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Abstract: Indoor localization is one of the most important topics in wireless navigation systems.
The large number of applications that rely on indoor positioning makes advancements in this field
important. Fingerprinting is a popular technique that is widely adopted and induces many important
localization approaches. Recently, fingerprinting based on mobile robots has received increasing
attention. This work focuses on presenting a simple, cost-effective and accurate auto-fingerprinting
method for an indoor localization system based on Radio Frequency Identification (RFID) technology
and using a two-wheeled robot. With this objective, an assessment of the robot’s navigation is
performed in order to investigate its displacement errors and elaborate the required corrections. The
latter are integrated in our proposed localization system, which is divided into two stages. From
there, the auto-fingerprinting method is implemented while modeling the tag-reader link by the
Dual One Slope with Second Order propagation Model (DOSSOM) for environmental calibration,
within the offline stage. During the online stage, the robot’s position is estimated by applying
DOSSOM followed by multilateration. Experimental localization results show that the proposed
method provides a positioning error of 1.22 m at the cumulative distribution function of 90%, while
operating with only four RFID active tags and an architecture with reduced complexity.

Keywords: two-wheeled robot; Received Signal Strength; auto-fingerprinting; RFID tag; position
error; localization

1. Introduction

In modern life, applications of mobile robots have expanded their scope to au-
tonomous security guards, guidance for elderly people and a variety of industrial au-
tomations. These automatic systems need to know the robot’s position in order to follow
its navigation and perform actions in the considered environment.

Global Navigation Satellite System (GNSS) solutions, such as Global Positioning
Systems (GPS), are the most extensively used architectures to provide positioning in
outdoor environments. The low-cost of localization systems and their accuracy and the
lack of any pre-requirement or measurement to be performed before their use allow them
to support any outdoor mobile navigation application, including implementations for
pedestrians, cars, robots, flying drones, etc. [1,2].

However, the effect of obstacles and Non-Line-Of-Sight (NLOS) propagation [3] make
GNSS essentially unavailable or very inaccurate in indoor scenarios [4]. This implies a huge
barrier for the implementation of many applications of positioning, logistics [5], games and
augmented reality applications [6,7] and even the management of cellular networks [8–11]
indoors.
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To overcome this issue, specific localization methods are needed. While multiple
techniques and technologies have been proposed, the approach based on fingerprinting
via the Received Signal Strength (RSS) may be the most common [12], where the radio
technology may vary between Radio Frequency Identification (RFID) [13], Wireless Fidelity
(WiFi) [14], Bluetooth [15] and cellular [16] methods.

Indoor localization based on fingerprinting relies on two stages: the training stage,
where a large set of training data is acquired to create the radio map and model the
signal environment, and the estimation stage, where the mobile position is estimated
based on the training data and a new observation of the environment. Therefore, most
fingerprint positioning methods need to collect a large amount of data, and the positioning
investigation requires manpower and is very time-consuming; all this complicates the
localization method. Thus, robots may be adopted as a dedicated surveyor to fingerprint
the environment autonomously [17–19].

In this regard, the present work proposes an auto-fingerprinting method for localiza-
tion using RFID, featuring low training complexity as well as high estimation accuracy.
The proposed method is implemented and evaluated in a practical indoor case study.
The localization test is divided into offline and online stages: the offline stage involves
an auto-training phase to collect RSS values for the environment calibration obtained by
applying the Dual One Slope with Second Order propagation Model (DOSSOM) [20], while
in the online stage, the robot’s position is estimated by again using the propagation model
DOSSOM, followed by the multilateration technique. The contributions of this paper are
three-fold: first, only one RFID tag is needed for the training phase, while a high number
of deployed tags is used for similar fingerprint scenarios [21,22]. Second, our method
makes the fingerprinting of the indoor environment cheap and exhaustive and reduces the
time-consumption to reasonable levels. Finally, the auto-fingerprint method also enables
reliable data capture for the localization stage.

The rest of the paper is organized as follows: Section 2 introduces the key related works
in the domains of indoor localization and robot utilization for fingerprinting. In Section 3,
the suggested robot displacement study and the description of the auto-fingerprinting
method are validated by localization results. Finally, the last section concludes with the
findings of this work.

2. Related Works

Several technologies are used to implement indoor localization systems. Researchers
have proposed different approaches to realize accurate fingerprint techniques in various
indoor environments. These approaches have their own advantages and limitations.
Increasing numbers of studies focus on an automated and accurate fingerprinting method
for indoor positioning and navigation systems [23–42]. This section summarizes the
main localization methods realized by users or by robots and presents a discussion of
these methods. While multiple radio technologies are used, such as WiFi, cellular, RFID
and Bluetooth, fingerprinting based on RSS and conventional positioning techniques
are applicable for all of these. Therefore, the bibliography covers works on multiple
technologies, focusing on their general positioning mechanisms and procedures, thus
allowing us to analyze those involving robot-assistance in their working process.

2.1. Survey on User Fingerprinting and Positioning

The main references in the field of RSS-based fingerprinting are elaborated in [19].
Particularly, in [23], a novel crowd sourcing method is proposed for both radio map con-
struction and updates to the map in order to reduce the site surveying time. Here, a fusion
of RFID, Pedestrian Dead Reckoning (PDR) and Magnetic Matching (MM) technologies for
indoor localization is presented. It is noticeable that the obtained positioning error is equal
to 2.4 m on average. In addition, in [24], an Unsupervised Indoor Localization (UILoc)
system is presented that combines smartphone sensors, iBeacons and WiFi to improve the
system reliability and the location accuracy without any labor cost. The UILoc system was



Sensors 2021, 21, 5346 3 of 17

implemented in a typical 3000 m2 office building, reaching an average localization error of
1.11 m. However, the presented RSS-based localization system faces the challenge of huge
computational complexity, an increase of the location prediction time and inconsistent
performance due to the fusion of three technologies.

Looking at Deep Learning (DL) approaches, in [25], the transformation of WiFi sig-
natures into images and the creation of a scalable fingerprinting framework based on
Convolutional Neural Networks (CNNs) with five layers are proposed. This approach
is performed in three different indoor paths. Experimental results show that an average
positioning error of under 2 m is achieved. In the same context, the work in [26] develops a
CNN model for WiFi-based localization. Its analysis is conducted over the entire floor of a
building. The proposed system is divided into offline and online stages. A four-layer CNN
structure is trained to build fingerprints during the offline stage; the target position is then
estimated online. Compared to five different CNN applications, the proposed model fea-
tures improvement regarding the instability and variability of the Received Signal Strength
Indicators (RSSIs) for WiFi signals and an average location error of 1.44 m. Furthermore,
in [27], a localization system is presented that employs a wireless fingerprint based on
CNN. The DL method was used to obtain the characteristics of the fingerprint during the
offline stage and predict the indoor location within the online stage. This method was
deployed in a laboratory of the Engineering Faculty building. Finally, the empirical results
showed that the CNN significantly improved the positioning system’s accuracy compared
to the performances of the K-Nearest Neighbor (KNN) and Support Vector Machine (SVM)
approaches. The work in [28] presents a fault-tolerant indoor localization system based on
Recurrent Neural Networks (RNNs). Different types of RNN architectures were evaluated
by correctly classifying the target’s location in an entire floor. It was shown that the use
of 50 Gate Recurrent Units (GRU) with 5 routers was the suitable architecture, reaching
the highest degree of hit-rate accuracy at 87%. Hence, although providing good results,
DL approaches for RSS-based indoor positioning system have a major shortcoming: the
need to have a large amount of labeled RSS input data and convolutional filters to train the
system, which are difficult to acquire in real deployments [24–27].

Conversely, the work in [29] proposes a more straightforward template matching
algorithm for a Bluetooth Low Energy (BLE) fingerprint indoor localization system. For
each Access Point (AP), the indoor environment is divided into four quadrants; the template
parameters are chosen based on the differences between RSSIs at the center points and their
eight neighbors in the different quadrants, respectively. The proposed algorithm was tested
in a 64 m2 reading room, deploying 4 APs and 7 Reference Points (RPs). The achieved
location accuracy was 1.1 m at the 80th error percentile. However, an increase in the indoor
environment space requires more human effort for RSSI collection and more data in the
radio map database, and the number of RPs with an abnormal RSS will increase. Hence,
the use of advanced filters is recommended; however, this increases the system’s cost and
complexity.

Going beyond pure positioning accuracy, in [30], the authors suggest a combination of
battery-saving techniques with a localization system based on WiFi fingerprinting. These
novel techniques adapt the scanning frequency to the user’s physical activity to save energy.
They take the data set and send WiFi scans, without affecting the user’s device. Using 460
APs, tests were carried out on the first and ground floors of the Escuela Técnica Superior
de Ingeniería Informática, in Seville, Spain. The average localization error obtained was
4.51 m. With these techniques, RSS signals collected from the large number of APs are
entirely processed in the device before being uploaded to the server. In the same context of
energy saving, in [31], an adaptive wireless indoor positioning system is developed based
on the transmitter power control algorithm. This localization system makes an adjustment
to the positioning accuracy at the assumed level of energy. Several test scenarios were
performed to verify the system’s performance. The highest average localization accuracy of
33 cm was reached with the minimum energy savings. In both studies [29,30], the system
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response time and the risk of not having a reliable user position in emergency conditions
are elevated.

In [32], the authors investigate WiFi-fingerprint-based localization in highly dynamic
indoor environments. In fact, spatio-temporal variation is one of the intractable problems
of indoor settings. To overcome these effects, an Expectation–Maximization (EM)-based
filter is proposed to train the dataset with a binary hidden variable to identify and remove
abnormal RSS values. A simultaneous AP selection and localization approach is proposed
for optimal matching in the test phase by employing a Bayesian framework. Measurements
were realized over the whole floor of a building of 1200 m2, arranging 30 APs and 499 RPs.
Experiments demonstrated that the proposed scheme had a considerably low position error
of 4 m at the 90th percentile. In addition, in [33], a new positioning method with Bayesian
tracking is proposed that consists of three stages. In the first, a fingerprint model is built
for two different environments: a 162 m2 empty room and 58.8 m2 office including people
as well as furniture. In the second stage, the generated model is used with the maximum
likelihood criterion to obtain a preliminary position estimate based only on the fingerprint
generated at the receiver’s position. Finally, in the third stage, a maximum likelihood
Kalman filter is used to combine the preliminary approximation with the dynamical model
of the receiver’s motion to obtain the final estimation. Using two APs in each environment,
experiments show that the localization method is accurate in both indoor environments,
achieving an average positioning error of 1.09 and 1.45 m in the room and the office,
respectively. In both studies [31,32], the positioning stage requires a small number of
training data acquisitions to be computed. However, if the assumption of independence
among the data set does not hold, the performance of the filters would be very limited.

Nevertheless, all fingerprinting techniques still have some common and important
challenges such as the instability of RSSI measurements affected by the multipath ef-
fects at a given location (due to the environmental factors), human error and the high
manpower/time costs for data collection. These drawbacks lead to the need for better
approaches, where benefiting from robot support in the fingerprinting and positioning
procedures may be key.

2.2. Survey on Robot Fingerprinting and Positioning

In the recent past, mobile robot indoor positioning has been the focus of multiple
activities that have aimed to optimize time and manpower significantly compared to
manual position determination [34–42]. The work in [34] studies two parameters that
might affect measurement quality: the WiFi Access Point (AP) antenna height and the
WiFi AP–Receiver distance separation. They use statistical analysis—i.e., an Analysis of
Variance (ANOVA)—to check whether these parameters affect the positioning system’s
accuracy. The assessment was conducted on the second floor of the Center for Human–
Robot Symbiosis Research, Toyohashi University of Technology, and showed an accuracy
of 1.8 m at the 90th error percentile. This approach is limited to only two parameters, while
many other factors can also affect the indoor location accuracy.

In [35], the authors consider automatic data collection for indoor localization purposes
using the Simultaneous Localization and Mapping (SLAM) algorithm. RSS values were
acquired on the third floor of a university building via a robot equipped with an Android
phone, odometer and gyroscope. The proposed system comprises auto-calibration and
positioning stages. The measurement accuracy with the robot-based localization, is im-
proved by 10% in comparison to manual localization. Despite the improvement achieved
by the proposed RSS-positioning system, some issues were not addressed, such as the
configuration of the training points for successive data acquisitions and the long RSS
acquisition duration.

Beyond this, the work in [36] improves the fingerprinting data collection stage and the
positioning accuracy. The authors propose the idea of time synchronization while collecting
the RSS values and locating the mobile robot. This method is called the Tensor Nuclear
Norm (TNN), where the accuracy of the proposed method reaches 2 m. This positioning
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system does not take into account the robot’s displacement error that may accumulate in
large indoor environments.

In the same context, the work in [37] develops an adaptive wireless positioning system
based on an autonomous database updated by an Adaptive Signal Mode Fingerprinting
algorithm (ASMF) for complex indoor environments. The proposed system was tested
in a 147 m2 laboratory. According to the experimental results, the presented localization
algorithm reached a higher accuracy compared to KNN in different indoor scenarios. It
showed an average positioning error of 84 cm but used 531 RPs. Moreover, this approach
has some unavoidable limitations such as the influence of moving obstacles and the local
optimum problem in optimizing the shadowing model process. In addition, in [38], an
automated signal mapping robot is proposed called RobotMapper. The approach focuses
on mitigating the required time and human resources by automating and simplifying the
repetitive characteristic of the learning phase in fingerprinting. This system is implemented
and evaluated in a 47 m2 laboratory, achieving a mean localization error of 2.21 m. With this
RSS-based localization system, the robot traverses the environment and visits each RP by
self-control with the help of a given RP database. In [39], an automated model to construct
and optimize fingerprint databases is presented. This model uses an initial radio map based
on a theoretical path loss model, unlabeled training data, a self-calibration method and a
route mapping filter. Experiments were carried out in 1100 m2 offices and reached 5 m of
location accuracy at the 90th percentile of error. They did not take into consideration the
high time requirements of their measurement campaigns, device calibration or additional
inertial measurement units.

Furthermore, the work in [40] implements a new DL technique based on RSS values
for fingerprinting. This generates augmented RSS data that mimic the original acquisitions
in order to generate the RSS data set. This can be integrated with fingerprinting to enlarge
the training dataset. The mean location errors achieved were 1.45 and 1.60 m in 1664 m2

simulated and real laboratories, respectively. This technique presents some challenges with
WiFi localization regarding the network management, which changes the Radio map of the
environment and increases the error. In subsequent research, in [41], a Soft Range Limited
K-Nearest Neighbors (SRL-KNN) localization fingerprinting algorithm was developed.
A remote three-wheeled robot was used to test the proposed localization algorithm in a
336 m2 part of the Engineering Office Wing (EOW), University of Victoria. The proposed
algorithm can effectively address some challenges. Experimental results proved that the
proposed method reached an accuracy 1.1 m at the 90th error percentile while using 365 RPs.
This obtained localization accuracy is due to the large number of RPs, which increases the
complexity of the system computation.

Recently, in [42], a new dual-frequency Phase Difference of Arrival (PDoA)-based
indoor localization system using a mobile robot was proposed. The experiment was carried
out in a simulated two-dimensional 25 m2 area. The distance between two adjacent passive
UHF tags was 0.5 m. To mitigate the tracking problem using the new Kalman Filter
algorithm, the odometry information, obtained from wheel encoders, was fused with the
RFID localization results. The RFID localization errors achieved were 0.148 and 0.144 m,
while deploying 10 RFID tags over the straight line and the circle trajectory, respectively.
Despite the high localization accuracy achieved, the proposed system was not evaluated in
a real-world scenario, where the filter performance is usually limited if the independence
of the data set does not hold.

This analysis of the bibliography indicates that the robot calibration, RSS instability
and RSS collecting time are still challenges that require further developments in this area. In
this field, the present work provides a simple and accurate auto-fingerprinting method for
an indoor robot positioning system based on RFID technology. The robot’s calibration aims
to mitigate the robot displacement error and improve the radio map’s reliability. Regarding
the system complexity, only one RFID tag is used for the environment calibration and
four are used for position estimation, hence reducing the system’s complexity and cost. In
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order to assess our approach, Section 4 compares our method with the systems presented
in [34–42].

3. Experimental Setup and Localization Processing Details

Most mobile robots introduce systematic errors caused by imperfections in the design
and mechanical implementation [19]. Therefore, the calibration of robots is a key process
to achieve proper results in the odometry-based navigation of any moving system.

In this context, we investigate the robot displacement issue with the aim of improving
the reliability of auto-fingerprinting as well as the localization accuracy. We start with an
overview of the robot’s systematic errors and the method of calibration used typically to
keep it on the considered trajectory and collect the RSS acquisitions accurately in both
offline and online stages of our auto-fingerprinting approach.

3.1. Robot’s Displacement Evaluation

When aiming to improve auto-fingerprinting and typically to remain on track, the
robot must be calibrated. Here, odometry is fundamental. Odometry is used in robotics
to estimate a robot’s position relative to a starting location [43]; it handles motion data to
estimate changes in position over time. Moreover, well-calibrated odometry is an essential
phase for a mobile robot to have an accurate displacement over a long path; this can be
achieved through different test scenarios.

As a robot platform, the model Pioneer 3-DX [44], shown in Figure 1 was used in the
experiment. The Pioneer 3-DX is a two-wheeled robot with dimensions of 45.5 × 38.1 cm.
The Software Development Kit (SDK) provided by the manufacturer is used to control it in
combination with the Advanced Robot Interface for Applications (ARIA), which is a C++
library for all mobile robot platforms, allowing access to all parameters, such as speed and
heading.

For navigation, the two key factors are the robot’s deviation and stop estimation [45].
To guarantee accurate displacement, many experiments have been carried out on robot
odometry errors, investigating factors such as moving in a straight line, the velocity of the
wheels, the rotation of the wheels and square path calibrations.
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3.1.1. Straight Line Test

The projection of the wheelbase center is considered to be the robot’s location, as
shown in Figure 2. The robot moves along a straight line of length L until it reaches the
end position.
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Figure 2. The diagram of the straight line test.

This test was done in a corridor whose dimensions were 22.5 × 2 m. The robot was
placed at a distance of 80 cm from the left wall instead of the midline as the right wall of the
corridor was not consistently straight. The expected robot’s trajectory was a straight line of
20 m. As shown in Table 1, three tests were carried out, and the deviation was calculated at
each 1 m.

Table 1. Wheels’ Deviations over Straight Path.

Number of Tests Test 1 Test 2 Test 3 Mean Deviation (cm)

Deviation/1 m [cm] 6.780 6.754 6.724 6.753

It can be seen that the robot deviated to the left and hit the wall at a distance of 11.6 m.
This deviation can be neglected at the beginning; however, correction is required as the
robot moves forward. Before evaluating the localization system performances, further
investigations about the robot’s displacement are needed to correct its deflection. A straight
trajectory may be obtained by changing the speed of the left wheel.

3.1.2. Wheel Velocity Test

Next, a speed test for the wheels was applied in order to determine the origin of the
robot’s drift away from the straight line. ARIA has some functions that make it possible
to obtain the linear speed of each wheel. The test was done over a straight line of 5 m,
displaying the speed of each wheel every second. The experiment was repeated three times.
Angular velocities (rad/s) were converted into linear speeds (mm/s) using the equations
expressed below:

Vl = R ·Wl (1)

and
Vr = R ·Wr (2)

where Vl and Vr are the linear speed of the left and right wheel, respectively; Wl and Wr are
the angular velocity of the left and right wheels, respectively; and R is the wheel radius.

Knowing that the wheel radius was 92.5 mm [44], Table 2 represents the absolute
difference between the speed of the right and left wheel.

Table 2. Difference between wheel velocities.

Number of Tests Test 1 Test 2 Test 3

|Vl −Vr| (mm/s) 0.0419 0.0027 0.0297
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Based on these tests, the difference between speeds was quite small, with a worst case
of 0.04 mm/s. In short, the problem of the robot’s deviation was not due to the difference
in the wheels’ velocity.

3.1.3. Wheels’ Rotation Test

As the wheels speed is not behind the robot’s drift, wheels rotation test is necessary
to analyze the wheels’ rotation stability. Thus, the robot was rotated about itself 360◦ at
the same speed in two directions i.e., ClockWise (CW) and CounterClockWise (CCW).
The difference in angular velocity between the two wheels was analyzed. Then, the angle
deviations are measured in both directions. Figure 3 presents the rotation errors for the six
trials.
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Figure 3 shows that when the robot turned clockwise, it could almost turn 360◦,
whereas it rotated 359.1◦ on average. However, in a counterclockwise direction, the robot
tended to rotate more than 360◦, at around 362◦ on average. It can be seen that the wheel
rotation was almost stable and cannot be considered to be the cause of the robot’s deviation.
Hence, another test was finally conducted to show the robot’s performance in a complete
cycle path.

3.1.4. Square Path Test

For this test, the procedure defined as the University of Michigan Benchmark test
(UMBmark) [46] was adopted as it was especially designed to uncover certain systematic
errors. This method involves a set of test runs in which the robot is programmed to follow
a 4 × 4 m square path, as shown in Figure 4. Due to systematic errors, after linear and
turning movement, the robot had a position offset and could not return to the initial point.

For both CW and CCW scenarios followed by the mobile robot, offsets were studied
from 10 trials. The average of each angle was calculated as shown in Table 3.

Table 3. Robot angle deviation.

Angle A1 A2 A3 A4

Clockwise (α) 90.1◦ 93.6◦ 92.4◦ 88.4◦

Counterclockwise (β) 88.11◦ 88.66◦ 98.33◦ 81.11◦



Sensors 2021, 21, 5346 9 of 17Sensors 2021, 21, x FOR PEER REVIEW 9 of 17 
 

 

 
Figure 4. The diagram of a square path clockwise and counterclockwise. 

Considering the test results, it can be concluded that the robot tended to drift to the 
left. However, the deviation angle was relatively small compared to 90°. Over short dis-
tances (less than 1 m), and with the large size of the robot, which was equal to 45.5 cm, the 
deviation did not significantly affect the robot’s displacement accuracy; it corresponded 
to only 6.66% of the robot’s length. 

Over a longer trajectory and referring to the straight-line test (Figure 2), the robot 
presented an angle deviation of tanିଵ(𝜃) = 0.8/11.6 = 3.95 ° to the left. Thus, to have an 
accurate mapping coverage and stable motion, an auto-correction by a rotation of 3.95° 
clockwise needed to be applied. 

3.2. Localization by Multilateration 
Once the capabilities of the robot were known and the auto-correction was consid-

ered, the proposed auto-fingerprinting method was designed and implemented for the 
RFID-based localization system. To improve upon the time-consuming and labor-inten-
sive user-based processes, the self-environment calibration required the construction of a 
signal strength map using the two-wheeled robot. 

The system setup time, the human effort for configuration and the total cost of the 
equipment can be considered to be the cost of the positioning system. The system’s com-
plexity is attributed to the hardware, software and operation factors. According to the 
literature [47], the cost and power consumption of using WiFi technology to realize an 
indoor positioning system is very high compared to other technologies. The RFID tech-
nology is viewed as a potential candidate as it requires relatively low configuration time 
and battery power as well as benefiting from easy control [13]. The choice of the robot and 
the RFID technology significantly affect the granularity, accuracy and cost of the proposed 
positioning solution. It is worth mentioning that employing a large number of APs and 
RPs can greatly improve the positioning accuracy, as in [29,30,32,37,38,41]. Furthermore, 
using effective data filtering and preprocessing operations is recommended, but it in-
creases the system’s computing complexity. In our present work, we focused on imple-
menting a simple localization system with a reduced number of deployed RFID tags. 

In our case, the RFID system consisted of a reader, an active tag and digital signal 
processing algorithms applied on RSS values collected by the reader. Error! Reference 
source not found. (a) shows the “Coin ID” tag from Ela-Innovation [48]. The operational 
frequency of the active UHF-RFID tag was 433 MHz. It could be fixed on the walls of the 
indoor environment. The RFID reader, shown in Figure 5. (b), was mounted over the robot. 
The RFID reader consumed on average 80 mA at 12 V, whereas RFID active tags are typ-
ically 3 V battery-powered. 

Figure 4. The diagram of a square path clockwise and counterclockwise.

Considering the test results, it can be concluded that the robot tended to drift to
the left. However, the deviation angle was relatively small compared to 90◦. Over short
distances (less than 1 m), and with the large size of the robot, which was equal to 45.5 cm,
the deviation did not significantly affect the robot’s displacement accuracy; it corresponded
to only 6.66% of the robot’s length.

Over a longer trajectory and referring to the straight-line test (Figure 2), the robot
presented an angle deviation of tan−1(θ) = 0.8/11.6 = 3.95◦ to the left. Thus, to have an
accurate mapping coverage and stable motion, an auto-correction by a rotation of 3.95◦

clockwise needed to be applied.

3.2. Localization by Multilateration

Once the capabilities of the robot were known and the auto-correction was considered,
the proposed auto-fingerprinting method was designed and implemented for the RFID-
based localization system. To improve upon the time-consuming and labor-intensive
user-based processes, the self-environment calibration required the construction of a signal
strength map using the two-wheeled robot.

The system setup time, the human effort for configuration and the total cost of the
equipment can be considered to be the cost of the positioning system. The system’s
complexity is attributed to the hardware, software and operation factors. According to
the literature [47], the cost and power consumption of using WiFi technology to realize
an indoor positioning system is very high compared to other technologies. The RFID
technology is viewed as a potential candidate as it requires relatively low configuration
time and battery power as well as benefiting from easy control [13]. The choice of the
robot and the RFID technology significantly affect the granularity, accuracy and cost of
the proposed positioning solution. It is worth mentioning that employing a large number
of APs and RPs can greatly improve the positioning accuracy, as in [29,30,32,37,38,41].
Furthermore, using effective data filtering and preprocessing operations is recommended,
but it increases the system’s computing complexity. In our present work, we focused on
implementing a simple localization system with a reduced number of deployed RFID tags.

In our case, the RFID system consisted of a reader, an active tag and digital signal
processing algorithms applied on RSS values collected by the reader. Figure 5a shows the
“Coin ID” tag from Ela-Innovation [48]. The operational frequency of the active UHF-RFID
tag was 433 MHz. It could be fixed on the walls of the indoor environment. The RFID
reader, shown in Figure 5b, was mounted over the robot. The RFID reader consumed on
average 80 mA at 12 V, whereas RFID active tags are typically 3 V battery-powered.



Sensors 2021, 21, 5346 10 of 17
Sensors 2021, 21, x FOR PEER REVIEW 10 of 17 
 

 

 
Figure 5. (a) Coin ID RFID tag and (b) UTP Diff 2 RFID reader. 

The localization process was divided into two stages: offline and online, as presented 
in Figure 6. The offline stage represented the environment calibration, and the online stage 
was the positioning phase. During the offline stage, the environment was split into several 
“tracks” and RSS measurements were collected (“RSS acquisition”) at sampling locations 
over these tracks to build a radio map of the indoor environment. By applying the consid-
ered propagation model, the environment attenuation coefficient was determined to be 
represented by the “extraction of propagation model parameters” block. 

 
Figure 6. Block diagram of the offline and online stages. 

After the correction of the robot’s displacement and the auto-fingerprinting, the ro-
bot’s position was then estimated, within the online stage, using the previously obtained 
propagation model followed by the multilateration technique based on the different RSSI 
values acquired over the trajectory. 

3.2.1. Offline Stage—RSS Acquisition 

Fingerprinting was conducted in a classroom at EFREI-Paris with dimensions of 8.5 
× 7.5 × 2.51 m. Figure 7 shows a picture of the scenario, whereas Figure 8 shows the layout. 
To characterize the behavior of the signal in the environment, seven paths, as shown in 
Figure 8, represent the robot trajectories. These radial paths, also called tracks, were used 
to conduct the fingerprinting, covering the entire indoor environment. This presented fin-
gerprinting model aims to minimize the system cost by reducing the number of deployed 
RFID tags, as well as mitigating the robot’s displacement error. 
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The localization process was divided into two stages: offline and online, as presented
in Figure 6. The offline stage represented the environment calibration, and the online
stage was the positioning phase. During the offline stage, the environment was split into
several “tracks” and RSS measurements were collected (“RSS acquisition”) at sampling
locations over these tracks to build a radio map of the indoor environment. By applying the
considered propagation model, the environment attenuation coefficient was determined to
be represented by the “extraction of propagation model parameters” block.
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After the correction of the robot’s displacement and the auto-fingerprinting, the
robot’s position was then estimated, within the online stage, using the previously obtained
propagation model followed by the multilateration technique based on the different RSSI
values acquired over the trajectory.

3.2.1. Offline Stage—RSS Acquisition

Fingerprinting was conducted in a classroom at EFREI-Paris with dimensions of 8.5
× 7.5 × 2.51 m. Figure 7 shows a picture of the scenario, whereas Figure 8 shows the
layout. To characterize the behavior of the signal in the environment, seven paths, as
shown in Figure 8, represent the robot trajectories. These radial paths, also called tracks,
were used to conduct the fingerprinting, covering the entire indoor environment. This
presented fingerprinting model aims to minimize the system cost by reducing the number
of deployed RFID tags, as well as mitigating the robot’s displacement error.
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Figure 8. Auto-fingerprint map.

In the auto-training phase, only one RFID active tag was used as an emitter. It was
fixed on the center of the front wall. To cover the systematic errors of the robot, the
proposed scenario consisted of moving the robot forward with a step equal to 50 cm and
stopping to collect 200 RSS acquisitions at each position over the seven trajectories A30
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to A150, as shown in Figure 8. These RSS acquisitions were combined via the averaging
technique and converted into a power level in dBm at each position.

Based on the received power values gathered during the offline phase, the Dual
One Slope with Second Order propagation model (DOSSOM), which was previously
introduced in a previous publication by the authors of this work [20], was applied to feed
the posterior online stage with accurate attenuation coefficients covering the considered
indoor environment. The propagation model DOSSOM is expressed as follows:

P(d) =
{

PL0 + 10 · nTi · log10(d) + XTi d ≤ 3λ

a · log10(d)
2 + b · log10(d) + c d > 3λ

(3)

where P(d) is the received power in dBm at distance d in meters, PL0 is the free space path
loss at the distance of 1 m, nTi is the path loss exponent corresponding to the first part of the
path, and XTi is a lognormal variable for the received power error throughout the first part
of each track modeled by the one-slope variation. a, b and c are the constant parameters
of the second-order polynomial model. They are determined by solving a system of three
unknowns that can be obtained by considering three pairs of particular values of P and d.

3.2.2. Online Stage—Received Signal Strength Indicators (RSSIs) Acquisition

To evaluate the effectiveness of the proposed localization system, RSS data at 32
locations were collected in the online phase. Twenty RSS samples were acquired at each po-
sition and combined by averaging. At each position, the average RSS value was converted
into a power level in dBm. Twenty-four locations were uniformly distributed in the space
with a distance of 0.7 m, as shown in Figure 9. In contrast, eight positions were chosen
randomly to study the performance of the odometry and the accuracy of the automatic
environment calibration method and analyze the position error.

Sensors 2021, 21, x FOR PEER REVIEW 12 of 17 
 

 

A150, as shown in Figure 8. These RSS acquisitions were combined via the averaging tech-
nique and converted into a power level in dBm at each position. 

Based on the received power values gathered during the offline phase, the Dual One 
Slope with Second Order propagation model (DOSSOM), which was previously intro-
duced in a previous publication by the authors of this work [20], was applied to feed the 
posterior online stage with accurate attenuation coefficients covering the considered in-
door environment. The propagation model DOSSOM is expressed as follows: 

𝑃(𝑑) = ቊ 𝑃𝐿଴ + 10. 𝑛்೔. 𝑙𝑜𝑔ଵ଴(𝑑)+𝑋்೔     𝑑 ≤ 3𝜆𝑎. 𝑙𝑜𝑔ଵ଴(𝑑)ଶ + 𝑏. 𝑙𝑜𝑔ଵ଴(𝑑) + 𝑐   𝑑 > 3𝜆 (3)

where 𝑃(𝑑) is the received power in dBm at distance d in meters, 𝑃𝐿଴ is the free space 
path loss at the distance of 1 m, 𝑛்೔ is the path loss exponent corresponding to the first 
part of the path, and 𝑋்೔ is a lognormal variable for the received power error throughout 
the first part of each track modeled by the one-slope variation. a, b and c are the constant 
parameters of the second-order polynomial model. They are determined by solving a sys-
tem of three unknowns that can be obtained by considering three pairs of particular values 
of P and d. 

3.2.2. Online Stage—Received Signal Strength Indicators (RSSIs) Acquisition 
To evaluate the effectiveness of the proposed localization system, RSS data at 32 lo-

cations were collected in the online phase. Twenty RSS samples were acquired at each 
position and combined by averaging. At each position, the average RSS value was con-
verted into a power level in dBm. Twenty-four locations were uniformly distributed in 
the space with a distance of 0.7 m, as shown in Figure 9. In contrast, eight positions were 
chosen randomly to study the performance of the odometry and the accuracy of the auto-
matic environment calibration method and analyze the position error. 

 
Figure 9. Two-dimensional configuration of the eight random positions. Figure 9. Two-dimensional configuration of the eight random positions.



Sensors 2021, 21, 5346 13 of 17

To determine positions based on the multilateration technique, four independent tags
are needed [49]. Tags were located at the center of each wall as shown in Figure 9. Knowing
the power values and the attenuation coefficients determined in the offline phase and
applying the DOSSOM model again (Equation (3)), the four distances between each tag
and the reader, which was mounted over the robot, were estimated (Figure 10).
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Figure 11 presents the Cumulative Distribution Function (CDF) of the position error.
Table 4 summarizes the results of different approaches for localization.
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Table 4. Summary of localization results.

Algorithms 50% 90% Min Max Std

Accuracy (m) 0.7 1.22 0.1 1.75 0.42
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Looking at the values in Figure 11 and Table 4, the achieved position error at 90% of
CDF was 1.22 m. The standard deviation of the localization is also highlighted to show
the stability of the proposed system; it was only 0.42 m. Thus, the efficiency of the auto-
fingerprinting method was validated for the localization purpose in an indoor environment,
as its performance was comparable to those found in the state of the art.

Returning to related works on robot fingerprinting and positioning, Table 5 summa-
rizes the obtained positioning accuracy of several applications based on auto-fingerprinting.

Table 5. Auto-fingerprinting systems.

System Technique Accuracy (m)

[34] ANOVA 1.8
[35] SLAM 1.5
[36] TNN 2
[37] ASMF 0.84
[38] RobotMapper 2.21
[39] DL 5
[40] DL 1.6
[41] SRL-KNN 1.1
[42] PDoA + KF 0.14

Proposed System Odometry 1.22

As summarized in Table 5, several systems have provided a number of auto-calibration
and positioning solutions. However, they have focused generally on the location accuracy
and neglected the complexity and cost of the system. The most successful robot-based
localization algorithm seems to be the image processing proposed in [37,41]. The local-
ization accuracy achieved a sub-metric order with a large number of RPs. The solutions
in [34–36,38–42] are based on developing algorithms to improve the localization system
performance without taking into consideration the robot’s displacement errors and the
system’s complexity. Hence, the proposed system focused more on optimizing the robot’s
displacement errors, which may accumulate over long paths indoor, while maintaining a
low level of needed hardware. It can be observed that the localization via the proposed
auto-fingerprinting method presented an accuracy of 1.22 m at 90% positioning error and a
standard deviation of 0.42 m. According to these results, our proposed system is more ac-
curate than the methods in [34–36,38–40] and simpler compared to the approaches adopted
in [37,41,42] that employ complex algorithms, as well as filtering approaches, and that
need a large number of deployed reference devices. In contrast, our localization system is
simplified by treating the data set with a simple averaging RSS combing technique and
deploying only four RFID active tags. It also presents better robot navigation stability than
the methods in [34,37,38,40], with standard deviations of 0.49, 0.59, 1.28 and 1.83 m, respec-
tively. The system’s positioning accuracy achieved at 90% of the CDF also demonstrates the
effectiveness of the proposed approach and its superiority compared to the related works
presented in [34,38,40,41], with values of 1.8, 3, 1.83 and 1.1 m at 90% of CDF, respectively.

4. Conclusions

In this paper, an efficient auto-fingerprinting method via a mobile robot was proposed.
This was validated for indoor positioning using RFID technology. The auto-fingerprint
method gathered measurements from a set of positions in a complex scenario in which the
robot’s displacement accuracy was examined. On the other hand, the auto-correction based
on odometry tests presented a reduction in the robot displacement uncertainty. Hence, the
position accuracy was evaluated within the online stage and achieved an error of 1.22 m,
with a cumulative density function at 90%, by implementing a cost-effective and reduced
complexity architecture.

Considering the features of this auto-fingerprinting method in our experimental area,
future work will focus on implementing it in other environments such as corridors, office
floors or halls. It could also be proven that our localization system has the potential to be
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enhanced via different localization techniques to determine positions in navigation systems
without a map.
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Abbreviations
The following abbreviations are used in this manuscript:
RFID Radio Frequency Identification
GNSS Global Navigation Satellite System
RSS Received Signal Strength
WiFi Wireless Fidelity
PDR Pedestrian Dead Reckoning
MM Magnetic Matching
UILoc Unsupervised Indoor Localization
DL Deep Learning
CNN Convolutional Neural Network
AP Access Point
RSSI Received Signal Strength Indicator
KNN K-Nearest Neighbor
SVM Support Vector Machines
RNN Recurrent Neural Networks
GRU Gate Recurrent Units
BLE Bluetooth Low Energy
RP Reference Point
EM Expectation–Maximization
ANOVA Analysis of Variance
SLAM Simultaneous Localization and Mapping
TNN Tensor Nuclear Norm
ASMF Adaptive signal Mode Fingerprinting
SRL-KNN Soft Range Limited K-Nearest Neighbor
PDOA Phase Difference of Arrival
CW Clockwise
CCW Counterclockwise
DOSSOM Dual One Slope with Second Order Model
CDF Cumulative Distribution Function
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