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Résumé – Les acteurs industriels sont confrontés à un besoin accru de réduire le risque d’incidents imprévus et 

d’optimiser leur maintenance. Ces besoins appellent à une réponse double à la fois sur les détections court-terme et la 

surveillance de vieillissement long terme. Chez Schneider Electric nous répondons à ces deux problématiques en 

combinant l’apprentissage artificiel et les modèles physiques et statistiques, afin de fournir des services avancés pour les 
équipements de distribution électrique. L’apprentissage artificiel est utilisé pour modéliser les paramètres clés des 

équipements électriques en fonctionnement normal, afin de prédire le comportement normal attendu en toute 

circonstance. Un système de surveillance peut se servir de cette référence pour détecter des déviations statistiquement 

significatives, révélant un défaut potentiel. En ce qui concerne les modèles de vieillissement, ils sont basés sur des modèles 

physiques et statistiques, dans la continuité de l’état de l’art du Prognostic Health Management. Il s’agit ici de 
décomposer les équipements électriques en sous-systèmes, et d’identifier pour chacun d’eux l’ensemble des modes de 

dégradation concurrents et leurs facteurs d’influence (environnement et usage). En combinant cela avec les cinétiques 

appropriées nous pouvons estimer la fin de vie. Ces deux approches, court-terme et long-terme, sont combinées sur le 

terrain pour fournir des services de maintenance prédictive. Ils s’inscrivent dans une initiative plus large visant à partager 

des algorithmes avec l’écosystème de partenaires de Schneider Electric [SE, 2019-1].        

 

Abstract – Industrial end users face an increasing need to reduce the risk of unexpected failures and optimize their 

maintenance. This calls for both short-term analysis and long-term ageing anticipation. At Schneider Electric we tackle 

those two issues using both Machine Learning and First Principles models, to provide advanced services for electrical 

distribution assets. Machine Learning algorithms are used to model key parameters of electrical assets in normal 
operation. They predict the expected normal behavior, which serves as a reference. The monitoring system can therefore 

detect statistically significant deviations from this reference, indicating potential failures. Concerning ageing models, they 

are based on First Principles, similar to Prognostic Health Management techniques. It consists in breaking down electrical 

assets into sub-assemblies, identifying for each of them all possible competing degradation modes and their influencing 

factors (environment and usage). Combining this with relevant kinetics laws we can estimate the expected end of life. 

These two approaches, short-term and long-term, are combined in operation to provide predictive maintenance services. 
They belong to a broader initiative aimed at sharing analytics beyond the Schneider Electric scope [SE, 2019a].  

 

Mots clés – Pronostic, Apprentissage Artificiel, Modèles de dégradation, Vieillissement, Détection d’anomalies. 
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1 INTRODUCTION 

Nowadays digitization and Industrial Internet of Things (IIoT) 
make it extremely easy to collect a vast amount of data 
concerning electrical assets, during their operational life in real 
time conditions on customer plants. It allows users to get 
information on all environmental and usage conditions for 
products in real situation, together with data on observed 
failures. 
 
Collected data can be used to learn normal behavior models of 
assets. Such models are relevant to detect anomalies 
characterized by a statistically significant deviation from the 
normal situation. While this kind of anomaly detection method 
is suited for short term asset monitoring, it is not appropriate 

for long term degradation trends. To capture such trends, we 
can use First Principles degradation models (i.e. physical 
degradation models such as Arrhenius law); they complete the 
monitoring system to get a global view on asset health.  
 
In the following sections we will first detail the short-term 
strategies (section 2) then the long-term ones (section 3) and 
conclude (section 4).  

2 SHORT-TERM ANOMALY DETECTION  

2.1 Context and motivation 

Electrical assets may experience issues under some conditions.  
One of the most dramatic consequence to avoid is fire, which 
may impact both humans and equipment, in addition to 
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stopping customer business / process. Electrical fires cause an 
estimated $3 billion-plus of damage to non-residential 
structures in the United States and Europe every year 
according to the National Fire Protection Association (NFPA) 
and the European Fire Safety Alliance (EFSA).  
Designing equipment and switchboards in accordance with 
IEC 61439 standards ensures a proper IP level and 
significantly reduces the risk of fire due to insulation failure or 
excessive temperature rise. Then, one of the leading causes of 
electrical fires in medium- and low-voltage installations is 
faulty power connections of cables, busbars, and circuit 
breakers, particularly when the connections are completed 
onsite [SE, 2019b].  
 
Cable, busbar, and withdrawable circuit-breaker connections 
can start to deteriorate due to lose connections caused by 
improper tightening torque or constant vibrations over time. 
Deterioration can also occur because of damaged surfaces due 
to corrosion, excessive pressure, or excessive friction. 
[Hirschbold and Chabert, 2018] provide a review of these 
cases and their causes. 
 

 
Figure 1. Wireless temperature sensors (Easergy TH110) 

 
To prevent dramatic events to happen and detect such issues 
early, thermal surveys are typically performed using infrared 
(IR) thermography technology. However, these are done on a 
scheduled basis and may miss critical conditions occurring 
between scheduled scans. Continuous thermal monitoring 
overcomes these limitations by connecting wireless thermal 
sensors (Figure 1) to a data collection and monitoring 
infrastructure (Figure 2) [Hirschbold and Chabert, 2018]. 
[Hoffman et al., 2020] provide a review of alternate sensing 
technologies. 
 

 
Figure 2. Continuous thermal monitoring architecture 

 
Although such continuously collected temperature data 
provides a way to detect critically high temperature levels, 
typically using a “high temperature” threshold, resulting alerts 
might happen too late (reactive maintenance) as the threshold 
has to be set high enough to not trigger annoying false 
positives. This calls for a more adaptive temperature threshold, 

based on context information: when the asset is not much 
loaded and external temperature is low, the threshold should 
ideally be lower than when the loads draw a large amount of 
current and external weather is already very warm. In the 
following section we show how such context-adaptive 
thresholds can be created with virtual sensors, so as to detect 
deviations early, before they transform into an actual fault 
(predictive maintenance). 
 

2.2 Methodology 

2.2.1 Soft / virtual sensors 
Since 2012, Schneider Electric has developed a program to 
predict various industrial data based on usage and 
environmental conditions. Such idea of “Soft sensor”, also 
known as “Virtual sensor”, is not new and has been described 
in many ways in the literature and implemented in industrial 
products. For example, in the control theory domain, so-called 
“observer models” are fit to predict the discrete or continuous 
value of a variable. Popular models include white box detailed 
physical models, gray box simplified physical models, and 
black box data-driven models. The last two categories have 
their equivalent in, or reuse techniques from, the statistics and 
machine learning domains, learning models from appropriately 
pre-processed data. See [Curreri, 2020] for a review. 
 
Gray-box models can be derived from the simplified physics of 
the asset or system at hand, for example with reduced order 
models and thermal-electrical equivalent models. Thermal 
radiation, conduction and convection are the main 
phenomenon at play when it comes to Temperature. Heat is 
mostly generated from drawn current through the Joule effect 
P~ I²R, as well as from magnetic induction.  
 
For Machine Learning-based virtual sensors, popular pre-
processing methods include sliding window to allow the model 
to pick up numerical delays and n-th order numerical 
derivative ; (temporal) feature extraction including rolling 
averages and other statistics, Fast Fourier Transform (FFT), 
Wavelets, etc. ; principal component analysis (PCA) and 
singular value decomposition (SVD) to compress and optimize 
input data so that models learn in a more robust way, etc. See 
[Curreri, 2020] and [Hoffman et al., 2020] for a review. 
 
A virtual sensor can predict a category (classification) or a 
number (regression). Popular models include Linear and 
Logistic Regression, Kalman Filters (KF), Particle filters, 
Hidden Markov Models (HMM) and more generally Dynamic 
Bayesian networks (DBN), multi-layer Neural networks (NN), 
Recurrent Neural Networks (RNN), Support Vector Machines 
(SVM), Relevance Vector Machines (RVM), Decision Trees 
and Regression Trees (DT, M5’), Random Forest and Xtreme 
Gradient Boosted Trees (XGBoost). See [Souza, 2016] for a 
review of the most popular techniques. 
 
Generalization performance of the models can be estimated 
using split- or k-fold cross-validation, as per the Machine 
Learning state of the art. Usual performance metrics include 
the Root Mean Square Error (RMSE) and the R-squared (R²). 

2.2.2 Adaptive threshold: significant drift detection 
Besides their use for better process control, virtual sensors are 
used to tackle many other problems, such as back-up of a real 
sensor, what-if analysis, sensor validation and fault diagnosis. 
The latter consists typically in monitoring a significant 



deviation between the actual monitored data and the reference 
provided by the soft sensor.  
A usual way to perform this step is to model the prediction 
error (so-called residuals) and use this model to detect a 
statistical outlier. Such models can be simple and 
straightforward (e.g. normal distribution, possibly leveraging 
generalization error statistics, see previous section); they can 
otherwise be integrated in the virtual sensor model itself (e.g. 
quantile regression forests [Meinshausen, 2006]). Fault 
detection per se can be as simple as bayesian inference or rely 
on the temporal nature of the data at hand to tackle both single-
point deviations and consistent multi-sample deviations. 
Techniques from the field of Statistical Process Control (SPC) 
such as Control Charts, Cusum or EWMA can be relevant for 
this aim. 
 
Figure 3 illustrates how such technology can be assembled to 
create an adaptive temperature monitoring solution and solve 
the problem described previously in Section 2.1. 
 

 

Figure 3. Virtual Sensor Fault Detection principle 

 

2.2.3 Industrialization and deployment on the field 
 
Our virtual sensor and virtual sensor fault detection analytics 
components have been industrialized at Schneider Electric in 
2013 and 2016 respectively in the form of web service APIs on 
the cloud, so as to be reused in the various offers in the 
Schneider Electric catalog. Both are complementing the 
existing Avantis PRISM offer that was already present in the 
company’s portfolio fault detection  
 
The virtual sensor component was tested successfully onsite at 
a food and beverage industrial customer site as well as on 
several customer datasets, for example water pump networks. 
The virtual sensor fault detection approach was applied on a 
range of applications since 2016 including dry transformer 
overheating, solar panels soiling detection, LV or MV 
switchboards thermal monitoring, Air Handling Units (AHU) 
fault detection [Gao et al., 2019], refrigeration cabinet 
temperature sensor backup, and more. It was integrated within 
the Conext Advisor 2 and Asset Advisor software offers as 
part of the Schneider Ecostruxure suite. 
 
Since 2019 this technology has been transferred into the 
Schneider Exchange platform [SE, 2019a] in the form of pay-
per-use Analytics APIs, for all actors in the energy and 
automation ecosystem to leverage into their own business. 
 

3 LONG-TERM AGEING MODELS 

Since 2015, Schneider Electric has developed a program to 
develop algorithms to compute the ageing of assets with 
respect to time, environmental conditions, and usage 
conditions. The idea here is to offer new services to customers, 
based on advanced preventive maintenance and Reliability-
Centered Maintenance features; these new algorithms may 
help developing time-based maintenance, spare part 

management, condition-based maintenance, and predictive 
maintenance when used in simulation on what-if scenarios. 
To do this, we must ensure that we can quantify usage and 
environmental conditions, and that we master the ageing laws 
with respect to these conditions. This is now possible thanks to 
digitization: we can rely on lots of data coming from assets in 
operation, providing information not only on their operational 
state, but also on their environment and usage, which can help 
define and tune ageing models, when compiled. 
Rather than trying to define an approximative mission profile 
for our assets on customer plants, we can now have a clear 
view of the real environmental conditions (temperature, 
hygrometry, degree of salty atmosphere, concentration of 
corrosive gases, etc.) and of the real usage conditions 
(intensity, voltage, power, reactive power, harmonics, number 
of trips, etc.). 
In addition, we have built a methodology that enables us to 
enrich the traditional physical ageing laws with a statistical 
approach that will be fed by data coming from digitization. 
In the following sections, we will develop and explain this 
approach to determine a realistic value for the age of assets, 
leading to new services offers. 

3.1 Ageing models history and limits 

Since the early 1900’s, many ageing models have been 
developed in the specialized literature [Pagès]: 
- endurance models for mechanical devices; 
- thermal ageing for electronic devices; 
- resistance/constraint models for architecture; 
- corrosion models for different metals; 
- etc. 
One common limitation of these models is that they rarely 
consider multiple environmental conditions, but more 
frequently they concentrate on a limited number of influencing 
factors (only the temperature for Arrhenius models, as an 
example). 
Another limitation of these models is that they are rarely 
considered together, but are more often dedicated to a given 
situation, such as the corrosive atmosphere for metallic stick 
models for example. 
What we are currently trying to do in Schneider Electric can be 
illustrated by what happens on our own car: 
- it includes many different parts, with different ageing models 
(brakes do not age the same way as tires); 
- it is sensitive to environmental conditions: the ageing of your 
car will not be the same, whether you live in Paris, Stockholm 
or Riyad; 
- it is sensitive to usage conditions: the ageing of your car will 
not evolve the same way if you drive very slowly and carefully 
and park your car in your garage each evening, or if you drive 
very nervously, with frequent harsh engine solicitations. 
 
Anyway, when you drive your car, it may send you some 
visual warnings, suggesting you have a look on the motor, the 
oil level, or the air pressure in the tires. These warnings happen 
before the failure occurs, since they are based on the evolution 
of characteristics that reflect the health status of certain parts 
of the car. And all this information will be computed 
considering the environmental and usage conditions, then 
combined to provide valuable information to the driver. 
 
For electrical devices such as a Low Voltage Circuit Breaker 
(LVCB), things are more complicated, because if one can 
rather easily measure a pression in the tires, the level of 
gasoline in a tank, or a rotation speed on a motor, it is much 



more complicated to measure something on a device whose 
main mission is: 
a) to stay motionless 99.99% of the time; 
b) to react imperatively when solicited (since circuit breakers 
are safety devices). 
Since we can’t measure internal physical modifications in the 
breaker to infer a degradation, we must rely on models based 
on external environmental and usage conditions. 

3.2 New possibilities induced by digitization 

As explained in previous section, digitization allows now to 
know more about the way customers use their assets: with 
adequate sensors, we can monitor the environmental 

conditions (temperature, hygrometry, corrosive gases level, 
salt concentration in atmosphere, etc.) and the usage 

conditions (number of operations or trips, variation of 
intensity, harmonics and voltage impacting the asset, etc.). The 
sampling rate should be selected appropriately to provide a 
precise view of the asset’s real life. 
 
In parallel, thanks to internal failure event loggers we can also 
monitor the different failures the asset experiments, for each 
part of the asset: mechanics, electronics or electrotechnics. 
 
Putting together this information will allow: 
- to feed the ageing models with relevant information 
concerning the asset environment and the constraints it would 
be submitted to; 
- to refine the ageing models when realizing that the 
predictions are either too optimistic or too pessimistic, 
considering precisely the given type of asset, rather than a 
wide family in an asset range. This improvement will be an 
evolutive process enabled by a methodology mixing physics-
based and statistical approaches: we start from existing 
knowledge delivered by our experts and improve this 
knowledge by leveraging data coming from customers, from 
maintenance services, and from labs. In addition, Machine 
Learning capabilities may be used to process the data from 
multiple sources. 
 
Relying on ageing and probability of failure information, we 
can then provide customers new services related to their 
connected assets, which will free them from performing tasks 
they are usually not that fond of managing: this may be 
connected services that deliver information related to risk of 
failure and need for maintenance, or this may be maintenance 
intervention initiatives on the assets, even before the customer 
has been warned that something went wrong. 
 
Obviously, these services will be available only for the 
customers who will accept to share the connected data of their 
assets. In a broader way, one could think about extending the 
cooperation between end users in a dedicated segment, to ease 
the improvement of ageing models. This is already ongoing in 
the Oil & Gas domain: within the so-called OREDA initiative 
(Off-shore REliability DAta), great petroleum companies 
[Sintef] share information about observed failures, increasing 
the accuracy of corresponding predictive models. 
This approach could be extended to other domains. End users 
in a dedicated segment could arrange agreements to share data 
on failures which occurred in their respective plants, giving 
way for a high improvement in ageing models, with the help of 
manufacturers, specialists of their assets. Of course, this will 
take time, but the digitization trend is already there, enabling 
this perspective. 

 
Schneider Electric has already started to build optimal ageing 
models, and to value them for providing new services to its 
customers. In the next section, we introduce the methodology 
used to describe the models, the high-level principles to 
improve them (relying on data), the way they are used, and 
finally, examples of new services for maintenance relying in 
ageing information. 

3.3 Methodology 

The methodology we have developed has been patented in 
2018 [Patent]. It mixes a physical approach based on First 
Principles, providing information about the level of 
degradation for each asset part, then we transform this 
information into failure rate values, relying on statistical 
models. 
As stated in [Chevalier-Boutin], we differentiate between: 
a) degradation modes, which we link with the physical 
evolution of the asset with respect to time, environment factors 
and usage conditions (but which do not lead immediately to a 
failure), 
b) failure modes, which characterizes an asset failure, and may 
result as the outcome of one or several degradation mode(s). 
In practice, for each type of assets, we defined six steps, which 
read as follows. 
 

1. Identify sub-assemblies. These sub-assemblies are 
elements that follow a dedicated and common life 
cycle (i.e. they can be replaced independently from 
the other parts) or are optional. They may or may not 
match the functional sub-assemblies. For a car, it may 
be the tires, consistent parts of the engine, or 
mechanics; 

2. List degradation modes. With this list, we will also 
list the influencing factors for the evolution of each 
degradation mode. For the engine of a car, it may be 
the wear and the corrosion, and the influencing 
factors the driven distance, the temperature and 
hygrometry, and the average speed selected by usual 
driver; 

3. Match degradation modes and failure modes. When a 
given sub-assembly is entirely degraded with respect 
to one of its degradation modes, identify which 
outcome it will have on the asset itself, as perceived 
by the customer. For a car tire, the outcome of wear 
may be an explosion, a puncture, or some adhesion 
loss; 

4. Set failure prioritization. When we only have a global 
failure rate collected on field data, allocate the 
frequency of appearance for each degradation mode 
of each sub-assembly, according to asset technical 
experts. This step can also be fed by figures provided 
by the results of dedicated tests, or accurate feedbacks 
from customers. Obviously, with data coming from 
the field, these figures are likely to be revised on a 
regular basis; 

5. Reallocate failure rates on degradation modes. Using 
the results of previous step on a reverse way, 
specifically when we only have one figure for the 
global failure rate of the asset, we can reversely 
allocate figures for each degradation mode of each 
sub-assembly, the sum of which matching the 100% 
figure representing the observed global asset failure 
rate. If we have more detailed figures on failure rates, 
the method applies even more easily. A figure for 



global failure rate can be broken down for each 
failure mode, and then for each degradation mode. 
For a car motor, if we have only a global failure rate, 
we will allocate it on the different degradation modes 
according to the experiments or experts’ opinion; 

6. Attach a kinetic law for each degradation mode. Here, 
and using the influencing factors defined in the step 
N° 2, we define the way the subassembly ages, such 
as Arrhenius law for temperature, or Coffin-Manson 
model for temperature and humidity, or other specific 
models extracted from technical literature, 
experimental works, or standards. For specific parts, 
ageing factors are already listed in dedicated 
standards, which have been re-used here. 

3.4 Model’s improvement relying on data 

Thanks to digitization and the data it provides, we will be able 
to use them to improve the forecasting of ageing assets in four 
directions:  
1) Confirm the ageing factors corresponding to the different 
levels of degradation, both from environment and usage 
conditions; 
2) Refine the breakdown of final degradation outcomes with 
respect to the different failure modes; 
3) Improve accuracy of the values for final failure rates, as 
observed in the real conditions of the customers; 
4) Precise the mission profile for each customer segment. 
 
To do this, we can also rely on different sources of data: 
a) From the field returns (customer sites), which will provide 
both information on the failures, but also on the different 
factors used to predict them (related to environment and 
usage); 
b) From the minutes of maintenance operations performed by 
the company’s maintenance services on customers’ plants; 
c) From the failures collected on connected products, thanks to 
digitization; 
d) From the results of tests in manufacturer’s laboratories. 
 
Additionally, machine Learning techniques are also available, 
which could help extracting valuable information from huge 
masses of data. 
Validating the models require simultaneously good knowledge 
of physics underlying the degradation processes, expert skills 
to criticize the forecasting induced by the models when applied 
on “what-if” scenarios, and statistical methods to compute an 
average failure rate from known returned field products. These 
three approaches are combined in that initiative, which relies 
on the good cooperation of people working in different parts of 
the company organization. 
Obviously, the operating phase of this project will provide new 
field data, which will be used to tune up the ageing models, 
ensuring the best fit between predicted and field figures. 

3.5 How the models are used 

The models we have developed in our company are ready to be 
used by any internal application which needs to compute 
ageing indicators on our products, enabling maintenance 
optimization. This is done through a web-service, fed by the 
current ageing indicators (calculated in a previous step) and by 
the time series reflecting the values of all environmental and 
usage variables influencing the evolution of the ageing factors 
since previous computation (wherever available). The result of 
this computation is the updated value of the ageing indicators, 
including an estimation of the remaining useful life, and an 

estimation for partial and global failure rates. This data will be 
used in the same way for the next iteration. 
Products which are not permanently connected to the cloud can 
also benefit from this methodology, using several possible 
mechanisms: from embedded models and computation, to local 
data storage and computation thanks to mobile phones (which 
are able to get data directly from the product, using wireless 
techniques). In this last case, the results of computation will be 
made available both for the user on his mobile, but also pushed 
to the cloud whenever possible, to compile all information 
related to a given customer site and enable the use of these 
data to improve the models and build relevant trends. 
Another major point concerning these models, is that they can 
consider the effects of a maintenance action, thus reducing the 
corresponding ageing indicator. Therefore, on each sub-
assembly, and depending on the completeness of maintenance, 
we can either start again from the beginning (when changing a 
coil, for example), or reduce the ageing indicator by a given 
factor (for example when a renewal of grease is performed on 
a circuit breaker). 
The computation is done iteratively, since this ageing engine is 
stateless: as inputs, it welcomes the current state of the 
considered asset and the current values of environment and 
usage factors, then provides the updated state of the asset. It 
can be called as often as the client wants it, this frequency 
depending for example on the criticality of the asset. 
“Stateless” means that if the customer wants to study the real 
evolution of his assets’ health, he (or we) has (have) to store 
the data. This procedure is also used to forecast the health of 
the assets, playing what-if scenarios, hence enabling the pre-
validation of models by comparing the predicted results with 
the opinion of experts in terms of failure frequency. 

3.6 New services for design and maintenance 

Multiple actors benefit from these models and the 
corresponding infrastructure. First, the end users get a better 
view of the impact of environment and usage conditions on the 
lifetime of their products. They can therefore put in place 
relevant actions to improve these conditions: for example, they 
would protect critical products with the adequate material, e.g. 
to reduce temperature (by adding fans whenever relevant), or 
to reduce the influence of corrosive gases (by adding dedicated 
hoods for corresponding products). 
They also have the right information to optimize their 
maintenance (OPEX) and renewal (CAPEX) plans, and they 
can also compute what-if scenarios, such as: “What if the 
global temperature increases in my region? Which impact on 
my assets?” or “What if I buy dedicated equipment to provide 
air-condition to my assets? Will it be worthwhile in terms of 
life duration, given the expected Return on Investment?”. The 
ageing estimation will also enable them to compare the 
performances of different customer sites (fostering 
benchmarking). 
On another side, the manufacturer will also be able to improve 
the design of its products, since we now can get accurate 
information on the weakest parts of the assets (the ones more 
likely to be affected by frequent harsh environmental or usage 
conditions). This knowledge, well-centered on what the 
customers need from their assets, will help define more robust 
products within the next years. 
In parallel, the knowledge of the customers’ mission profiles 
will also be highly improved, which will help a better focus on 
real technical performance and endurance needed for the 
assets. 



In addition, accurate information on ageing conditions enables 
field service teams to deliver more efficiently their 
maintenance offer. 
And finally, segment end user communities could leverage this 
new information to make their internal operational standard 
evolve consequently. This could be done by sharing 
information among the communities, taking the example of the 
OREDA initiative [Sintef]. 

4 CONCLUSION 

Digitization now brings a lot of data. This unlocks new 
possibilities for asset monitoring, both for short-term anomaly 
detection and long-term ageing estimation. For short-term, 
Machine Learning techniques have shown to be as efficient as 
gray-box physical models to tackle the problem of anomaly 
detection for a range of electrical assets, in particular for 
detecting thermal anomalies. 
 
For long-term analysis, the quantity of collected data unlocks 
new models for ageing, new services, and new ways of 
considering the exploitation of products on site. Additionally, 
the improved knowledge on customer mission profiles will 
also enable designing products more adapted to the real usage 
of customers, and new data will also provide better estimations 
for failure rates and their evolution in time, under given 
conditions of environment and usage. 
 
The systematic application of these types of models in the 
electrical field is rather new and will provide significant 
added-value in the field of assets and system maintenance. 
Finally, mutualizing these machine learning and ageing 
engines for various applications will ensure consistency, as 
viewed by the customers. And when it comes to sharing all 
these data among different actors, it will make their precision 
much higher than it used to be. 
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