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INTRODUCTION

The quest for all neuroscientists is to better understand neural foundations underpinning human
behavior. Neurosurgery offers a unique opportunity to be directly connected to the human
connectome, and to provide further findings into brain processes—complementary to current
investigations mainly relying on functional neuroimaging (FNI), comprising functional MRI, and
diffusion tensor imaging (DTI) (1–4). Especially, awake patients with electrostimulation mapping
(ESM) may benefit from an extensive neuropsychological assessment in real-time throughout
surgery. This paradigm resulted in the description of the human homunculus by Penfield and
Boldrey (5) almost one century ago and in the re-visitation of cortical organization of language
by Ojemann (6). However, despite these pioneering works, the contribution of neurosurgery
to fundamental neurosciences remains relatively modest, particularly in comparison with the
numerous FNI reports (7, 8). Reversely, advances in brain connectomics, which led to new
propose-built neurobiological models underlying neurocognition thanks to an improved
knowledge of neural connectivity, have not (yet) extensively been incorporated in
neurosurgical practice.

Here, the purpose is to consider solutions to reinforce the synapse, which should be
bidirectional, between basic neuroscience and routine neurosurgery, in order to bring about
synergies across research and clinical worlds based upon a dual vision of scientists and physicians.

CONTRIBUTION OF BRAIN SURGICAL MAPPING TO

INVESTIGATE NEURAL CONNECTIVITY

In the emerging field of connectomics, which aims at exploring neural connectivity, brain
ESM during awake surgery provides direct insights into the function of both cortical structures
and white matter tracts (WMT). Indeed, axonal ESM of the subcortical fibers may elicit
a transient disruption of the functional network sub-served by the bundle stimulated, and
consequently, may generate a specific behavioral deficit which immediately resolves when ESM
stops (9). Beyond a transitory dys-synchronization within a discrete critical circuit, ESM can
also disrupt between-network inter-communication, resulting in multi-tasking disorders, e.g.,
the patient is still able to move or to speak separately, but cannot do both simultaneously
(10). Such original anatomo-functional correlations gained from on-line intraoperative cortico-
subcortical ESM led researchers to re-visit the functional connectivity mediating neural
systems, such as movement execution and control (11), oral and written language (12, 13),
semantics (14), executive control (15), self-evaluation (16), or theory of mind (17, 18).
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Interestingly, this ESM permitted a reappraisal of the model of
the human connectome (19), and proposed a new theory relying
on a meta-network (network of networks) organization of the
brain, i.e., with perpetual changes of intra- and across circuit
interactions allowing adapted behavior (20).

Moreover, longitudinal ESM explorations, particularly based
upon serial mapping in patients who underwent several awake
surgeries because of tumor relapse (21), enabled researchers
to better understand mechanisms sustaining neuroplasticity
(22). Remarkably, optimal recovery following massive brain
resections in tumor patients, with normal scores on objective
neuropsychological assessments of conation, cognition, and
emotion despite surgery within structures classically deemed
“eloquent” according to localizationist dogma, evidenced a
considerable potential of neural configuration, higher than
previously thought (23, 24). Nonetheless, the limitations of this
plastic potential have also been demonstrated, by emphasizing
the critical role of the subcortical connectivity (25). Thus, a
“minimal common brain” has been suggested, with a low level
of inter-individual variability and a low power of functional
compensation after cerebral injury (26): such a “cerebral
skeleton” is mainly constituted by WMT (27).

Neurosurgery represents a gold mine to develop innovative
models in cognitive neurosciences, thanks to the direct
information about neural connectivity collected into the
operating room (OR) by means of ESM (19). It is regrettable
that these original data which challenged the obsolete model
of localizationism, e.g., by evidencing that Broca’s area was
non-critical for speech, were neglected for a long time by
neurologists and neuroscientists (28). A solution to reunify
learned societies can be to combine findings provided by ESM
with those gained from FNI in healthy volunteers as well as before
and after surgery in brain-damaged patients (22). Based upon
different backgrounds and complementary areas of expertise
(neuroanatomy, neuroimaging, awake brain mapping, cognitive
neuroscience, neurophysiology, neurocomputational modeling,
etc.), speaking a universal language may allow researchers to
understandmore rapidly and accurately neurobiology-sustaining
complex human behavior. Reversely, an improved knowledge
of brain circuitry could be helpful in neurosurgical practice, to
optimize postoperative outcomes.

HOW TO INTEGRATE A BETTER

UNDERSTANDING OF THE CEREBRAL

CONNECTOME INTO NEUROSURGICAL

PRACTICE?

For many decades, neurosurgeons mainly paid attention to
the cortex, with few considerations regarding subcortical
connectivity. Beyond research purposes, recent advances in DTI
resulted in an improved investigation of WMT for surgical
planning (29, 30). Moreover, preoperative tractography data were
incorporated into neuronavigational systems to better define
surgical approach and limits of resection into the OR (31, 32).
However, even though these technological developments played
a major role in basic research to explore the connectome (3,

8), and started to bring the gap between neuroscience and
clinical applications, the link across both worlds is still weak
and superficial. Indeed, the majority of neurosurgeons has no
background in FNI methodology and has the wrong belief
that DTI is a reliable insight into WMT function. Yet, despite
a growing excitement in imaging-guided neurosurgery, these
techniques intrinsically suffer from major limitations (from the
data acquisition to the statistical models used) (33, 34), the main
one being that tractography does not provide any information
about the function of subcortical fibers—but is only an indirect
reflection of their structures (35). Therefore, an abusive surgical
use of these methods whose pitfalls are poorly controlled, even
if initially designed to help neurosurgeons, may paradoxically
become dangerous. For example, FNI may result in a non-
selection for surgery while the tumor could have been removed
(with a loss of chance from an oncological perspective), or
conversely, may lead to the resection being pushed too far
by cutting critical pathways not identified as essential by DTI
(with some loss likely from a functional perspective) (36).
Furthermore, although FNI is a fantastic didactic tool to help
junior neurosurgeons to build an accurate 3D representation
of structural and functional connectivity in their own mental
imagery, especially when combined with dissection in specimens
(37, 38), the overuse of this technology for brain surgery may lead
to the opposite effect, i.e., to an addiction to FNI, preventing an
optimal surgical act if this tool was unavailable (36).

To reinforce the synapse with fundamental research,
neurosurgeons should be neuroscientists, since he/she also has
the responsibility to explore the connectome by him/herself, with
the ultimate goal of improving postoperative outcomes. Thus,
besides a better comprehension of the potentials and drawbacks
of FNI for its more appropriate utilization, intraoperative ESM
should be used more systematically (39). In addition to cortical
mapping, axonal ESM is the sole methodology enabling a direct
study of WMT function, concerning one specific bundle and
interplay between neural circuits (10). Awake mapping led to a
paradigmatic shift from image-guided resection to functional-
guided resection, especially in neuro-oncology (40). Remarkably,
awake ESM guiding the resection until the individual eloquent
cortico-subcortical networks have been encountered resulted in
an improvement of both neurological and oncological outcomes
(41). Functionally speaking, a connectome-based resection
allowed for a significant decrease of neurological morbidity
(42–44) with preservation of conation, language, and higher-
cognitive functions (e.g., complex movement control, verbal
and non-verbal semantics, executive functions, mentalizing or
metacognition) (45–48) making it possible to resume a normal
life, including return to work in 97% of patients (49)—even for
tumors involving areas presumed to be “eloquent” in a rigid
localizationist framework (23, 24). Oncologically speaking,
functional mapping-guided surgery has enabled a significant
increase of extent of resection and overall survival, both in
low-grade and high-grade gliomas (50–53). Yet, although ESM
is now the gold standard for glioma surgery (39), it is still
underused in neurosurgery in general.

This concept of connectome-based surgery represents an
actual solution to introduce more robust neuroscience into the

Frontiers in Neurology | www.frontiersin.org 2 July 2021 | Volume 12 | Article 705135

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Duffau Basic Neuroscience and Neurosurgical Practice

OR. Firstly, beyond its participation in the development of
original models of neurocognition (12, 13, 19, 20), awake ESM
also enabled the elaboration of a human atlas of neuroplasticity
(25) and an atlas of critical cortico-subcortical networks (54–56).
This can be helpful for neurosurgeons to predict whether the
patient will recover or not according to the extent of resection,
especially by highlighting the structures with a low potential
of reorganization, such as the subcortical connectivity—the so-
called “minimal common brain” mentioned above (27). To
facilitate presurgical planning by predicting the distribution of
essential neural connections to be preserved, a tool has recently
been proposed for a practical use: it allows automated alignment
of the cortico-subcortical maps of this probabilistic atlas with T1-
weighted MRI of a given patient (57). These data can also be
used to estimate before surgery the extent of resection thanks to a
probabilistic map of tumor resectability, computed on the basis of
postoperative residual glioma voluntarily left because of invading
critical structures identified by intraoperative ESM (58).

Secondly, these new cognitive models of meta-networking
organization of brain functions (12, 13, 19, 20) and the
new atlases built based upon ESM (25, 27, 54–57) represent
unmatched educational tools for neurosurgeons to learn 3D
neural connectivity. Indeed, they provide real structural-
functional information collected intraoperatively in patients who
underwent awake surgery, and not virtual data as given by
FNI, with different reconstructions according to the biostatistical
modeling employed.

Thirdly, besides neuro-oncology, application of the concept
of connectome-based resection relying on a better understanding
of dynamic interplay within and across neural networks, may be
considered in other fields of brain surgery. Surprisingly, although
awake ESM was initially developed in epilepsy surgery (5, 6,
59), most of the series dedicated to non-tumoral epilepsy did
not use intraoperative mapping in the modern literature. Yet,
recent publications supported again the positive role of awake
resection for epilepsy, notably with mapping of the subcortical
pathways, (such as optic tracts to avoid visual field deficits), in
a connectome paradigm of brain processing (60, 61)—knowing
that the mechanisms of neuroplasticity are not similar in lesional
vs. non-lesional epilepsy (62). An improved exploration of neural
connectivity is also valuable for surgical approaches to deep
lesions located within hard-to-reach areas. Typically, a trans-
cortical approach to have access to the insula should take
into account the sub-opercular connectivity, particularly the
frontal part of the inferior fronto-occipital fasciculus (IFOF) and

of the superior longitudinal fasciculus/arcuate fasciculus (AF)
complex (63). Similarly, a transcortico-subcortical approach to
the left posterior Medio basal region necessitates the knowledge,
detection, and preservation of relevant WMT including the optic
pathways, AF, IFOF, and inferior longitudinal fasciculus (64).
Also, for deep cavernomas, the best surgical corridor through the
subcortical fibers should be defined by validating in real-time that
the neural connectivity crossed to reach the lesion was not crucial
for brain functions (65). This is especially valuable for lesions
involving a neural crossroad, e.g., the ventral precentral fiber
intersection area (66) or the temporoparietal fiber intersection
area traversed by seven WMT (67). Finally, such a 3D mental
representation in the brain’s neurosurgeon is also useful for
emergent surgery, such as the evacuation of a left deep temporo-
insular hematoma under general anesthesia, in an aphasic patient
with mass effect. If the patient remained aphasic after surgery, it
could be thought that this was related to an irreversible damage
generated by the hematoma, whereas in some cases, it might be
due to a traumatic surgical corridor through the critical fibers,
such as the IFOF—meaning that the patient could have recovered
if the approach would have been modified thanks to better
knowledge of the connectome, even in asleep patients. To this
end, fiber dissection in cadavers to accelerate the learning curve
is of utmost importance.

PERSPECTIVES

It is time to overcome the divide between fundamental
research in neurosciences, increasing reliance on FNI and
neurocomputational modeling which usually do not take into
account the structural constraints, and the neurosurgical routine
which should preserve the neural connectivity under penalty
of no postoperative recovery, but which can also propose
new cognitive models based upon direct observation of the
connectome into the OR. Dual training for juniors, at the
start of their courses, would enhance their chance to create
reciprocal connections across basic and clinical neuroscience,
and to develop more translational research in their daily practice
dedicated to brain understanding and restoration.
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