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Abstract8

We introduce a new Multi-Agent Path Finding (MAPF) problem which is motivated by an industrial9

application. Given a fleet of robots that move on a workspace that may contain static obstacles, we10

must find paths from their current positions to a set of destinations, and the goal is to minimise the11

length of the longest path. The originality of our problem comes from the fact that each robot is12

attached with a cable to an anchor point, and that robots are not able to cross these cables.13

We formally define the Non-Crossing MAPF (NC-MAPF) problem and show how to compute14

lower and upper bounds by solving well known assignment problems. We introduce a Variable Neigh-15

bourhood Search (VNS) approach for improving the upper bound, and a Constraint Programming16

(CP) model for solving the problem to optimality. We experimentally evaluate these approaches on17

randomly generated instances.18
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1 Introduction26

Multi-agent path finding (MAPF) is a very active research topic which has important appli-27

cations for robotics in industrial contexts (e.g., transport in fulfillment centers, autonomous28

tug robots). In this paper we consider an extension of MAPF for tethered robots, i.e., robots29

attached with flexible cables to anchor points, allowing them to have continuous access to30

fluids such as energy or water, for example. This is the case for our industrial partner in a31

European project1 where a fleet of mobile robots is used for inspecting and cleaning large32

structures. Each robot has a cable which is kept taut between its anchor point and its33

current position by a system that pulls on the cable when the robot moves back. The main34

difficulty with these tethered robots comes from the fact that robots are not able to cross35

cables. Hence, this paper introduces the Non-Crossing MAPF (NC-MAPF) problem which36

aims at finding paths such that robots never have to cross cables.37

1 H2020 project BugWright2 : Autonomous Robotic Inspection and Maintenance on Ship Hulls and
Storage Tanks, 2020-24
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Related work38

In classic MAPF, agents move in a discretized environment (a grid or a graph). The goal is39

to find a plan for moving all agents from their initial locations to target locations so that no40

two agents share a same location (grid cell, graph node, or graph edge) at a same moment.41

Typically, a plan is a sequence of actions for each agent, where an action is either "move to42

an adjacent location" or "wait at the current location".43

There are two main MAPF variants depending on whether each agent has a known44

target, or there is a set of targets and each agent must be first assigned to a target before45

searching for a plan. This latter variant, called anonymous MAPF, is more general and also46

more difficult as the search space is increased. There are two main objective functions, i.e.,47

minimise the makespan, corresponding to the latest arrival time of an agent to its target, or48

minimise the sum of all travel times. In both cases, the problem is NP-hard [18].49

MAPF problems are usually solved by using Conflict Based Search (CBS) approaches50

[15] which are two-level approaches: at the low level, paths are searched (while satisfying51

constraints added at the high level); and at the high level, path conflicts are resolved. CBS52

has been extended to agents with a specific geometric shape and volume (e.g., [9, 17]) and to53

convoys (agents that occupy a sequence of nodes and their connecting edges) [16]. These54

MAPF variants share some similarities with NC-MAPF as a tethered robot may be viewed55

as a robot which has a very long body corresponding to its cable.56

However, CBS is not suited to solve NC-MAPF because this approach is efficient when57

conflicts are easily resolved by applying small changes to paths (e.g., waiting for a location58

to be freed or getting around an occupied location). This is not the case for NC-MAPF. For59

example, let us consider the case of two paths π1 (from an anchor point a1 to a target t1)60

and π2 (from a2 to t2) such that the cables cross at some point x. To solve this conflict,61

a first possibility is to ask the first robot to wait just before reaching x while the second62

robot continues its path from x to d2, achieves its task on d2, and returns back to x, thus63

removing the cable from x and allowing the first robot to continue its path from x to d1. As64

robots usually have to achieve long duration tasks, this way of resolving conflicts dramatically65

increases the makespan. A second possibility is to search for new paths such that cables do66

not cross, but this cannot be done by applying small changes to the paths and this problem67

may have no solution in some cases.68

In the robotics literature, few works have investigated path planning for tethered robots.69

In most cases, cables may be pushed and bent by robots (e.g., [6, 19]), which is not possible in70

our industrial context. As far as we know, none has considered a case similar to our problem71

where (i) robots cannot cross neither push or bent cables, (ii) paths cannot be sequentialized72

(i.e., a robot cannot wait for another robot to have achieved its task and returned back to73

its anchor point), and (iii) robots do not have assigned targets (anonymous MAPF).74

Contributions and outline of the paper75

In Section 2, we introduce notations and define the workspace on which robots evolve. This76

workspace is continuous, and we show in Section 3 how to reformulate our problem in a77

discrete visibility graph.78

In Section 4, we first consider the case where the workspace has no obstacle. We show79

that the NC-MAPF problem without obstacle is a special kind of assignment problem in a80

bipartite graph, and we show how to efficiently compute lower and upper bounds by solving81

well known assignment problems. We also introduce a Variable Neighbourhood Search (VNS)82

approach, to improve the upper bound, and a Constraint Programming (CP) model, to83
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compute the optimal solution.84

In Section 5, we consider the case where the workspace has obstacles. We prove that85

optimal solutions of assignment problems still provide bounds in this case. We also show86

that the optimal solution of the NC-MAPF problem may contain some paths that are not87

shortest paths. Hence, we introduce an approach for enumerating all relevant paths and,88

finally, we introduce a CP model for computing the optimal solution.89

In Sections 4 and 5, we report experimental results on randomly generated instances and90

show that our approach scales well enough to solve realistic instances within a few seconds.91

2 Definition of the workspace and notations92

Robots move on a 2 dimensional workspaceW ⊂ R2. This workspace is defined by a bounding93

polygon B and a set O of obstacles: every obstacle in O is a polygon within B, and W is94

composed of every point in B that does not belong to an obstacle in O. Without loss of95

generality, we assume that B is convex: if the bounding polygon is not convex, then we can96

compute its convex hull B and add to O the obstacle corresponding to the difference between97

the bounding polygon and B. We denote VO the set of vertices of obstacles in O, and we98

assume that these vertices belong to W (and, therefore, obstacle boundaries belong to W ).99

Given two points u, v ∈W , we denote uv the straight line segment that joins u to v, and100

|uv| the Euclidean distance between u and v (i.e., |uv| is the length of uv). We say that a101

segment crosses an obstacle if uv 6⊂W . Given two segments uv and u′v′, we say that they102

are incident if they have one common endpoint (i.e., |{u, v} ∩ {u′, v′}| = 1), and we say that103

they cross if they share one point (called the crossing point) which is not an endpoint (i.e.,104

{u, v} ∩ {u′, v′} = ∅ and uv ∩ u′v′ 6= ∅).105

A chain of incident segments u0u1, u1u2, . . . , ui−1ui is represented by the sequence π =106

〈u0, u1, u2, . . . , ui〉. The length of this chain of segments is denoted |π| and is the sum of the107

lengths of its segments, i.e., |π| =
∑i

j=1 |uj−1uj |.108

We denote [x, y] the set of all integer values ranging between x and y.109

3 Definition of the NC-MAPF Problem110

We consider an anonymous MAPF problem with a set of n robots such that each robot is111

attached with a flexible cable to an anchor point in W , and a set of n destinations. The goal112

is to find a path in W for each robot from its anchor point to a different destination so that113

the longest path is minimised and robots never have to cross cables.114

As the workspace W is continuous, there exists an infinite number of paths from an115

anchor point a to a destination d. However, as each cable is kept taut, the number of different116

cable positions that start from a and end on d is finite (provided that we forbid infinite117

loops). More precisely, the cable position associated with a robot path from a to d is a chain118

of incident segments 〈u0, u1, . . . , ui〉 such that (i) u0 = a and ui = d, (ii) no segment crosses119

an obstacle, and (iii) every internal point is an obstacle vertex, i.e., ∀j ∈ [1, i− 1], uj ∈ VO.120

As the length of a robot path cannot be smaller than the length of its cable position, we121

can simplify our problem by assuming that the path of a robot is its cable position. Hence,122

we search for paths in a visibility graph [10] defined in Def. 1 and illustrated in Fig. 1.123

I Definition 1 (Visibility graph [10]). The visibility graph associated with a workspace W , a124

set of anchor points A and a set of destinations D is the directed graph G = (V,E) such that125

vertices are either points of A and D or obstacle vertices, i.e., V = A ∪D ∪ VO, and edges126

CP 2021
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correspond to segments that do not cross obstacles, i.e., E = {(u, v) ∈ (A∪VO)×(D∪VO)|uv ⊂127

W}. The graph is directed because edges from destinations to anchor points are forbidden.128

In Def. 1, we implicitly assume that robots are points, which is an acceptable approxima-129

tion when the actual size of robots is very small compared to the size of obstacles (which is130

the case in our industrial application). This definition may be extended to the case where131

robot shapes are approximated by circles with non null radius in a straightforward way by132

growing obstacles (see [10] for details).133

A path in the visibility graph G is a sequence of vertices 〈u0, . . . , ui〉 such that (uj−1, uj) ∈134

E,∀j ∈ [1, i]. This path also corresponds to a chain of segments and its length is the sum of135

the lengths of its segments. We only consider elementary paths, i.e., a vertex cannot occur136

more than once in a path. Indeed, if a path is not elementary, then it can be replaced by a137

shorter elementary path obtained by removing its cycles.138

Two paths are homotopic is there exists a continuous deformation between them without139

crossing obstacles [2], and a taut path is the shortest path of a homotopy class. For example,140

in the workspace of Fig. 1, all paths starting from the anchor point a1 (point 1 in blue),141

passing between O1 and O2 and then between O1 and O3, and finally reaching the destination142

d1 (point 1 in red) are homotopic. Let x be the bottom-left vertex of O1, y its bottom-143

right vertex, z the top-left vertex of O3, and t the top-right vertex of O2. The paths144

π = 〈a1, x, y, z, d1〉 and π′ = 〈a1, x, t, z, d1〉 are homotopic. π is taut because it is the shortest145

path of its homotopy class. π′ is not taut because it is longer than π.146

We say that a path is self-crossing if it contains two crossing segments. We say that two147

paths π and π′ are crossing either if π contains a segment that crosses a segment of π′, or if148

π contains two incident segments uv and vw and π′ contains two incident segments u′v′ and149

v′w′ such that v = v′ and uw crosses u′w′. However, two non crossing paths may share some150

vertices or some segments, as illustrated in Fig. 1(c). Indeed, as robots are small and cables151

are thin, a robot can slightly push the cable of another robot without crossing its cable. For152

example, if the black robot (starting from 3) in Fig. 1(c) arrives on the vertex of obstacle O4153

before the blue robot (starting from 4) then, when the blue robot arrives on this vertex, it154

can slightly push the black cable to continue its path between O4 and the black cable.155

Let us now formally define our problem.156

I Definition 2 (NC-MAPF problem). Given a workspace W , a set A of n anchor points157

and a set D of n destinations such that every point in A ∪D belongs to W , the goal of the158

NC-MAPF problem is to find n paths in the visibility graph G associated with W , A, and159

D such that (i) every path is taut, (ii) every path starts on a different anchor point of A,160

(iii) every path ends on a different destination of D, (iv) no path is self-crossing, (v) no two161

paths are crossing, and (vi) the length of the longest path is minimal.162

4 NC-MAPF problem without obstacles163

In this section, we consider the case where the set O of obstacles is empty. In this case,164

VO = ∅ and the visibility graph G is the complete bipartite graph such that V = A ∪D and165

E = A×D (every edge of E is included in W as the bounding polygon is convex).166

In Section 4.1, we show how to compute lower and upper bounds by solving well known167

assignment problems. In Section 4.2, we show how to improve the upper bound by performing168

variable neighbourhood search. In Section 4.3, we introduce a CP model and, in Section 4.4,169

we experimentally evaluate these approaches.170
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(a) (b) (c)

Figure 1 (a): Example of workspace W with four anchor points (in blue) and four destinations
(in red). (b): Visibility graph with paths that are not solution of the NC-MAPF because the green
path crosses the pink path and the black path crosses the blue path. Besides, the black path is not
taut. (c): Visibility graph with paths that are solution of the NC-MAPF, even though the green
and pink paths share a segment, and the black and blue paths share a vertex.

4.1 Computation of bounds by solving assignment problems171

An assignment problem aims at finding a one-to-one matching between tasks and agents [3, 13].172

In our context, tasks correspond to destinations and agents to robots, and a matching is a173

bijection m : A→ D. We say that an edge (a, d) of the visibility graph G is selected whenever174

m(a) = d. The NC-MAPF problem without obstacles is a special case of assignment problem:175

there is an additional constraint that ensures that no two selected edges cross, i.e.,176

∀{ai, aj} ⊆ A, aim(ai) ∩ ajm(aj) = ∅;177

there is an objective function that aims at minimising the maximal cost of a selected178

edge, i.e., maxai∈A |aim(ai)|.179

There exists many other assignment problems [3, 13]. The most well known one is the180

Linear Sum Assignment Problem (LSAP) that aims at minimising the sum of the costs of181

the selected edges. The LSAP can be solved in polynomial time (e.g., by the Hungarian182

algorithm [7]). Interestingly, the solution of the LSAP cannot have crossing edges whenever183

edge costs are defined by Euclidean distances [14]. Indeed, if two selected edges cross, then184

we can obtain a better assignment by swapping their destinations so that the two edges no185

longer cross. Hence, the solution of the LSAP provides an upper bound to the NC-MAPF186

problem without obstacles.187

The assignment problem that aims at minimising the maximal cost of a selected edge188

is known as the Linear Bottleneck Assignment Problem (LBAP), and this problem can189

also be solved in polynomial time (e.g., by adapting the Hungarian algorithm). However,190

when adding the constraint that the selected edges must not cross, the problem becomes191

NP-hard [4]. Hence, the solution of the LBAP provides a lower bound to the NC-MAPF192

problem without obstacles.193

4.2 Variable Neighbourhood Search194

The upper bound computed by solving a LSAP may be tightened by performing local search.195

We consider a basic VNS framework [11] described below.196

CP 2021
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The neighbourhood of a matching m contains every non crossing matching obtained by197

permuting the destinations of k anchor points, and it is explored in O(
(

n−1
k−1
)
· k!): we198

first search for the longest edge (a,m(a)); then, we enumerate subsets of A \ {a} that199

contain k − 1 anchor points and, for each subset (to which a is added), we consider every200

permutation of the destinations without crossing edges, until finding a permutation whose201

longest edge is smaller than (a,m(a)).202

k is initialised to 2, and the search is started from the matching computed by solving the203

LSAP. We iteratively perform improving moves, by replacing the current matching with204

one of its neighbours that has a shorter longest edge. When we reach a locally optimal205

matching (that cannot be improved by permuting the destinations associated with k206

anchor points), we increase k. When an improving move is performed, k is reset to 2.207

The search is stopped either when a given time limit l is reached or when k becomes208

greater than a given upper bound kmax. (In the classical VNS framework, the current209

solution is perturbated and k is reset to its lowest possible value when k becomes greater210

than its upper bound kmax. We do not consider this perturbation phase here.)211

4.3 Constraint Programming Model212

Finally, let us introduce a CP model for the NC-MAPF problem without obstacles. Without213

loss of generality, we assume that all edge lengths have integer values: if this is not the case,214

then we can multiply every length by a given constant factor c > 1 and then round it to the215

closest integer value so that for each couple of edges ((u, v), (u′, v′)) such that |uv| < |u′v′|,216

we have round(c ∗ |uv|) < round(c ∗ |u′v′|). In this case, the optimal solution of the integer217

problem is also an optimal solution of the original problem.218

Let ub be an upper bound to the optimal solution. The variables are:219

an integer variable xi is associated with every anchor point ai ∈ A, and the domain220

of this variable contains every destination that is within a distance of ub from ai, i.e.,221

D(xi) = {d ∈ D : |aid| < ub};222

an integer variable y represents the maximal length of a selected edge.223

The constraints are:224

for each pair of anchor points {ai, aj} ⊆ A, we post a table constraint (xi, xj) ∈ Tij where225

Tij is the table that contains every couple (d, d′) ∈ D(xi)×D(xj) such that d 6= d′ and226

the segment aid does not cross the segment ajd′;227

for each anchor point ai ∈ A, we post the constraint y ≥ |aixi|;228

we post an allDifferent({xi : ai ∈ A}) constraint. This constraint is redundant as229

table constraints prevent assigning a same value to two different xi variables. However,230

preliminary experiments have shown us that this improves the solution process for a wide231

majority of instances.232

The goal is to minimise y.233

4.4 Experimental evaluation234

We evaluate our algorithms on randomly generated instances. For all instances, the bounding235

polygon is the square B = [0, 200]2. To generate an instance with n robots, we randomly236

generate n anchor points and n destinations that all belong to B and such that the distance237

between two points is always larger than 4. For each value of n, we generate 50 different238

instances and report average results on these instances for all figures and tables.239

We consider the following approaches:240

LB refers to the computation of a lower bound by solving an LBAP (see Section 4.1).241
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Figure 2 Left: Evolution of the optimal makespan (Opt), the lower bound (LB) and upper
bounds (UBi with i ∈ {1, 3, 5, 7}) when increasing the number n of robots. Right: Evolution of the
gap to optimality (in percentage) with respect to time for UBiCP with i ∈ {1, 3, 5, 7}, on average
for the 50 instances with n = 50 robots.

UBi with i ∈ {1, 3, 5, 7} refers to the computation of an upper bound by first solving an242

LSAP (see Section 4.1) and then improving it by VNS with l = 60 seconds and kmax = i243

(see Section 4.2). Note that when i = 1, VNS is immediately stopped as k is initialised to244

2 and the search is stopped when k becomes greater than kmax.245

UBiCP refers to the sequential combination of UBi, for computing an upper bound ub,246

and CP (with the model described in Section 4.3) for computing the optimal solution.247

LB and UBi are implemented in Python. The CP model is implemented in MiniZinc [12]248

and solved with Chuffed [5]. All experiments are run on an Intel Core Intel Xeon E5-2623v3249

of 3.0GHz×16 with 32GB of RAM.250

On the left part of Fig. 2, we compare the optimal makespan with the lower bound251

computed by LB, and upper bounds computed by UBi with i ∈ {1, 3, 5, 7}. We observe that252

the optimal makespan decreases as the number n of robots increases. Indeed, when n gets253

larger, anchor and destination points tend to be located more densely and this makes it254

easier to assign anchor points to closer destinations. LB is always strictly smaller than the255

optimal makespan, i.e., the solution of the LBAP always contains crossing segments.256

UB1 corresponds to the solution of the LSAP, and this upper bound is much larger than257

the optimal makespan. VNS strongly decreases this upper bound, and the larger kmax the258

smaller the bound. Note that when kmax ≥ n, VNS actually finds the optimal makespan as259

it explores all possible permutations of the n destinations (provided that we do not limit260

time, i.e., l =∞). Hence, when n = 5, the solution of UB5 is equal to the optimal makespan.261

However, if UBi finds smaller bounds when increasing i, it also needs more time. This262

is shown on the right part of Fig. 2, for instances that have n = 50 robots. We display the263

evolution of the average gap to optimality in percentage (i.e., s−s∗

s∗ where s∗ is the optimal264

makespan and s is the current makespan) with respect to CPU time. For UB1CP, the upper265

bound ub is very quickly computed by solving the LSAP, but it is 38% as large as the optimal266

makespan. ub is used to filter variable domains of xi variables. However, as ub is not very267

tight, the construction of the table Tij for every couple of variables (xi, xj) is time consuming.268

This construction phase corresponds to the horizontal part of the curve. Once the CP model269

has been constructed, Chuffed finds better solutions and finally proves optimality. When270

increasing kmax , the time spent by VNS to improve ub increases but, as a counterpart, the271

time spent to build the CP model and the time spent by Chuffed to solve it also decreases.272

CP 2021
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Table 1 Scale-up properties with respect to the number n of robots. For each n ∈ {20, . . . , 60},
we report CPU times of UBiCP (in seconds), for i ∈ {1, 3, 5, 7}: t1 is the time spent to solve the
LSAP and improve the upper bound with VNS when kmax = i and l = 60s; t2 is the time to generate
the MiniZinc model; t3 is the time spent by Chuffed; ttot = t1 + t2 + t3 is the total time (in blue
when minimal). Chuffed is limited to 3600s and the time of a run is set to 3600 when this limit is
reached. In this case, t3 is a lower bound of the actual time (and we display ≥ before the time).

n UB1CP UB3CP UB5CP UB7CP
t1 t2 t3 ttot t1 t2 t3 ttot t1 t2 t3 ttot t1 t2 t3 ttot

20 0.001 0.4 0.1 0.5 0.01 0.2 0.1 0.3 0.0 0.2 0.1 0.3 0.8 0.2 0.1 1.1
30 0.002 1.4 ≥35.4 36.9 0.01 0.9 0.4 1.3 0.1 0.6 0.1 0.9 2.3 0.6 0.2 3.1
40 0.004 3.4 12.4 15.8 0.02 2.1 1.4 3.5 0.3 1.8 0.6 2.6 7.2 1.6 0.5 9.2
50 0.003 6.7 ≥127.2 133.9 0.03 4.1 13.6 17.7 0.5 3.1 7.5 11.1 7.6 2.8 7.7 18.2
60 0.008 16.8 ≥529.3 546.1 0.06 9.4 ≥197.6 207.4 1.3 6.1 27.0 34.4 16.8 5.7 25.5 48.1

Figure 3 The solution displayed on the left only uses shortest paths, and its makespan is larger
than the solution displayed on the right (the green right path is longer than the black path).

Table 1 allows us to study scale-up properties when increasing the number n of robots.273

The time spent by UBi (t1) strongly increases when i increases: from 0.008s when i = 1 to274

more than 16s when i = 7 for n = 60. This was expected as the time complexity of VNS275

is exponential with respect to kmax . The time limit l = 60s is never reached by VNS when276

i ≤ 5 whereas it is reached when i = 7: for 7 (resp. 1 and 1) instances when n = 60 (resp.277

50 and 40). However, when increasing i, UBi computes better bounds and this reduces the278

time needed to generate the model (t2) and to solve it (t3). When i = 1, the time limit of279

3600s is reached by Chuffed for 6 (resp. 1 and 1) instances when n = 60 (resp. 50 and 30).280

It is also reached once when i = 3 and n = 60. A good compromise is observed with UB5CP.281

5 NC-MAPF problem with obstacles282

Let us now consider the case where the workspace contains obstacles. In this case, the283

visibility graph is no longer a bipartite graph, and a path from an anchor point to a destination284

may contain more than one edge. Besides, with the existence of obstacles, there might exist285

more than one possible path, even when restricting our attention to paths in the visibility286

graph, and an optimal solution may contain paths that are not shortest paths, as illustrated287

in Fig. 3. As a consequence, our problem is no longer a simple bipartite matching problem:288

we must not only choose a different destination for each anchor point, but also choose paths.289

The number of paths between two points grows exponentially with respect to the number290

of obstacles. However, if we have an upper bound on the maximal length of a path, we can291

reduce the number of paths. Hence, we show how to compute upper bounds on the makespan292
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(a) (b)

(c) (d)

Figure 4 Top (Case 1): πi (in red) and πj (in blue) contain two crossing segments uivi and ujvj .
(a): uivj and ujvi (in green) do not cross obstacles and |uivj |+ |ujvi| < [uivi|+ |ujvj |. (b): uivj

and ujvi (dotted lines) cross obstacles but πij = 〈ui, p, vj〉 and πji = 〈uj , n,m, vi〉 (in green) do
not cross obstacles and |πij |+ |πji| < |uivi|+ |ujvj |. Bottom (Case 2): πi (in red) and πj (in blue)
cross at a common vertex. (c): By swapping wi and wj we obtain non crossing paths which are
not shortest paths (|〈uj , p, wi〉| < |uj , v, wi〉|). (d): By swapping wi and wj we obtain non crossing
paths that have the same length.

in Section 5.1. In Section 5.2, we show how to compute all relevant paths. In Section 5.3, we293

describe a CP model and in Section 5.4 we experimentally evaluate our approach.294

5.1 Computation of bounds295

When there are obstacles, the visibility graph G associated with W , A and D is no longer a296

bipartite graph. However, we can build a bipartite graph G′ = (V ′, E′) such that V ′ = A∪D297

and E′ = A×D, and define the cost of an edge (a, d) ∈ E′ as the length of the shortest path298

from a to d in G. In this case, we can compute a lower bound by solving the LBAP in G′.299

Let us now show that we can also compute an upper bound by solving the LSAP in G′,300

as a straightforward consequence of the following theorem.301

I Theorem 3. Let m : A → D be an optimal solution of the LSAP in G′ and, for each302

anchor point ai ∈ A, let πi be the shortest path that connects ai to m(ai) in the visibility303

graph. For each pair of different anchor points {ai, aj} ⊆ A, either πi and πj are not crossing,304

or they can be replaced by two non crossing paths π′i and π′j such that |πi|+ |πj | = |π′i|+ |π′j |.305

Proof. Let us suppose that there exist two crossing paths πi and πj . There are two cases to306

consider, depending on whether πi and πj contain two crossing segments or not.307

Case 1: πi and πj contain two crossing segments uivi and ujvj . Let us show that this implies308

that m does not minimise the sum of the selected edge costs. There are two sub-cases to309

consider.310

Subcase a: uivj and ujvi do not cross obstacles, as illustrated in Fig. 4a.311
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Let πp
i (resp. πs

i ) be the prefix (resp. suffix) of πi that precedes (resp. succeeds)312

uivi, i.e., πi = πp
i · 〈ui, vi〉 · πs

i where · denotes path concatenation. Similarly, let313

πj = πp
j · 〈uj , vj〉 · πs

j . Let x be the crossing point between uivi and ujvj . We have:314

|uivi| = |uix|+ |xvi| and |ujvj | = |ujx|+ |xvj |. (1)315

The triangle inequality implies that316

|uivj | < |uix|+ |xvj | and |ujvi| < |ujx|+ |xvi|. (2)317

From Eq. (1) and (2), we infer that318

|uivj |+ |ujvi| < |uivi|+ |ujvj |. (3)319

When swapping vi and vj , πi and πj are replaced by the two paths π′i = πp
i · 〈ui, vj〉 ·πs

j320

and π′j = πp
j · 〈uj , vi〉 · πs

i . From Eq. (3), we have |π′i|+ |π′j | < |πi|+ |πj |. This is in321

contradiction with the fact that m minimises the sum of the costs of the selected edges322

in G′ as the costs of edges (ai,m(aj)) and (aj ,m(ai)) in G′ are smaller than or equal323

to |π′i| and |π′j |, respectively (they may be strictly smaller if π′i or π′j are not shortest324

paths in G).325

Subcase b: uivj and ujvi cross obstacles, as illustrated in Fig. 4b.326

In this case, we cannot simply exchange the two crossing segments to obtain two non327

crossing paths. However, let πij be the path from ui to vj corresponding to the convex328

hull of all vertices that belong to the triangle defined by ui, vj and x. This path is329

displayed in green in Fig. 4b. We can show that |πij | < |uix| + |xvj | by recursively330

exploiting the triangle inequality (see [1]). Similarly, there exists a path πji between331

uj and vi such that |πji| < |ujx|+ |xvi|. Therefore, |πij |+ |πji| < |uivi|+ |ujvj |. Like332

in Subcase a, this is in contradiction with the fact that m minimises the sum of the333

costs of the selected edges in G′.334

Case 2: πi and πj do not contain crossing segments but they cross at some vertex v. Let π be335

the longest path that is common to both πi and πj , i.e., πi = πp
i ·π ·πs

i and πj = πp
j ·π ·πs

j .336

We can exchange πs
i and πs

j to obtain two paths π′i = πp
i · π · πs

j and π′j = πp
j · π · πs

i .337

There are two sub-cases to consider.338

Subcase c: π′i and/or π′j are not shortest paths, as illustrated in Fig. 4c. In this case, we339

can obtain a better assignment by matching ai with m(aj) and aj with m(ai). This is340

in contradiction with the fact that m is the optimal assignment.341

Subcase d: π′i and π′j are shortest paths, as illustrated in Fig. 4d. In this case, we can342

obtain an assignment which has the same cost as m by matching ai with m(aj) and343

aj with m(ai), and π′i and π′j no longer cross at vertex v. If they cross at some other344

vertex, we can recursively apply the same reasoning to either show that π′i and π′j are345

not shortest paths and exhibit a contradiction (Subcase c), or show that there exist346

two non crossing paths that have the same length as π′i and π′j (Subcase d).347

J348

Hence, we can compute an upper bound by solving the LSAP in the bipartite graph G′.349

If some paths are crossing in the optimal solution, then we can exchange sub-paths in the350

crossing paths in order to obtain a solution with no crossing paths (and the same objective351

function value), as explained in Subcase d of Theo. 3.352

Like for the NC-MAPF without obstacles, this upper bound may be improved by VNS, as353

explained in Section 4.2. We only have to adapt the procedure that explores the neighbourhood354
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of a matching, in order to check that permutations do not contain crossing paths (instead of355

crossing edges). Note that this test is done in quadratic time with respect to the number of356

edges in a path (whereas it is done in constant time when there is no obstacle).357

5.2 Relevant paths enumeration358

The non crossing assignment in G′ that minimises the makespan may not be the optimal359

solution of the original problem as edges of G′ correspond to shortest paths, and as the360

optimal solution may use non shortest paths. To find the optimal solution, for each couple361

(a, d) ∈ A ×D, we must consider all relevant paths from a to d in the visibility graph G,362

where a path π is relevant if it satisfies the three following constraints:363

(C1) Given an upper bound ub on the optimal makespan (or on the maximal length of the364

cable anchored at a), π must be shorter than ub, i.e., |π| < ub;365

(C2) π must be elementary and not self-crossing;366

(C3) π must be a taut path (as defined in Section 3).367

Before enumerating all relevant paths, we remove from the visibility graph every edge that368

cannot belong to a taut path, thus obtaining the reduced visibility graph [8]. Then, all369

relevant paths starting from an anchor point a are enumerated by performing a depth first370

search starting from a, and pruning branches whenever a constraint is violated. To check371

constraint (C3), we perform a local geometric test in constant time.372

5.3 Constraint Programming Model373

Let ub be an upper bound to the optimal solution, and let P be the set of relevant paths374

as defined in the previous section (paths in P are numbered from 1 to #P ). For each375

path π ∈ P , o(π), d(π), and l(π) denote the origin, the destination, and the length of π,376

respectively. The CP model has the following variables:377

an integer variable xi is associated with every anchor point ai ∈ A, and its domain contains378

every destination that may be reached from ai, i.e., D(xi) = {d(π) : π ∈ P ∧ o(π) = ai};379

an integer variable zi is associated with every anchor point ai ∈ A, and its domain is the380

set of all paths starting from ai, i.e., D(zi) = {π ∈ P : o(π) = ai};381

an integer variable y represents the maximal length of a selected path.382

The constraints are:383

for each pair of anchor points {ai, aj} ⊆ A, we post a table constraint (zi, zj) ∈ Tij where384

Tij is the table that contains every couple (π, π′) ∈ D(zi)×D(z′i) such that d(π) 6= d(π′)385

and path π does not cross path π′;386

for each anchor point ai ∈ A, we post the constraint y ≥ l(zi);387

we channel xi and zi variables by posting xi = d(zi) and we post an allDifferent({xi : ai ∈ A})388

constraint. This constraint is redundant as table constraints prevent selecting two paths389

that have a same destination. However, preliminary experiments have shown us that this390

improves the solution process for a wide majority of instances.391

The goal is to minimise y.392

5.4 Experimental evaluation393

Like in the case where there is no obstacle, we consider a bounding polygon B = [0, 200]2.394

We introduce a parameter m to set the number of obstacles. For each obstacle, we randomly395

generate the coordinates of its lower left corner (x, y) ∈ [0, 160]2 and the coordinates of its396

upper right corner (x′, y′) such that x + 1 ≤ x′ ≤ x + 40 and y + 1 ≤ y′ ≤ y + 40, while397
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Figure 5 Workspace when m ∈ {5, 10, 15, 20} (obstacles are displayed in green).

Figure 6 Evolution of the optimal makespan (Opt), the lower bound (LB) and upper bounds
(UB, with i ∈ {1, 3, 5, 7}) when increasing the number of obstacles from 5 to 20. Left: U instances
(with n = 40). Right: B instances (with n = 20).

ensuring that the distance between two obstacles is larger than 10. We consider 4 maps with398

m = 5, 10, 15, 20 which are displayed in Fig. 5.399

We consider two different kinds of distributions for generating anchor points and destina-400

tions, in order to study the impact of this distribution on solution hardness:401

Uniform (U): anchor points and destinations are randomly generated in W according to a402

uniform distribution;403

Bipartite (B): anchor points (resp. destinations) are randomly generated on the left (resp.404

right) part of W , by constraining their abscissa to be smaller than 60 (resp. greater405

than 140).406

For U instances, we set the number of robots n to 40, whereas for B instances it is set to 20407

because these instances are harder, as explained later. For each value of m and each kind of408

distribution, we have generated 30 instances.409

In Fig. 6, we display the optimal makespan, the lower bound computed by LB, and410

upper bounds computed by UBi with i ∈ {1, 3, 5, 7}, for U and B instances. In both cases,411

we observe that the number of obstacles has no significant effect on the optimal makespan.412

However, the optimal makespan is much smaller for U instances than for B instances: For U413

instances, it is smaller than 80 whereas for B instances it is close to 180. This was expected414

as anchor points are constrained to be far from destinations in B instances.415

For U instances, UB1 is much larger than UB3 which is always larger than UB5. UB5416

and UB7 have close values, and UB7 is also close to the optimal solution. Results are417

quite different for B instances, where UB1 and UB7 have very close values. In other words,418

VNS does not improve much the upper bound for B instances, whatever the value of kmax.419

However, the optimal solution is much smaller than the upper bounds computed by UBi.420

This means that for B instances we more often need to use non shortest paths to improve421
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Figure 7 Evolution of the gap to optimality (in percentage) with respect to time for UBiCP with
i ∈ {1, 3, 5, 7}, on average for 30 instances. Top left: U instances with m = 5. Top right: U instances
with m = 20. Bottom left: B instances with m = 5. Bottom right: B instances with m = 20.

the solution than for U instances (remember that VNS only considers shortest paths).422

In Fig. 7, we display the evolution of the gap to optimality (in percentage) with respect423

to time, and in Tables 2 and 3 we display the time spent by each step of the solving process.424

For U instances, LSAP is rather long to solve (see row t1 in the tables): around 3s when425

m = 5, and 13s when m = 20. This comes from the fact that the function that decides426

whether two paths are crossing or not has a quadratic time complexity with respect to the427

number of vertices in the paths, and this number increases when increasing the number428

of obstacles. UB3CP, UB5CP, and UB7CP improve the upper bound computed by LSAP429

with VNS, and we observe a quick drop of the curves. Then, we observe an horizontal part430

which corresponds to the time needed to enumerate all relevant paths and to generate the431

CP model. The time needed to enumerate all paths (t3) strongly increases when increasing432

the number of obstacles. This was expected as the number of paths grows with respect to433

the number of obstacles. t3 slightly decreases when increasing kmax because the smaller434

the bound computed with VNS, the less relevant paths (see row RP). The time needed435

to generate the CP model (t4) decreases when increasing kmax (because this decreases the436

number of relevant paths) and it increases when increasing m (because this increases the437

number of vertices in a path and, therefore, the time needed to decide whether two paths are438

crossing). Finally, after the horizontal part (corresponding to t3 and t4), the curves drop439

again because CP improves the bound. As expected, the time needed by CP to compute the440

optimal solution (t5) decreases when increasing kmax (because the initial bound is smaller,441

and therefore tables are smaller), and it increases when increasing the number of obstacles442
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Table 2 Results of UBiCP with i ∈ {1, 3, 5, 7} for U instances with n = 40 and m ∈ {5, 10, 15, 20}
(average on 30 instances). t1 = time to solve the LSAP; t2 = time of VNS when kmax = i; t3 = time
to enumerate all relevant paths for each anchor-destination pair; t4 = time to generate the CP model;
t5 = time to solve the CP model; ttot = t1 + t2 + t3 + t4 + t5; IM = number of Improving Moves for
VNS; RP = maximum number of Relevant Paths between an anchor point and a destination.

UB1CP UB3CP UB5CP UB7CP
m 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
t1 2.8 5.9 9.4 13.0 2.8 5.8 9.3 12.8 2.8 5.9 9.3 12.9 2.8 5.9 9.3 12.9
t2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 0.0 0.2 0.1 0.2 0.3 8.7 4.8 5.5 7.3
t3 4.4 10.2 21.5 33.7 3.9 8.5 14.5 21.6 3.7 8.0 14.7 21.1 3.4 7.9 14.2 20.7
t4 5.4 9.7 39.3 75.6 3.2 3.0 4.0 8.4 2.0 2.0 4.4 7.0 1.2 1.8 3.4 6.7
t5 122.5 23.2 47.6 184.3 2.5 7.6 1.1 9.1 1.3 0.3 1.3 0.8 0.4 0.3 1.7 0.8
ttot 135.1 49.0 117.8 306.5 12.3 24.9 29.1 51.8 10.0 16.3 30.0 42.0 16.6 20.6 34.2 48.3
IM 0 0 0 0 1.4 4.0 1.7 2.0 2.6 4.0 3.4 3.8 4.6 4.6 4.4 4.6
RP 2.5 2.8 3.9 4.7 2.2 2.4 3.1 3.0 2.0 2.2 2.8 2.7 1.9 2.6 2.6 2.5

Table 3 Results of UBiCP with i ∈ {1, 3, 5, 7} for B instances with n = 20 andm ∈ {5, 10, 15, 20}.

UB1CP UB3CP UB5CP UB7CP
m 5 10 15 20 5 10 15 20 5 10 15 20 5 10 15 20
t1 0.8 1.6 2.6 3.5 0.8 1.6 2.6 3.6 1.0 1.6 2.6 3.5 1.0 1.6 2.6 3.6
t2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 0.5 0.5 0.6 45.7 41.7 37.6 50.6
t3 3.5 12.2 42.0 96.2 3.4 11.8 40.2 95.5 4.2 12.0 40.4 93.6 4.3 12.0 40.5 93.6
t4 15.6 32.4 94.6 339.6 13.8 27.6 81.2 329.0 16.4 28.3 79.1 315.9 16.7 28.2 78.9 317.6
t5 0.4 0.7 1.6 5.6 0.4 0.6 1.3 5.3 0.5 0.6 1.3 5.0 0.4 0.6 1.3 5.1
ttot 20.3 46.9 140.7 445.2 18.4 41.6 125.3 433.4 22.6 43.0 123.8 418.7 68.1 84.0 160.9 470.4
IM 0 0 0 0 0.3 0.2 0.3 0.2 0.4 0.3 0.3 0.2 0.4 0.3 0.3 0.2
RP 6.8 8.0 13.3 23.3 6.4 7.8 12.6 22.9 6.3 7.8 12.4 22.7 6.4 7.8 12.4 22.7

(because this increases the number of relevant paths).443

Now, let us look at B instances. These instances only have n = 20 robots (instead of 40444

for U instances) because they are harder. This comes from the fact that the bound computed445

by UBi is much larger, as seen in Fig. 6. This increases the number of relevant paths, as seen446

when looking at row RP: when m = 20, this number is larger than 20 for B instances whereas447

it is smaller than 5 for U instances. Also the number of vertices in a path increases. Hence,448

the time needed to enumerate all relevant paths (t3) is much larger for B instances than for U449

instances (e.g., when m = 20 and kmax = 7, 94s for B and 21s for U). Also, the time needed450

to generate the CP model (t4) is much larger (e.g., when m = 20 and kmax = 7, 318s for B451

and 7s for U). However, the time spent by VNS (t2) is much smaller (e.g., when m = 20452

and kmax = 7, 4s for B instead of 13s for U) because n is twice as small for B than for U.453

Finally, the time needed to solve the CP model increases when increasing m, but it does454

not decrease when increasing kmax. This comes from the fact that VNS does not improve455

much the upper bound, whatever the value of kmax (as seen in Fig. 6). Row IM displays the456

number of improving moves performed by VNS, and we observe that this number is close to457

0 for B instances.458

For both B and U instances, we observe a good compromise between the time spent by459
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Table 4 Impact of the parameter p on the time needed to enumerate relevant paths (t3), to
generate the CP model (t4), and to solve it (t5), and on the gap to optimality (in percentage) for B
instances when kmax = 5 and m = 20.

p=1 p=2 p=4 p=8 p=16 no limit
t3 0.0 65.5 76.6 87.1 93.2 93.6
t4 1.9 8.2 34.4 121.7 265.5 315.9
t5 0.1 0.2 0.6 2.2 4.1 5.0
ttot = t1 + t2 + t3 + t4 + t5 6.9 78.0 115.8 215.1 367.9 418.7
gap to optimality 10.8% 5.9% 0.9% 0.0% 0.0% 0.0%

VNS to improve the bound, and the time spent to enumerate relevant paths, build the CP460

model and solve it when kmax ∈ {3, 5}.461

As observed on row RP of Tables 2 and 3, the number of relevant paths being searched462

for each anchor/destination pair increases as m gets larger. Theoretically, this number463

exponentially grows with the number of obstacles. When the optimal makespan is small and464

the upper bound computed by VNS is close enough to it, the actual number of relevant paths465

is rather small (e.g., smaller than 3 for U instances when kmax ≥ 5). However, for B instances,466

this number is greater than 20 when m = 20, and the time needed to enumerate these paths467

and generate the CP model becomes greater than 400s. To overcome this problem, we can468

introduce a parameter p and limit the number of relevant paths to p (keeping the p best469

ones whenever the number of relevant paths is greater than p). Of course, in this case we no470

longer guarantee optimality as it may happen that the optimal solution uses a path that471

has been discarded. In table 4 we display the results of UB5CP for different values of p on472

B instances when m = 20. Not surprisingly t2, t3, t4 are all reduced as p decreases, while473

the average gap to optimality increases up to more than 10% for p = 1. In our experiment,474

p = 8 ensures that an optimal solution can always be found, and divides by 2 the total time.475

6 Conclusion476

We have introduced a new MAPF problem which is motivated by an industrial application477

where tethered robots cannot cross cables. We have shown that we can compute feasible478

solutions that provide upper bounds in polynomial time, by solving LSAPs, even when the479

workspace has obstacles. We have also introduced a VNS approach that improves the feasible480

solution of LSAP by iteratively permuting k destinations, and a CP model that solves the481

problem to optimality. Finally, we have proposed to sequentially combine VNS and CP, thus482

allowing us to use the upper bound computed by VNS to filter domains.483

Experimental results on randomly generated instances have shown us that the number484

of obstacles has a strong impact on the solving time. When there is no obstacle, there is485

exactly one path between every origin/destination pair of points, and this path is a straight486

line segment. When increasing the number of obstacles, the number of paths between two487

points grows exponentially, even when limiting our attention to taut paths. Hence, it is488

important to have good upper bounds on the optimal solution in order to reduce the number489

of candidate paths. Also, when increasing the number of obstacles, the number of vertices in490

a path increases linearly, and this has an impact on the time needed to decide whether two491

paths are crossing or not.492

We have reported experiments on randomly generated instances that allow us to control493

the number of obstacles and the number of robots. We have considered two models for494

CP 2021



20:16

generating anchor and destination points, and we have observed that the distribution of the495

points has a strong influence on the solution process. In particular, when anchor points and496

destinations are constrained to belong to two opposite sides of the workspace, this increases497

the hardness of the problem because this increases the makespan and, therefore, the number498

of relevant paths and the number of vertices in a path. We have introduced a parameter to499

control the number of paths and the solving time, at the price of the loss of optimality.500

For future work, we plan to investigate other solving approaches, such as Tabu search501

or Integer Linear Programming. Also, we want to extend the work to non-point agents by502

considering robots with a body, generating complementary constraints on their motions and503

their cables. This will allow to deal with industrial and robotics applications.504
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