ → ሼݑ ுை ሺ߬ሻ ,  ுை ሺ߬ሻ ሽ Where ݑ ுை ሺ߬ሻ = ݑ -ඥሺ߬ -߬ሻሺ ுை ሺ߬ሻ -ܲ ሻ

  Fig 10 Solution to the Riemann Problem at t=2.5 ms. Specific volume L/kg wrt x (m).

Fig 11

 11 Fig 11 Solution to the Riemann Problem at t=2.5 ms. Pressure in MPa wrt x (m)..

  Fig 12 Solution to the Riemann Problem at t=2.5 ms. Velocity in m/s wrt x (m)..

  7] ߬ ோ = 1.4745 ݃݇/ܮ ; ܲ ோ = 15. ܽܲܯ ; ݑ ோ = 0 (pressurized subsaturated liquid water) ߬ = 773.395 ݃݇/ܮ ; ܲ = 0.1 ܽܲܯ ; ݑ = 0 (air at the atmospheric pressure) We use either (a) choice BM2 ߛ = 2 and  ஶ = 215.86 ܽܲܯ (b) choice AF ߛ = 2.2045 and  ஶ = 194.45 ܽܲܯ (both choices give the same sound speed 800 m/s in the pure liquid phase). The results are given on Fig 13, 14 and 15.

Fig

  Fig Solution to the Riemann Problem with air on the left at t=2.5 ms. Pressure in MPa wrt x (m)..

  To compute ܶ we just have to solve the equation ݕ ఛ ሺܶሻ = ݕ ఌ ሺܶሻ. This is a non linear equation with one unknown ܶ which can be easily solved by• finding ݅ such that ݕ ఛ ሺܶ ሻ > ݕ ఌ ሺܶ ሻ and ݕ ఛ ሺܶ ାଵ ሻ < ݕ ఌ ሺܶ ାଵ ሻ Let ݕ * denote the common value of ݕ ఛ ሺܶሻ and ݕ ఌ ሺܶሻ we letݏ = ݕ * ݏ ሺܶ ሻ + ሺ1 -ݕ * ሻ ݏ ௩ ሺ ܶሻ∎Method B : to compute , ܶ and ߝ, when ߬ and ݏ are given :In the same way, we solve ݕ ఛ ሺܶሻ = ݕ ௦ ሺܶሻ = ݕ * where

	Method A : to compute , ܶ and ,ݏ when ߬ and ߝ are given : Let ݕ ఛ ሺܶሻ = ൫߬ -߬ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ ൗ ݕ ఌ ሺܶሻ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ ൗ
	• solving a second degree equation to find ߠ such that ൫߬ -߬ ௩ ሺܶሻ൯ ቀߝ ሺܶሻ -ߝ ௩ ሺܶሻቁ = ൫ߝ -ߝ ௩ ሺܶሻ൯ ቀ߬ ሺܶሻ -߬ ௩ ሺܶሻቁ (indeed, see above, the functions where ߬ ሺܶሻ =, ߬ ௩ ሺܶሻ, ߝ ሺܶሻ and ߝ ௩ ሺܶሻ are all linear in ߠ ) • From the value of ߠ, compute ܶ (and similarly ) by ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ •
	߬ ሺܶሻ = ሺ1 -ߠሻ߬ ሺܶ ାଵ ሻ + ߠ߬ ሺܶ ሻ

table. For 1 ≤ ݅ ≤ 99, the table gives a value ܶ for the saturation temperature and the 7 values ሺܶ ሻ, ߬ ሺܶ ሻ, ߬ ௩ ሺܶ ሻ, ߝ ሺܶ ሻ, ߝ ௩ ሺܶ ሻ, ݏ ሺܶ ሻ, ݏ ௩ ሺܶ ሻ. When ܶ = ሺ1 -ߠሻܶ ାଵ + ߠܶ we interpolate these values linearly so that e.g.

We proceed as follows :

1. We build the isentrope starting from ߬ ோ ; ܲ ோ ; ݑ ோ 2. We build the Hugoniot curve starting from ߬ ; ܲ ; ݑ 3. We define a function ߬ ଶ → ݂ሺ߬ ଶ ሻ such that ݂ሺ߬ ଶ ሻ = ݑ ீ -ݑ where a. ሼ߬ ଶ , ܲ * ሽ is on the same isentrope as