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Introduction 
For real materials, the Riemann Problem has been considered in the pioneering work by R. Menikoff 

& B. Blohr [1]. In particular, they show that when the isentropes in the (p,�) plane are convex, then 

the Riemann problem has a unique solution.  

As we shall see, for water, we get convex isentropes.  

The main reason comes from the following diagram 

 
https://demonstrations.wolfram.com/TemperatureEntropyDiagramForWater/ 

 

This diagram shows that when one follows a given isentrope, the saturation line can be crossed only 

once : from the liquid to the diphasic domain or from the steam to the diphasic domain. 

Since the sound speed is higher in the liquid domain than in the diphasic domain and also higher in 

the steam domain than in the diphasic domain, we shall deduce that for water, isentropes are convex 

in the ��, �� domain. 

The Van Der Waals model is the simplest EOS taking phase transition into account. 
However, people working far from the critical point don’t use it since it is not sufficiently accurate. Of 
course they could use the IAPSW97 EOS for water [11]. This one is very accurate, but very costly as 
regards computing time. See more details in [10]. 
People rather use stiffened gas EOS for pure liquid water and another one for pure steam water. 
Then they apply thermodynamic laws to obtain an EOS in the diphasic domain, as explained in [5, 9]. 
This induces a computational cost, and this is the reason why people build look-up tables as in [10] or 
[12]. 
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In the present paper, we use a stiffened gas EOS for pure liquid water, a perfect gas for pure steam 

water and, for the diphasic domain, a table provided by Faccanoni [6]. 

This table gives  �, ����, �����, �����, 	����, 	����, 
����, 
����  

where ���� is the saturation pressure, �����, ���
�. ������ is the specific volume at saturation in the 

liquid (resp. steam) phase, 	����, 	���� (resp. 
����, 
����)are similarly the specific energy (resp. 

entropy) at saturation.  

In §1 we show how to use our table to derive an EOS in the diphasic domain. 

In §2, we show how to combine our diphasic EOS with a stiffened gas EOS in the pure liquid domain.  

In §3, we show how to combine our diphasic EOS with a perfect gas EOS in the steam domain. 

In §4 we address the solution of the Riemann problem with our combined equations of state.  

We show that the isentropes we obtain in the (p,�) plane are convex, which, according to [1], proves 

that the Riemann problem has a unique solution. 

Like in [1] we use a graphical method for solving the Riemann problem.  

Finally we give some specific examples in connection with depressurization.  

 

1 Equation of state for diphasic water. 

Formalism 

In what follows, the subscript � (resp. �) stands for liquid (resp. steam) 

We want to define an equation of state for an equilibrium diphasic mixture (steam + liquid). 

Such a mixture is at the saturation temperature �. 

Let � denote the liquid mass fraction.  

We know that the saturation pressure � and the Gibbs potential � depend on � only, not on �, 

provided that 0 < � < 1. 

We have the following result Faccanoni et al [8] or Corot [4 ,p.158] : 

 

Result : Let � and 	 be given : 

1. Assume there exists ���∗	, ��∗ , 	�∗	, 	�∗, �∗�	 with 0 < �∗ < 1 and solving the following system 

 �����	, 	�	� = ����� 	, 	� 	� 

 �����	, 	�	� = ����� 	, 	� 	� 

 �����	, 	�	� = �����	, 	� 	� 

 � = �		�� + �1 − ��	�� 

 	 = �			� + �1 − ��		� 

Then the equilibrium state is a diphasic mixture and the associated entropy is 

 
 = �∗		
����∗	, 	�∗	� + �1 − �∗�	
��	��∗ , 	�∗� 

2. Otherwise ��, 		� defines a monophasic state. ∎ 

 

If we have an EOS for each phase, this result is used to evaluate the specific volume, the internal 

energy and the entropy of each phase at saturation. 

However if we know them, this result can also be used to find �, � and 
, when � and 	 are given.  

We use numerical values given by Faccanoni [6]. 

There are 99 lines in her table. For 1 ≤ � ≤ 99, the table gives a value �  for the saturation 

temperature and the 7 values ��� �, ���� �, ���� �,		��� �, 	��� �, 
��� �, 
��� �. 

When � = �1 − !�� "# + 	!�  we interpolate these values linearly so that e.g. 

 ����� = �1 − !����� "#� + 	!���� � 
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Method A : to compute �, � and 
, when � and 	 are given : 

Let 

 �$��� = �� − ������ %����� − �����&'   

 �(��� = �	 − 	����� %	���� − 	����&'  

To compute � we just have to solve the equation �$��� = �(���. 

This is a non linear equation with one unknown � which can be easily solved by  

• finding � such that �$�� � > �(�� �	and �$�� "#� < �(�� "#�	  
• solving a second degree equation to find ! such that 

�� − ������ %	���� − 	����& = �	 − 	����� %����� − �����&  

(indeed, see above, the functions where ����� =, �����, 	���� and 	���� are all linear in ! ) 

• From the value of !, compute � (and similarly �) by � = �1 − !�� "# + 	!�  
• Let �∗ denote the common value of �$��� and �(��� we let  

 
 = �∗		
���	� + �1 − �∗�	
��	��∎ 

 

Method B : to compute �, � and 	, when � and 
 are given : 

In the same way, we solve �$��� = �*��� = �∗ where 

 �$��� = �� − ������ %����� − �����&'   

 �*��� = �
 − 
����� %
���� − 
����&'  

The details are left to the reader.	∎ 

 

Method C : to compute 	, when � and � are given : 

This is still easier : �  being given, first we evaluate � and then compute   

  �∗ = �� − ������ %����� − �����&'   

So that 	 = �∗	���� + �1 − �∗�		��	��.	∎ 

 

Test of our equation of state. 

We let 	 = ���, 
� : a well-known result in thermodynamics (see e.g. [4]) is that we should have  

(1) 
+�
+$ = −� 

 

To check that this is the case, we have selected 
 = 4.4957 and 5.81494≤ � ≤ 10.46689. 

We compute the derivative of 	 w.r.t � both by forward and backward difference. The curve 

“depsdtau1” is obtained by forward difference. The other one by backward difference. 

The results given in Fig.1 show a rather good agreement that make us confident with the validity of 

our equation of state.  

 

Sound speed 

We notice on Fig.1 that, if we write � = ���, 
�, for fixed 
, ���, 
� is a decreasing function of �, so 

that the sound speed exists : 
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Fig.1 pressure p vs  −1	 1�⁄  

 

We have  

(2) 3 = �	4−1� 1�⁄  

provided we use international units for each variable. 

When we select �, 	 as the primitive thermodynamic variables, we use that  

(3) 3 = 	�	4�. 1� 1	⁄ − 1� 1�⁄  

also in international units. 

In the following test we replace partial derivatives by finite differences, and we get the results given 

in Fig 2 for � = 12.9	678. 

 

               
Fig 2 Sound speed evaluated either with (2) or (3) as a function of the steam mass fraction x 

(there are 2 superposed curves)  

9

10

11

12

13

14

15

16

5 6 7 8 9 10 11

depsdtau1 P depsdtau2

�	 �9/;�� 

�	 �678� 



5 
 

We notice that the sound speed in a diphasic mixture is much lower than in the liquid phase, where it 

is of the order of 800 to 1200 m/s. This result is well known. 

 

2 Equation of state for the liquid phase 
For the pure liquid phase, we shall use a stiffened gas EOS.[6]  
(4)   � = −<�= + �< − 1��	 − >�/� 
From(3), we have 3 = 	�	4�. 1� 1	⁄ − 1� 1�⁄  
From (4) we get  
 1� 1	⁄ = �< − 1�/� 
 1� 1�⁄ = −	�< − 1��	 − >�/�? 
 3? = �?��. 1� 1	⁄ − 1� 1�⁄ � = �?�−<�< − 1� �= �⁄ + <�< − 1��	 − >�/�?� 
 = <��−<�= + �= + �< − 1��	 − >�/�� = <�� + �=�� 
So that we get 3 = 	4<��+�=�� 
Remark :  
In [6] Faccanoni shows that, when � and 
 are selected as the primitive variables, the SG equation of 

state can be written  

 � = −	�= + �< − 1�	�@A 	exp	��
 − E� F��⁄  

Along the isentrope, we have �+�= = ��G + �=� %$H$ &A
 so that  

+
+$ � = +

+$ ��G + �=� %$H$ &A = �−<��@#��G + �=� ��G�A	�@A = �−<��@#��+�=� 

Another way to compute the sound speed is to use (2) which gives 

 3 = �	4−1� 1�⁄ = 	4<��+�=��. ∎ 

 

In what follows, we shall select �G = 5.664	678 and �G = 1.3083	9/;� which correspond to 

saturated liquid water at � = 545	J, and 
 = 2.9935	kJ/kg/K . 

To define our equation of state we just have to select �= and <.  

We have selected �= = 186	678 and < = 2.79, but other choices are possible (see [10]). 

Our sub-saturated fluid will be initially at specific volume �# = 1.30098 9/;�.  

We complement our isentrope in the two-phase mixture domain by using the second method 

described in §1. We get the result shown on Fig. 3. 

Obviously the isentrope is continuous but there is a strong slope discontinuity between both parts.  

This corresponds to a strong discontinuity of the sound speed 3. Note that such an isentrope is 

convex. It has a slope discontinuity on the saturation line. But since the slope depends on 3? and 

since 3 decreases, the isentrope is globally convex. 

 

3 Equation of state for the steam phase 
For the pure steam phase, we have selected a perfect gas with < = 1.21 ([10] chooses < = 1.15	). 
We have checked that the sound speed is higher in the pure steam domain than in the diphasic 

domain. For example at � = 34.5359/;�, � = 5.664	678 the isentrope is shown on Fig.4 

Note that for � > 5.664	678 we are in the pure steam domain and for � < 5.664	678  in the 

diphasic domain. 

At the slope discontinuity we easily compute by (2) that 3 = 486	E/
 on the pure steam side and 3 = 441	E/
 on the diphasic side.  

This proves that the isentrope is also convex as can be seen on Fig.4 
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Fig 3 Isentrope in a �, �  diagram. The SG part is shown in blue. The diphasic part in red. 

 

 
Fig 4 Isentrope crossing the steam saturation line at � = 34.5359/;�, � = 5.664	678 
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4 : Solution of the Riemann problem with our equation of state 
We shall first consider the case where we have the same diphasic fluid with two different states 

separated by a diaphragm which is to be removed at time t=0. 

 

 

 

 

 

We then have KL =	KM = 0 and we shall assume that �L >	�M. 

We anticipate that we shall have a 1-shock (propagating to the left) and a 3-rarefaction wave  

propagating to the right. 

For t > 0 we shall have an intermediate constant state K∗	, �∗, itself subdivided in 2 parts separated by 

a contact discontinuity. On the left (resp. on the right) of the contact discontinuity, we shall have � =	�# (resp. � = 	 �?). 

We have 4 unknowns  K∗	, �∗, �?, �#, and we need 4 scalar equations. 

First we shall use the fact that the following Riemann invariant is constant along a 3-rarefaction 

wave. We remind the reader that in Eulerian coordinates 

11N O�K	P +	Q K −� 0�	�$ K �	�(0 �� K R 11S O�K	P = 0 

Let us call λ#	, λ?	 and λT the 3 eigenvalues of the matrix of this hyperbolic system they satisfy  

 �K − λ�T + �?. �$. �K − λ� − �?. �. �( . �K − λ� = 0 

So that  

 �K − λ�U�K − λ�? − �?��. �( − �$�V = �K − λ�U�K − λ�? − 3?V 
And we get the well-known result that λ# = K − 3, λ? = K, λT = K + 3. 

 

Riemann invariants : 

We check that �T = Q−�3�	�R is the eigenvector associated to λT indeed  

Q −3 −� 0�	�$ −3 �	�(0 �� −3 RQ−�3�	�R = Q 0−�?	�$ − 3? + �	�(�?
0 R = Q000R 

A function W = W��, K, 	� is a 3-Riemann invariant iff ∇W. �T = 0 i-e 

  −�W$ + 3	WY + ��	W( = 0 

Then W = K − ���� is a 3-Riemann invariant iff  3 = �	�Z���  or 

 �Z��� = 	 3 �⁄  

As a second Riemann invariant we can choose the entropy 
 which is constant in a rarefaction wave. 

Let 
L denote the entropy of the right state, we let 

 3L��� = 3��, 
L� 

We can choose  

 ���� = 	[ 3L�\� \⁄ ]\$$H  

We now get our first two equations : 

(5) K∗ 	− ���?� − �KL − ���L�� = 0 

(6) �∗ − ���?� = 0 

 

Remark :  

uL, pL, τL uR, pR, τR 



8 
 

1°/ By using Method B introduced in §1, we can tabulate the isentrope associated to 
L. More 

precisely, we compute a 5-column table such that we find �, �, �, 3 and � in the 5 columns. 

So that we have tabulated values for ����, but also for � = ���� 

By assuming linear interpolation, we can also evaluate �Z��� and �Z���. 

2°/ Knowing the velocity KL,for all values of �, we can compute K = K��� by using  K��� 	− ���� − �KL − ���L�� = 0.  

We still call “isentrope” the so obtained curve � → _K���, ����`.  ∎ 

 

Hugoniot curves. 

Now what happens along the 1-shock ? 

We have the Rankine-Hugoniot relations. Let \ denote the speed of the shock, we should have 

(7) a#K# − aMKM = \�a# − aM� 

(8) �a#K#? + �∗� − �aMKM? + �M� = \�a#K# − aMKM� 

(9) �a#b# + �∗�K∗ − �aMbM + �M�KM = \�a#b# − aMbM� 

where (noting K# = K∗� 

 b# = 	# + #
? K#?  bM = 	M + #

? KM? 

Proceeding as DESPRÉS B. [5, p.155], we introduce   : 
 c = aM�\ − KM� = 	a#�\ − K#� 
So that  
 KM = \ − c�M  and   K# = \ − c�# 
 K# − KM = c��M − �#�  or   c = −UKV/U�V 
Then from (8) we get  
 �a#K#? + �#� − �aMKM? + �M� = a#\	K# − aM\KM = �a#K# + c�	K# − �aMKM + c�	KM 
  = a#K#? + cK# − aMKM? −jKM 
So that we get : 
 �# − �M = c�K# − KM� or  c = U�V/UKV 
We also have  

(10) ��# − �M� Yd"Ye? = c	 Ydf@Yef?  

Finally from (9) we get 
 �a#b# + �#�K# − �aMbM + �M�KM = \�a#b# − aMbM� = �a#K# + c�b# − �aMKM + c�bM 
 �#K# − �MKM = c�b# − bM� 
Finally 

 b# − bM = 	# − 	M +	#? �K#? − KM?� 

So that  

 �#K# − �MKM = c�b# − bM� = c�	# − 	M� + c	 Ydf@Yef? = c�	# − 	M� + ��# − �M� Yd"Ye?  

 c�	# − 	M� = �#K# − �MKM − ��# − �M� Yd"Ye? = #
? U�#K# − �MKM − �#KM + �MK#V 

   = #
? �K# − KM���# + �M� = g

? ��M − �#���# + �M� 

Hence 

(11) �	# − 	M� + #
? ��# + �M���# − �M� = 0 

Since 	# = ���#, �#� equation (11) defines a (so called Hugoniot) curve in the plane (�, ��. 

We denote by  

 �# = �hi��#� 

the relation so obtained between �# et �#. 

On Fig. 5 we compare the isentrope passing at �M = 	313.7083	9/;� ; 7M = 0.15	678 ;  KM = 0 

and the Hugoniot curve starting at the same point. (7# in MPa and �# in L/kg). We notice that both 

curves are very close to each other around the point _�M , 7M`, but this is a well known result. 
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Note that on Fig 5 the isentrope starts from a saturated liquid state _1.3083	9/;�, 5.664	678` 

 

Remark : From relations c = −UKV/U�V and c = U�V/UKV we get that U�VU�V + UKV? = 0.  

The parameter c is called the Lagrangian velocity of the shock. 

If c < 0 we have a 1-shock, whereas with c > 0	 a 3-shock (and for c = 0 we have a contact 

discontinuity). 

We have c? = −U�V/U�V which proves that the Hugoniot curve is decreasing.∎ 

 

Remark : Lax’s entropy condition for a 1-shock requires that  

 \ < 	KM − 3M 	8j]	K# − 3# < 	\ < K#	 
For a 3- shock, we have  

 K# + 3# < 	\	8j]	KM < \ <	KM + 3M. ∎ 

 

 
Fig.5 Hugoniot curve and Isentrope starting from the same point _�M, �M`. 

 

 

Convexity of the Hugoniot curves 

An example is shown in [1] where the Hugoniot curves both in the _�, �`	plane and the _K, �` plane 

are not convex. This is not what we find here.  

We shall consider 2 examples : 

- The first one is a case where the Hugoniot curve is crossing the saturation curve on the 

steam side 

- The second one is a case where the Hugoniot curve is crossing the saturation curve on the 

liquid side 

 bS8E�k�	1 ∶	 
On Fig. 6, we represent the Hugoniot curve crossing the saturation line in _34.53	9/;�, 5.664	678`.  

L/kg 
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The steam saturation line is in grey. 

The Hugoniot curve is made of a blue part (in the diphasic domain) and a red part (in the pure steam 

domain. Both are almost tangent. In any case the curve is convex. We have assumed that steam is a 

perfect gas with < = 1.21 but it does not change significantly if we take < = 1.4. 

 

 
Fig 6 Hugoniot curve crossing the steam saturation line in _	34.53	9/;�, 5.664	678` in _�, �` axes.  

 

 
Fig 7 Hugoniot curve in _K, �` axes for example 1.  

 bS8E�k�	2 ∶	 
On Fig. 8, we represent the Hugoniot curve crossing the saturation line in  
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 _1,3083		9/;�, 5.664	678`. 

For the pure liquid phase we have selected < = 2 and  �= = 215,863	678. 

The Hugoniot curve in the diphasic (resp. liquid) domain is in blue (resp. grey). The saturation curve is 

in red. 

 

 
Fig 8 Hugoniot curve crossing the liquid saturation line in _1.3083	9/;�, 5.664	678` in _�, �` axes. 

 

We see that the Hugoniot curve is continuous, but it has a slope discontinuity when it crosses the 

saturation curve. However it is convex.  

 

Graphical solution to the Riemann problem 

From the so obtained Hugoniot curve � → �hi��� we can deduce another Hugoniot curve in the 

plane _K, �` by  � → _Khi���	, �hi���	` 

Where  

 Khi��� = KM − 4��M − ����hi��� − 7M� 

To graphically solve the Riemann problem, we just have to find the intersection in the plane _K, �` of 

the “isentrope” starting from the state _�L , �L , KL` and the “Hugoniot” starting from the state _�M , �M , KM`. 
Here is an example : 

We start from _1.47469 ;�⁄ , 15678, 0	E/
`	on the right and _600.6 9 ;�⁄ , 0.226	678, 0	E/
` 
on the left. Here is what we get on Fig 9. 

The intersection is obtained for �∗ ≅ 1.07	678 and K∗ ≅ −601	E/
. 

This corresponds to �? ≅ 959 ;�⁄  on the isentrope and �# ≅ 172.6 9 ;�⁄ 	on the Hugoniot. 

 

L/kg 

MPa 
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Fig 9 : Graphical solution to the Riemann Problem in a diagram _K, �` 

 

Computer solution of the Riemann Problem. 

We proceed as follows : 

1. We build the isentrope starting from �L; 7L ;  KL  

2. We build the Hugoniot curve starting from �M; 7M ;  KM  

3. We define a function �? → ���?� such that ���?� = Kn − Ko where  

a. _�?, 7∗` is on the same isentrope as _�L , 7L` 

b. Ko = ���?� + �KL − ���L�� = 0 

c. _�#, 7∗` is on the same Hugoniot curve as _�M , 7M` 
d. Kn = KM − 4��M − �#��7∗ − 7M� 

4. We use the dichotomy method to solve ���?� = 0 

 

Example 3: 

With �L = 	1.3083	9/;� ; 7L = 5.664	678 ;  KL = 0  �M = 	313.7083	9/;� ; 7M = 0.15	678 ;  KM = 0 

we get |���?�| < 10@#G in 40 steps.  

We get : �? = 49.5734 L/kg �# = 54.9847 L/kg 7∗ = 0.80977 MPa K∗ = Kn = Ko = -413.137m/s 

We give below a plot of the solution of this Riemann problem at t = 2.5ms. 
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(Note that we need first to use (7) to find \ = −500.938 m/s) 

 
Fig 10 Solution to the Riemann Problem at t=2.5 ms. Specific volume L/kg wrt x (m). 

 

 
Fig 11 Solution to the Riemann Problem at t=2.5 ms. Pressure in MPa wrt x (m).. 

 

We note that the rarefaction wave propagates relatively slowly  (~50 m/s) to the right. 

We also note that, on this specific case, � has a weak jump at the contact discontinuity. 

This is due to the fact that we have selected the right state and the left state with the same entropy. 

 

If we start from �L = 	1.3083	9/;� ; 7L = 5.664	678 ;  KL = 0  �M = 	1000. ; 7M = 0.15	678 ;  KM = 0 

We get �# ≅ 334 L/kg and �? ≅ 81 L/kg 
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Fig 12 Solution to the Riemann Problem at t=2.5 ms. Velocity in m/s wrt x (m).. 

 

 

Another Case 

Case where we have air on the left and subsaturated water on the right. 

For air we choose a perfect gas equation of state. 

In such a case we use ��, �� = r$
A@# , with <=1.4 to evaluate 

 	# = ���#, �#�  

in (11). 

Here are the results when we start from a depressurization case found in [7] �L = 	1.4745	9/;� ; 7L = 15.678 ;  KL = 0 (pressurized subsaturated liquid water) �M = 	773.395	9/;� ; 7M = 0.1	678 ;  KM = 0 (air at the atmospheric pressure) 

 

We use either  

(a) choice BM2 < = 2	 and �= = 215.86	678 

(b) choice AF < = 2.2045	 and �= = 194.45	678  

(both choices give the same sound speed 800 m/s in the pure liquid phase). 

 

The results are given on Fig 13, 14 and 15. 

We can see that the rarefaction wave is made of 2 parts :  

- a fast wave propagating at about 800 m/s in the pure liquid phase which reduces its pressure 

from 15 MPa to the saturation pressure (11.4 MPa) on the same isentrope. 

- a slow wave propagating at about 50 m/s in the high pressure domain. 

This phenomenon explains some facts about the Chernobyl accident (see [13] ).  

Conclusion : 
We have shown that, with a simple tabulated EOS for water in the diphasic domain, a stiffened gas 

EOS for pure liquid water and a perfect gas EOS for pure steam, we obtain both convex isentropes 

and convex Hugoniot curves so that the Riemann problem has a unique solution and can be solved 

easily.  

We have given examples which are useful to understand the depressurization process in a tube. 
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Fig 13 Solution to the Riemann Problem with air on the left at t=2.5 ms. Pressure in MPa wrt x (m).. 

 

 
Fig 14 Solution to the Riemann Problem with air on the left at t=2.5 ms. Velocity in m/s wrt x (m). 

 

 
Fig 15 Solution to the Riemann Problem with air on the left at t=2.5 ms. Specific volume L/kg wrt x 

(m). 
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