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Abstract

To address the new challenges arising from the higher penetration of renew-
able energy in electrical grid, Demand Response (DR) aims to involve the
residential consumers in the grid equilibrium. Ensuring benefits for both util-
ity and users requires the consumers sensitivities to be understood and then
included in the Energy Management System (EMS). For this purpose, the
cost is the predominant and most often only factor taken into account in the
literature, although in the residential sector other concerns influencing elec-
tricity consumption behaviour have been observed. This paper presents a two
levels EMS applied to a neighbourhood of consumers mathematically mod-
elled at the level of their appliances and incorporating 5 consumers profiles
along three sensitivities: cost, environment and appliances shifting comfort.
The first level is a day ahead supervision based on a multi-agent optimi-
sation lead by a central aggregator but performed locally by the household
using Dynamic Programming (DP), thus ensuring privacy protection for the
stakeholders. The second level is a real time supervision using the same de-
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centralized structure and based on fuzzy logic. Both level are evaluated in
this paper, with a focus on the balance between grid and consumers objec-
tives.

Keywords: Demand response, Energy management, Game Theory, Fuzzy
Logic, Decentralized load management, Consumers profiles

1. Introduction

Environmental concerns lead to an increasing part of renewable energies
(REN) in the energy mix, therefore challenging the production-consumption
equilibrium of the electrical grid. To address this issue, reconsidering the
way electricity is managed is a necessity: to balance the uncertainties on
the production side, the focus is nowadays on the consumption through DR
programs [1]. It aims therefore to reduce the relative unforeseeable character
of the load, either with or without storage. The incentives are most often
monetary and many DR programs focus therefore on minimizing the house-
holds’ electricity bills (e.g., [2]). However, it should not be the only mean
considered: solely through diffusion of good practices alert during peaks in
the south of France for example, the Ecowatt project mentioned in [3] shows
the pluralism of possible triggers for involvement.

The necessity of taking into account this multiplicity of consumers’ sen-
sitivities beyond the scope of economics consideration is underlined by the
feedback on smart-grids project in Europe over the past 14 years [4]. Con-
sumer’s engagement is particularly under focus, as their role definition is
observed to be unclear - the cost-benefit share for each is imprecise - thus
reducing their involvement in new grid model. The challenge is not only
technical but also requires a multi disciplinary approach relying on electrical
engineering as well as sociology and economy. Segmentation of consumers
profiles is therefore of primary importance and underlined by the diversity of
research on this particular subject. For example, relying on surveys, [5] shows
the heterogeneity of consumers’ engagement through 6 profiles, [6] suggest a
segmentation of consumers’ lifestyles based on their electricity consumption.
Once understood, sensitivities and preferences need to be included in an en-
ergy supervisor [7]. From this specific literature [8], the three main parame-
ters defining involvement profiles of consumers are the following: sensitivities
toward cost, environmental impact and comfort (modelled either as thermal
comfort or shifting delay of appliances operations). One of the important as-
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pect of these profiles is the feeling of control, reflected by the acceptance (or
not) of an external control of the invisible loads, namely the ones whose shift-
ing during the day does not lead to a discomfort for the user. The two main
appliances considered as invisible loads are the hot water cylinder (HWC)
and the electrical vehicle (EV): as long as hot water is available during the
day or the EV is sufficiently charged at departure time, their times of energy
consumption do not matter for the user.

From the literature on day ahead (DA) energy management, to tackle
the problematic of privacy for the consumers, the most suitable approach is
decentralized: Each household is then in charge of calculating his own opti-
mised consumption through the smart-meter [2, 9, 10, 11]. Following up with
this type of approach, [9] suggests a two levels game between utilities and
consumers, including a global involvement parameter. Also relying on game
theory, [11] tested various pricing scheme while studying the impact of tem-
poral preferences, incorporating a weighting coefficient for the optimisation
to focus on the cost or on the shifting time. [10] proposes a multi-objectives
optimisation aiming to minimize the cost and the delay of appliances in a
Peak to Average Ratio (PAR) constrained grid, while incorporating con-
sumers sensitivities on delay acceptance. If one or two factors are taken into
account in the literature, no research combines interdisciplinary approaches
to consider socially observed sensitivities in the definition of stakeholders
profiles introduced in the proposed EMS.

The same observation is made for the real time (RT) energy management
in residential sector. The bill minimisation is the main and only considered
objective for the users [12, 13]. However, the inclusion of this objective is
interesting to investigate, and especially the modelling of the involvement of
the consumer. Using linear programming for example, the thermal comfort
is set as a constraint in [12], while considering the bill reduction as only
goal for the consumers and introducing a penalty/reward price scheme. The
same approach is used in [14] with a dynamic pricing aiming to increase
the renewable energy (REN) penetration in the grid. Two recent studies
focus on residential profiles: [15] investigates the accepted extra cost con-
sumers are willing to pay to consume REN and bill reduction is considered
in parallel. The problem is that if not enough users are involved, the REN
production is not consumed. [16] introduces consumers profiles with their
flexibility (low/medium/high), and manages it using incentive based price,
here optimising the consumption aiming at reducing the bills.

The main critic about the aforementioned literature, for DA as well as RT
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energy management, is that the sensitivity toward cost and/or comfort, when
considered, is not scaled nor evaluated a posteriori. Thus, the proposed mod-
els do not incorporate real involvement profiles observed through humanities
and social sciences approaches on energy. However, with the growing need
of flexibility in electrical grids, this consideration of consumers objectives is
indeed an important factor to ensure their acceptance and their involvement
[17].

The aim of this article is therefore to propose a new day-ahead (DA) su-
pervision followed by a real time (RT) adjustment for residential consump-
tion, incorporating three sensitivities retrieved from a prior interdisciplinary
study: economics, environment, and shifting comfort. The main contribu-
tions of this work compared to the previous literature review are fourfold:

• Consideration of real observed residential consumers involvement pro-
files, taken into account introducing meaningful sensitivity parameters
modelling their preferences;

• Mathematical modelling of these profiles in DA energy management,
aiming to optimise the consumption to increase consumers satisfaction
while reducing the load fluctuation on the grid;

• Introduction of these profiles in RT energy management relying on the
prior DA optimisation, aiming to ensure the balance between grid and
consumers objectives while reacting to forecast errors;

• Assessment of the overall consistency of the two levels of supervision,
observed through a detailed residential study case and the comparison
of four scenarios: unsupervised, DA-supervised, RT-supervised, and
successive DA and RT supervised.

The first part of this paper presents firstly the mathematical framework
and the function used to perform the DA-optimisation, then the fuzzy logic
approach for the RT-adjustement and finally the relevant indicators. The
study case on which the simulation is based is then described. The last part
introduces the simulation of the interaction between the different profiles,
focusing on 5 stakeholders. Finally, after a brief discussion and summary, we
present an overview of the remaining challenges.
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2. Proposed approach

2.1. Day ahead optimisation

2.1.1. Problem formulation

The objective of the first supervision stage is, for a day ahead, to cal-
culate the adequate electricity consumption of the stakeholder considering
his objectives and taking into account his constraints (technical as well as
social). In this paper, the management is decentralized and the households
are therefore assumed to be able to manage their consumption either in a
manual (as proved efficient in [18] for example) or an automatic way through
their smart home appliances.

The simulation is set to work at constant energy over the day (before/after
optimisation) and is based on a whole set of real appliances, divided into
four groups : Flexible, On-Off, cycle, fixed. Therefore, the power profile
of appliances involved in the optimisation process will only be shifted to
adequate time with respect to the consumer sensitivities, but the total energy
consumed over the day will be the same. The framework of multi-agent
system is used here with an aggregator from one side, and the appliances
of each users (consumers) on the other side, communicating through smart-
meters. The convergence of the optimisation process is guaranteed by the
form of the objective function and the strategy space, representing all the
possible strategies for a given user. In the context of a game theory approach
shown in a previous work [19], provided that the strategy space is closed,
bounded, and convex, the optimisation will converge to the Nash equilibrium
if the function is convex [20, 21], a state where there is no incentive for a
player to deviate unilaterally from his strategy. By being non-intrusive and
without having a central entity calculating a global optimum with a complete
control over the consumptions of each one of the players, it enables to achieve
an interesting equilibrium between grid and consumers objectives, that helps
improve both the grid and the users satisfaction.

Given the information sent by the aggregator -here the grid load over
the day, the price and the REN production- a household n, for an appliance
a amongst the An possessed ones, minimizes his objective function on the
strategy space Xn

a . His sensitivities are incorporated through the function
ρn (explained in the subsection 2.1.2) together with the objective of the
grid. The consumption of this dwelling for a time step t is noted xnt , the
consumption of a specific appliance a referred as xnt,a, and the peak reduction
goal is integrated through the minimization of the quadratic total load of the
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neighbourhood. The problem is therefore formulated as:

min
∀Xn

a∈Xn
a

Un
a (Xn

a ) =
T∑
t=1

(1− ρn(t))

(
xnt,a +

An∑
b=1,b 6=a

xnt,b +
N∑

j=1,j 6=n

xjt

)2

(1)

Furthermore, social and technical constraints linked to the use of each
appliance are taken into account. For type cycle appliances, the consumption
is defined over a fixed amount of time step, and its beginning is optimised
within an allowed time interval set by each user. Mathematically, these
time bounds are defined with, D the duration time of the appliance cycle,
ts its start time and Jt̂s, t̂eK the allowed time interval, the constraint is then
ts ∈ Jt̂s, t̂e −DK.

On-Off and flexible appliances are also optimised in an allowed time in-
terval, the only difference being the possible power steps at each time step,
only constraint by the fixed daily energy amount associated to the considered
appliance. Finally, the last constraint is the subscribed power limit Ps, set
for each user during the modelling phase, that can not be exceeded by the
total load of each dwelling.

2.1.2. Sentivities

According to socio-economic studies [5, 22], consumers are not all en-
gaged in the same way in energy management. Their involvement depends
on different motivational factors. To achieve a representation of this diver-
sity, three main motivating factors have been defined through social sciences.
They answer the following questions: Is the user bill reduced? (Cost) Is the
user ecological footprint reduce? (Environment) Is the user comfort pre-
served? (Comfort). These are translated in the problem formulation (1)
through functions φn and weighting coefficients αn balancing their predomi-
nance according to each user’s profile. The global preference ρn is therefore
expressed, for a time step t, as:

ρn(t) = αn
price · φn

price(t) + αn
env · φn

env(t) (2)
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with the following constraints to keep each one of the sensitivity coefficient
meaningful and to include them in a coherent manner [23]:{ ∀n ∈ J1, NK, αn

price + αn
env = 1

∀n ∈ J1, NK, {αn
price, α

n
env, |αn

comf|} ∈ [0, 1]
(3)

Each motivational factor φ is defined over time, according to grid information
such as the price of the energy, ψ(t), for φPrice, and the ratio of renewable
energy in the production ξ(t) for φenv. The values are normalised between 0
and 1 to make them consistent with the definition of the preference. As only
a small cluster of users is considered, cost of energy, production of renewable
energy and comfort are assumed to be uncorrelated.

φn
price(t) = 1− ψ(t)− ψmin

ψmax − ψmin

(4)

φn
env(t) =

ξ(t)− ξmin

ξmax − ξmin

(5)

In the literature, the comfort of the user is proportional to the amount of
energy consumed at a time t defined prior to optimisation, as in [11]. How-
ever, this definition is incomplete. Indeed for storage appliance, the comfort
is linked to the time at which the power can be consumed by the user, not at
which the power is stored. E.g. for the electrical vehicle (EV), the comfort is
linked to its state of charge at a chosen hour. This definition of the comfort
is also source of problem when several appliances are aggregated. A wash-
ing machine may consume as much power as a dryer but switching them in
time is cause for discomfort. In this paper, the comfort is therefore related
to the shifting of cycle appliances within the accepted period Jt̂sa, t̂eaK. The
corresponding sensitivity αn

comf is used to define this allowed time interval
relying on the forecasted time Jta, t̄aK and the last possible time step T ac-
cording to (6) (but can be otherwise declared by the user though their energy
management system or on the appliance itself if technically feasible) for each
appliance a of a user n (here the forecasted time resulting from section 3.1.1).
Furthermore, the sign of αn

comf is used to differentiate the consumers willing
to make their invisible load (here the EV and HWC) available to participate
to the flexibility (positive sign), from those who do not (negative sign).
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{
t̂sa = ta · (1− αn

comf
2)

t̂ea = t̄a + (T − t̄a).αn
comf

2 (6)

2.1.3. Algorithm

...

...

X1

ψ(t), ξ(t), L 

ψ(t)
ξ(t)
 L 

X
n

ψ(t), ξ
(t), L

 

Aggregator

Info:
  - Price ψ(t)
  - REN ξ(t)
  - Total Load L = ∑h X

h

      Send and receive

Dwelling n

Info:
  - Sensitivities αn

  - App. owned
  - Constraints 
  - Consumption Xn

       Receive, optimize, send

Dwelling 1

Info:
  - Sensitivities α1

  - App. owned
  - Constraints
  - Consumption X1

       Receive, optimize, send

X140

Dwelling 140

Info
  ...
       Receive, optimize, send

Figure 1: Decentralized approach for day ahead energy optimisation

As introduced in section 2.1.1, the stakeholders calculate their optimal
consumption path in a sequential and asynchronous way, therefore interact-
ing only with the aggregator. For writing simplicity in this paper, X is a
T × N matrix containing the consumption of the N player for each of the
T step of time X(:, n) = [x1,n, · · · , xt,n, · · · , xT,n]=

∑An

a=1X
n
a . The process

of interaction between the households and the aggregator is the two stage
algorithm 1: On the upper level, the aggregator is in charge of calculating
the total load on the grid after each local optimisation and sending it to the
next household until the stop criterion is fulfilled, meaning the equilibrium is
reached. This state is achieved when all the households do not change their
consumption simultaneously during one round, i.e. they have no incentive to
shift their consumption anymore. On a local level, the stakeholder optimises
his consumption using dynamic programming (DP) according to his utility
function and with respect to his constraints, before sending it back to the
aggregator. For an appliance in the allowed time period, the DP optimisation
proceeds as follows:
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1. Considering the total energy to be consumed on the allowed time range,
the possible power step of the appliance, and the duration of the time
step τ , the algorithm evaluates the required cost (with respect to the
problem formulation) to reach each achievable energy level after the
first step.

2. For each further time step and for each achievable energy level, every
possible path (i.e. the required power to reach the energy level) is
evaluated based on the cost stored at the previous energy level and
the required power. From the possible path, the one minimising the
objective function is stored together with the corresponding cost.

3. When attaining the last time step at the desired energy level (i.e. the
total energy to be consumed), the algorithm proceeds backwards by
following the stored path at each hit energy level. The obtained power
curve is the one minimizing the objective function.

2.2. Real time energy management

2.2.1. Approach and structure of real time supervision

First introduced by [24] as an extension of boolean logic, fuzzy logic
authorises an assumption to be true or false to a certain degree between 0 and
1. This tool of artificial intelligence is of particular interest as the approach
enables to mathematically model the fuzziness of human representation in
the decision making process. Furthermore, it has been proved efficient for
energy management in [25] or [26].

The structure of the present fuzzy logic based supervisor is described
for one household on figure Fig. 2. The decentralized approach of the DA
supervision is kept, but here, only one additional information is exchanged
from the aggregator to the household, namely ∆Padjust, calculated as the ratio
between the difference of forecasted and the effective total consumption and
the maximum reachable power (here the sum of all the consumers subscribed
power). The objective is still to limit the load fluctuation while allowing
consumers to increase their satisfaction and taking into account the three
sensitivities (price, environment and comfort). The principle is that the
supervisor aims to find a suitable balance between grid and users objectives,
allowing deviation from DA optimised users strategies as long as ∆Padjust is
low, otherwise using the flexibility of consumers to reduce the offset.

In order to limit the complexity of the system and the number of rules in
the next steps, the input number must be kept as low as possible. Therefore,
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Algorithm 1 Global algorithm

1: eq← 0RN . Dummies for equilibrium
2: TotalLoad←

∑N
n=1X(:, n)

3: TotalLoad*← 0RT×N

4: while
∑N

n=1 eq(n) 6= N do
5: for n← 1 to N do
6: eq(n)← 0
7: if TotalLoad 6= TotalLoad∗(:, n) then
8: for each type cycle applicance do
9: GridState← TotalLoad−Xn

a

10: n uses DP to solve (1) within Jt̂sa, t̂eaK depending on
GridState

11: n gets the best reply Xn∗
a

12: TotalLoad← GridState +Xn∗
a

13: end for
14: if αn

comf > 0 then
15: GridState← TotalLoad−Xn

HWC

16: n uses DP to solve (1) for the HWC depending on GridState
17: n gets the best reply Xn∗

HWC

18: TotalLoad← GridState +Xn∗
HWC

19:

20: GridState← TotalLoad−Xn
V E

21: n uses DP to solve (1) for the VE depending on GridState
22: n gets the best reply Xn∗

V E

23: TotalLoad← GridState +Xn∗
V E

24: end if
25: else eq(n)← 1
26: end if
27: TotalLoad∗(:, n)← TotalLoad
28: n sends X(:, n) =

∑An

a=1X
n∗
a to the aggregator

29: end for
30: end while
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besides the construction of ∆Padjust, the inputs describing the interest and
behaviour of a consumer are expressed as follows (see also Fig. 2) for each
time step:

• Interest in shifting his consumption regarding his DA optimised strat-
egy, ∆Pinterest: Price and REN ratio values are capped using DA ex-
trema (as the real extrema are not known over the day) and compared
to their forecasted values (DA values), before being standardized (for
the price) and then weighted by the corresponding dwelling sensitivity
parameters α.

• Shift in dwelling consumption ∆Pconsu: The shift between the DA op-
timised strategy and the one observed in real time is calculated and
then standardised using the dwelling subscribed power P n

s .

For these three first inputs, the following formalism is applied:

• ∆P > 0 indicates either: a need for the grid to increase the overall con-
sumption (∆Padjust ), an interest of a user to increase his consumption
(∆Pinterest), or a higher user’s consumption than the DA optimised one
(∆Pconsu);

• ∆P = 0 indicates either: no specific need of the grid to decrease or
increase the overall consumption (∆Padjust ), no interest for a user to
shift his consumption (∆Pinterest), or no observed shift between the
user’s DA optimised strategy and the current one (∆Pconsu);

• ∆P < 0 indicates either: a need for the grid to decrease the overall
consumption (∆Padjust ), an interest of a user to decrease his consump-
tion (∆Pinterest), or a lower user’s consumption than the DA optimised
one (∆Pconsu).

The last three inputs are flexibility indexes of the involved appliances,
computed using: their nominal power Pa; the accepted start and end time
Jt̂sa, t̂eaK; for cycle appliances, their cycle duration time Da; The consumed
energy by the appliance up to the present time step and the total energy the
appliance must consume over the day, respectively Ea

consu and Ea
total. These

indexes help to maximize the remaining flexibility over the day during the
energy supervision:
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Aggregator

Dwelling n

Dwelling n+1

PHWC

PEV

PCycle 

ΔPconsu

X(t,n)RT

X(t,n)DA +
-

ΔPadjust

ΔPinterest

+
+

+
- Δψ

ψ(t)DA

ξ(t)DA

Δξ
+

- αenv

1/Ps

n

FlexEV

Flexcycle

FlexHWC

TotalLoadDA(t)

TotalLoadRT(t) +
- ΣPs

1___

ψ(t)RT

min(ψDA)

max(ψDA)

ξ(t)RT

min(ξDA)

max(ξDA)

αprice
max(ψDA)-min(ψDA)

n

n

Dwelling n-1

Figure 2: Architecture of the decentralized supervision based on fuzzy logic

• FlexHWC for the hot water cylinder, and FlexEV, for the electrical ve-
hicle, see algorithm 2;

• Flexcycle for each of the type cycle appliances, see algorithm 3. If several
cycle appliances are used, the supervisor relies on the one with the
earliest accepted end time t̂ea.

For the outputs, three signals are designed for the control (ON/OFF) of the
involved appliances: PHWC, PEV, and Pcycle.
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Algorithm 2 Flexibility parameter for flexible and On-Off appliances

1: if t ∈ Jt̂sa, t̂eaJ then

2: Flexa = 1− (Ea
consu − Ea

total)/Pa

t̂ea − t
3: else
4: Flexa = 1
5: end if

Algorithm 3 Flexibility parameter for cycle appliances

1: if t ∈ Jt̂sa, t̂eaJ and OFF then

2: Flexa = 1− Da/Pa

t̂ea − t
3: else
4: Flexa = 1
5: end if

2.2.2. Application to a non DA-optimised scenario

To test the approach, a RT supervised scenario without prior DA optimi-
sation is simulated: inputs need therefore to be adapted for this case. This
supervision will aim to follow the forecasted values of consumption, price
and REN ratio, considering the grid operation plan to be adjusted for these
values.

The major difference is that the consumers do not have any visibility over
the day and react only to real time values. The inputs are therefore:

• ∆Padjust: the calculated variation is performed relatively to forecasted
value and not the DA optimised consumption;

• ∆Pinterest: capping is performed as previously, but standardisation is
performed to centre the signal around zero, based on the forecasted
mean value;

• ∆Pconsu: user consumption shift is based on the forecasted value and
not on the prior optimised DA value.

2.2.3. Fuzzyfication

Once the inputs and outputs have been defined and adapted, the choice of
membership function parameters is done empirically through the knowledge
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of the system. Membership functions are the functions defining the degree
of membership to a fuzzy value, and their form is here chosen as trapezoidal.

For ∆Padjust, five membership functions are considered, set regarding the
peaks tolerated by the grid: Zero, Small Negative, Big Negative, Small
Positive, and Big Positive. ∆Pinterest and ∆Pconsu are divided into three
membership functions: Negative, Zero and Positive. Finally the appliance
flexibility is divided into only two membership function: Small and Big.
Outputs membership functions are their ON and OFF states.

These membership functions for the inputs and the outputs are presented
respectively on Fig. 3 and Fig. 4.

0
0.5
1

N Z P

ΔPinterest

-1 10-0.2-0.4-0.6-0.8 0.2 0.4 0.6 0.8

0

ΔPadjust

-1 10-0.2-0.4-0.6-0.8 0.2 0.4 0.6 0.8

BN Z BPSN SP

0
0.5
1

ΔPconsu

N Z P

-1 10-0.2-0.4-0.6-0.8 0.2 0.4 0.6 0.8

00
0.5
1

S B

Flexa

10 0.2 0.4 0.6 0.8

00
0.5
1

Figure 3: Membership function for the supervisor intputs

14



OFF ON

Pa

10 0.2 0.4 0.6 0.8

00
0.5
1

Figure 4: Membership function for the supervisor outputs

2.2.4. Rules

Based on the fuzzyfication step and the supervisor objectives, the defined
rules for the supervisor are gathered in Tab. 1.
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3. Study case

3.1. Modelled population

3.1.1. Load modelling

As explained in section 2.1.2, information on each appliance is needed
to perform the optimisation according to the comfort of each user. The
demand of the population must therefore be modelled with a sufficient tem-
poral resolution to encompass them all. Among the reviewed models [27],
the bottom-up approach is selected as it gives access to the contribution of
each appliance. In this category, the model CREST V.2 [28] is chosen, to
obtain daily load curves for 140 dwellings. This model builds the load curve
of one user by summing the demands due to each appliance for the UK res-
idential sector, enabling to obtain a representative residential consumption
over two weeks for the following simulation, with a timestep of τ = 10 min.
The gas demand due to heating is also modelled. In addition, an open-source
tool is provided by the authors. This model has been used in a demand-side
management context to build input data in [29] for example. For this paper,
the model has been slightly modified, for the French residential electrical de-
mand is more thermosensitive than the English one. In fact, in France [30],
50% of the dwellings use electricity to heat water, and 36% use electricity
to heat the house. To account for this difference, part of the power flow
due to heating (air and water) is therefore rerouted to the electrical demand.
Furthermore, the statistical data are updated using data from the French
national housing survey (ENL - Enquête National Logement) carried out by
the National Institute of Statistics and Economic Studies (INSEE).

Since the CREST does not consider electrical vehicles (EV) and to add
more flexibility to the load curve, a fleet of electric vehicles has been mod-
elled. Normal distributions of travels and of arrival time were used for the
modelling, as proposed in [31], and the loads due to the fleet were added to
the output of the CREST using french statistical data on EV ownership.

3.1.2. Sensitivity modelling

The goal of this work is to demonstrate the effectiveness of a new approach
to differentiate users’ utility based on their behaviour towards external fac-
tors. It should be noted that the term profile used in this paper refers to the
way consumers react to given external factors, these profiles should be there-
fore distinguished from traditional consumption profiles, depicted by power
curves. From the mentioned humanities and social sciences literature in the
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introduction, different energy sensitivities are observed to cover the possible
involvement of residential consumers. Therefore, 5 main profiles relying on
those sensitivities are modelled and described in Tab. 2. Each fifth of the
total population (N = 140) is given a different profile. To achieve diversity
in each sub-population, randomness around the target value is performed
(+/-10% around 50%, and 20% below 100%).

Table 2: Profile distribution of the 140 households

Profile Size Cost Envir. Comf.
αprice αenv αcomf

1. Cost sensitive 28 80% 20% 75..100%
2. REN sensitive 28 20% 80% 75..100%
3. Technophiles 28 50% 50% 80..100%
4. Indifferents 28 50% 50% 0..20%
5. Disengaged 28 50% 50% -20..0%

3.2. External factors

In order to test the approach, the external factors influencing the con-
sumption, namely the price and the production of renewable energy should
be introduced, as well as the forecast errors on these factors and the global
consumption. To model a realistic study case, data are collected from the
German grid, as the three values of interest are available in parallel over the
first two weeks of 2018:

• The forecast error of the total grid consumption and the forecast and
measured REN ratio are retrieved from the German TSO Amprion [32].
These data, available at a 15min-step, are presented on Fig. 5(a) and
Fig. 5(b) respectively.

• For the price, DA-data (Day-Ahead Fixing) and RT-data (Intraday
Fixing) for Germany are market data retrieved from European Power
Exchange, EPEX SPOT [33]. Available at a hourly time step, these
data are presented on Fig. 5(c).
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Figure 5: Forecast errors of the consumption Fig. 5(a), forecast and actual REN ratio
Fig. 5(b) and price Fig. 5(c)

3.3. Indicators

3.3.1. Global satisfaction of the user

The satisfied energy is defined, for the non-fixed appliances ( nf), the prod-
uct of the energy (using the power x and the timestep τ) with the preference:
it is therefore higher for energy consumed when his preference is higher. The
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ratio of the satisfied energy and the total energy consumed by one user rep-
resent his satisfaction Sn. Its evolution δSn is then calculated, with Sn

0 the
satisfaction before optimisation. Sn =

εnnf
En

nf

=

∑
t

∑
a ρ

n
a(t) · xnt,a · τ∑

t

∑
a x

n
t,a · τ

δSn = Sn − Sn
0

(7)

3.3.2. Relative difference of the electricity bill

Assuming the price of energy ψ(t) is not constant, the daily bill of one
user is defined as Cn. Its evolution after optimisation is measured through
δCn , with Cn

0 the electricity bill before optimisation. The relative difference
is positive for a lesser bill after optimisation. Cn =

T∑
t=1

ψ(t) ·
(

A∑
a=1

xnt,a

)
δCn =

Cn
0 −Cn

Cn
0

(8)

3.3.3. Relative difference of renewable consumption

The part of renewable energy consumed by one user, εn, is assumed to
be proportional to the part of renewable energy on the grid, ξ(t). Then the
relative difference δεn is defined to measure the evolution of the renewable
energy consumed by each user after optimisation.

εn =
∑T

t=1

∑
a ξ(t) · xnt,a · τ

δεn =
εn − εn0
εn0

(9)

3.3.4. Grid indicators

As the objective for the grid is the peak reduction, two corresponding
indicators are measured before and after optimisation: The PAR and the
Square Euclidean Distance (SED) using (10), where Xk =

∑N
n=1 x

n
t . PAR =

maxt(Xt)

X̄

SED =
∑T

t=1(Xt − X̄)2
(10)
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4. Simulation and results

4.1. Scenarios

Simulations are performed in order to compare four cases over the two
weeks period, with the 10-minutes time step: a non-supervised scenario,
Initial, used as baseline to evaluate the results; a DA-supervised scenario,
DA, optimising the consumption a day ahead without any further adjustment
in real time; a RT-supervised scenario, RT, without a prior DA optimisation;
and finally the whole supervisor, DA+RT, adjusting the consumption in real
time based on the results of the prior optimisation.

4.2. Global results

Global results of these simulations are presented on Fig. 6(a) for the grid,
and Fig. 6(b) for the mean values regarding the whole population. These
results are very positive regarding the validity of the approach, as seen on Fig.
6 where a balance between grid and users objectives is observed. Indeed, the
DA+RT supervision achieves a 68.0% reduction of the grid load fluctuation
and a 17.5% peak reduction while increasing the mean consumers satisfaction
up to 34.0%.

In the meantime, DA and RT decrease the PAR by −14.0% and −7.5%
respectively, and a SED reduction of 59.5% and −31.5% respectively. For
the consumers mean metrics on Fig. 6(b), the increase in satisfaction is
explained by the better results of the DA+RT supervision concerning the
price reduction 19% and the REN consumption increase 26.6%, followed
by the DA supervision with a satisfaction increase of 23.4%, while the RT
supervision reaches only a 9.4% increase in satisfaction due to a very limited
shift in bill and REN consumption.

4.3. Profile groups results

This observed balance is also to be found on metrics results by consumers
profiles (see Fig. 7) as each group increases its payoff regarding its main
objective. Furthermore, the observed regulation achieved by the consumers
to increase their satisfaction regarding the main objective is done on the
weakest sensitivities (e.g. the lowest increase of REN consumption observed
for Cost-sensitive profiles who decrease the most their bill).
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Figure 6: Global metrics of the case study: Grid indicators 6(a), consumers indicators
6(b)

4.4. Payoff sensitivity

To complete this study, the involvement of consumers is reviewed regard-
ing their sensitivity parameters for the DA+RT supervision. The respon-
siveness of the consumers payoff (Bill decrease δCn, and REN consumption
increase δεn) is studied as a function of their corresponding sensitivity (αprice

and αenv, respectively) weighted by their flexibility involvement αcomf. Low
flexibility with high sensitivity profiles will thus be differentiated from high
sensitivity with high flexibility profiles. The type of possessed appliances is
also graphically reflected and a linear regression is performed in order to test
the ability of the model to incorporate this complexity. For the bill metric,
the results are presented on Fig. 8(a), and for the REN consumption, on
Fig. 8(b).

5. Discussion

The aforementioned results highlight the adequacy of the approach to in-
tegrate real consumers profiles to increase grid flexibility while helping them
to increase their satisfaction. The benefit of coupling a prior DA optimisa-
tion with RT adjustment appears clearly when studied simultaneously with
each supervision step independently. The best balance between grid and
consumers objectives is indeed observed for the whole supervision, while the
weakest performance is achieve by the RT supervision alone. It should be
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Figure 7: Metrics by consumers profiles of the case study: Satisfaction 7(a), bill 7(b),
REN consumption 7(c)

borne in mind that this RT supervision can still be optimised, but does not
have the perspective over the entire day. Furthermore, optimising the mem-
bership functions means to arbitrarily weight the grid or consumers objective.
However, this question is more politic and societal than technical.

Concerning the detailed results by profile group, if each profile increases
its payoff regarding its main sensitivity, it may be noted that the profiles
indifferent reach a high satisfaction (+20%) (Fig. 7(a)). This is explained
by the high contribution of HWC to global flexibility compared to other
appliances, especially for RT management.

Apart from high grid imbalance period, the interaction between the two
stages of supervision is worth further investigation, as each one of the three
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Figure 8: Payoff responsiveness towards: price 8(a), REN consumption 8(b)

supervised case performs better than the inital unsupervised case scenario.
Discussion must therefore address the temporality of each stage (here DA
supervision on 24h period and TR supervision on 10 minutes time steps) in
order to increase the performance.

The payoff responsiveness study presented on Fig. 8 shows that for the
low sensitivities, consumers obtain an unreliable payoff, but that this ob-
served discrepancy declines with the increase of the sensitivity. This result
emphasizes the adequacy of the model: a payoff is only ensured for the most
sensitives and involved consumers. However, this findings should be tem-
pered with the type of flexibility (types of appliances) possessed by each
dwelling: the ones possessing only cycle appliances have little to gain from
this EMS, whichever their involvement sensitivity.

6. Conclusion and perspectives

This paper proposes a decentralized EMS taking into account the con-
sumers preferences and sensitivities while participating to the grid objective
that is to reduce the load peak and fluctuation. This present study proposes
a modelling for 5 different consumers involvement profiles stemming from in-
terdisciplinary literature, based on a set of 3 sensitivities: price, environment
and shifting comfort. The mathematical modelling of the consumers is devel-
oped through the construction of a two stages energy supervisor optimising
the residential consumption a day ahead using a game theory approach, be-
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fore adjusting these energy flows in real time in response to forecast errors.
Each step of this management system is then evaluated, and the best re-
sults are observed for the two successive stages, with an interesting balance
between grid and consumers objectives by profile.

Considering four appliances types (fixed, On/Off, cycle, flexible), the ob-
served PAR and SED reduction are indeed of 17.5% and 68.0% respectively,
while the mean satisfaction for the consumers increases up to 34.0%. These
results shows the possibility of achieving a higher flexibility for the grid with-
out diminishing the consumers’ satisfaction if their sensitivities, objectives
and constraints are properly considered - a way to ensure their involvement
in the grid equilibrium.

It will be therefore interesting to investigate the influence of the param-
eters on each other and furthermore, to look at the distribution of the effort
through the modelled population given the stated profile repartition. In this
study, the decrease of the PAR is assumed to be the only goal of the grid
manager, however, the final state of the grid in terms of voltage plan obtained
through this kind of EMS is worth further investigation. Furthermore, the
question of computational time, short in the simulation, is to be tackled in
a real neighbourhood application, as it will depend on the existing commu-
nication infrastructure and the computing capacity of each consumer.

Other form of utility function for the DA optimisation are currently un-
der investigation, but in the long run, facing the complexity of real profiles,
further study to retrieve them through a socio-economic approach should be
conducted in order to have the adequate input for the proposed EMS formu-
lation. With time, knowing the stakeholders and their sensitivities, following
this methodology would enable to get a more accurate prediction. A learn-
ing loop would be then adequate to adapt the model to a given population
and learn from it. Such approach constitute also an opportunity to change
the way electricity is billed and how new contracts are defined, which then
requires an adequate economical model to define the financial counterpart
for those taking part in the grid equilibrium.
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fr/donnees_de_marche/, [Accessed 10/06/2019], 2019.

29




