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4Unité Mixte de Physique CNRS/Thales and Université Paris-Saclay,
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We present a semi-classical model for spin-injected vertical-cavity surface-emitting lasers (spin-
VCSELs) with local optical anisotropies. Particular focus is put on highly-anisotropic spin-lasers
with broad application potential. A generalized matrix formalism for extraction of the laser
modes is introduced, which enables to calculate spatial distribution of vectorial modes in arbi-
trary spin-VCSELs. Time-dependence of such laser modes is further studied using the generalized
coupled mode theory (CMT). It is the natural anisotropic generalization of the conventional mode-
decomposition approach. We use the circularly-polarized optical modes as the basis for CMT, which
leads to extension of the well-known spin-flip model (SFM). In contrary to conventional SFM, the
only input parameters are the geometric and local optical properties of the multilayer structure and
properties of the gain media. The advantages of the theory are demonstrated on design and opti-
mization of spin-VCSEL structure with high-contrast grating. We show that the proposed structures
can be used for i) polarization modulation in THz range with tremendous applications for future
ultrafast optical communication and ii) as perspective compact THz sources.

I. INTRODUCTION

The fundamental connection of electron and photon
spin [1] has led to the development of the spin-polarized
semiconductor lasers with VCSEL geometry [2, 3]. In
principle, the properties of such devices significantly de-
pend on the degree of spin polarization in their gain me-
dia, which involves optical, electrical or hybrid spin in-
jection [4, 5]. Important advances have been achieved
in this research field in the recent years. Namely, it has
been shown, that VCSEL with spin-polarized gain media
exhibit lower lasing threshold [6, 7] and allows direct po-
larization control [8, 9]. Recently, the spin-amplification
using spin-VCSEL has been demonstrated [10]. However,
their most important premise these days seems to be the
possibly ultrafast modulation dynamics, which has the
potential to boost the capacity of optical communication
systems [11]. This is possible due to the combination of
two factors: an extremely fast spin-mixing rate in the
semiconductor quantum wells (QWs) and strong linear
optical anisotropies within the VCSEL cavity. It was
demonstrated, that InAlGaAs QW VCSEL with mod-
ulated spin-injection is appropriate for high-speed data
communication at telecom wavelength (λ = 1.55 µm)
[12]. More recently, the experimental studies using λ =
850 nm GaAs QW VCSEL showed, that spin modulation
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can significantly overcome the limitations of conventional
VCSELs concerning modulation speed, even by one or-
der of magnitude [13]. This is closely related to the pos-
sibility of generating the coherent THz radiation using
highly-birefringent spin-VCSELs, based on interference
of orthogonal linear modes of different frequencies. Such
technological improvement would lead to development of
the compact tunable THz sources operating at room tem-
peratures [14].

Concerning steady-state properties, the first qualita-
tive model taking into account both spin degree of free-
dom and cavity birefringence was based on the simple
Jones matrix model, discussed more recently in Ref. [15].
It was used to understand basics of polarization dynamics
inside spin-VCSELs at steady-state and to interpret the
first experimental approaches to quantify and compen-
sate the birefringence [16, 17]. More extensive formalism
has been developed in the framework of 4 × 4 transfer
[18] and scattering-matrix formalism [19], built upon the
ideas from Refs. [20, 21]. This layer-by-layer approach
has been proven to be able to explain experimental re-
sults in great details, considering local optical properties
such as linear and circular anisotropies i) at the inter-
faces of III-V semiconductors, ii) at the surface and iii)
originating from spin injector and circular dichroism due
to spin imbalance in QWs. It is largely useful also for de-
tailed experimental studies of spin-VCSEL anisotropies,
as recently shown [22] and eventually for implementing
advanced theoretical models of anisotropic QW gain [23–
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25]. From the perspective of ultrafast dynamics, the in-
tegration of spin-VCSELs with highly-birefringent pho-
tonic crystal mirrors (spin-PCSELs) is very promising.
The results in Ref. [26] shows, that the scattering matrix
formalism manifests as one of the most relevant technique
to model such devices. All of the mentioned frameworks
are limited to near threshold operation. This could be
eventually overcome by the above-threshold generaliza-
tion of the matrix formalism or using the steady-state
ab initio lasing theory (SALT) algorithm applied to spin-
VCSELs [27–29].

On the other hand, the tools for temporal modeling
of spin-VCSELs are mainly represented by the spin-flip
model (SFM), as the simplified Maxwell-Bloch equations
[30, 31], derived in a more intuitive way independently
by Travagnin [32], developed originally for the conven-
tional VCSELs. The SFM considers time evolution of
circularly-polarized field components in the presence of
linear birefringence and linear dichroism introduced phe-
nomenologically, neglecting any linear gain anisotropies.
Later, also the case of possibly misaligned axes of bire-
fringence and dichroism has been considered [33, 34], mo-
tivated by the experimental techniques to induce such
phenomena [35]. This was generalized in order to in-
clude the possible frequency variation of QW gain and
to eventually explain the polarization switching [36]. A
true disadvantage of SFM is that it can not describe self-
consistently the geometric complexity of VCSEL cavity
and localized nature of anisotropies and the dynamics-
related parameters must be obtained from experiments.
This was solved by the robust spatio-temporal models
for VCSELs [37, 38]. Such models used the shapes of
vectorial eigenmodes obtained by solving the cold-cavity
problem, taking into account the lateral dimensions of
devices and carrier diffusion. More recently, the index-
guiding effects and transverse mode dynamics has been
studied in Refs. [39, 40] using generalized SFM with
anisotropy rates extracted from theory, but for a sim-
ple effective structure. The extensive spatio-temporal
modeling of VCSELs is described in an unified way in
Refs. [41, 42]. Recently, the general coupled mode the-
ory has been derived to describe laterally coupled spin-
VCSELs [43], which shares certain similarity with our
present work. Particular attention should be paid to the
laser theory developed originally for coupled cavity lasers
[44], built upon the pioneering work of Haken, Sargent
and Lamb [45, 46]. More recently, it was used to describe
the micro-cavity lasers, finding excellent agreement with
finite-difference time-domain (FDTD) simulations [47].
The approach has been generalized also to describe lat-
eral effect in half-VCSELs [48, 49], however, neglecting
the detrimental effects of anisotropies and spin pumping.

In this paper, we develop a self-consistent formalism
for modeling of steady-state and time-dependent emis-
sion of spin-VCSELs with large local anisotropies. We
generalize robust matrix formalism, based on our previ-
ous work [19]. Moreover, we extend the coupled mode
theory of Hodges et al. [44]. The model respects the

spatial variation of electric field and its vector nature,
together with local anisotropies within the cavity. Addi-
tionally, we propose and design the spin-VCSEL struc-
ture with intra-cavity grating. We demonstrate that it is
possible to reach THz frequency splitting between modes,
which paves the way for important advancements in THz
photonics.

This paper is organized as follows. In Sec. II, the semi-
classical optical Bloch equations for spin-VCSEL in the
2-level approximation are derived. We consider possible
linear anisotropies in the passive cavity as well as inside
QWs, in contrary to most approaches up to date. In
Sec. III, we generalize the matrix formalism. Instead of
using active dipolar layers to describe QW gain, we de-
rive effective susceptibility of spin-polarized QWs. Con-
sequently, entire structures can be described using Yeh’s
formalism in an unified way. Sec. IV contains the gen-
eralized coupled mode theory of spin-VCSEL, derived
for circularly-polarized vectorial eigenmodes. Alterna-
tive bases are discussed. Our approach allows to treat
self-consistently entire spin-VCSEL structure, including
all local anisotropies, leading for example to simple ana-
lytic expressions for anisotropy rates. In a certain sense,
it can be considered as the time-dependent counter-part
to SALT, as noted in Ref. [47]. Motivated by our previ-
ous results [50], the theory naturally reduces to extended
SFM, which is derived in Sec. V. The extended SFM
describes also the linear gain anisotropy, which is often
neglected. Finally, in Sec. VI, we apply developed formal-
ism to design and optimize the performance of realistic
spin-VCSEL with intra-cavity birefringent grating with
large potential for THz photonics applications, such as
ultrafast data transfer and generation of coherent THz
radiation. Appendix A and Appendix B are devoted to
theory of transfer and scattering matrices and calculation
of cavity decay rate, respectively.

II. SEMI-CLASSICAL DESCRIPTION OF
SPIN-VCSEL

A. General approach and approximations

Let us now describe the broad picture of how we ap-
proach the problem of the modeling of spin-VCSELs.
We use the modified semi-classical spatio-temporal for-
malism of Maxwell-Bloch equations, based on combina-
tion of quantum-mechanical density matrix and classical
Maxwell’s theory of electrodynamics.

Concerning the QW gain media, it is modeled by an
ensemble of 2-level quantum systems distributed inside
active layers. Electron conduction band states (excited)
and heavy-hole states in valence band (ground) are cou-
pled via electric dipole interaction, as shown in Fig. 1(a).
Each of these levels posses two spin sub-levels, which can
be mixed due to relaxation processes. By spin state,
we understand its projection along z-axis. The mixing
between heavy-hole spin states can be considered much
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(a) (b)

FIG. 1. (a) Approximate band structure inside semiconductor
QW with spin degree of freedom. It is assumed, that radiative
re-combinations occur only between conduction band (CB)
electrons and heavy-hole (HH) states near Γ-point. (b) Spin-
VCSEL structure considered here, in which only the propaga-
tion of electromagnetic waves parallel to z-axis is considered.

faster than in case of electrons in the conduction band.
The energy difference between excited and ground states
near the Γ-point ∆E = h̄ω0 is close to the energy of laser
field photons h̄ω. Thus, any optical coupling to light-
hole states is neglected due to HH-LH (heavy hole - light
hole) energy splitting in the QW potential.

We consider only paraxial (with respect to z-axis) wave
propagation in the multilayer laser cavity as depicted in
Fig. 1(b). In this approximation, the structure is treated
layer-by-layer, which has never been considered among
the time-dependent models of spin-VCSELs. Thus, our
approach is sensitive to any small changes in the local op-
tical and geometrical properties of any layer, providing
a more realistic description of spin-VCSELs. Optical-
material properties of each layer of the structure are de-
scribed by the permittivity tensor. Such layer-by-layer
strategy for studying spin-VCSELs, with particular focus
on optical anisotropies, has been already demonstrated
in our earlier contributions [18, 19, 22]. Here, we ex-
tend our approach also to time-domain simulations. We
study the structures with linear birefringence and linear
dichroism in the passive layers, and additionally with the
linear gain anisotropy inside active layer, which is often
neglected.

B. Optical-material properties

1. Linear birefringence and dichroism inside cavity

Since our aim is to develop the polarization-sensitive
formalism, let us shortly mention the typical anisotropies
located inside the passive parts of laser cavity, to-
gether with their physical origin. Apart from active
layer anisotropies, which may depend on the gain, spin-

VCSEL structures are strongly impacted by the linear
birefringence, and the consequent linear dichroism, in
the background semiconductor media. According to de-
tailed theoretical and experimental investigations, it is
mostly due to combined effects of strain in the structures
[51] and the phenomena at semiconductor-semiconductor
and semiconductor-air interfaces, in which the crystallo-
graphic symmetry can be reduced [52]. The strain can be
of native origin, caused for example by the lattice mis-
match of crystal media in neighboring layers, or induced
externally by heating or simple mechanical techniques
[35]. Another source of anisotropy may originate from
the crystal relaxation in the layer at the top of the VC-
SEL. Overall anisotropy is enhanced additionally by the
electro-optically active media due to the applied static
electric field [53].

2. Semiconductor QW with linear gain anisotropy

Let us now consider the spin-polarized semiconductor
QW with linear gain anisotropy. We are particularly in-
terested in the part of optical response of semiconductor
QW, that originates from the pumped laser transitions in
the presence of linear gain anisotropy. In the absence of
such anisotropy, radiative electron-hole re-combinations
in the two spin channels with opposite electron spin pro-
jections ↑, ↓ give rise to circularly polarized fields. We
will use standard procedure to derive the susceptibility
using dipole matrix elements.

Let us consider the electric dipole approximation, in
which the general quantum dipole matrix element is given
by [45, 54]:

θi→f =

∫
ψf (r) θ̂ ψi(r)d3r, (1)

where θi→f is the electric dipole operator matrix element

between states |i〉 and |f〉, θ̂ = [θ̂x, θ̂y, θ̂z]
T is the vector

of electric dipole operators, ψi(r) and ψf (r) are spatial
parts of wave-functions of coupled initial and final states,
respectively.

In the case of semiconductor QW with quantization
axis parallel to z, the dipole matrix elements for two
spin channels can be generally written as [24]:

θ↑ ∝ θ (e+ + βe−) ,

θ↓ ∝ θ (e− + βe+) ,
(2)

where e± are Jones vectors describing polarization state
of circularly polarized optical fields, θ is a certain aver-
age dipole matrix element and β is the general parameter,
which describes the linear gain anisotropy under consid-
eration. In the case of strained QW, with principal axes
along [110] and [11̄0] crystallographic directions, β can
be considered as a band-mixing parameter. Using such
interpretation, we can write β = −iD where D is pro-
portional to the difference of applied or internal stress or
equivalent effect along the principal axes: σ[110] − σ[11̄0].
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Dipole matrix elements of both spin channels θ↑,↓ can
be expressed using normalized Jones vectors as θ↑,↓ =
θ e↑,↓, which are derived to be:

e↑ = (e↓)
∗

=
1√

2(1 +D2)

[
1− iD
−i+D

]
. (3)

Note that the present expression reduces to purely circu-
lar eigenmodes (e±) in absence of any linear anisotropy,
giving the standard result obtained using unperturbed
electronic wave-functions.

Similar results with however a different sign convention
have been obtained using the approach of Fördös et al.
[19]: by defining relation between optical transition ma-
trix elements. Using their mathematical notation, linear
gain anisotropy could be introduced in the following way:
Π[110] = [1 + (1 −∆)/2]Π0, Π[11̄0] = [1 − (1 −∆)/2]Π0,
where Π[110],[11̄0] stand for transition matrix elements
along anisotropy principal axes and Π0 is the average
matrix element. It can be shown, that D = (1−∆)/2.

It appears useful to define the dimensionless suscepti-
bilities T̂↑,↓ of particular spin channels using their respec-
tive Jones vectors [54]:

T̂↑,↓ = e↑,↓ ⊗ e†↑,↓. (4)

Under pumping, induced dipole moment densities P̃ ↑,↓
are proportional to T̂↑,↓E in the steady-state regime.

It should be noted, that since now, for the sakes of
simplicity, all of the calculations will be performed in
the basis spanned by the crystallographic axes [110] and
[11̄0]. By this, we mean, that electric field vector will
have following components E = [E[110], E[11̄0]]

T . In order
to obtain correct Jones vectors and susceptibilities, one
should perform a rotation of reference frame around z by
angle of 45◦. Equivalently, we could just take β = D. In
the given basis, the dimensionless susceptibilities are

T̂↑ = (T̂↓)∗ =
1

2(1 +D2)

[
(1 +D)2 i(1−D2)
−i(1−D2) (1−D)2

]
. (5)

One can see, that the dipole interactions of the elec-
tromagnetic fields with specific spin channel is different
for waves polarized along [110] or [11̄0] directions, until
D = 0.

C. Maxwell-Bloch equations

Our approach to model the spatio-temporal dynamics
of anisotropic spin-lasers is based on modified Maxwell-
Bloch equations. The modification is based on the fact,
that we need to describe anisotropic laser cavity and the
gain media. As we already noted, each spin channel in
semiconductor QW is modeled by an ensemble of 2-level
systems. Time evolution of an open 2-level system can
be described by a Liouville - von Neumann equation for
the density matrix:

ih̄
∂

∂t
ρ̂µ =

[
Ĥ0,µ + Ĥd,µ, ρ̂µ

]
, (6)

where µ = ↑, ↓. The operator Ĥ0,µ stands for the unper-
turbed diagonalized Hamiltonian (in the sense of light-
matter interaction):

Ĥ0,µ =
1

2

[
(Eg,µ + Ee,µ) 1̂ + (Eg,µ − Ee,µ) σ̂z

]
, (7)

where Eg/e,µ are energies of the ground and excited states

at spin channel µ. Operators 1̂ and σ̂z stand for the unity
operator and the diagonal Pauli matrix, respectively.

The ground and excited states are coupled to the elec-
tric field via the electric dipole interaction described by
the operator:

Ĥd,µ = −θ̂µ · [E(r, t) exp(iωt) + c.c.] , (8)

where θ̂µ is the electric dipole operator evaluated at the
µ-th spin channel, E is the positive-frequency component
of oscillating electric field and ω is the central frequency
of the cavity laser field.

Equations of motion for the density operator are
combined with the classical electric field wave equa-
tion, where we assume, that the dipole moment den-
sity responsible for the lasing process [defined as

N0,µ Tr(ρ̂µ θ̂µ) = P̃ µ(r, t) exp(iωt) + c.c., where N0,µ is
the concentration of idealized 2-level systems] represents
the source term in the wave equation. We then derive the
modified Maxwell-Bloch equations, describing the spatio-
temporal evolution of the dipole moment densities P̃ µ,
spin carrier concentrations Nµ and intra-cavity electric
field E according to [45]:

∂

∂t
P̃ µ(r, t) = − (γ⊥ + iδµ) P̃ µ(r, t) +

i

h̄
|θ|2Nµ(r, t) T̂µ(r)E(r, t), (9)

∂

∂t
Nµ(r, t) = Λµ(r, t)− γ‖Nµ(r, t)− γJ [Nµ(r, t)−Nµ′(r, t)] +

2i

h̄

[
E†(r, t)P̃ µ(r, t)− P̃ †µ(r, t)E(r, t)

]
, (10)

[
c2∇2 − ε̂m(r)

∂2

∂t2
− κ̃ ∂

∂t

]
E(r, t) exp(iωt) =

1

ε0

∂2

∂t2

∑
µ=↑,↓

P̃ µ(r, t) exp(iωt), (11)

in which all incoherent processes are described phe- nomenologically by the following quantities: decay rate of
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density matrix coherences γ⊥, spin-carrier pumping rate
Λµ, decay coefficient γ‖ and spin-mixing rate γJ . The
characteristic decay of the electric field is described by κ̃,
which is specific for given design of optical cavity and its
use is well-justified by Poynting theorem in Appendix B.

Apart from possible gain anisotropies in the QWs,
which are described self-consistently by T̂µ, it is possi-
ble to include any local cavity anisotropies via relative
permittivity tensor ε̂m of the background semiconductor
media, which differs from layer to layer.

In order to provide a complete spatio-temporal solu-
tion to these partial differential equations, we have cho-
sen not to consider any brute-force time-consuming tech-
niques. Instead of this, we use transfer and scattering
matrix formalism to describe the steady-state properties
of lasing of spin-VCSELs and the approach based on the
coupled mode theory to investigate the time-evolution of
optical fields inside spin-VCSELs.

III. STEADY-STATE LASER EMISSION:
MATRIX DESCRIPTION

This section introduces alternative, and more general,
description of multilayer laser structures, such as spin-
VCSELs, based on transfer and scattering matrix for-
malism, first proposed in Ref. [19]. Similarly as here,
each layer in the structure has been described separately.
However, in contrary to our modified approach, active
layers required a special treatment, since they were ap-
proximated as infinitesimally thin active dipolar layers.
Such approximation is not necessary here, which provides
several advantages. The use of active dipolar layer ap-
proximation is well justified for resonant structures, but
the lasing threshold is not determined correctly, if one
changes the position within the cavity field profile. This
is solved self-consistently here. Entire laser structure,
together with amplifying active media (QWs/QDs), is
treated in a straightforward way, using standard Yeh’s
procedure for solving electromagnetic wave propagation
inside an arbitrary layered structures [55]. Using active
dipolar layer approximation, the implementation of the
formalism for multiple-QW structures becomes difficult.
Susceptibility approach is more suitable for incorporat-
ing realistic gain spectra of QWs, as well as possible field
saturation effects.

A. Light amplification in spin-polarized anisotropic
media

1. Derivation of susceptibility

For the purposes of matrix formalism, we derive the
electric susceptibility (and later permittivity) of active
media using our modified Maxwell-Bloch equations. Due
to the additivity of electric dipole moments, we can
write the total dipole moment density of gain media as

P = Pm + P̃ , where Pm is the background contribu-
tion, originating from the optical transitions except the
lasing ones, which is given by P̃ . The contribution of
lasing transition in the steady-state operation regime of
the laser is:

P̃ =
∑
µ=↑,↓

P̃ µ = ε0χ̂aE, (12)

where χ̂a stands for susceptibility of active media. As-
suming δ↑ = δ↓ = δ and steady-state laser oscillation,
Eq. (9) leads to:

P̃ =
∑
µ=↑,↓

i
1

γ⊥ + iδ

|θ|2

h̄
NµT̂µE. (13)

Comparing this result with Eq. (12), we can derive:

χ̂a = i
1

γ⊥ + iδ

|θ|2

h̄ ε0

(
N↑T̂↑ +N↓T̂↓

)
. (14)

Because we know, that optical response of QW is not
described by Lorentz line-shape, we use the approximate
relation between frequency detuning δ and inverse coher-
ence lifetime γ⊥: α = δ/γ⊥, where α is the linewidth
enhancement factor. Additionally, the steady-state val-
ues of spin carrier concentrations N↑,↓ can be straight-
forwardly calculated using Eq. (10). Note, that N↑,↓ are
generally the functions of electric field, which leads to
nonlinear problem. However, this is out of the scope of
present work, since we are mainly interested in the near-
threshold steady-state oscillation. Consequently, the ex-
pression for the susceptibility contribution responsible for
light amplification χ̂a can be written in the compact form
as:

χ̂a = i χ̄ (1− iα)T̂ , (15)

where the definition of optical gain tensor T̂ from
Ref. [19] (N↑ +N↓)T̂ = N↑T̂↑ +N↓T̂↓ has been used:

T̂ =
1

2(1 +D2)

[
(1 +D)2 i(1−D2)Ps

−i(1−D2)Ps (1−D)2

]
, (16)

in which the effective degree of electron spin polarization
Ps has been introduced. According to Eq. (10), when
E → 0 (at threshold), we can write:

Ps =
γ‖

γ‖ + 2γJ
PJ , (17)

where PJ is the pump spin polarization. The fact, that
pumping rates Λ↑,↓ can be expressed using unsaturated
carrier concentrations N0↑,↓, has been used. The scalar
part χ̄ is defined as:

χ̄ =
1

(1 + α2) γ⊥

|θ|2

h̄ ε0
(N0↑ +N0↓). (18)

The specific line shape (Lorentz in this case) is not con-
sidered, because χ̄ is controlled quantity here as a certain
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normalized pump rate, or the quantity to be found in the
case of threshold condition. In this way, we model rela-
tively broad gain profile of semiconductor QW. This can
be further generalized to describe more precisely the de-
pendence on carrier concentration and photon frequency,
by going beyond 2-level gain media approximation.

The total electric susceptiblity consists of background
part χ̂m and active part χ̂a, which is generally time-
dependent due to carrier dynamics:

χ̂(r, t) = χ̂m(r) + χ̂a(r, t). (19)

As one can expect, this time-dependence is neglected in
the present section.

2. Wave equation in the active media

In order to derive the total matrix of the system one
considers, we solve the wave equation in each layer sep-
arately. Since most of the layers in the laser system are
optically isotropic or with weak anisotropies, we are pri-
marily interested in solving the wave equation in the ac-
tive layers. The propagation constants and polarization
eigenmodes are derived.

The wave equation (11) reduces in the steady-state to:[
c2∇2 − ε̂(r)

∂2

∂t2

]
E(r) exp(iωt) = 0, (20)

where we assume, that any decay processes in the cav-
ity described by κ are self-consistently included by the
transfer matrix formalism. We introduced total relative
permittivity tensor ε̂(r) = 1̂+χ̂m(r)+χ̂a(r). The spatial
variation of the field inside active layer can be described
by the plane waves: E(r) = E0 exp(−iqr), where E0 is
the amplitude of the electric field inside active layer. As
we know, differential operators from the wave equation
act as follows: ∇→ −iq and ∂t → iω. Omitting the spa-
tial the spatial variation of permittivity, since we analyze
single layer, we obtain the Helmholtz equation:[

ε̂
(ω
c

)2

− q2

]
E0 = 0, (21)

Two assumptions are used here. First, only the prop-
agation parallel to z is considered, so the normalized
propagation constant is defined q̃ = |q|/(ω/c), which
stands for z-component of the wave-vector, normalized to
the vacuum wave-number. Second, we use the isotropic
background media ε̂m = εQW 1̂. The possible general-
ization for anisotropic background semiconductor me-
dia is straightforward and does not rise any difficulty.
Using Eqs. (15) and (21), and approximating the term
1/[2(1 +D2)] using 1/2, since D2 is typically very small
(D2 << 1), the normalized propagation constants inside
active layers are derived:

q̃2
1,2 = εQW + i

χ̄

2
(1− iα)(1 +D2)

± i χ̄
2

(1− iα)
√

(2D)2 + [(1−D2)Ps]2.
(22)
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FIG. 2. Birefringence δεa,r induced by phase-amplitude cou-
pling as a function of the gain dichroism D and the Henry
factor α.

Note, that due to anisotropies, this result contains 4
possible propagation constants, describing 2 forward-
propagating and 2 backward-propagating waves, which
build up the resulting standing wave. The eigenmode
polarizations ej , defined as E0j = E0jej , are:

e1,2 ∝

 1

i
2D∓
√

(2D)2+[(1−D2)Ps]2

(1−D2)Ps

 . (23)

3. Phase-amplitude coupling

Although the anisotropy parameter D has been intro-
duced in order to quantify the linear gain anisotropy,
its non-zero value has also consequences for phase
anisotropies. It is well-known, that due to phase-
amplitude coupling mechanisms, the gain anisotropy may
contribute to the birefringence of the media. Let’s as-
sume for example strained quantum well with Ps = 0.
In our convention, the permittivity tensor of such media
would be diagonal with different values for waves polar-
ized along [110] and [11̄0] directions:

εa,xx = εQW + i
χ̄

2
(1− iα)(1 +D)2,

εa,yy = εQW + i
χ̄

2
(1− iα)(1−D)2.

(24)

Induced linear birefringence can be quantified using the
difference of real parts of εxx and εyy. The calculation
yields:

δεa,r = Re{εa,xx − εa,yy} = 2 χ̄ αD. (25)

Assuming typical values χ̄ = 0.1, α = 3 and D = 0.025
(or equivalently 1 −∆ ∼= 0.95 [19]), one obtains δεa,r =
0.015. This can have significant effects on the polariza-
tion dynamics of spin-VCSEL structures. Note, that with
α = 0 there is no effective birefringence due to linear gain
anisotropy, as shown in Fig. 2.
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B. The resonance condition

The threshold modes of spin-VCSEL structure are used
in the Sec. IV as a basis for the time-dependent cou-
pled mode theory. Exact spatial distribution of thresh-
old modes is used to evaluate overlap integrals, which
describe effects of perturbations in optical cavity, such
as optical anisotropies. In the following, the procedure
to extract of such modes is described.

The eigenmodes extraction is demonstrated on a model
multiple-QW structure as depicted in FIG. 3. According
to Appendix A, the characteristic matrix of general n-th

layer is T(n) = D(n)P(n)
[
D(n)

]−1

, where D(n) is dy-

namic matrix, which is used to calculate the components
of electromagnetic field using amplitudes of particular
running waves. The propagation and the amplification

of running waves in the media is given by P(n). The no-

tation T(n)
a stands for the characteristic matrix of n-th

active layer. According to Eq. (A6), the total matrix M
is:

M =
[
D(0)

]−1

T(1) · · ·T(1)
a · · ·T

(N)D(N+1). (26)

Note, that M = M(λ, χ̄), where the wavelength λ and
scalar part of active layer susceptibility χ̄, which is pro-
portional to the pump rate, are the quantities to be
found. Their threshold values can be found by satisfying
the waveguiding condition:

M11M33 −M13M31 = 0. (27)

Alternatively, the scattering matrix S of the system can
be calculated, allowing more straightforward calculation
of the amplitudes Aout of emitted waves:

S−1Aout = 0. (28)

One can see, that the condition for non-trivial solution is

det(S−1) = [det(S)]−1 = 0, (29)

which is equivalent to the standard waveguiding condi-
tion in the transfer matrix picture [see Eq. (27)].

IV. TEMPORAL COUPLED MODE THEORY

A. The basis

1. The basis of circularly-polarized fields

In this section, we develop and describe the coupled
mode theory of spin-VCSELs based on the Maxwell-
Bloch equations derived in Sec. II C. We have adopted
and generalized the approach first introduced in Ref. [44]
and more recently in Ref. [47]. Consequently, our deriva-
tions are structured according to these papers. The ap-
proach is based on the projection of the Maxwell-Bloch

FIG. 3. Scheme of a muliple-QW spin-VCSEL device, con-
sisting of N + 3 layers. Each layer is described by its own
permittivity tensor ε̂(n) and thickness d(n).

equations onto a certain basis, which is specific for each
cavity. The novelty introduced here is, that the vector
nature of the basis functions is respected. Additionally to
this, our basis functions are calculated for the active de-
vice, in contrary to the most of works [37, 40]. It allows to
include self-consistently all of the polarization-dependent
properties of cavity.

There are more possible options for choosing a cor-
rect basis, which will be discussed later. In this work,
we derive the coupled mode equations using the basis of
circularly-polarized fields, that can be obtained from our
modified matrix approach for the extraction of the laser
eigenmodes. We comment on several reasons, which are
mostly practical, why such basis is the appropriate one:

i) The first reason lies in the optical selection rules
and in the fact, that particular radiative electron-hole
re-combinations in device of spin-VCSEL geometry gen-
erates circularly polarized photons. In this sense, the
anisotropies within the cavity can be considered as a per-
turbations to those circular basis functions.

ii) The second reason for using the circular basis is
based on its mathematical properties. We know, that
the positive-frequency component of electric field can be
generally decomposed into:

|E〉 =
∑
k

Ek |k〉 exp(iδωkt), (30)

where we have used the compact bra-ket notation to
avoid the tedious integral equations in the next parts
of manuscript. Ek stands for the time-dependent ampli-
tude of eigenmode (or basis function, alternatively) |k〉
and δωk is the frequency shift of given mode with re-
spect to the certain central frequency ω (see Sec. II C)
of laser field oscillations. The circular basis can be con-
sidered as degenerated from the frequency point of view
and thus δωk → 0. The total field can be decomposed
as a sum |E〉 = E+ |+〉+ E− |−〉 in this case, which sig-
nificantly simplifies the mathematical derivations. Next
practical advantage is the orthogonality of circular basis
〈+|−〉 = 0.

iii) The last reason is, that we would like to show the
connection to some previous work in this field. Namely,
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FIG. 4. The spatial distribution of the basis functions
ϕk(z) = 〈z|k〉 within the laser cavity.

to provide the rigorous background to well-known SFM
as well as its extension.

Typical shapes of the basis functions ϕ±(z) = 〈z|±〉
calculated numerically are shown in the Fig. 4 as the
functions of position within the cavity.

2. Other basis options

Generally, the choice of a particular basis depends on
the properties of the laser structure. For example, in our
polarization-focused approach, one can estimate which
element of the laser cavity (such as spin-polarized QWs,
or birefringent layers in the Bragg reflectors) is the most
dominant in determining laser’s performance.

Consequently, in the case of a structure with very
strong optical anisotropies, such as strained VCSELs
studied in Ref. [13], it would be more appropriate to
choose the linearly polarized basis functions. There are
two options, how to apply the linear basis. First, one
can use the orthogonal linear functions with degenerate
frequencies. Any anisotropies, such as the linear bire-
fringence or the gain anisotropy originating from electron
spin imbalance in active regions play the role of pertur-
bations. Another option is to use linear basis functions of
different frequency, calculated using already anisotropic
laser cavity. However, it would lead to mathematical dif-
ficulties.

Alternatively, it is possible to construct the coupled
mode theory for the real eigenmodes, which do not have
to be orthogonal. This is the most general approach,
because it considers all of the optical properties of the
given structure at the same time, without treating some
of them as a perturbation. The ansatz for the electric
field looks slightly different in this case (idea is based on
the work in Ref. [43]):

E(z, t) =
∑
k

Ek(t)ϕk(z)exp(iδωkt).

We use a standard notation here, to emphasize, that in
this case the time-dependent amplitudes Ek contains the
polarization vector and we consider only scalar spatially-
varying basis functions ϕk. The approximation here is,

that ϕk is time-independent, which only introduces a
small inaccuracy in the formalism.

B. Derivation of the coupled mode equations:
structures of arbitrary geometry

1. Dipole moment density decomposition

The first step in deriving the rate equations consists of
expressing the dipole moment densities P̃ in the consid-
ered circular basis. We use the compact bra-ket notation,
thus, the Eq. (9) becomes:

∂

∂t
˜|Pµ〉 = −(γ⊥ + iδ) ˜|Pµ〉+ i

|θ|2

h̄
NµT̂µ |E〉 . (31)

Dipole moment densities and electric field are now ex-
panded using the same basis functions {|+〉 , |−〉}. We
make the following projection ansatz for each of them:

˜|Pµ〉 =
∑

k=+,−

P̃µ,k |k〉,

|E〉 =
∑

k=+,−

Ek |k〉.
(32)

Index k should not be mistaken with the wave-number.
Note, that coefficients of superpositions P̃µ,k = P̃µ,k(t)
and Ek = Ek(t) depend only on time. Inserting the
ansatz to Eq. (31) and acting using 〈j| from the left,
we obtain:

∂

∂t

∑
k

〈j|k〉 P̃µ,k =− (γ⊥ + iδ)
∑
k

〈j|k〉 P̃µ,k

+ i
|θ|2

h̄

∑
k

〈j|NµT̂µ |k〉Ek,
(33)

Note, that acting using 〈j| is mathematically equivalent
to constructing the variational formulation, similarly to
the framework of finite element methods.

It is useful to introduce the following time-dependent
quantities:

N jk
µ = 〈j|NµT̂µ |k〉 . (34)

Mathematically, it represents the overlap integral of the
spin carrier concentration. Moreover, such definition re-
spects the polarization dependent optical response of the
laser transitions. Thus, it is a natural generalization of
population overlap integrals N jk = 〈j|N |k〉, used in
Refs. [44, 47]. Overlap integrals N jk

µ defined in such a
way are very important for devices, in which the opti-
cal properties of QWs depend on position. For example
the strain field does not have to be uniform everywhere,
resulting in different values of gain anisotropy D across
laser. Note, that only two of them (N++

↑ and N−−↓ )
would be non-zero only in the absence of any linear gain
anisotropy (D → 0).
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Since class-C lasers are not considered in the present
work, we assume that the dipole moment density follows
the electric field adiabatically by taking ∂tP̃µ,k = 0. Ad-
ditionally, it can be shown, that the total laser dipole
moment density can be decomposed in the circular basis
as:

˜|P 〉 =
∑
k

(P̃↑,k + P̃↓,k︸ ︷︷ ︸
P̃k

) |k〉. (35)

Consequently, Eq. (33) leads to:

P̃j = i
1

γ⊥ + iδ

|θ|2

h̄

∑
µ=↑,↓

∑
k=+,−

I−1
j N

jk
µ Ek, (36)

which is the adiabatic reformulation of Eq. (9) in the
given basis and where we define Ij = 〈j|j〉. The inter-
pretation of Eq. (36) is the following: generally, in the
presence of a linear gain anisotropy inside the active lay-
ers, circularly-polarized fields are coupled to each other.
One particular circularly-polarized field component in-
duces not only its own dipole moment density, but also
a small amount of the orthogonal one due to off-diagonal
overlaps N jk

µ .

2. Photons

The derivation of the equations of motion describing
the time evolution of electric field within the spin-VCSEL
cavity is based on the Eq. (11), to which the slowly-
varying envelope approximation is applied in order to get
rid of second-order time derivatives. The same strategy
as in the case of dipole moment density is used for the
derivation of field coupled-mode equations. Namely, we
express the wave equation in the bra-ket notation and
then we project onto the chosen basis. Thus, we have:

∂

∂t
|E〉 =− i ω

2εQW
˜|P 〉

−
(
κ+ i

ω

2
+ i

c2

2ω
ε̂−1
m

∂2

∂z2

)
|E〉 ,

(37)

where it is assumed that the active media background
is described by its permittivity εQW . Otherwise, the
remaining part of the cavity is described generally by
its permittivity tensor ε̂m, in order to describe self-
consistently any anisotropies. It is useful to define the
so-called anisotropy operator γ̂:

γ̂ = i
ω

2
+ i

c2

2ω
ε̂−1
m

∂2

∂z2
. (38)

As it will be shown later, the well-known anisotropy rates
used in spin-flip model, such as γp and γa, can be cal-
culated from normalized off-diagonal matrix elements of
γ̂. Moreover, we assume, that any losses in the optical
cavity can be described by the decay rate κ = κ̃/2, which
is well-justified in the Appendix B.

Using Eq. (32) and acting on the wave equation from
the left, using 〈j|, one thus obtains:

∂

∂t

∑
k

〈j|k〉Ek =− i ω

2εQW

∑
k

〈j|k〉 P̃k

− κ
∑
k

〈j|k〉Ek

−
∑
k

〈j| γ̂ |k〉Ek.

(39)

Due to the orthogonality of circular basis, we can write
〈j|k〉 = δjkIk. Next, we use the notation γjk = 〈j| γ̂ |k〉
for anisotropy operator γ̂ matrix elements. Using the
expression for P̃j from Eq. (36), we derive:

∂

∂t
IjEj =

|θ|2ω
2h̄εQW (γ⊥ + iδ)

∑
µ

∑
k

N jk
µ Ek

− κ IjEj −
∑
k

γjkEk.

(40)

Let’s divide the entire equation by Ij and introduce

the gain coefficient G defined as G(ω) = |θ|2ω
2h̄εQW (1+α2)γ⊥

,

where α = δ/γ⊥ stands for the line-width enhancement
factor [56]. Finally, the general rate equation for the field
amplitude Ej is:

∂

∂t
Ej = G(ω)(1− iα)

∑
µ=↑,↓

∑
k=+,−

I−1
j N

jk
µ Ek

− κEj −
∑

k=+,−

I−1
j γjkEk.

(41)

Note, that involves self-consistently the anisotropic char-
acter of the structure, not only of the passive cavity back-
ground but also of the gain media itself. Moreover, it is
sensitive to any small changes in the geometry of spin-
VCSEL structures.

3. Spin carriers

We are now going to turn on to the dynamics of the
spin-polarized carriers coupled to the electromagnetic
field. We derive the rate equations (8 in total) for the
overlaps N jk

µ , first by only considering the coherent part
of the Eq. (10), describing the electric dipole interactions.
The remaining terms, such as pump rate or spin carriers
decay and mixing, will be added in the heuristic manner
at the end of derivation.

The interaction part of Eq. (10) may be expressed us-
ing the bra-ket notation as:

∂

∂t
Nµ = . . .+

2i

h̄
〈E| δ(z′ − z) ˜|Pµ〉

− 2i

h̄
˜〈Pµ|δ(z′ − z) |E〉 ,

(42)

where we use the filtration property of the Dirac delta
function δ(z′−z). In order to transform Nµ into N jk

µ , we
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act by using 〈j| (. . .)T̂µ |k〉 on the both sides of Eq. (42),
in which we use Eq. (32). One obtains:

∂

∂t
N jk
µ = . . .+

2i

h̄

∑
k

∑
l

Wjklm
µ E∗l P̃µ,m

− 2i

h̄

∑
k

∑
l

Wjklm
µ P̃ ∗µ,lEm,

(43)

where the general coupling coefficients Wjklm
µ has been

identified as the spatial overlap of four basis functions
over the active region according to:

Wjklm
µ = 〈j| 〈l| δ(z′ − z) |m〉 T̂µ |k〉

=

∫
a

(ϕ†j T̂µϕk) (ϕ†l ·ϕm) dz.
(44)

They describe, how the generalized optical intensities
E∗kEl interact with spin carrier overlaps, respecting both
spatial distribution of modes as well as the polarization-
dependent gain. Note, that only Wjkll

µ coefficients are
non-vanishing due to orthogonality of the given basis.

After having inserted P̃µ,l, which has been adiabati-
cally eliminated in Eq. (33), one obtains:

∂

∂t
N jk
µ = . . .− 4|θ|2

h̄2(1 + α2)γ⊥

∑
l

∑
m

Wjkll
µ I−1

l

× Re
{

(1− iα)E∗l EmN lm
µ

}
.

(45)

Complete rate equations for N jk
µ , including pump rate

overlaps defined as Λjkµ = 〈j|ΛµT̂µ |k〉, dipole interaction

coupling coefficient K = 4|θ|2
h̄2(1+α2)γ⊥

and all decay and

mixing rates, are:

∂

∂t
N jk
µ = Λjkµ − γ‖N jk

µ − γJ(N jk
µ −N

j′k′

µ′ )

−K
∑
l=+,−

∑
m=+,−

Wjkll
µ I−1

l

× Re
{

(1− iα)E∗l EmN lm
µ

}
.

(46)

Eqs. (41) and (46) form the general framework for our
time-dependent modeling of spin-VCSEL structures of
any spatial variation of cavity parameters and optical
properties such as local anisotropies. They consist of 2
equations of motion for the field amplitudes Ej corre-
sponding to the two different modes, and 8 differential
equations for spin carrier spatial overlaps N jk

µ . Thus,
they are devoted mainly for robust numerical studies of
spin-lasers.

The reduced alternative of such set of equations, valid
for structures properly designed, will be discussed in the
following parts. Such simplification reduces not only
computational cost but moreover allows to perform ana-
lytical calculations.

C. Theory of anisotropy rates

The important advantage of our couple mode theory
is, that the entire optical cavity is treated in an unified
way and all perturbations, such as anisotropies, are in-
troduced by the overlap integrals. Equivalently, one can
say, that anisotropy rates can be calculated using the
matrix elements of the anisotropy operator γ̂, which is
derived from our Maxwell-Bloch equations. Very simi-
lar approach can be found in Ref. [57], dealing with the
theory of Zeeman laser. Let’s now express the general
matrix element γjk in the familiar integral notation ac-
cording to:

γjk = 〈j| γ̂ |k〉

=

∫
C

ϕ†j

(
i
ω

2
+ i

c2

2ω
ε̂−1
m

∂2

∂z2

)
ϕk dz,

(47)

where the integration is performed over entire cavity.
One can observe, that the different behavior can be ex-
pected from the diagonal and off-diagonal anisotropy cou-
pling constants, because the first term under the integral
will disappear, when j 6= k. It can be shown, that diago-
nal matrix elements γjj lead to an equal frequency shifts
of both laser modes in the same direction on the fre-
quency axis. This statement applies for structures with
permittivity tensors containing ’usual’ anisotropies such
as linear birefringence. From now on, we will not consider
the diagonal contributions and we omit the first term of
γ̂.

In practice, the terms γ̃jk = I−1
j γjk have the physical

meaning of anisotropy rates. We are allowed to separate
the basis functions into polarization and scalar (spatial)
components as ϕj = ejϕj . Using Eq. (47), one gets

γ̃jk = i
c2

2ω

∑
n

∫
n
ϕ∗j
(
∂2
zzϕk

)
dz∫

C
|ϕj |2 dz

[
e†j
(
ε̂−1
n

)
ek

]
, (48)

where the integration over the entire cavity has been re-
placed by the summation of contributions of anisotropic
layers indexed by n. Contributions of isotropic layers
are equal to zero, as can be expected. The permittiv-
ity tensor in the n-th layer is noted as ε̂n. Expression
obtained for γ̃jk can be further simplified by describ-
ing the shape of ϕk in the n-th layer by the superpo-
sition of respective forward and backward propagating
planar waves of respective amplitudes Fk,n and Bk,n:

ϕk(z) = Fk,ne−iqn(z−zn) +Bk,neiqn(z−zn), where zn is the
position of (n− 1/n) interface. The wave-number qn can
be written as q2

n = ε̄n(ω/c)2, where ε̄n is the isotropic
part of permittivity tensor. Finally, the expression for
γ̃jk reads:

γ̃jk = − iω
2

∑
n

Γn

[
e†j
(
ε̂−1
n

)
ek

]
ε̄n, (49)

where Γn is the optical confinement factor of the n-th
anisotropic layer. The minus sign originates here from
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the second-order derivative of ϕk. As we will show later,
this expression contains the well-known birefringence and
dichroism rates from conventional spin-flip model. More-
over, the approach allows to derive anisotropy rates for
arbitrary anisotropy, especially in structures containing
more exotic anisotropies. Some of the examples can be
devices with optical metasurfaces or devices with not
collinear axes of anisotropies.

V. EXTENDED SPIN-FLIP MODEL

We will now describe in details the connection between
our theoretical perturbative framework to the SFM and
show that our method may generalize the previous sim-
plified approach.

A. Well-designed structures

1. Simplifying assumptions

In most cases, active layers are generally located in
the anti-nodes of the oscillating electromagnetic field
standing-wave. Additionally, we may assume, that each
active layer within the cavity, such as QW, is homoge-
neously excited by the same polarized field, and the po-
larization state of optical field does not change signifi-
cantly from point to point between active layers. In this
case, it does not raise any difficulty to guess approxi-
mate function which describes the spatial variation of
spin carriers inside QW laser, assuming that radiative
recombination takes place only in the volume of QW.

For that reason, let’s write the spin-carrier populations
as:

Nµ(z, t) = Nµ(t)φ(z), (50)

where φ is the typical function one considers to describe
spatial distribution of spin carriers and Nµ is the time-
dependent spin carrier concentration. We choose to use
a simple rectangular function. This may appear as a
very strong approximation but well-justified by the fact,
that the electronic wave-functions inside QW are strongly
localized. The function φ has the following properties:

φ(z) = 1; z ∈ {a},
φ(z) = 0; z ∈ {C} \ {a},

(51)

where {a} and {C} are the sets of all points inside active
layer and entire optical cavity, respectively, in this 1D ap-
proximation. Assuming such simple spatial distribution
of spin carriers, their overlaps become N jk

µ = T jkµ Nµ,

where T jkµ = 〈j| T̂µ |k〉, and as it follows from the defi-
nition of φ, the integration is performed over the active
region. Moreover, it can be shown, that I−1

j T jkµ = Γ gjkµ ,

where Γ =
∫
a
|ϕj(z)|2dz /

∫
C
|ϕj(z)|2dz represents the

conventional optical confinement factor, quantifying the

relative amount of electric field energy confined in the
active region. It is calculated using the scalar part of
basis function ϕj(z). Note, that the optical gain is
polarization-dependent, which is included in the coeffi-

cient gjkµ = e†j T̂µek, where ej,k are the Jones vectors
describing the polarization state of the basis functions.
Finally, the notation γ̃jk = I−1

j γjk is introduced. The
detailed analysis of terms γ̃jk, called the anisotropy rates,
will be performed in the next parts of this manuscript.

2. Reduced rate equations

Applying the whole above-mentioned arguments to
Eqs. (41) and (46), we significantly simplify the descrip-
tion of spin-laser structures. Namely, the number of rate
equations for spin carriers reduces to standard two, for
N↑,↓. Resulting rate equations are:

∂

∂t
Ej = G(ω)(1− iα)

∑
µ=↑,↓

∑
k=+,−

ΓNµ gjkµ Ek

− κEj −
∑

k=+,−

γ̃jkEk,
(52)

∂

∂t
Nµ = − γ‖(Nµ −N0µ)− γJ(Nµ −Nµ′)

−K
∑
l=+,−

∑
m=+,−

Γ Re
{
glmµ E∗l Em

}
Nµ,

(53)

where N0µ stands for unsaturated spin carrier concentra-
tion at µ-th spin channel. The two additional assump-
tions has been used. First, it was assumed, that the basis
functions are normalized in such way, that they satisfy

ϕ†j · ϕj ∼= 1 inside the active layers, which are very thin

compared to the typical wavelength (λ ∼= 1 µm). Sec-
ond, the original set of coupled-mode equations has been

constructed in the way, that T jkµ = T j
′k′

µ′ must hold (for

example T ++
↑ = T −−↓ ).

B. Spin-flip model with linear gain anisotropy

The important consequence of Eqs. (52) and (53) is
the possibility to derive the extension of the well-known
SFM to some more general situations.

i) We extend the SFM to include the gain anisotropy
different than circular gain dichrosim (due to spin car-
rier imbalance), such as the linear gain dichroism due to
strain inside QW.

ii) The second extension originates from the fact, that
the cavity-related quantities such as anisotropy rates can
be calculated self-consistently. This provides a clear rig-
orous background to SFM.

iii) Moreover, the extended SFM can be straightfor-
wardly generalized to respects the shape of the optical
mode within the cavity, especially in active region.
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In order to derive the extended SFM, the field and
population variables must be re-scaled in an appropri-
ate way. To do so, we introduce the populations N,m
and mode amplitudes A±, in the similar manner as San
Miguel et al. [30], defined as:

N↑,↓ =
κ

ΓG
(N ±m),

E± =

√
2γ‖

KΓ
A±exp(−iακt).

(54)

We get rid of fundamental constants and coupling coef-
ficients, keeping just the main structure of rate equations
necessary for description of important laser features.

Before we find the rate equations for A±, N,m, it is
useful to study the polarization-dependent coefficients

gjkµ . Due to the specific basis we have chosen, and rela-
tively small values of gain anisotropy parameter D (up to
D = 0.1), we are allowed to neglect two of them, namely
g−−↑ and g++

↓ . From the definition, it can be shown,

that they are equal to each other: e†−T̂↑e− = e†+T̂↓e+ =

D2/(1 + D2). The remaining coefficients gjkµ take only
two different values and according to calculations, we de-
fine: g = 1/(1 + D2) and g̃ = 2D/(1 + D2). Moreover,
we neglect the anisotropy rates γ̃±±, which induce the
frequency shift of two modes in the same direction, but
not splitting between them.

Thus, the relations from Eq. (54) are applied to
Eqs. (52) and (53), from which one obtains, after per-
forming the simple algebraic operations, the so-called ex-
tended spin-flip model:

Ȧ+ = κ(1− iα) {[g (N +m)− 1]A+ + g̃ NA−} − γ̃+−A−, (55)

Ȧ− = κ(1− iα) {[g (N −m)− 1]A− + g̃ NA+} − γ̃−+A+, (56)

Ṅ = γ‖(N0 −N)− γ‖ {[ g (I+ + I−) + g̃ I±]N + g (I+ − I−)m} , (57)

ṁ = γ‖PJN0 − (γ‖ + 2γJ)m− γ‖ {[ g (I+ + I−) + g̃ I±]m+ g (I+ − I−)N} , (58)

where the optical intensities I+ = |A+|2, I− = |A−|2
and I± = 2 Re

{
A∗+A−

}
have been defined. The overall

pumping rate is described by unsaturated carrier concen-
tration N0. The fact that the linewidth enhancement fac-
tor α may be polarization-dependent has been neglected
here.

Note, that in the absence of any linear gain anisotropy
(D = 0), the coefficients g and g̃ reduce to g = 1 and
g̃ = 0, which gives the conventional SFM with generalized
anisotropy rates γ̃±∓, which consist of the birefringence
rate γp and the dichroism rate γa as a special case, as it
will be shown.

One of the predictions of the extended SFM is an addi-
tional contribution to total frequency splitting between
linear lasing modes. It is due to phase-amplitude cou-
pling in the presence of the linear gain anisotropy D.
Standard derivation leads to the approximate expression:

δω ∼= 2ακD, (59)

valid for small values of D, which is formally equivalent
to a general expression given in literature for such kind
of anisotropy [58].

One can expect new effects arising due to D 6= 0. De-
tailed qualitative analysis of extended SFM, such as bi-
furcation analysis or calculation of modulation response,
is out of the scope of the present paper. Nevertheless,
gain anisotropy should strongly influence beating fre-

quency between circular modes.
It is important to note, that if we used a different basis

to derive the extended SMF, we would obtain a different
set of differential equations. However, the physics, which
is modeled, would be the same as long as we neglect terms
in the second order of gain anisotropy D.

C. Linear birefringence and dichroism rates

The mathematical framework, developed in this paper,
allows to calculate realistic values of anisotropy rates such
as birefringence rate γp and dichroism rate γa. They can
be calculated not only using the rigorous matrix formal-
ism [19], that has been re-formulated within this paper,
but more importantly in a self-consistent way within the
framework of the time-dependent coupled mode theory.
This subsection is based on the computational rules, in-
troduced in the Sec. IV C. We will derive approximate
analytic expressions for γp and γa, which may provide
useful physical insights.

In order to derive and validate this approach, we con-
sider the single-QW structure, as depicted in Fig. 5. To
simplify, this structure contains only a single anisotropic
layer (apart from the possible anisotropies in the active
layer), which will be placed in two different locations
within the optical cavity. This is emphasized by respec-
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tive red and blue layers with reduced coordinates ζ = 0.1
and ζ = 0.15 in the local reference frame, as shown in
the inset. Let’s write down the permittivity tensor of
such layer without z-components, since the off-axis wave
propagation along z is neglected here. Note, that the
permittivity tensor is expressed in the {[110], [11̄0]} ba-
sis according to:

ε̂A =

[
εA,xx 0

0 εA,yy

]
. (60)

Next, we consider a particular linear birefringence and
linear dichroism inside a given layer. Material birefrin-
gence and dichroism are quantified using parameters δεr
and δεi, respectively: δεr = Re{εA,xx − εA,yy} and δεi =
Im{εA,xx − εA,yy}. Both parameters are positive real
numbers by the convention. We calculate the off-diagonal
normalized matrix element γ̃+− of the anisotropy opera-
tor γ̂. Using the Eq. (49), one obtains:

γ̃+− = − iω
2

ΓA

[
e†+
(
ε̂−1
A

)
e−

]
ε̄A, (61)

where ΓA stands for the optical confinement factor of
anisotropic layer and ε̄A is the absolute value of isotropic
part of permittivity tensor. Straightforward calculation,
in which the convention e± = [1,∓i]T /

√
2 is used, leads

to:

γ̃+− = ΓA
ω

2

(
δεi + iδεr

2 εA,xx εA,yy

)
ε̄A. (62)

In order to simplify this expression for γ̃+−, we use the
following approximation εA,xx εA,yy ∼= ε̄ 2

A, which is valid
in the case of δεr,i << ε̄A. Within this approximation,
one can see, that the expression we have derived consists
of real and imaginary part contributions. We will show
numerically, that this can be interpreted in the follow-
ing way: Re{γ̃+−} = γa and Im{γ̃+−} = γp. Namely,
that the real and imaginary parts of γ̃+− are equal to
the dichroism rate γa and the birefringence rate γp, re-
spectively. They are given approximately by the simple
relations:

γa ∼= ΓA

(ω
2

) δεi
2 ε̄A

,

γp ∼= ΓA

(ω
2

) δεr
2 ε̄A

.

(63)

Such formulas are rather intuitive concerning polariza-
tion anisotropies in VCSELs, but also agree qualitatively
with alternative expressions derived in the past, to some
extent [25, 38]. However, according to our knowledge,
they have never been derived explicitly in this form.

D. Numerical validation

In this section, we compare the predictions of analytic
expressions directly with precise matrix formalism (see

FIG. 5. Scheme of a simple single-QW structure, used for nu-
merical validation, with the electric field distribution calcu-
lated using the modified matrix formalism. The detail shows
the position of active layer and two possible positions [red
(ζ = 0.1), blue (ζ = 0.15)] of anisotropic passive layer within
the λ-cavity field. The local reference frame is described by
ζ.

Sec. III), showing the robustness of our coupled mode
theory implemented here. We will focus now on the nu-
merical predictions of experimentally-related quantities
such as the frequency splitting between orthogonal lin-
ear modes in the absence of any spin injection. Another
quantity of interest is the splitting of threshold pump
rates, or threshold carrier concentrations of such modes.
Finally, the polarization state of emitted modes is stud-
ied.

The formalism is demonstrated on a single-QW spin-
VCSEL structure, as depicted in Fig. 5. It consists of
a single active layer with thickness of dQW = 10 nm,
which models the QW. The short cavity is placed be-
tween two Bragg mirrors, composed of 15 and 25 units
of GaAs/AlAs, respectively, and designed for wavelength
of around λ = 1.005 µm. Apart from the active layer,
the cavity contains also the anisotropic layer of thick-
ness dA = 25 nm, with linear birefringence and linear
dichroism described by non-zero δεr,i. Optical constants
are: εGaAs = 12.25, εAlAs = 8.68, εQW = 12.96 and
ε̄A = εGaAs [59]. We will show, how some of main con-
sequences of even the smallest change in the geometry of
the device can be predicted with sufficiently high preci-
sion. It is shown in Sec. VI, how exactly the anisotropic
elements inside laser cavity can be technologically impor-
tant.

1. Frequency splitting

We now consider the given single-QW structure free
of any anisotropies beside linear birefringence. It can
be derived from the SFM, that the frequency splitting is



14

δεr
0 0.02 0.04 0.06 0.08 0.1

δν
 [G

H
z]

0

10

20

30

40
Frequency splitting (LB)

S-matrix (ζ = 0.1)
S-matrix (ζ = 0.15)
CMT (ζ = 0.1)
CMT (ζ = 0.15)

(a)

δεi

0 0.005 0.01 0.015 0.02 0.025

δν
 [G

H
z]

0

10

20

30
Frequency splitting (LD)

S-matrix (ζ = 0.1,α = 3)

S-matrix (ζ = 0.15,α = 3)

S-matrix (ζ = 0.1,α = 1.5)

S-matrix (ζ = 0.15,α = 1.5)

CMT (ζ = 0.1,α = 3)

CMT (ζ = 0.15,α = 3)

CMT (ζ = 0.1,α = 1.5)

CMT (ζ = 0.15,α = 1.5)

(b)

δεr

0 0.05 0.1

δ
ε
i

0

0.005

0.01

0.015

0.02

0.025
δν [GHz] (S-matrix)

0

5

10

15

20

δεr

0 0.05 0.1

δ
ε
i

0

0.005

0.01

0.015

0.02

0.025
δν [GHz] (CMT)

0

5

10

15

20

(c)

FIG. 6. The frequency splitting calculated as a function of
the birefringence parameter δεr (a), of the dichroism param-
eter δεi, due to non-zero Henry’s factor α (b), and of the
both anisotropy parameters (c). The results obtained using
our matrix formalism are used as a reference to evaluate the
precision of the method.

given as δν = γp/π [31], where we calculate γp as a func-
tion of δεr according to approximate formula given in
Eq. (63). Direct numerical comparison with calculation
based on our matrix formalism is shown in Fig. 6(a). Par-
ticular colors of the lines refer to position of anisotropic
layer within the optical field according to Fig. 5. The
values of the confinement factor of anisotropic layer are
Γred = 0.0269 and Γblue = 0.0148. One can observe a
small discrepancy between the scattering matrix method
and our coupled mode theory. This fact can be attributed
to the number of approximations we have used in order
to derive the analytic formulas. However, in principle,
they do not have to be used while applying our recipe of
coupled mode theory.

Moreover, the extended SFM can be efficiently com-
bined with our matrix algebra to obtain some of the re-
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FIG. 7. (a) The calculation of ratio N[110]/N[11̄0] as a func-
tion of the linear dichroism parameter δεi. (b) The calcu-
lation of ratio N[110]/N[11̄0] as a function of the linear gain
anisotropy D = δεa,i/(2 χ̄). (c) The ratio of threshold pump-
ing rates N0↑/N0↓ in the structure with circular gain dichro-
ism, due to electron spin imbalance, but without additional
linear anisotropies.

quired quantities with a better precision. For example,
one can compute the mode thresholds and frequencies,
from which it is possible to straightforwardly extract the
anisotropy rates.

Another contribution to the frequency splitting origi-
nates from the phase-amplitude coupling. In this case,
the SFM predicts the value δν = (α/π)γa [31], where the
dichroism rate is the function of dichroism parameter δεi,
as shown by the coupled mode theory. Note, that the
birefringence in the layer is switched off: δεr = 0. The
results, together with the comparison to rigorous matrix
method, is depicted in Fig. 6(b). Two different realistic
values of Henry’s factor α has been used, so the mag-
nitude of phase-amplitude coupling can be controlled.
Qualitatively, the results are in the perfect agreement.
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The inaccuracy seems to be affected by the same way,
since the ratio of data obtained by both methods is the
same as for our previous calculation.

Finally, the combined contribution of both local
anisotropy parameters δεr,i has been studied. The ab-
solute value of frequency difference is δν = |γp −αγa|/π.
A very good agreement between both methods has been
obtained too, as shown in Fig. 6(c). The results were
calculated for ζ = 0.15.

It should be noted, that the calculations using the lin-
ear basis functions have been performed as well. We
decided to use the option of two orthogonal linearly-
polarized basis functions with degenerate frequencies. In
this case, the coupled mode theory gives almost identical
results to those using circular basis.

2. Threshold splitting

The calculation concerning the effects of anisotropies
on lasing threshold is not that straightforward as in
the case of frequency splitting. The validity of cou-
pled mode theory may be determined by calculating
the ratio N[110]/N[11̄0], where N[110],[11̄0] are the thresh-
old carrier concentrations for linear laser modes oscillat-
ing along [110] and [11̄0] crystallographic axes, respec-
tively. The prediction of spin-flip model isN[110]/N[11̄0] =
(κ − γa)/(κ + γa). Note, that in the case of matrix for-
malism, one has to calculate the ratio χ̄[110]/χ̄[11̄0], since
χ̄ ∝ N↑+N↓ or equivalently N0↑+N0↓, because we con-
sider laser at or near threshold. The results, depicted in
Fig. 7(a), show an excellent agreement.

Next, we consider the optical anisotropies located
solely inside the active layers: circular gain dichroism, in-
duced by electron spin imbalance, and linear gain dichro-
ism. We neglect any additional passive anisotropies now.
One should expect significant differences in the pumping
rates at respective thresholds (or threshold carrier con-
centrations) of particular modes in the presence of gain
anisotropies.

Fig. 7(b) displays the calculation of N[110]/N[11̄0],
where N[110] = 1/(g + g̃) and N[11̄0] = 1/(g − g̃), ac-
cording to extended spin-flip model. Adjustable param-
eter is D. Note, that in the language of permittivities
one derives δεa,i = 2 χ̄D, where δεa,i is the difference of
imaginary parts of permittivities along anisotropy princi-
pal axes (see Sec. III). Numerical values obtained using
our extended SFM are in excellent agreement with those
extracted using matrix formalism. The similar calcula-
tion has been performed for circular modes under spin-
polarized pumping (PJ) for several values of spin-mixing
rate γJ .

3. Polarization eigenmodes at threshold

Next, we show, that our extended SFM gives good
results even concerning polarization state of possible
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FIG. 8. Components of reduced Stokes vector S =
[S1,S2,S3]T of single laser eigenmode calculated using rigor-
ous matrix formalism (left column) and using the extended
spin-flip model based on the coupled-mode theory (right col-
umn).

threshold modes, which may be the most general in this
case. We consider the linear birefringence and linear
dichroism in passive layer, linear gain anisotropy in ac-
tive layer and additionally spin-polarized electron injec-
tion. Very similar calculation has been presented in our
previous contribution [50], in which we have used scatter-
ing matrix formalism to extract dynamics-related quan-
tities for conventional SFM. However, in this case, our
extended SFM based on coupled mode theory, is com-
putationally self-consistent. Thus, the results of robust
matrix formalism are not required in order to obtain com-
parable results.

Let’s transform equations for field amplitudes from ex-
tended SFM to the {x,y} basis, in which the field am-
plitude components are A = [Ax, Ay]T . Resulting rate
equations can be expressed compactly as:

∂

∂t
A = Ω̂A, (64)

where Ω̂ is certain time-evolution operator. It can be
shown, that the polarization eigenmodes, we are looking
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for, are the eigenvectors of operator Ω̂.

Analytically extracted eigenvectors are used in order
to calculate components of Stokes vector S as functions
of spin injection polarization degree PJ and birefringence
parameter δεr (and the small δεi = δεr/10) with fixed
D = 0.025 and γJ = 3γ‖, which belongs to range of val-
ues observed experimentally at low temperatures. Oth-
erwise, values of γJ are much larger [60]. The results are
shown in Fig. 8, together with rafined calculations based
on the scattering matrix formalism. Compared to the re-
sults from Ref. [50], in which we have compared the ma-
trix approach with the conventional spin-flip model, one
can see, that separation of amplitude anisotropy into pas-
sive (linear dichroism) and active (linear gain anisotropy)
contributions increases the precision.

VI. APPLICATION: SPIN-VCSELS FOR
ULTRAFAST DATA TRANSMISSION AND

NOVEL THZ SOURCES

As previously noted, one promising way to increase
the speed of optical communication is to use highly-
birefringent spin-VCSELs for the polarization modula-
tion. In this section, we apply the developed theoreti-
cal tools to design and optimize conceptual spin-VCSEL
structure with 1D grating, which locally induces ex-
tremely large linear birefringence and thus, large fre-
quency splitting between co-existing linear modes. It is
an alternative option to recently demonstrated methods
based on heating or bending the structures [13, 61] and
implementing the surface grating [62, 63].

A. Spin-VCSEL with intra-cavity grating

In order to reach frequency splitting in the range
of THz, we propose to fabricate a spin-VCSEL struc-
ture with high-contrast intra-cavity grating, as shown
in Fig. 9. It is based on a resonant 2λ-cavity made
of GaAs, with 4 InGaAs QWs and AlGaAs/air grat-
ing. The Bragg mirrors are made of 15 and 25 units
of GaAs/AlAs. The structure is optimized to emit at
λ = 1300 nm. Optical constants are: εGaAs = 11.56,
εAlAs = 8.41, εInGaAs = 12.32 and εAlGaAs = 10.69
[59]. The design has been performed using the numerical
recipe introduced in Sec. III.

This type of structures are usually fabricated in three
steps: i) initial epitaxial growth of substrate Bragg mir-
ror and MQW active region, ii) fabrication of grating
using for example electron-beam litography and iii) epi-
taxial regrowth of the rest of the structure [64, 65]. Al-
ternative method to produce such structure could be the
wafer bonding.

FIG. 9. A scheme of λ = 1300 nm VCSEL with 4 InGaAs
QWs and intra-cavity AlGaAs/air grating.

B. Ultrafast polarization modulation

We use effective medium approximation (EMA), valid
for large wavelengths [66], to describe the effective
anisotropy of grating. For simplicity, we consider the
grating to be the only source of anisotropy. In such case
of lamelar grating, the ordinary and extraordinary per-
mittivities εo,e are given by εo = fεa + (1 − f)εb and

ε−1
e = fε−1

a + (1 − f)ε−1
b , where f is the fill factor and

εa,b are bulk permittivities of two materials composing
the grating [67]. In the case of the structure depicted in
Fig. 9, they are εa = εAlGaAs and εb = εair.

The frequency splitting induced by grating, calculated
using our matrix formalism, is shown in Fig. 10(a) for
variable grating thickness and fill factor. We show, that
using intra-cavity grating it is possible to reach frequency
splitting δν > 1 THz, if one correctly chooses the com-
position of the grating. Note, that such large anisotropy
is beyond the validity of the coupled mode theory (or ex-
tended SFM), because of extremely large birefringence
δεr in grating, which is far beyond the perturbative
regime.

However, the predictions of the presented matrix for-
malism allow to calculate the birefringence rate γp = πδν,
which is used in SFM. In Fig. 10(b), we show the sim-
ulated polarization modulation described using degree
of circular polarization Pc(t) = [I+(t) − I−(t)]/[I+(t) +
I−(t)]. We study two different positions of grating within
the cavity. The parameters used in simulations are
N0 = 5, PJ = 0.5, α = 3, γ‖ = 1 GHz κ = 133 GHz,
g = 1, g̃ = 0 (D = 0) and fill factor f = 0.25 in both
cases. The speed of modulation is limited by the value of
spin-mixing rate γJ , which was chosen to be γJ = 500γ‖
here. Nowadays, there is significant experimental effort
to make spin-mixing rate as large as possible, in contrary
to conventional spintronics.

Fig. 10(b) also demonstrates strong sensitivity of re-
sulting polarization modulation speed to location of the
grating layer in the multilayer structure. One can see,
that even very small shift in position of grating leads to
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FIG. 10. (a) Calculated frequency splitting between orthogo-
nally polarized laser modes as a function of grating thickness
and fill factor of AlGaAs inside the grating. (b) Simulated
polarization modulation of spin-VCSEL with grating for two
different positions of grating within the cavity.

very large change of polarization degree oscillations. In
near future, our theoretical framework will be extended
to structures with lateral periodicity by incorporating
rigorous coupled-wave analysis (RCWA), for which our
approach is well-suited [68].

From the broader application perspective, the possi-
bility of generating coherent THz radiation using highly-
birefringent spin-VCSELs seems very promising. The ex-
isting THz sources are too large, or they can only oper-
ate at very low temperatures. Alternatively, they require
the use of more than one external laser. All of these
disadvantages could be eventually solved using highly-
anisotropic spin-lasers, in which the beat-node signal in
the THz range coming from interference of orthogonally
polarized modes, could be used to generate THz radiation
by means of photo-mixing [14]. As depicted in Fig. 10(a),
we reached the frequency splitting of orthogonal linear
modes close to δν ∼= 1.4 THz for the grating fill factor
f = 0.75 for modeled spin-VCSEL with intra-cavity grat-
ing.

VII. CONCLUSION AND PERSPECTIVES

We have formulated the semi-classical model of spin-
laser with particular focus on local optical anisotropies
and highly-birefringent structures. It has been used to
develop:

i) the steady-state robust matrix description of spin-
VCSELs. This can be further generalized to describe the
steady-state operation of spin-VCSELs pumped above
threshold, including saturation effects. Important part
will be to use more realistic description of QW gain and
include lateral effects in electromagnetic wave propaga-
tion. It will allow to study the mode competition in a
rigorous way. Concerning the THz applications, it is suit-
able for direct implementation of periodic structures such
as birefringent gratings by means of RCWA.

ii) the coupled mode theory, which allows to treat spin-
VCSEL structures layer-by-layer. It is sensitive to any
small changes in optical and geometric properties of laser
cavity and gain media. We use the vectorial eigenmodes
of active structures, extracted using matrix formalism, in
contrary to previous approaches. The only input parame-
ters are the optical and geometric properties of particular
layers. Our model leads to the extended spin-flip model
with polarization-dependent gain. In future, it will be
worth to perform detailed analysis of effects arising from
additional terms due to linear gain anisotropy.

In this paper, we have proposed and designed concep-
tual structure of spin-VCSEL with intra-cavity grating.
Such structures have potential to be of significant im-
portance for THz photonics: i) as ultrafast polarization
modulators for data transfer and ii) compact tunable
sources of THz radiation. Robust matrix formalism to-
gether with coupled mode theory have been proven to be
precise tools for design and optimization of future spin-
VCSEL structures.

Appendix A: Transfer and scattering matrix
formalism

Steady-state electromagnetic field propagation inside
multilayer structures such as spin-VCSELs can be effi-
ciently described using the Yeh’s matrix approach. The
basic idea is that one solves the wave equation for each
layer separately and these solutions are connected by ap-
plying relevant boundary conditions. The frequency do-

main wave equation for the electric field amplitude E
(n)
0

inside any general anisotropic media is:

W(n)E
(n)
0 = 0, (A1)

where W(n) = (ω/c)2ε̂(n) −
[
q(n)

]2
+ q(n) ⊗

[
q(n)

]T
is

the wave equation operator with the permittivity tensor
ε̂(n) and wave-vector q(n) specific for each layer. The z-
components of q(n) are extracted from the condition for
the non-trivial solution:

det[W(n)] = 0. (A2)
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Due to the symmetry of the considered class of media,

one obtains four propagation constants q
(n)
zj , where j =

1, 3 refer to forward propagating modes and j = 2, 4 to
backward propagating modes. Solving Eq. (A1) gives

particular amplitudes E
(n)
0j = A

(n)
j e

(n)
j , where e

(n)
j is the

eigen-polarization vector.
Boundary conditions at the interface between (n − 1)

and (n) layers can be expressed using matrices as:

D(n−1)A(n−1) = D(n)P(n)A(n), (A3)

where A(n) is the vector of amplitudes, D(n) and P(n)

are dynamic and propagation matrix, respectively. They
are:

D(n) =


e

(n)
x1 e

(n)
x2 e

(n)
x3 e

(n)
x4

h
(n)
y1 h

(n)
y2 h

(n)
y3 h

(n)
y4

e
(n)
y1 e

(n)
y2 e

(n)
y3 e

(n)
y4

h
(n)
x1 h

(n)
x2 h

(n)
x3 h

(n)
x4

 , (A4)

P(n) =


eiq

(n)
z1 d

(n)

0 0 0

0 eiq
(n)
z2 d

(n)

0 0

0 0 eiq
(n)
z3 d

(n)

0

0 0 0 eiq
(n)
z4 d

(n)

 ,
(A5)

where h
(n)
j are the magnetic field eigen-polarizations and

d(n) stands for the thickness of n-th layer. Each layer

can be described by its own characteristic matrix T(n) =

D(n)P(n)
[
D(n)

]−1

. All of the layers contained within

the structure can be recursively connected and the am-

plitudes A(0), A(N+1) are related as A(0) = MA(N+1),
where M is the total matrix:

M =
[
D(0)

]−1
{

N∏
l=1

T(l)

}
D(N+1). (A6)

Alternatively, the scattering matrix S of the system can
be derived in a similar way, relating out-going and in-
coming amplitudes: Aout = SAin.

Appendix B: Calculation of field decay rate κ

1. Standard method based on complex frequency

The total field decay rate κ can be calculated rigor-
ously within the framework of transfer or scattering ma-
trix formalism. It can be done by using the formalism
developed in Sec. III. However, the gain of active layer
must be switched off χ̄ = 0 and the complex frequency
ω̃ = ω − iκ must be introduced. In the context of given
formalism it has more a sense of artificial gain accord-
ing to sign convention. Similarly, also in this case, one
is trying to find the values of ω and κ, which satisfy the

εm,i
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FIG. 11. Calculation of cavity decay rate contribution com-
ing from internal absorptions κabs as a function of imaginary
part of permittivity εm,i. Robust method based on matrix
formalism is compared to results obtained using simple ana-
lytic expression.

resonance condition [see (27) and (29)]. When κ reaches
certain value, which is equal real cavity decay rate, the
energy of considered cavity mode no longer decay [27, 69].

2. Analytic method based on Poynting theorem

Similarly, as in the case of anisotropy rates derived
using couple mode theory, it is possible to derive sim-
ple analytic expressions also for κ. We combine the basic
idea behind CMT, that one can assume the shape of laser
mode, with the law of electromagnetic energy conserva-
tion, which is the Poynting theorem [70]:

∂

∂t

∫
C

udV = −
∮
∂C

S dA−
∫
C

jE dV , (B1)

where u is the density of electromagnetic field, S is the
Poynting vector and j stands for the density of electric
current. If we consider the passive cavity, then it de-
scribes decay of the field due to transmitted light from
the structure and internal absorptions. Let’s consider
the cavity mode linearly polarized along x or y, de-
scribed by E(z, t) = E(t)ϕ(z). Thus, any lateral ef-
fects are neglected now. Using the known shape of cav-
ity mode inside the device, the following relations can
be derived. Density of electromagnetic field inside cav-
ity with no magnetically active media is u = ED =
ε0εm,r|ϕ|2E2, where εm,r is the real part of spatially-
varying permittivity. Stokes vector is then S = E×H =
(ε0c

2/ω)|ϕ|2E2q. Absorbing term under the integral is
equal jE = ε0εm,iω|ϕ|2E2, where εm,i is the imaginary
part of permittivity.

Assuming, that entire multilayer structure has the
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length L, one obtains:∫ A0

0

∫ L

0

εm,r|ϕ|2 dz dA× ∂E

∂t
=

−
∮
∂C

c2

ω
|ϕ|2 (q dA)× E

−
∫ A0

0

∫ L

0

εm,iω|ϕ|2 dz dA× E,

(B2)

where A0 is the cross-sectional area of domain, over
which the surface integration is performed. Simplifying
this expression, one obtains a simple decay law

∂

∂t
E = − (κtr + κabs)︸ ︷︷ ︸

κ

E, (B3)

in which the particular contributions to total decay rate
κ consists of transmission term:

κtr =
c

2

√
εm,r(0) |ϕ(0)|2 +

√
εm,r(L) |ϕ(L)|2∫

C
εm,r(z)|ϕ(z)|2dz

(B4)

and absorption term:

κabs =
ω

2

∫
abs

εm,i(z)|ϕ(z)|2dz∫
C
εm,r(z)|ϕ(z)|2dz

. (B5)

By εm,r(0) and εm,r(L) we understand real parts of per-
mittivity of the superstrate and substrate, respectively.

In the following, we focus on the κabs contributions,
because it can be significantly simplified in the case of
single absorbing layer. Spatial dependence of εm,i can be
taken out of the integral and we obtain:

κabs = Γκ

(ω
2

)
εm,i, (B6)

where the following confinement factor has been defined
Γκ =

∫
abs
|ϕ(z)|2dz /

∫
C
εm,r(z)|ϕ(z)|2dz. Derived ex-

pression is formally almost identical to approximate for-
mulas, which have been derived for anisotropy rates γa,p.

We compare derived expression with the rigorous and
more powerful method based on transfer (or scattering)
matrix formalism. The results, which are in perfect
agreement, are shown in Fig. 11.
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[27] H. E. Türeci, A. D. Stone, and B. Collier, Phys. Rev. A

74, 043822 (2006).
[28] L. Ge, Y. D. Chong, and A. D. Stone, Phys. Rev. A 82,

063824 (2010).
[29] S. Esterhazy, D. Liu, M. Liertzer, A. Cerjan, L. Ge, K. G.

Makris, A. D. Stone, J. M. Melenk, S. G. Johnson, and
S. Rotter, Phys. Rev. A 90, 023816 (2014).

[30] M. San Miguel, Q. Feng, and J. V. Moloney, Phys. Rev.
A 52, 1728 (1995).

[31] J. Martin-Regalado, F. Prati, M. S. Miguel, and N. B.
Abraham, IEEE J. Quantum Electron. 33, 765 (1997).

[32] M. Travagnin, M. P. van Exter, A. K. Jansen van Doorn,
and J. P. Woerdman, Phys. Rev. A 54, 1647 (1996).

[33] M. Travagnin, Phys. Rev. A 56, 4094 (1997).
[34] M. Adams, N. Li, B. Cemlyn, H. Susanto, and I. Henning,

Semicond. Sci. Technol. 33, 064002 (2018).
[35] A. K. Jansen van Doorn, M. P. van Exter, and J. P.

Woerdman, Appl. Phys. Lett. 69, 3635 (1996).
[36] S. Balle, E. Tolkachova, M. S. Miguel, J. R. Tredicce,

J. Mart́ın-Regalado, and A. Gahl, Opt. Lett. 24, 1121
(1999).

[37] D. Burak, J. V. Moloney, and R. Binder, Phys. Rev. A
61, 053809 (2000).

[38] J. Mulet and S. Balle, IEEE J. Quantum Electron. 38,
291 (2002).

[39] M. S. Torre, C. Masoller, and P. Mandel, Phys. Rev. A
74, 043808 (2006).

[40] A. Valle, M. Sciamanna, and K. Panajotov, Phys. Rev.
E 76, 046206 (2007).
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