Frank Vega

Dense Complete Set For NP

Keywords: 2012 ACM Subject Classification Theory of computation Complexity classes; Theory of computation Problems, reductions and completeness complexity classes, complement language, sparse, completeness, polynomial time

come

Summary

In computational complexity theory, a sparse language is a formal language (a set of strings) such that the complexity function, counting the number of strings of length n in the language, is bounded by a polynomial function of n. The complexity class of all sparse languages is called SP ARSE. SP ARSE contains T ALLY , the class of unary languages, since these have at most one string of any one length. Fortune showed in 1979 that if any sparse language is coNP-complete, then P = N P (this is Fortune's theorem) [START_REF] Fortune | A note on sparse complete sets[END_REF]. Mahaney used this to show in 1982 that if any sparse language is NP-complete, then P = N P [START_REF] Mahaney | Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis[END_REF]. A simpler proof of this based on left-sets was given by Ogihara and Watanabe in 1991 [START_REF] Ogiwara | On polynomial time bounded truth-table reducibility of NP sets to sparse sets[END_REF]. Mahaney's argument does not actually require the sparse language to be in N P , so there is a sparse NP-hard set if and only if P = N P [START_REF] Mahaney | Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis[END_REF].

We create a class with the opposite definition, that is a class of languages that are dense instead of sparse. We show there is a sequence of languages that are in NP-complete, but their density grows as much as we go forward into the iteration of the sequence. The first element of the sequence is a variation of the NP-complete problem known as HAM-CYCLE [START_REF] Papadimitriou | Computational complexity[END_REF]. The next element in the sequence is constructed from this new version of HAM-CYCLE. Indeed, each language is created from its previous one in the sequence. Since the density grows according we move forward into the sequence, then there exists a language so much dense such that its density tends to 0 when the bit-length n of the binary strings tends to infinity. However, this incredible dense language is still NP-complete.

Basic Definitions

Let Σ be a finite alphabet with at least two elements, and let Σ * be the set of finite strings over Σ [START_REF] Arora | Computational complexity: a modern approach[END_REF]. A Turing machine M has an associated input alphabet Σ [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For each string w in Σ * there is a computation associated with M on input w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. We say that M accepts w if this computation terminates in the accepting state, that is M (w) = "yes" [START_REF] Arora | Computational complexity: a modern approach[END_REF]. Note that M fails to accept w either if this computation ends in the rejecting state, that is M (w) = "no", or if the computation fails to terminate [START_REF] Arora | Computational complexity: a modern approach[END_REF].

The language accepted by a Turing machine M , denoted L(M), has an associated alphabet Σ and is defined by

L(M) = {w ∈ Σ * : M (w) = "yes"}.
We denote by t M (w) the number of steps in the computation of M on input w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. For n ∈ N we denote by T M (n) the worst case run time of M ; that is

T M (n) = max{t M (w) : w ∈ Σ n }
where Σ n is the set of all strings over Σ of length n [START_REF] Arora | Computational complexity: a modern approach[END_REF]. We say that M runs in polynomial time if there is a constant k such that for all n, T M (n) ≤ n k + k [START_REF] Arora | Computational complexity: a modern approach[END_REF]. In other words, this means the language L(M) can be accepted by the Turing machine M in polynomial time. Therefore, P is the complexity class of languages that can be accepted in polynomial time by deterministic Turing machines [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A verifier for a language L is a deterministic Turing machine M , where L = {w : M (w, c) = "yes" for some string c}.

We measure the time of a verifier only in terms of the length of w, so a polynomial time verifier runs in polynomial time in the length of w [START_REF] Arora | Computational complexity: a modern approach[END_REF]. A verifier uses additional information, represented by the symbol c, to verify that a string w is a member of L. This information is called certificate. N P is also the complexity class of languages defined by polynomial time verifiers [START_REF] Papadimitriou | Computational complexity[END_REF]. If N P is the class of problems that have succinct certificates, then the complexity class coN P must contain those problems that have succinct disqualifications [START_REF] Papadimitriou | Computational complexity[END_REF]. That is, a "no" instance of a problem in coN P possesses a short proof of its being a "no" instance [START_REF] Papadimitriou | Computational complexity[END_REF].

A function f : Σ * → Σ * is a polynomial time computable function if some deterministic Turing machine M , on every input w, halts in polynomial time with just f (w) on its tape [START_REF] Sipser | Introduction to the Theory of Computation[END_REF]. Let {0, 1} * be the infinite set of binary strings, we say that a language L 1 ⊆ {0, 1} * is polynomial time reducible to a language L 2 ⊆ {0, 1} * , written L 1 ≤ p L 2 , if there is a polynomial time computable function f : {0, 1} * → {0, 1} * such that for all x ∈ {0, 1} * ,

x ∈ L 1 if and only if f (x) ∈ L 2 .
An important complexity class is NP-complete [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A language L ⊆ {0, 1} * is NP-complete if L ∈ N P , and

L ′ ≤ p L for every L ′ ∈ N P .
If L is a language such that L ′ ≤ p L for some L ′ ∈ NP-complete, then L is NP-hard [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Moreover, if L ∈ N P , then L ∈ NP-complete [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A principal NP-complete problem is HAM-CYCLE [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF].

A simple graph is an undirected graph without multiple edges or loops [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. An instance of the language HAM-CYCLE is a simple graph G = (V, E) where V is the set of vertices and E is the set of edges, each edge being an unordered pair of vertices [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. We say (u, v) ∈ E is an edge in a simple graph G = (V, E) where u and v are vertices. For a simple graph [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. A Hamiltonian cycle is a simple cycle of the simple graph which contains all the vertices of the graph. A simple graph that contains a hamiltonian cycle is said to be hamiltonian; otherwise, it is nonhamiltonian [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. The problem HAM-CYCLE asks whether a simple graph is hamiltonian [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF].

G = (V, E), a simple cycle in G is a sequence of distinct vertices ⟨v 0 , v 1 , v 2 , ..., v k ⟩ such that (v k , v 0) ∈ E and (v i-1 , v i) ∈ E for i = 1, 2, ..., k

Results

▶ Definition 1. A dense language on m is a formal language (a set of binary strings) where there exists a positive integer n 0 such that the counting of the number of strings of length n ≥ n 0 in the language is greater than or equal to 2 n-m where m is a real number and 0 < m ≤ 1. The complexity class of all dense languages on m is called DEN SE(m).

▶ Definition 2. A formal language (a set of binary strings) is in DEN SE(0) if for every possible value of 0 < m ≤ 1, then the language is always in DEN SE(m).

In this work, we are going to represent the simple graphs with an adjacency-matrix [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. For the adjacency-matrix representation of a simple graph G = (V, E), we assume that the vertices are numbered 1, 2, . . . , |V | in some arbitrary manner. The adjacency-matrix representation of a simple graph G consists of a |V | × |V | matrix A = (a i,j) such that a i,j = 1 when (i, j) ∈ E and a i,j = 0 otherwise [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. In this way, every simple graph of k vertices could be represented by a binary string of k 2 bits.

Observe the symmetry along the main diagonal of the adjacency matrix in this kind of graph that is called simple. We define the transpose of a matrix A = (a i,j) to be the matrix A T = (a T i,j) given by a T i,j = a j,i . Hence the adjacency matrix A of a simple graph is its own transpose A = A T . ▶ Definition 3. The language NON-SIMPLE contains all the graph that are represented by an adjacency-matrix A such that A ̸ = A T or there is some a i,j = 1 where i = j.

▶ Lemma 4. NON-SIMPLE ∈ P .
Proof. Given a binary string x, we can check whether x is an adjacency-matrix which is not equal to its own transpose in time O(|x| 2) just iterating each bit a i,j in x and checking whether a i,j ̸ = a j,i or a i,j = 1 when i = j where | . . . | represents the bit-length function [START_REF] Thomas H Cormen | Introduction to Algorithms[END_REF]. Proof. Given a binary string z such that z = xy and the bit-length of x is equal to (⌊ |z|⌋) 2 , we can decide in polynomial time whether x / ∈ NON-SIMPLE just verifying when x = x T and a i,i = 0 for all vertex i. In this way, we can reduce in polynomial time a simple graph G = (V, E) of k vertices encoded as the binary string x such that when x has k 2 [START_REF] Arora | Computational complexity: a modern approach[END_REF]. This would mean the existence of a sufficiently large positive integer n ′ 0 such that all the binary strings of length n ≥ n ′ 0 which belong to HAM-CYCLE' are more than or equal to 2 n-1 elements.

Proof. OEIS A000088 gives some number of graphs on n unlabeled points [START_REF]The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes[END_REF]. For 8 points there are 12346 so just over half the graphs on 8 points are Hamiltonian [START_REF]The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes[END_REF]. For 12 points, there are 152522187830 Hamiltonian graphs out of 165091172592 which would claim that over 92% of the 12 point graphs are Hamiltonian [START_REF]The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes[END_REF]. For n = 2 there are two graphs, neither of which is Hamiltonian [START_REF]The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes[END_REF]. For n < 8 over half the graphs are not Hamiltonian [START_REF]The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes[END_REF]. It does not seem surprising that once n gets large most graphs are Hamiltonian [START_REF]The On-Line Encyclopedia of Integer Sequences. Number of graphs on n unlabeled nodes[END_REF].

Choosing a graph on n vertices at random is the same as including each edge in the graph with probability 1 2 , independently of the other edges [START_REF] Bollobás | Random Graphs[END_REF]. You get a more general model of random graphs if you choose each edge with probability p [START_REF] Bollobás | Random Graphs[END_REF]. This model is known as G n,p [START_REF] Bollobás | Random Graphs[END_REF]. It turns out that for any constant p > 0, the probability that G n,p contains a Hamiltonian cycle tends to 1 when n tends to infinity [START_REF] Bollobás | Random Graphs[END_REF]. In fact, this is true whenever p > c×log n n for some constant c. In particular this is true for p = 1 2 , which is our case [START_REF] Bollobás | Random Graphs[END_REF]. For all the binary strings z such that z = xy and the bit-length of x is equal to (⌊ |z|⌋) 2 , the amount of elements of size |z| in HAM-CYCLE' is equal to the number of binary strings

x ∈ HAM-CYCLE or x ∈ NON-SIMPLE of size (⌊ |z|⌋) 2 multiplied by 2 |z|-(⌊ √ |z|⌋) 2
. Since the number of Hamiltonian graphs increases as much as we go further on n, it does not seem surprising either that once n gets large most binary strings belong to HAM-CYCLE'. Moreover, the amount of binary strings which have some bit-length k 2 and belongs to NON-SIMPLE is considerably superior to the amount of strings with the same bit-length which are valid simple graphs. Actually, we can affirm for a sufficiently large positive integer n ′ 0 , all the binary strings of length n ≥ n ′ 0 which belong to HAM-CYCLE' are indeed more than or equal to 2 n-1 elements. In this way, we show that HAM-CYCLE' ∈ DEN SE [START_REF] Arora | Computational complexity: a modern approach[END_REF]. ◀ ▶ Definition 8. We will define a sequence of languages HAM-CYCLE' k for every possible integer 1 ≤ k. We state HAM-CYCLE' 1 as the language HAM-CYCLE'. Recursively, from a language HAM-CYCLE' k , we define HAM-CYCLE' Proof. This is true for k = 1 as we see in Lemma 6. Every string xy which belongs to HAM-CYCLE' 2 complies with x ∈ HAM-CYCLE' 1 or y ∈ HAM-CYCLE' 1 such that |x| = ⌊ |xy| 2 ⌋. Moreover, every string xy which belongs to the language HAM-CYCLE' 3 complies with x ∈ HAM-CYCLE' 2 or y ∈ HAM-CYCLE' 2 such that |x| = ⌊ |xy| 2 ⌋. Furthermore, we can extend this property for every positive integer k > 3 in HAM-CYCLE' k . Indeed, HAM-CYCLE' k is in N P for every integer 1 ≤ k, since the verification of whether the two substrings are indeed elements of HAM-CYCLE' k-1 can be done in polynomial time with the appropriated certificates using the induction on k. ◀ ▶ Theorem 10. For every integer 1 ≤ k, HAM-CYCLE' k ∈ NP-complete.

Proof. This is true for k = 1 by the Lemma 6. Let's assume it is valid for some positive integer 1 ≤ k ′ . Let's prove this for k ′ + 1. We already know the adjacency-matrix of n 2 zeros represents a simple graph of n vertices which does not contain any edge. This kind of a simple graph does not belong to HAM-CYCLE'

′ ≥ n 0 , then HAM-CYCLE' k+1 is in DEN SE(k ′ 2) for every instance of bit-length n ′ ≥ 2 × n 0 .
Proof. If the language HAM-CYCLE' k is in DEN SE(k ′) for every instance of bit-length n ′ ≥ n 0 , then for every integer n ≥ n 0 the amount of elements of size n+i in HAM-CYCLE' k+1 (where i ≥ n 0 and i = ⌊ n+i 2 ⌋) is greater than or equal to

2 i-k ′ × 2 n + 2 n-k ′ × (2 i -2 i-k ′).
This is because there must be more than or equal to 2 i-k ′ elements of size i in HAM-CYCLE' k which are prefixes of the binary strings of size n + i in the language HAM-CYCLE' k+1 . We multiply that amount by 2 n since this is the number of different combinations of suffixes with length n in the binary strings of size n + i. Moreover, there must be more than or equal to 2 n-k ′ elements of size n in HAM-CYCLE' k which are suffixes of the binary strings of size n + i in HAM-CYCLE' k+1 . We multiply that amount by (2 i -2 i-k ′) since this is the number of different combinations of prefixes with length i in the binary strings of size n + i just avoiding to count the previous prefixes twice. If we join both properties, we obtain the sum described by the formula above. Indeed, this formula can be simplified to

2 n+i-k ′ + 2 n+i-k ′ × (2 0 -2 -k ′)
and extracting a common factor we obtain

2 n+i-k ′ × (1 + (1 -2 -k ′))
which is equal to

2 n+i-k ′ × (2 - 1 2 k ′).
Nevertheless, for every real number 0 < k ′ ≤ 1 we have that

(2 - 1 2 k ′) ≥ 2 k ′ 2 .
Certainly, if we multiply both member of the inequality by 2 k ′ , we obtain which is equivalent to

(2 k ′ +1 -1) ≥ 2 k ′ + k ′ 2
2 k ′ × (2 -2 k ′ 2) ≥ 1
that it is true for every real number 0 < k ′ ≤ 1. We can check in the Figure 1 that the function f

(x) = 2 x × (2 -2 x 2
) is greater than or equal to 1 over the interval [0, 1]. Thus

2 n+i-k ′ × (2 - 1 2 k ′) ≥ 2 n+i-k ′ × 2 k ′ 2 where 2 n+i-k ′ × 2 k ′ 2 = 2 n+i-(k ′ -k ′ 2) = 2 n+i-k ′ 2 .
Since there are more than or equal to 2 n ′ -(k ′ 2) elements of the language HAM-CYCLE' k+1 with length n ′ ≥ 2 × n 0 therefore, we show that HAM-CYCLE' k+1 is in DEN SE(k ′ 2) for every instance of bit-length n ′ ≥ 2 × n 0 . ◀ ▶ Lemma 12. HAM-CYCLE' k ∈ DEN SE(1 2 k-1) for every instance of bit-length n ≥ 2 k-1 × n ′ 0 , where the constant n ′ 0 is the positive integer used in the Definition 1 and Lemma 7 for HAM-CYCLE'.

Proof. According to the Lemma 7, HAM-CYCLE' 1 is in DEN SE [START_REF] Arora | Computational complexity: a modern approach[END_REF] for every instance of bit-length n ≥ 2 0 × n ′ 0 = n ′ 0 . Consequently, due to Theorem 11, HAM-CYCLE' 2 is in DEN SE(12) for every instance of bit-length n ≥ 2 1 × n ′ 0 . Moreover, HAM-CYCLE' 3 is in DEN SE(14) for every instance of bit-length n ≥ 2 2 × n ′ 0 and so forth . . . and thus, for every language HAM-CYCLE' k , we have that HAM-CYCLE' k ∈ DEN SE(

≈ |y|+2 k-1 ×n ′ 0 n ′ 0 which means that |y| 2 k ×n ′ 0 ≈ 1.
In this way, we show that HAM-CYCLE' ∞ is in NP-hard. Moreover, we demonstrate that HAM-CYCLE' ∞ is also in NP-complete, because of the Lemma 14. ◀ ▶ Lemma 16. HAM-CYCLE' ∞ ∈ DEN SE(0).

Proof. When k tends to infinity, then 1 2 k-1 tends to 0. In this way, we obtain that HAM-CYCLE' k ∈ DEN SE(0) as a consequence of the Lemma 12. Actually, HAM-CYCLE' ∞ contains the elements of the languages HAM-CYCLE' k into the interval of the binary strings between the bit-length 2 k-1 × n ′ 0 ≤ n < 2 k × n ′ 0 . Those elements will have a bit-length greater than 2 k-1 × n ′ 0 and by the Lemma 12 the density in the interval would be DEN SE(1 2 k-1). Therefore, the proof is done. ◀

Discussion

When a language is sparse, then its complement is in DEN SE(0) [START_REF] Mahaney | Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis[END_REF]. Indeed, the sparse languages are called sparse because there are a total of 2 n strings of length n, and if a language only contains polynomially many of these, then the proportion of strings of length n that it contains rapidly goes to zero as n grows (which means its complement should be in DEN SE(0)) [START_REF] Mahaney | Sparse complete sets for NP: Solution of a conjecture by Berman and Hartmanis[END_REF]. In addition, according to Theorem 15, the complement of this language HAM-CYCLE' ∞ must be in coNP-complete, because of the complements of the NP-complete problems are complete for coN P [START_REF] Papadimitriou | Computational complexity[END_REF]. In 1999, Jin-Yi Cai and D. Sivakumar, building on work by Ogihara, showed that if there exists a sparse P-complete problem, then LOGSP ACE = P [START_REF] Cai | Sparse hard sets for P: resolution of a conjecture of Hartmanis[END_REF]. We might extend the proof of this paper to show the same result on P . Certainly, we might only need to find some P-complete which belongs to DEN SE(1) because the P-completeness is closed under complement [START_REF] Papadimitriou | Computational complexity[END_REF]. Indeed, the other steps of that possible proof might be similar to the arguments that we follow in this paper.

◀ ▶ Definition 5 .

 5 The language HAM-CYCLE' contains all the binary strings z such that z = xy, the bit-length of x is equal to (⌊ |z|⌋)2 and x ∈ HAM-CYCLE or x ∈ NON-SIMPLE where y could be the empty string when | . . . | and ⌊. . .⌋ represent the bit-length function and the floor function respectively. ▶ Lemma 6. HAM-CYCLE' ∈ NP-complete.

▶ Lemma 9 .

 9 k+1 as follows: A binary string xy complies with xy ∈ HAM-CYCLE' k+1 if and only if x and y are binary strings, x ∈ HAM-CYCLE' k or y ∈ HAM-CYCLE' k such that |x| = ⌊ |xy| 2 ⌋ where | . . . | represents the bit-length function and ⌊. . .⌋ is the floor function. For every integer 1 ≤ k, HAM-CYCLE' k ∈ N P .

Figure 1

 1 Figure 1 Plot the function f(x) on the interval [-3, 3]

 [START_REF] Arora | Computational complexity: a modern approach[END_REF] . As a consequence, this string will not belong to any HAM-CYCLE' k ′ , because its substrings of a quadratic length are also adjacency-matrix of only zeros. Suppose, we have an instance y of HAM-CYCLE' k ′ . We can reduce y in HAM-CYCLE' k ′ to zy in HAM-CYCLE' k ′ +1 such thaty ∈ HAM-CYCLE' k ′ ifand only if zy ∈ HAM-CYCLE' k ′ +1 where the binary string z is exactly a sequence of ⌊ |zy| 2 ⌋ zeros. We can do this since we already know z / ∈ HAM-CYCLE' k ′ . Certainly, if the membership zy ∈ HAM-CYCLE' k ′ +1 is true, z / ∈ HAM-CYCLE' k ′ and |z| = ⌊ |zy| 2 ⌋, then y ∈ HAM-CYCLE' k ′ also holds according to the Definition 8. Since this reduction remains in polynomial time for every positive integer 1 ≤ k ′ , then we show that HAM-CYCLE' k ′ +1 is in NP-hard. Moreover, HAM-CYCLE' k ′ +1 is also in NP-complete, because of the Lemma 9. ◀ ▶ Theorem 11. For every integer 1 ≤ k, if the language HAM-CYCLE' k is in DEN SE(k ′) for every instance of bit-length n

 We can calculate the value of k from some binary string x that is approximately ⌈log 2 (|x|)⌉, where ⌈. . .⌉ is the ceiling function. In this way, we should know if x ∈ HAM-CYCLE' ∞ , then x ∈ HAM-CYCLE' k . However, for every positive integer k, we can check in polynomial time whether x ∈ HAM-CYCLE' k just splitting the binary string x into the following substrings x = x 1 x 2 x 3 . . . x 2 k-1 and verifying later whether x 1 ∈ HAM-CYCLE' 1 or x 2 ∈ HAM-CYCLE' 1 or x 3 ∈ HAM-CYCLE' 1 and so forth . . . until we finally check whether x 2 k-1 ∈ HAM-CYCLE' 1 where 2 k-1 is polynomially bounded by the bit-length string |x|. Indeed, the language HAM-CYCLE' ∞ is in N P , because the verification of whether the whole string or a polynomially amount of substrings are indeed elements of HAM-CYCLE' 1 can be done in polynomial time with the appropriated certificates. ◀ ▶ Theorem 15. HAM-CYCLE' ∞ ∈ NP-complete.Proof. We already know the adjacency-matrix of n 2 zeros represents a simple graph of n vertices which does not contain any edge. This kind of a simple graph does not belong to HAM-CYCLE' 1 . Suppose, we have an instance y of HAM-CYCLE' 1 . We can reduce y inHAM-CYCLE' 1 to zy in HAM-CYCLE' ∞ such that y ∈ HAM-CYCLE' 1 if and only if zy ∈ HAM-CYCLE' ∞where z is a binary string of a sequence of zeros such that 2 k-1 × n ′ 0 ≤ |zy| < 2 k × n ′ 0 and the membership in zy ∈ HAM-CYCLE' k implies that y ∈ HAM-CYCLE' 1 , where the constant n ′ 0 is the positive integer used in the Definition 1 and Lemma 7 for HAM-CYCLE'. We claim that the bit-length of zy is polynomially bounded by |y|. Certainly, the bit-length of z is polynomially bounded by 2 k-1 × n ′ 0 and |y| since k ≈ ⌈log 2 (|zy|

	n ′	
	instance of bit-length n ≥ 2 k-1 × n ′ 0 .	1 2 k-1) for every ◀
	▶ Definition 13. We will define a language HAM-CYCLE' ∞ as follows: A binary string x
	complies with x ∈ HAM-CYCLE' ∞ if and only if we obtain that x ∈ HAM-CYCLE' k and
	2 k-1 × n ′ 0 ≤ |x| < 2 k × n ′ 0 where | . . . | represents the bit-length function and the constant n ′ 0
	is the positive integer used in the Definition 1 and Lemma 7 for HAM-CYCLE'.
	▶ Lemma 14. HAM-CYCLE' ∞ ∈ N P .	
	Proof. n ′ 0	

0

)⌉, where ⌈. . .⌉ is the ceiling function. The previous expression would be equivalent to 2 k