
HAL Id: hal-03320506
https://hal.science/hal-03320506v1

Submitted on 16 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A WEB BASED ENVIRONMENT EMBEDDING
SIGNAL PROCESSING IN MUSICAL SCORES

Dominique Fober, Yann Orlarey, Stéphane Letz, Romain Michon

To cite this version:
Dominique Fober, Yann Orlarey, Stéphane Letz, Romain Michon. A WEB BASED ENVIRON-
MENT EMBEDDING SIGNAL PROCESSING IN MUSICAL SCORES. International Conference
on Technologies for Music Notation and Representation – TENOR’21, 2021, Hamburg, Germany.
�hal-03320506�

https://hal.science/hal-03320506v1
https://hal.archives-ouvertes.fr

A WEB BASED ENVIRONMENT EMBEDDING SIGNAL PROCESSING IN
MUSICAL SCORES

Dominique Fober Yann Orlarey Stéphane Letz Romain Michon
Grame-CNCM

fober@grame.fr

ABSTRACT

We present an online environment for the design of musical
scores, also allowing for the embedding of signal proces-
sors and hence the publication of electronic works. This
environment is part of the INScore project. Its latest ver-
sion has been transcribed to WebAssembly/Javascript to
provide in a web browser the same features as in its native
counterpart: the diversity of music representations sup-
ported by INScore, the interaction capabilities and all the
dynamic aspects of the score.

After some historical elements about distributed musical
scores, we will provide some reminders about the INScore
project and its associated description language. We will
then describe the architecture of the system and the choices
made for its portability to the Web. Then, we will present
the extensions specific to the Javascript version and in par-
ticular the support of signal processing objects. Finally,
we will show how INScore’s communication system has
been extended to allow online musical score control from
a native version of INScore, paving the way for real-time
performance on the web.

1. INTRODUCTION

The deployment of music notation tools on the Internet
has been investigated since the late 1990s. The Guido
Note Server [1], designed as a client-server architecture
and based on the Guido Music Description Language [2]
(GMN) is an example of such systems. It was followed by
a large number of applications offering online music edit-
ing services in a design modelled on traditional score edi-
tors (e.g., MuseScore 1), enhanced by sharing services. In
this area, we can mention Noteflight, 2 Scorio, 3 , or also in
the line of description languages associated to compilers,
LilyBin 4 or the GuidoEditor, 5 the latter having the par-
ticularity to embed the compiler in a web page. All these

1 MuseScore https://musescore.com/
2 Noteflight https://www.noteflight.com/
3 Scorio https://www.scorio.com/
4 LilyBin http://lilybin.com/
5 GuidoEditor https://guidoeditor.grame.fr/

Copyright: c©2021 Dominique Fober et al. This is

an open-access article distributed under the terms of the

Creative Commons Attribution 3.0 Unported License, which permits unre-

stricted use, distribution, and reproduction in any medium, provided the original

author and source are credited.

systems are based on a traditional approach of musical no-
tation and do not deal with problems related to network
performances.

It is more recently and often thanks to the impulse of
composers that distributed score systems have emerged.
Quintet.net [3] – an interactive Internet performance en-
vironment enabling up to five performers to play music in
real-time over the Internet under the control of a conduc-
tor – is among the first performance-oriented notation sys-
tems. The Decibel Score Player [4] is another approach
to distributed musical score, based on a purely graphical
notation music (as opposed to symbolic notation). It al-
lows for the synchronization of the scores of a perform-
ing ensemble. However, these systems are implemented
as native applications (Quintet.net is based on Max/MSP
and the Decibel Score Player is a standalone application
for the iPad) and are therefore potentially not suited to be
distributed on the web.

Facing similar problems, SmartVox [5] uses a standard
browser to distribute and synchronize musical scores, which
are also accompanied by audio signals. In the same line
but with a focus on improvised music, John, the semi-
conductor [6] is another web-based approach to music no-
tation. It is more recently that Drawsocket [7] appears, a
platform for generating synchronized, browser-based scores
across an array of networked devices. Firmly rooted in
web technologies (i.e., SVG, CSS, HTML and Javascript),
it provides an API to develop networked scores.

INScore [8] (presented in section 2), is an environment
for designing dynamic, interactive and augmented musical
scores, built as a message-based system and controlled by
OSC messages. It is naturally oriented towards network
communication and is also open to web uses [9], in partic-
ular due to web server objects (http or websocket) that
can be embedded in a score, and by providing a basic Web
API allowing us to interact with the score from a browser.
However, this approach is inherent to the native applica-
tion and constrains its use as a client/server architecture,
limiting both the ability to interact with the score and its
dynamical aspects. We have therefore developed a Java-
script version of the INScore environment, in the form of
a library that can be integrated into a web page as a stand-
alone engine. Taking advantage of the modular architec-
ture of the Web, in particular thanks to the Node Package
Manager (NPM), this implementation makes it possible to
embed the Faust compiler [10] [11] and thus to provide
signal processing objects within the score. This type of
extension was never considered for the native version be-

mailto:fober@grame
https://musescore.com/
https://www.noteflight.com/
https://www.scorio. com/
http://lilybin.com/
https://guidoeditor.grame.fr/
http://creativecommons.org/licenses/by/3.0/

cause we considered that collaboration of specialized ap-
plications was a flexible model to implement. It is indeed
possible to use INScore with Max/MSP as well as with Su-
perCollider or any other audio application, as long as it can
communicate via OSC. The equivalent model of the Web
lies rather in the aggregation of components.

Finally, a simple extension of the existing communica-
tion scheme has been designed to allow a web score to be
controlled from the native version of INScore.

The next section is a quick review of INScore’s approach
to music representation. The following sections will de-
tail the more technical aspects of the implementation for
the web, the integration of Faust objects and the extension
of the communication scheme, before concluding with the
new perspectives offered by this environment and future
works.

2. INSCORE ENVIRONMENT

INScore is an environment for the design of augmented,
dynamic, and interactive musical scores [12]. It is the re-
sult of numerous research works dealing in particular with
the extension of music notation to arbitrary graphical ob-
jects, time synchronization in the graphic space [13], dy-
namic and interactive scores [14], performance represen-
tation [15], and the extension of the score to network di-
mensions [16]. The design of a score is based on a specific
scripting language and therefore also addresses the field of
programming languages for the description of music [17].

2.1 Extended Scores

INScore allows you to extend symbolic notation practices,
or even replace it, with arbitrary graphical objects: images,
text, vector graphics, and videos. All these objects, in-
cluding symbolic notation, have the same status as musical
objects and an identical temporal dimension (i.e., date, du-
ration and tempo). This homogeneity makes it possible to
synchronize them in arbitrary combinations.

2.2 Representing the Time of Heterogeneous Objects

INScore takes advantage of the homogenous temporal di-
mension of the score objects to provide what we call time
synchronisation in the graphical space, making it possi-
ble to represent the temporal relationships between objects
using a synchronization mechanism. If we imagine that
each pixel of an object carries a date (computed from the
date and duration of the object) the synchronization sys-
tem potentially makes it possible to graphically align all
the pixels of two or more objects carrying the same date.
The design of a cursor positioned at the current date of a
score is achieved with a simple synchronization command.
But above all, it becomes possible to reason in the tem-
poral space and therefore in a metaphor close to musical
thought, the rendering engine automatically translate the
temporal dimensions in the graphic space.

2.3 Dynamic and Interactive Scores

The notion of tempo is an integral part of the temporal di-
mension of objects. By default, this tempo is set to zero:

the object is motionless in time. When the tempo value is
not zero, the object then moves in time at the speed spec-
ified by its tempo. Associated with the synchronization
system, the use of the tempo allows you to create dynamic
scores, whose form and content can evolve autonomously
in time.

An interaction system complements these dynamic as-
pects. The time of a score, conceived as musical time,
relative to a tempo, can also be event based, i.e. relative
to asynchronuous events, which can be programmed in an
arbitrary way. Among these events are the classic user in-
terfaces events (such as mouse clicks, for example) but also
temporal events, whose occurrence depends on the flow of
time. Each object of the score is therefore capable of mon-
itoring arbitrary events, including in the time domain: each
event is associated with a set of messages that will be trig-
gered at each occurrence of the event. These messages,
expressed in INScore’s scripting language, potentially al-
low the re-programming of all or part of the musical score.

2.4 The Network Dimensions of the Musical Score

INScore was originally designed to be driven by Open Sound
Control (OSC) messages. It is therefore particularly suited
to networks and the exchange of messages between INScore
scores are native features. A simple message forwarding
system, allows a score to control a set of other scores dis-
tributed over a local network, or to build a distributed mu-
sic system on a client/server model [18].

As mentioned before, a score can also embed a web server
[9], making it available from the Internet and providing
control from a browser. On the other hand, the objects of
a score can refer to resources distributed over the Internet,
similarly to a browser that can aggregate content from dif-
ferent websites.

2.5 INScore Scripting Language

A score is described in a specific scripting language con-
sisting of a textual form of OSC messages, extended with
variables, control primitives, as well as symbolic score com-
position primitives. The following script is used to con-
cisely describe the score in Figure 1:

/ITL/scene/title set txt "This is my first score !";

/ITL/scene/title scale 3;

/ITL/scene/title y -0.6;

/ITL/scene/title fontFamily Zapfino;

/ITL/scene/frame set rect 1.5 0.5;

/ITL/scene/frame color 230 230 230;

/ITL/scene/score set gmn ’[\meter<"4/4"> \key<-1> a f

g c c g a f]’;

/ITL/scene/score scale 0.6;

In fact, the above script mixes two languages: the INScore
language whose general form is ‘/address parameters...‘,
and the Guido language [2] which is used to specify the
content of the score element.

Figure 1. A simple score, described in a few lines.

3. INSCORE WEB ARCHITECTURE

INScore is based on a Model View Controller [MVC] ar-
chitecture: the Model is an abstract description of the mu-
sical score, it includes all the properties of the elements
which are organized in a tree, in a strictly similar way to
their OSC address. The View is a graphical representa-
tion of the Model. The controller takes input messages,
decodes them to modify the Model and when necessary,
activates the refresh of the View at regular time intervals
(every 10ms by default). This architecture was used to dif-
ferentiate the method of handling the Model and the View
in the Web implementation.

3.1 INScore Model as a WebAssembly Library

Mozilla developers have started the Emscripten compiler
project [19] on the Internet using the LLVM technology. It
initially allowed for the generation, from C/C++ sources,
of a statically-compilable and garbage-collection-free typed
subset of Javascript named asm.js. This first approach has
demonstrated that near-native-code-performances could be
achieved on the Web. Asm.js has been followed by We-
bAssembly 6 [WASM], a new efficient low-level program-
ming language for in-browser client-side scripting, faster
than the previous approach.

The existing INScore Model, developed in C++, was com-
piled with Emscripten to produce a WASM library. As a
result, the native and the Web versions share the “main” of
the code, which greatly minimises the maintenance of both
platforms.

3.2 INScore View as DOM Based Javascript Library

INScore View has been developed using Typescript, 7 a
language which builds on JavaScript, by adding static type
definitions, allowing the TypeScript compiler to validate
that code is working correctly. It is compiled as a Java-
script library.

The View implementation is entirely based on the Doc-
ument Object Model [DOM] as defined by the W3C. 8 It
creates HTML elements on the fly and makes an extensive
use of SVG. Most of the score objects properties are trans-
lated into style attributes (as defined by CSS).

6 WebAssembly https://webassembly.org/
7 Typescript https://www.typescriptlang.org/
8 DOM Specification

3.3 INScore Controller

The controller lies in both the WASM and Javascript li-
braries as shown in Figure 2. Actually, the only input of the
INScore engine are text messages (unlike the native ver-
sion which also accepts OSC messages). These messages
can result from user actions or come from the network (see
section 5.3). They are first parsed and then passed on to
the objects of the Model.

WASM Library

Javascript Library

Controller

Messages

User Actions
(Editor, Drag & Drop…)

Messages

Remote Control

INScore Model

Parser

INScore View

Figure 2. INScore Controller design. Input is collected
from user action or received from the web to be passed to
the WASM part of the controller. On changes, an update
of the View is triggered and the View query the Model to
synchronize.

4. SIGNAL PROCESSING EXTENSION

INScore Web can optionally embed the Faust compiler to
provide signal processing objects within the score. Faust
[10] is a functional, synchronous, domain-specific program-
ming language working at the sample level, designed for
real-time audio signal processing and synthesis. Faust pro-
grams can be efficiently compiled to a variety of target pro-
gramming languages, from C++ to WebAssembly.

The Faust compiler is available as a WASM library [20]
available as a NPM package 9 including a Javascript li-
brary providing a high level API to transform DSP code
into a Web AudioNode. 10

The type of a Faust object is faust and its set method
(see Figure 3) takes DSP code as an argument. It is graph-
ically represented by a browsable block diagram. Faust
audio nodes can be instantiated as monophonic or poly-
phonic nodes, thus the set method takes an optional num-
ber of voices as illustrated below. When present (and even
if equal to 1), a polyphonic Faust audio node is created.

set faust int32 dspCode

Figure 3. set method of Faust objects.

The following code creates a monophonic object named

9 Faust NPM package
10 The Web Audio API

https://webassembly.org/
https://www.typescriptlang.org/
https://www.w3.org/TR/2000/WD-DOM-Level-1-20000929/DOM.pdf
https://www.npmjs.com/package/@grame/libfaust
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API

karplus using the Faust physical modeling library, that is
a ready-to-use, MIDI-enabled Karplus-Strong string with
built-in UI.

/ITL/scene/karplus set faust

’import("stdfaust.lib");

process = pm.ks ui MIDI’;

4.1 Faust Objects Methods

Faust objects carry all the properties common to INScore
objects, including their temporal dimension. Their specific
methods are the following:

- play: start or stop sound processing. Takes a boolean
value ([01]) as an argument.

The next methods are only supported by polyphonic ob-
jects:

- keyOn, keyOff: similar to MIDI key on/off mes-
sages. Takes a MIDI channel, a pitch, and a velocity
as arguments.

- allNotesOff: similar to MIDI all notes off mes-
sage.

Faust objects support also specific query (get) methods,
corresponding to read-only properties:

- in, out: gives the number of input and output sig-
nals of the Faust object.

- paths: gives the interface to the Faust object UI (as
defined by the DSP code).

Paths returned by the path query are used internally to
dynamically generate the address space of the Faust object
(see section 4.2), providing control over the Faust node pa-
rameters.

4.2 Faust Objects Address Space

Faust provides user interface primitives allowing for an
abstract description of a user interface within the Faust
code. This description is independent from any GUI toolk-
its/frameworks and it’s the architecture files’ [21] respon-
sibility to instantiate this abstract description. In INScore,
this abstract description is instantiated in the address space
of the Faust object. Let’s consider the following query ad-
dressed to the karplus object as defined by the example
in section 4.

/ITL/scene/karplus get paths;

The INScore engine returns a list of UI elements as fol-
lows:

/karplus/params/freq hslider freq 440.0 50.0 1000.0

0.01;

/karplus/params/bend hslider bend 0.0 -2.0 2.0 0.01;

/karplus/params/damping hslider damping 0.01 0.0 1.0

0.01;

etc.

where the general form of an element is a sequence of

address: the address of a Faust audio node parameter.

type: the type of the UI element (ignored by INScore).

name: the name of the UI element (ignored by INScore).

default: the default value of the parameter.

min: the minimum value of the parameter.

max: the maximum value of the parameter.

step: the step of values (ignored by INScore).

The address field is used to expand the address space of
the Faust object so that for the object
/ITL/scene/karplus

the addresses
/ITL/scene/karplus/karplus/params/freq

/ITL/scene/karplus/karplus/params/bend

etc.
become valid addresses taking a float value as an argument,
that is passed to the Faust audio node to set the correspond-
ing parameter value.

5. WEB COMMUNICATION

5.1 Server Side

INScore provides a fowarding mechanism [16] that can be
used to distribute scores over a local network. The general
form of the forward message is illustrated in Figure 4. It
can be addressed to the application or to the scene level. It
takes a list of destinations as argument or can be used with
no argument to stop forwarding. A destination host is spec-
ified similarly to a url, by IP number or by host name, fol-
lowed by a port number. A filtering mechanism is also pro-
vided to select the messages to be forwarded. This mecha-

forward ip

hostname

: port

Figure 4. The forward message.

nism was basically designed to transmit OSC messages on
UPD sockets. It has been extended for the native INScore
application, to support different protocols, namely Web-
sockets and HTTP. The new form of the forward message
is illustrated in Figure 5.

forward osc://

ws://

http://

ip

hostname

: port

Figure 5. The extended forward message.

osc:// ws:// and http:// refer respectively to the OSC
protocol, to Websockets and to HTTP. For compatibility
reasons, the original form is preserved and implies the OSC
protocol.

The OSC protocol runs over UDP and thus is connection-
less, this is not the case for Websockets and HTTP that run
over TCP. Currently and whether for Websockets or HTTP,
the INScore server ignores the host name and accepts all

incoming connections. This approach may be revised in
the future to select authorized hosts.

5.2 Client Side

The OSC protocol is transparent on the client side: INScore
has been natively designed to communicate via OSC. For
Websockets and HTTP, an explicit connection must be ini-
tiated by the client and to this end, we have introduced the
connect message whose form is similar to the forward

message (see Figure 6). Used without argument, connect
removes all the existing connections.

connect ws://

http://

ip

hostname

: port

Figure 6. The connect message.

On client side, HTTP support is implemented over HTML
Server-Sent-Events [SSE] API, a one way messaging sys-
tem designed to allow a web page to get updates from a
server. Websockets connections are bidirectional, but only
communication from the server to the client is used for the
time being.

Messages transmitted by the server are textual OSC mes-
sages that are parsed by the client upon receipt, in the same
way as any input script.

5.3 Communication Scheme Overview

Figure 7 illustrates the overall communication scheme of
INScore. Its extension to new protocols allows us - start-
ing from a native version of INScore which then acts as
a server - to control in parallel musical scores distributed
over a local network and/or over the Internet.

The server receives as an input messages from user ac-
tions (e.g., drag & drop of scripts, interaction with the
score, etc.) or generated by design according to the time
flow of the score objects. Provided they are not filtered,
these messages are automatically transmitted to all con-
nected clients, making it possible to replicate and/or con-
trol a musical score on a whole set of targets.

6. CONCLUSIONS

The Web deployment of the INScore engine is an ongoing
project started in 2017 in parallel to the native version de-
velopment. The design issues encountered in the past were
solved by the evolution of languages and compilation tech-
nologies, allowing us to support various platforms from the
same source code.

The web version of INScore opens new perspectives, par-
ticularly relevant in the context of the current health cri-
sis, where the web has taken a central place. The distribu-
tion of musical works involving electronic parts has never
been straightforward. Being able to publish such works on
the web, to make them available without prior installation,
ready to be played from home, may constitue an essential

Native
INScore
Server

Local Array Network

Native
INScore
Client

Native
INScore
Client

Native
INScore
Client

Native
INScore
Client

Internet

Web
INScore
Client

Web
INScore
ClientWeb

INScore
Client

osc

http

ws

User Actions
Time Events Messages

Figure 7. INScore communication scheme.

tool for the dissemination of contemporary creation. En-
coding of existing musical works in INScore and Faust is
underway with this in perspective.

Remote control could also open up new prospects, both
from an educational point of view and for the performance
of the music: a composer will be able to perform his piece
from home, interacting dynamically with the performance,
while a set of connected listeners will be able to follow
this performance, having at their disposal both the repre-
sentation of the work and its sound rendering. Distributed
performance was already possible on a local network, the
extended communication scheme brings it to the Internet.

The presented work will be available as a library on NPM.
An INScore editor is online at

https://inscoreweb.grame.fr/

7. REFERENCES

[1] K. Renz and H. Hoos, “A Web-based Approach to
Music Notation Using GUIDO,” in Proceedings of the
International Computer Music Conference. ICMA,
1998, pp. 455–458.

[2] H. Hoos, K. Hamel, K. Renz, and J. Kilian, “The
GUIDO Music Notation Format - a Novel Approach
for Adequately Representing Score-level Music.” in
Proceedings of the International Computer Music Con-
ference. ICMA, 1998, pp. 451–454.

[3] G. Hajdu, “Quintet.net: An environment for compos-
ing and performing music on the internet,” Leonardo,

https://inscoreweb.grame.fr/

vol. 38, no. 1, pp. 23–30, 2005. [Online]. Available:
https://doi.org/10.1162/leon.2005.38.1.23

[4] C. Hope, L. Vickery, A. Wyatt, and S. James, “The
DECIBEL Scoreplayer - A Digital Tool for Reading
Graphic Notation,” in Proceedings of the First
International Conference on Technologies for Music
Notation and Representation. Institut de Recherche
en Musicologie, May 2015, pp. 58–69. [Online].
Available: https://doi.org/10.5281/zenodo.1289610

[5] J. Bell and B. Matuszewski, “SMARTVOX - A
Web-Based Distributed Media Player as Notation Tool
For Choral Practices,” in TENOR 2017, Coruña,
Spain, May 2017. [Online]. Available: https://hal.
archives-ouvertes.fr/hal-01660184

[6] V. Goudard, “John, the semi-conductor : a tool
for comprovisation,” in International Conference on
Technologies for Music Notation and Representation
(TENOR’18), ser. Proceedings of the 4th International
Conference on Technologies for Music Notation and
Representation, S. Bhagwati and J. Bresson, Eds.,
Montréal, Canada, May 2018. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01923258

[7] R. Gottfried and G. Hajdu, “Drawsocket: A Browser
Based System for Networked Score Display”,” in
Proceedings of the International Conference on
Technologies for Music Notation and Representation.
Monash University, Jul. 2019, pp. 15–25. [Online].
Available: https://doi.org/10.5281/zenodo.3373369

[8] D. Fober, Y. Orlarey, and S. Letz, “INScore -
An Environment for the Design of Live Music
Scores,” in Linux Audio Conference, Stanford, United
States, 2012, pp. 47–54. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02158817

[9] D. Fober, G. Gouilloux, Y. Orlarey, and S. Letz,
“Distributing Music Scores to Mobile Platforms and
to the Internet using INScore,” in 12th Sound and
Music Computing Conference (SMC15), Maynooth,
Ireland, Jul. 2015, pp. 229–233. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01348511

[10] Y. Orlarey, D. Fober, and S. Letz, “FAUST :
an Efficient Functional Approach to DSP Program-
ming,” in NEW COMPUTATIONAL PARADIGMS
FOR COMPUTER MUSIC, E. D. FRANCE,
Ed., 2009, pp. 65–96. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02159014

[11] S. Ren, S. Letz, Y. Orlarey, R. Michon, D. Fober,
M. Buffa, and J. Lebrun, “Using Faust DSL to
Develop Custom, Sample Accurate DSP Code and
Audio Plugins for the Web Browser,” Journal of the
Audio Engineering Society, vol. 68, no. 10, Nov. 2020.
[Online]. Available: https://hal.inria.fr/hal-03087763

[12] D. Fober, Y. Orlarey, and S. Letz, “INScore -
An Environment for the Design of Live Music
Scores,” in Linux Audio Conference, Stanford, United
States, 2012, pp. 47–54. [Online]. Available: https:
//hal.archives-ouvertes.fr/hal-02158817

[13] D. Fober, C. Daudin, Y. Orlarey, and S. Letz, “Time
Synchronization in Graphic Domain - A new paradigm
for Augmented Music Scores,” in International
Computer Music Conference, ICMA, Ed., New York,
United States, 2010, pp. 458–461. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02158957

[14] D. Fober, S. Letz, Y. Orlarey, and F. Bevilac-
qua, “Programming Interactive Music Scores with
INScore,” in Sound and Music Computing, Stockholm,
Sweden, Jul. 2013, pp. 185–190. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-00851956

[15] D. Fober, F. Bevilacqua, and R. Assous, “Segments
and Mapping for Scores and Signal Representations,”
GRAME, Technical Report, 2012. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02158968

[16] D. Fober, G. Gouilloux, Y. Orlarey, and S. Letz,
“Distributing Music Scores to Mobile Platforms and
to the Internet using INScore,” in 12th Sound and
Music Computing Conference (SMC15), Maynooth,
Ireland, Jul. 2015, pp. 229–233. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-01348511

[17] D. Fober, Y. Orlarey, S. Letz, and R. Michon,
“A Tree Based Language for Music Score De-
scription.” in International Symposium on Com-
puter Music Multidisciplinary Research, Mar-
seille, France, Oct. 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02368958

[18] S. Zagorac and P. Alessandrini, “ZScore: A Distributed
System For Integrated Mixed Music Composition and
Performance,” in Proceedings of the International
Conference on Technologies for Music Notation and
Representation. Concordia University, May 2018, pp.
62–70. [Online]. Available: https://doi.org/10.5281/
zenodo.1289685

[19] A. Zakai, “Emscripten: An llvm-to-javascript com-
piler,” in Proceedings of the ACM International Con-
ference Companion on Object Oriented Programming
Systems Languages and Applications Companion, ser.
OOPSLA ’11. New York, NY, USA: Association for
Computing Machinery, 2011, pp. 301–312. [Online].
Available: https://doi.org/10.1145/2048147.2048224

[20] S. Letz, Y. Orlarey, and D. Fober, “FAUST Domain
Specific Audio DSP Language Compiled to We-
bAssembly,” in The Web Conference. Lyon, France:
International World Wide Web Conferences Steering
Committee, 2018, pp. 701–709. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02158925

[21] D. Fober, Y. Orlarey, and S. Letz, “FAUST Archi-
tectures Design and OSC Support.” in International
Conference on Digital Audio Effects, IRCAM, Ed.,
Paris, France, 2011, pp. 231–216. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02158816

https://doi.org/10.1162/leon.2005.38.1.23
https://doi.org/10.5281/zenodo.1289610
https://hal.archives-ouvertes.fr/hal-01660184
https://hal.archives-ouvertes.fr/hal-01660184
https://hal.archives-ouvertes.fr/hal-01923258
https://doi.org/10.5281/zenodo.3373369
https://hal.archives-ouvertes.fr/hal-02158817
https://hal.archives-ouvertes.fr/hal-02158817
https://hal.archives-ouvertes.fr/hal-01348511
https://hal.archives-ouvertes.fr/hal-02159014
https://hal.inria.fr/hal-03087763
https://hal.archives-ouvertes.fr/hal-02158817
https://hal.archives-ouvertes.fr/hal-02158817
https://hal.archives-ouvertes.fr/hal-02158957
https://hal.archives-ouvertes.fr/hal-00851956
https://hal.archives-ouvertes.fr/hal-02158968
https://hal.archives-ouvertes.fr/hal-01348511
https://hal.archives-ouvertes.fr/hal-02368958
https://doi.org/10.5281/zenodo.1289685
https://doi.org/10.5281/zenodo.1289685
https://doi.org/10.1145/2048147.2048224
https://hal.archives-ouvertes.fr/hal-02158925
https://hal.archives-ouvertes.fr/hal-02158816

	 1. Introduction
	 2. INScore Environment
	2.1 Extended Scores
	2.2 Representing the Time of Heterogeneous Objects
	2.3 Dynamic and Interactive Scores
	2.4 The Network Dimensions of the Musical Score
	2.5 INScore Scripting Language

	 3. INScore Web Architecture
	3.1 INScore Model as a WebAssembly Library
	3.2 INScore View as DOM Based Javascript Library
	3.3 INScore Controller

	 4. Signal Processing extension
	4.1 Faust Objects Methods
	4.2 Faust Objects Address Space

	 5. Web communication
	5.1 Server Side
	5.2 Client Side
	5.3 Communication Scheme Overview

	 6. Conclusions
	 7. References

