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High-dimensional Monochromatic Random Waves approximate the Bargmann-Fock field

Fix d ∈ N and let n ∈ N be a large integer. Let f d,n be the restriction to R d × {0} n-d of the Monochromatic Random Wave, i.e. the unique a.s. smooth, centered stationary Gaussian field whose spectral measure is the uniform measure on the unit sphere in R n . Then, we show that as n → +∞, f d,n approximates a Gaussian field g d,n whose spectral measure is a Gaussian measure with adequately chosen variance. As an application of this result, we deduce that for -> 0 small enough and n ∈ N large enough, the excursion sets {f d,n + > 0} percolate with probability one.

Introduction 1.Setting and main results

The n-dimensional Monochromatic Wave is the a.s. smooth centered stationary Gaussian field f n on R n with covariance function defined by

E[f n (x)f n (0)] = 1 |S n-1 | S n-1 e i x,ω dσ S n-1 (ω)
where dσ S n-1 is the standard area measure on the unit sphere S n-1 and |S n-1 | = S n-1 dσ S n-1 is its volume. The geometric and topological properties of the level sets {f + = 0} and excursion sets {f + > 0} of a.s. smooth stationary Gaussian fields f , such as f n , have been the subject of much interest in the past decade (we refer to Section 1.1 of [START_REF] Muirhead | The sharp phase transition for level set percolation of smooth planar Gaussian fields[END_REF] for an overview of the percolation results and to [START_REF] Anantharaman | Topologie des hypersurfaces nodales de fonctions aléatoires gaussiennes[END_REF] for a discussion of the counting of connected components of a given topology) . It has been notoriously difficult to describe its large scale connectivity properties. The only example we know of is [START_REF] Muirhead | The phase transition for planar gaussian percolation models without fkg[END_REF] (see Theorem 1.3, Theorem 1.7 and Example 1.4 therein). This is due in great part to the sign changes of the covariance function of f n . Indeed, by [START_REF] Pitt | Positively correlated normal variables are associated[END_REF], this implies that f n does not satisfy the Fortuin-Kasteleyn-Ginibre (or FKG) inequality, which is crucial to most tools used to study the percolation of excursion sets of Gaussian fields (see for instance the first point of Defintion 2.1 of [START_REF] Beffara | Percolation of random nodal lines[END_REF]).

Fix d ∈ N and n ∈ N such that n > d + 1 and let g d,n be the a.s. smooth centered stationary Gaussian field on R d with covariance function defined by E[g d,n (x)g d,n (0)] = e -2x 2 n-d-1 .

In contrast with f d,n , by [START_REF] Pitt | Positively correlated normal variables are associated[END_REF], the Gaussian field g d,n does satisfy the FKG inequality and its percolation properties have been studied before (see for instance [START_REF] Beffara | Percolation of random nodal lines[END_REF], [START_REF] Rivera | The critical threshold for Bargmann-Fock percolation[END_REF] and [START_REF] Hugo Duminil-Copin | Existence of an unbounded nodal hypersurface for smooth gaussian fields in dimension d ≥ 3[END_REF]). It is in fact, up to rescaling equal to the well known Bargmann-Fock field.

The main result of the present text is that, when restricted to R d × {0} n-d , when n → +∞ with d fixed, the field f n becomes in fact quite similar to g d,n in the following sense.

Proposition 1.1. For each n ∈ N, n > d + 1, there exists a coupling (f d,n , g d,n ) of f n restricted to R d × {0} n-d and g d,n with the following property. For each k ∈ N, there exists a constant C = C(k, d) < +∞ such that for each n ∈ N large enough, for each r ≥ 2 and for each t > 0,

P f d,n -g d,n C k ([0,r] d ) ≥ C(1 + t)n -1 ln(1 + r) ≤ e -t 2 /2 .
The key idea behind Proposition 1.1 is the following classical fact of high dimensional geometry:

As n → +∞ with d ∈ N fixed, the standard Gaussian measure on R n and the uniform measure on the sphere of radius √ nS n-1 , when projected onto R d × {0} n-d , become close to each other.

See for instance Section 1.1 of [START_REF] Ledoux | The concentration of measure phenomenon[END_REF] for a discussion of this phenomenon. We do not attempt to make it more precise here as the proof does not explicitely involve approximation of measures. However, with this in mind, we observe that the spectral measures 1 of the Gaussian field f n , when projected onto R d , should approximate the spectral measures of g d,n . This is a good hint that the two fields should be close in some sense. All that remains is to quantify their resemblence, which is what we do in Proposition 1.1.

As an application of Proposition 1.1, we extend a recent result from [START_REF] Hugo Duminil-Copin | Existence of an unbounded nodal hypersurface for smooth gaussian fields in dimension d ≥ 3[END_REF] on the percolation of excursion sets of g d,n to the percolation of excursion sets of f d,n . Theorem 1.2. There exists c < 0 such that for every > c , there exists an integer n 0 = n 0 ( ) ∈ N such that for each n ≥ n 0 , with probability one, the set {f n + ≥ 0}∩R 3 ×{0} n-3 contains an unbounded connected component.

As a corollary to Theorem 1.2, we obtain the following result.

Corollary 1.3. There exist n 0 ≥ 3 and > 0 such that for each n ≥ n 0 and for any ∈ [-, ], a.s. there exists an unbounded component in {f n = } ∩ R 3 .

Proof. Let = | c |/2 > 0 be as in Theorem 1.2 and let ∈ (0, ). Then, since f n and -f n have the same law, by Theorem 1.2, a.s., {f n > } and {f n < } both have an unbounded connected component. But these sets must then be separated by an unbounded connected component of their common boundary which is {f n = } (see for instance Lemma A.9 of [START_REF] Rivera | Quasi-independence for nodal lines[END_REF] and Lemma D.1 from [START_REF] Hugo Duminil-Copin | Existence of an unbounded nodal hypersurface for smooth gaussian fields in dimension d ≥ 3[END_REF]).

We prove Proposition 1.1 in Section 2 and Theorem 1.2 in Section 3. The proof of Theorem 1.2 extends a supercriticality result for the percolation of one model to another via an approximation procedure. This strategy may be compared to the proof of Theorem 3.3 of [START_REF] Rodriguez | Phase transition and level-set percolation for the Gaussian free field[END_REF] in which the positivity of the critical level is established for super level sets of the discrete Gaussian Free Field in high dimensions via comparison with Bernoulli percolation.
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Proof of Proposition 1.1

In this section, we prove Proposition 1.1. Throughout this section we fix d ∈ N. For each n ≥ d + 1 and x ∈ R d we define

(2.1) d,n (x) = C d,n R d (1 -|ξ| 2 ) n-d-1 4 e i x,ξ 1 [|ξ| 2 ≤1] dξ where C d,n := 1 (2π) d/2 |S n-d-1 | 1/2 |S n-1 | 1/2 .
Then, using the d-dimensional convolution Fourier formula u * u(ξ) = (2π) d û(ξ) 2 where û(ξ

) := 1 (2π) d R d e -i x,ξ u(x)dx, we obtain, for each x ∈ R d , (2.2) d,n * d,n (x) = |S n-d-1 | |S n-1 | |ξ|≤1 (1 -|ξ| 2 ) n-d-1 2 e i x,ξ dξ = 1 |S n-1 | S n-1 e i x,ω dσ S n-1 (ω)
where dσ S n-1 is the surface area measure on S n-1 . Thus, d,n * d,n is the restriction to R d of the covariance function of the n-dimensional Monochromatic Random Wave.

Let n > d + 1 and x ∈ R d . Define

(2.3) γ d,n (x) := C d,n 2 (2π)(n -d -1) d/2 e -x 2 n-d-1
We note for later use that, since

|S n-1 | = nπ n/2 Γ( n 2 +1) , (2.4) γ d,n * γ d,n (x) = σ 2 d,n e -x 2 2(n-d-1) where σ 2 d,n = C 2 d,n 2 (2π)(n -d -1) d/2 = 1+O(n -1 )
where the implied constant in O(n -1 ) depends on d.

Let W be the L 

Lemma 2.1. For each m ∈ N and β ∈ N d there exists C = C(m, β, d) < +∞ such that for each n > d + 1 and each x ∈ R d , ∂ β ( d,n (x) -γ d,n (x)) ≤ CC d,n n m-1-d/2 |x| -2m .
Proof. Throughout the proof, the constants implied by the symbol O(•) are assumed to be uniform in n. Let us take n > d + 1. In order to estimate d,n -γ d,n , we study its Fourier transform, defined, for each ξ ∈ R d , as

h d,n (ξ) := 1 (2π) d R d e -i x,ξ ( d,n (x) -γ d,n (x))dx .
From the definition of d,n and γ d,n , it follows that for each ξ ∈ R d ,

h d,n (ξ) = C d,n (1 -|ξ| 2 ) A d,n 1 [|ξ|≤1] -e -A d,n |ξ| 2 where A d,n := n -d -1 4 .
We derive the following estimate for h d,n .

Claim 2.2. For each α ∈ N d , there exists C = C(α, d) < +∞ such that for all large enough n and ξ ∈ R d ,

(2.5) |∂ α h d,n (ξ)| ≤ CA |α|/2 -1 d,n 1 + A d,n |ξ| 2 |α|/2 +1 e -A d,n |ξ| 2 . Proof. For each A > 0 and t ∈ [0, 1], let v A (t) = (1-t) A -e -At . We fix k ∈ N and estimate the k-th derivative of v A provided that A > 0 is large enough that v A ∈ C k ([0, 1]). In this case, writing r k (A) = k-1 j=0 (A -j) -A k , we get (-1) k v (k) A (t) = k-1 j=0 (A -j) (1 -t) A-k -A k e -At = O(A k )((1 -t) A-k -e -At ) + r k (A)e -At = O(A k )((exp(-(A -k)t + O(At 2 )) -e -At ) + r k (A)e -At = O(A k )e -At O(t + At 2 ) + r k (A)e -At . If k > 0, then r k (A) = O(A k-1
), and r 0 (A) = 0. All in all, for some

C 1 = C 1 (k) < +∞, uniformly for A large enough and t ∈ [0, 1], (2.6) |v (k) A (t)| ≤ C 1 (r k (A) + A k t + A k+1 t 2 )e -At . Recall that A d,n = n-d-1 4 . As long as |ξ| ≤ 1, h d,n (|ξ| 2 ) = C d,n v A d,n (|ξ| 2 )
. By the chain rule, for each α ∈ N d , for n large enough, we obtain, for all ξ ∈ R d with |ξ| ≤ 1,

C -1 d,n |∂ α h d,n (ξ)| = O   |α|/2 j=0 v |α|/2 +j A d,n (|ξ| 2 ) × |ξ| 2j   (2.6) = O (1) A |α|/2 -1 d,n |α|/2 +1 j=0 A d,n |ξ| 2 j × e -A d,n |ξ| 2 = O(1)A |α|/2 -1 d,n 1 + A d,n |ξ| 2 |α|/2 +1 e -A d,n |ξ| 2 .
This proves the estimate for |ξ| ≤ 1. If |ξ| > 1, then, h d,n (ξ) = -C d,n e -A d,n |ξ| 2 so the estimate follows from direct computation.

The statement follows from (2.5) by noticing that for each n ∈ N and

x ∈ R d , d,n (x) -γ d,n (x) = R d e i x,ξ h d,n (ξ)dξ
so that, for each m ∈ N, and β ∈ N, uniformly in x ∈ R d and n ∈ N large enough,

|x| 2m ∂ β ( d,n (x) -γ d,n (x)) = R d e i x,ξ ∆ m ((iξ) β h n (ξ))dξ ≤ R d ∆ m ((iξ) β h n (ξ)) dξ = O(1) |β| k=0 R d |ξ| |β|-k |γ|≤2m-k |∂ γ h n (ξ)|dξ = O(C d,n A m-1 d,n ) R d 1 + (A d,n |ξ| 2 ) m+1 e -A d,n |ξ| 2 dξ = O C d,n A m-1-d/2 d,n = O C d,n n m-1-d/2 .
In the above equations, ∆ denotes the Laplace operator on R d . 

P φ d,n -ψ d,n C k ([0,r] d ) ≥ C(1 + t)n -1 ln(1 + r) ≤ e -t 2 /2 . Proof. Let θ d,n = d,n -γ d,n and η d,n = θ d,n * W = φ d,n -ψ d,
∈ R d , E ∂ α η d,n (0) 2 = R d ∂ α θ d,n (y) 2 dy =O C 2 d,n n -2-d |y|≤n 1/2 dy + |y|>n -1/2 n 2m |y| -4m dy = O C 2 d,n n -2-d/2 . Recall that |S n-1 | = nπ n/2 Γ( n 2 +1) so that C 2 d,n = O(n d/2
) and

E ∂ α η d,n (0) 2 = O(n -2 ) .
We conclude by applying Lemma A.1. 

Proof of Proposition

P g d,n -ψ d,n C k ([0,r] d ) ≥ C(1 + t)n -1 ln(1 + r) ≤ e -t 2 /2 .
For each multiindex β ∈ N d , the variance In this section we prove Theorem 1.2. For the proof of this theorem, in addition to Proposition 1.1, we will use the following ingredients. We will use a truncation estimate (Lemma 3.1), comparing the field to a finite range field. This will be established in Subsection 3.1. Then, in Subsection 3.2 we will define a renormalized percolation based on the percolation of the set {f d,n + ≥ 0}. Using a result on the percolation of the level sets of g d,n (see Theorem 3.3) and Proposition 1.1, we will see that for small enough > 0, this renormalized percolation is supercritical (see Proposition 3.5) and that the renormalized percolation induces percolation in the original model (see Lemma 3.6). This will allow us to quickly reach the conclusion of the proof Theorem 1.2. The proof of Proposition 3.5 involves a variation on a classical planar renormalization argument. We relegate it to Subsection 3.3.

∂ β g d,n (0) is bounded uniformly in n. Moreover g d,n -ψ d,n = (1 -σ d,n )g d,n . Now, g d,n ( 

A truncation estimate

In order to prove Theorem 1.2, we will need to estimate the correlation of percolation events supported far from each other. We will do this by comparing the field to a field with finite dependence in Lemma 3.1. Estimates of this kind, often called truncation estimates, are quite common in the study of level sets of Gaussian fields see for instance Proposition 3.11 of [START_REF] Muirhead | The sharp phase transition for level set percolation of smooth planar Gaussian fields[END_REF].

Lemma 3.1 (Truncation estimate). Let χ : R → R + be a smooth function satisfying 

χ(t) = 1 if |t| ≤ 1 and χ(t) = 0 if |t| ≥ 2. Let δ > 0. For each n ≥ d and s ≥ n (1+δ)/2 , let s d,n = χ(|x| 2 /s 2 ) d,n (x) 
|∂ β s d,n (x)| ≤ C 1 n -d/4-|β|/2 (1 + |x| 2 /n) |β|/2 e -|x| 2 /n + n -1-d/4 (1 + |x| 2 /n) -m .
Notice that for each t > 0 large enough, (1 + t) |β|/2 e -t ≤ (1 + t) -m . Since s d,n (x) vanishes for all |x| ≤ n (1+δ)/2 ≤ s, we have, for each β ∈ N d such that |β| ≤ 1, for each n ∈ N large enough and x ∈ R d ,

|∂ β s d,n (x)| ≤ 2C 1 (1 + |x| 2 /n) -m 1 [|x|≥n (1+δ)/2 ] .
Of course the estimate is quite crude, but it is enough for our needs. Indeed, using the fact that |x| ≥ n (1+δ)/2 ⇒ |x| 2 /n ≥ |x|, we get, finally, for each β ∈ N d such that |β| ≤ 1, for each x ∈ R d and each n ∈ N large enough, that

(3.1) |∂ β s d,n (x)| ≤ C 1 (1 + |x|) -m . Now, since s d,n (x) vanishes for |x| ≥ s, E ∂ β (f d,n (0) -f s d,n (0)) 2 = (∂ β s d,n * ∂ β s d,n )(0) ≤ |y|≥s ∂ β s n (y) 2 dy ≤ (3.1) 2C 2 1 |y|≥s (1 + |y|) -2m dy = O s d-2m
as long as 2m > d. Since we can take m as large as we want, we deduce that there exists

C 2 = C 2 (m, δ, d) < +∞ such that for all β ∈ N d satisfying |β| ≤ 1, for each large enough n ∈ N, E ∂ β (f d,n (0) -f s d,n (0)) 2 ≤ C 2 s -2m
. We conclude thanks to Lemma A.1.

Defining a renormalized percolation and conclusion

In this section we prove Theorem 1.2. The proof will be a renormalization argument. First we will use Proposition 1.1 to show that a certain percolation event on a bounded box occurs with very high probability. Then, we combine this information with Lemma 3.1 and standard gluing constructions to build, with high probability, a path of boxes on which this percolation event happens (see Proposition 3.5 below). Finally, we conclude by showing that this implies the existence of a continuous path passing through the boxes of this discrete path (see Lemma 3.6 below). The construction of the path of boxes, i.e. the proof of Proposition 3.5, is postponed until Subsection 3.3.

We now define the percolation event that will serve as a building block for our later constructions. Definition 3.2 (Open renormalized vertices). For each 0 < r < R and , ∈ R, let AlmUni , (r, R) be the set of functions u ∈ C 0 (R d ) with the following properties:

For each x ∈ R 2 such that x + [-R, R] 2 ⊂ [-3R, 3R] 2 , the set {u + ≥ R -3/2 } contains a connected set of diameter at least r in (x + [-R, R] 2 ) × {0} d-2 .
Any two connected sets of diameter at least r in {u

+ ≥ 0} ∩ [-3R, 3R] 2 × {0} d-2 are connected by a continuous path in {u + ≥ 0} ∩ [-3R, 3R] 3 × {0} d-3 .
Given a fixed set of parameters r, R, , , we will study a renormalized vertex percolation on Z 2 where a vertex x will be called open if the event f d,n

•-x n 1/2 ∈ AlmUni , (r, R) is satisfied.
We will use the following result about the percolation of the sets {g d,n + ≥ 0}. 

of [5]]

There exist < 0 and C > 0 such that if > , ε > 0, then, there exist δ 0 ∈ (0, 1) and R min < +∞ such that for each n ∈ N, n ≥ d + 1 and each R 0 > R min ,

P g d,n • n 1/2 ∈ AlmUni , (δ 0 R 0 , R 0 ) ≥ 1 -ε .
From Theorem 3.3, Proposition 1.1 and Lemma 3.1 we immediately deduce the following analogous result for f d,n (and f s d,n from Lemma 3.1).

Corollary 3.4 (Almost Uniqueness for f d,n ). Let < 0 be as in Theorem 3.3. Let > .

For each ε > 0 and ν > 0, there exist n 0 ∈ N, δ 0 ∈ (0, 1) and R min < +∞ such that for each n ∈ N, n ≥ n 0 > d + 1 and each R 0 ∈ [R min , e n ],

P f d,n • n 1/2 ∈ AlmUni -ν, +ν (δ 0 R 0 , R 0 ) ≥ 1 -ε .
Using this, by following a standard renormalization argument, we prove the following result.

Proposition 3.5 (Local uniqueness for renormalized percolation). Let > . For each ν > 0 there exist n 0 ∈ N, k 0 ∈ N and 0 < r 0 < R 0 < +∞ such that for each n ∈ N, n ≥ n 0 > d + 1 and k ≥ k 0 , the following event holds with probability at least

1 -e -(3/2) k . Let S 1 , S 2 ⊂ R 0 Z 2 ∩ [-10 k R 0 , 10 k R 0 ] 2 be
two subsets of diameter at least 10 k/2 R 0 each of which is connected in the graph R 0 Z 2 . Then, there exists a path in the graph Z 2 ∩ [-10 k R 0 , 10 k R 0 ] 2 which connects S 1 and S 2 such that for each vertex x of this path,

f d,n • -x n 1/2 ∈ AlmUni -ν, +ν (r 0 , R 0 ) .
The proof of Proposition 3.5 can be found in Subsection 3.3 below. This proposition will allow us to build long paths of boxes centered at open vertices of R 0 Z 2 . In the following lemma, we see that such paths induce continuous paths in {f d,n + -ν ≥ 0}. Lemma 3.6 (Renormalized paths induce continuous paths). Fix 0 < r 0 < R 0 < +∞ and , ∈ R, ≤ . Let be a (possibly infinite) path in R 0 Z 2 . Assume that for each vertex x visited by , the following event is satisfied:

(3.2) f d,n • -x n 1/2 ∈ AlmUni , (r 0 , R 0 ) .
Then, there exists a continuous path in {f d,n + ≥ 0} which visits

(x + [-3R 0 , 3R 0 ] 2 ) × {0} d-2 for each vertex x of .
Proof. Notice that for each two consecutive vertices x and y visited by , there exists a translate of the box

[-R 0 , R 0 ] 2 contained in (x + [-3R 0 , 3R 0 ] 2 ) ∩ (y + [-3R 0 , 3R 0 ] 2 )
. By the first point of Definition 3.2, in each of these boxes the set

{f d,n + ≥ R -3/2 0
} must contain a connected set S x,y of diameter at least r 0 . By the second point of Definition 3.2, if z is a third consecutive vertex of , S x,y and S y,z must be connected in {f d,n ≥ 0} ∩ (y + [-3R 0 , 3R 0 ] 3 ) × {0} d-3 . Hence, by induction, all such sets S x,y are connected and the conclusion follows.

Proof of Theorem 1.2. Let > and ν > 0. Fix n 0 ∈ N, k 0 ∈ N and 0 < r 0 < R 0 as in Proposition 3.5, fix also n ≥ n 0 and for each k ≥ k 0 , let Cluster k be the event described in the statement of the proposition. Then, with probability one, there exists k 1 ≥ k 0 such that Cluster k holds for each k ≥ k 1 . But this implies that there exists an infinite injective path in R 0 Z 2 ϕ such that for each vertex x of , the event (3.2) holds. By Lemma 3.6, this implies that there exists a continuous path in {f d,n + -ν ≥ 0} which visits every box (x + [3R 0 , 3R 0 ] 2 ) × {0} d-2 centered at a vertex x of . In particular, this path must be unbounded. Since this is true for every > and ν > 0, we conclude that for every > , there exists n 0 ∈ N such that for every n ≥ n 0 , {f d,n + > 0} contains an unbounded connected component with probability one.

Planar renormalization argument: proof of Proposition 3.5

We now prove Proposition 3.5. To do so, we first introduce the parameters we will use in the proof. Let < and ν 0 > 0. We also introduce ε 0 > 0 a parameter to be defined later as a function of a universal constant (see C 0 defined in Lemma 3.7 below). Let n 0 ∈ N, δ 0 ∈ (0, 1) and R min < +∞ be the parameters from Corollary 3.4 (with ν = ν 0 , ε = ε 0 /2 and δ = 1/4) and let R 0 ∈ [R min , e n ] to be fixed later. For each k ∈ N, let R k = 3 k R 0 .

Having defined our parameters, we now introduce a renormalized percolation model. For each ν > 0, we say that x ∈ R 0 Z 2 is ν-open if the following event is satisfied: Let G be the group of linear transformations of the plane generated by π 2 -rotations and the reflexion around the horizontal axis. Given T ∈ G, let Cross k,ν (x, T ) be the image of Cross k,ν (x) under the transformation

f d,n • -x n 1/2 ∈ AlmUni -ν, +ν (δ 0 R 0 , R 0 ) .

Note that being

f d,n → f d,n (T -1 •).
With our choice of parameters, by union bound, (3.3) P [Cross 0,ν 0 (0)] ≥ 1 -ε 0 .

A standard construction from planar percolation yields the following estimate (see for instance Section 3.4 of [START_REF] Bollobás | Percolation[END_REF]).

Lemma 3.7. There exists a universal constant C 0 < +∞ for which the following holds for each k ∈ N and ν > 0:

P [¬Cross k,ν (0)] ≤ C 0 sup x,T P [¬Cross k,ν (0) ∩ ¬Cross k,ν (x, T )] .
Where the sup is taken over pairs

x ∈ R k Z 2 and T ∈ G such that dist(x + T ([0, 2R k ] × [0, R k ]), [0, 2R k ] × [0, R k ]) ≥ aR k .
We now provide a proof of Proposition 3.5 from this estimate, combined with (3.3) and Lemma 3.1. The proof consists of a standard renormalization argument. In Section 3.4 of [START_REF] Bollobás | Percolation[END_REF] one can find an application of this technique to Bernoulli percolation. It has also been applied many times in the context of percolation of Gaussian fields, as in [START_REF] Rivera | The critical threshold for Bargmann-Fock percolation[END_REF], [START_REF] Muirhead | The sharp phase transition for level set percolation of smooth planar Gaussian fields[END_REF] for instance.

Proof of Proposition 3.5. Notice that for each 0 < r < R and ν > 0 and any two

f, g ∈ C(R d ), if δ = sup x∈[-3R,3R] 3 ×{0} d-3 |f (x) -g(x)|, (3.4) f ∈ AlmUni -ν, +ν (r, R) ⇒ g ∈ AlmUni -ν-δ, +ν+δ (r, R) .
Let us now introduce a parameter t 0 > 0 and an increasing sequence of positive real numbers (s k ) k to be fixed later. Recall the fields f s d,n introduced in Lemma 3.1. This lemma implies that there exists C 1 < +∞ depending only on R 0 such that, for k larger than some k 0 = k 0 (n) ∈ N, with probability at least 1 -e -(k+t 0 ) 2 /2 , the following holds (3.5) sup

x∈[-0,10R k+1 ] 3 ×{0} d-3 |f s k d,n (x) -f d,n (x)| ≤ C 1 log(1 + 3 k R 0 )(1 + k + t 0 )s -1 k =: δ k .
Let ν k = ν 0 + k j=1 δ j . At this point, we fix R 0 ∈ [R min , e n ] as a function of n and ν 0 so that it becomes possible to define s k as a function of t 0 , R 0 and ν 0 so that (3.6) sup

k ν k -ν 0 = k≥1 δ k ≤ ν 0 and n ≤ s 0 ≤ s k ≤ n 1/2 R k .
From (3.4) and (3.5) we immediately deduce that, if

x ∈ R k Z 2 and T ∈ G are such that dist(x + T ([0, 2R k ] × [0, R k ]), [0, 2R k ] × [0, R k ]) ≥ R k , then, as long as k ≥ k 0 , for each ν > 0, (3.7) P [¬Cross k,ν (0) ∩ ¬Cross k,ν (x, T )] ≤ P [¬Cross k,ν-δ k (0)] 2 + e -(t 0 +k) 2 /2 .
Together with Lemma 3.7, (3.7) implies that, setting p k := P [¬Cross k,ν k (0)] we have, for all k ∈ N,

(3.8) p k+1 ≤ C 0 p 2 k + e -(t 0 +k) 2 /2 .
On the other hand, by (3.3), p 0 ≤ ε 0 . Choosing ε 0 small enough and t 0 large enough, we deduce that for all k ≥ 0, p k ≤ e -2 k +O(k) ≤ e -(7/4) k .

Since by (3.6) ν k ≤ 2ν 0 , we deduce that (3.9) P [Cross k,2ν 0 (0)] ≥ P [Cross k,ν k (0)] ≥ 1 -e -(7/4) k .

To complete the proof of Proposition 3.5, observe that there exist a universal c 2 < +∞ and a covering of [-10 k R 0 , 10 k R 0 ] 2 with O(R c 2 k ) rectangles of size 2R k ×R k such that any R 0 Z 2path of (euclidean) diameter at least 10 k/2 R 0 must cross at least one of these rectangles width-wise. On the other hand, for k large enough, by union bound and (3.9) the events of the form Cross k,2ν 0 (x, T ) associated to these rectangles all happen simultaneously with probability at least 1 -e -(3/2) k as long as k is large enough. And if they do all happen and the covering is well chosen, the crossings must intersect any path of diameter at least 10 k/2 R 0 and must also be mutually connected by paths of 2ν 0 -open edges. Since ν 0 > 0 is arbitrary, we have reached the desired conclusion.

A An upper bound on the C k norm of Gaussian fields

In this section we recall a classical tail bound for the C k norm of Gaussian fields which we use repeatedly throughout the text. A second application of the Borell-TIS inequality completes the proof.
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 23 Let W be the L 2 (R d ) white noise. For each n ∈ N, n > d+1 let φ d,n = d,n * W and ψ d,n = γ d,n * W . Then, for each k ∈ N, there exists a constant C = C(k, d) < +∞ such that for each n ∈ N large enough, for each r ≥ 2 and each t > 0,

  0) has unit variance and by (2.4), σ d,n = 1 + O(n -1 ) so estimate (2.7) thus follows from Lemma A.1. 3 Application of Proposition 1.1: Proof of Theorem 1.2

.

  Write f s d,n = s d,n * W where W is the L 2 white noise on R d . Then, for each m ∈ N large enough there exists C = C(m, δ, d) < +∞ such that for each x ∈ R d , for each n ∈ N large enough and for each t > 0, s ≥ n (1+δ)/2 and r ≥ 1,P sup x∈[0,r] d |f d,n (x) -f s d,n (x)| ≥ C(1 + t)s -m ln(1 + r) ≤ e -t 2 /2 . Proof. Fix δ > 0. Let n ∈ N, n ≥ d + 1 and s ≥ n (1+δ)/2 . Let s d,n : x → d,n (x) -s d,n (x). Thus, f d,n -f s d,n = s d,n * W . The derivatives of s d,n up to any order are bounded uniformly in n by derivatives of d,n up to the same order. Therefore, by Lemma 2.1, for each m ∈ N, there exists C 1 = C 1 (m) < +∞ such that for each x ∈ R d each n ∈ N, large enough and each β ∈ N d satisfying |β| ≤ 1,

Theorem 3 . 3 (

 33 Almost Uniqueness for g d,n ). [Proposition 5.1 and Lemma 5.

  ν-open implies being ν open for each ν ≥ ν. We endow R 0 Z 2 with its usual graph structure and define a path in R 0 Z 2 to be a sequence of vertices each of which is connected to the next by an edge of the graph. Given a rectangle of the form [a, b] × [c, d], we call a left-right crossing of this rectangle a path in [a, b] × [c, d] ∩ R 0 Z 2 which connects a vertex x = (x 1 , x 2 ) whose first coordinate x 1 is minimal among the first coordinates of the vertices of [a, b] × [c, d] ∩ R 0 Z 2 with a vertex whose first coordinate is maximal among these. Given x ∈ R k Z 2 and ν > 0 let Cross k,ν (x) := There exists a left-right crossing of the rectangle x + [0, 2R k ] × [0, R k ] made of ν-open vertices .

Lemma A. 1 (

 1 Upper bound on C k norm). Let f be a Gaussian field on R d . Fix k ∈ N. Let κ(x) = E [f (0)f (x)] be the covariance of f . Assume that κ ∈ C 2k+2 (R d ). Then, there exists C = C(d, k) < +∞ such that the following hold. Let σ 2 be such that for eachβ ∈ N d with |β| ≤ k + 1, |∂ 2β κ(0)| ≤ σ 2 .Then, for each t > 0 and r ≥ 1,P sup |β|≤k sup x∈[0,r] d ∂ β f (x) ≥ C(1 + t)σ ln(1 + r) ≤ e -t 2 /2 .Proof. First, by homogeneity, we may assume that σ = 1. Next, by Kolmogorov's theorem (see Appendix A.9 of[START_REF] Nazarov | Asymptotic laws for the spatial distribution and the number of connected components of zero sets of Gaussian random functions[END_REF]), we see thatE sup |β|≤k sup x∈[0,1] d ∂ β f (x) = O(1). By the Borell-TIS inequality (see Theorem 2.8 of [2]), the quantity sup |β|≤k sup x∈[0,1] d ∂ β f (x) has Gaussian tails. A union bound then shows that E sup |β|≤k sup x∈[0,r] d ∂ β f (x) = O( d ln(1 + r)) .

  2 white noise on R d . By (2.2) and (2.4), the fields d,n * W and γ d,n * W are equal to f n | R d ×{0} n-d and close to g d,n respectively. In order to prove Proposition 1.1 we first prove that d,n and γ d,n are close in Lemma 2.1. Then, in Lemma 2.3 below, we deduce that the two fields d,n * W and γ d,n * W are close to each other. The proof of Proposition 1.1, given at the end of this section, follows readily from Lemma 2.3.

  n . Then, for each n ∈ N large enough η d,n is an a.s. smooth centered stationary Gaussian field on R d . Moreover, also by Lemma 2.1 applied for some m ∈ N such that 4m > d, for each α ∈ N d , uniformly for each n ∈ N large enough and x

I.e. the Fourier transform of their covariance functions.