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Abstract

Nowadays, Convolutional Neural Networks (CNNs) are widely used as pre-

diction models in different fields, with intensive use in real-time safety-critical

systems. Recent studies have demonstrated that hardware faults induced by

an external perturbation or aging effects, may significantly impact the CNN

inference, leading to prediction failures. Therefore, ensuring the reliability of

CNN platforms is crucial, especially when deployed in critical applications. A

lot of effort has been made to reduce the memory and energy footprint of CNNs,

paving the way to the adoption of approximate computing techniques such as

quantization, reduced precision, weight sharing, and pruning. Unfortunately,

approximate computing reduces the intrinsic redundancy of CNNs making them

more efficient but less resilient to hardware faults. The goal of this work is

twofold. First, we assess the reliability of a CNN when reduced bit widths and

two different data types (floating- and fixed-point) are used to represent the

network parameters (i.e., synaptic weights). Second, we intend to investigate

the best compromise between data type, bit-widths reduction, and reliability.

The characterization is performed through a fault injection environment built

on the darknet open-source framework and targets two CNNs: LeNet-5 and
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YOLO. Experimental results show that fixed-point data provide the best trade-

off between memory footprint reduction and CNN resilience. In particular, for

LeNet-5, we achieved a 4X memory footprint reduction at the cost of a slightly

reduced reliability (0.45% of critical faults) without retraining the CNN.
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1. Introduction

In the last decades, Convolutional Neural Networks (CNNs) have gained

popularity due to their excellent performance in solving complex learning prob-

lems [1]. Indeed, they provide very good results for many tasks such as object

recognition in image/videos, drug discovery, natural language processing up to

playing games [2, 3, 4]. They are categorized as a class of Deep Neural Net-

works (DNNs) [5] and their name origins from the mathematical linear operation

between matrixes called convolution.

Being brain-inspired models, convolutional neural networks have an inher-

ent resilience attributed to their distributed and parallel structure and the space

redundancy introduced because of over-provisioning [6]. Several studies have in-

vestigated the fault tolerance of DNNs, for example [7], and have demonstrated

that NNs are highly robust against computation errors [8, 9]. As a consequence,

hardware-specific NNs, ranging from circuits for embedded machine learning

applications to custom Very Large Scale Integration (VLSI) of neural networks

in silicon, are traditionally considered tightly robust to hardware faults (HW

faults).

However, several recent studies have demonstrated that HW faults induced
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by an external perturbation (i.e., in a harsh environment) or due to silicon

wearout and aging effects can significantly impact the inference leading to CNN

prediction failures [10, 11, 12]. Therefore, ensuring the reliability of CNNs is

crucial, especially when they are deployed in safety-critical and mission-critical

applications, such as robotics, aeronautics, smart healthcare, and autonomous

driving [13]. Reliability can be defined as the probability that a HW fault

causes a failure [14]. The reliability analysis and its evaluation are regulated by

standards depending on the application domain (e.g., IEC 61508 for industrial

systems, DO-254 for avionics, ISO 26262 for automotive), and it is usually

assessed through fault injection (FI) campaigns.

Nowadays, to address data confidentiality issues and bandwidth limitations,

the trend is to push deep learning based systems from the cloud to edge devices

[15, 16, 17], such as Internet-of-Things (IoTs) devices, given the ever-increasing

internet-connected IoTs. One of the principal advantage is that it alleviates

the communication latency which is unacceptable for real-time safety-critical

decisions, e.g., in autonomous driving. For this reason, the design of custom

Application Specific Integrated Circuit (ASIC) hardware accelerators to support

the energy-hungry data movement, speed of computation, and memory resources

that CNNs require to realize their full potential at the edge is crucial [18].

In parallel with reliability assessments [19], a significant effort has been done

to reduce the memory and energy footprint of CNNs leveraging on reduced bit-

width data type in either training or inference phase. Indeed, one important

limitation about the adoption of the newer version of CNNs is the memory re-

quired for storing the network parameters (e.g., synaptic weights). For example,

VGG-Net [20] requires 500 MB of memory, a complexity that simply cannot fit

the constrained hardware of many embedded systems. Recently, Approximate

Computing (AxC) has become a major field of research to improve both speed

and energy consumption in embedded and high-performance systems [21]. By

relaxing the need for fully precise or completely deterministic operations, AxC

substantially improves energy efficiency and reduces the memory requirement.

Various techniques for AxC augment the design space by providing another set
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of design knobs for performance-accuracy trade-offs. As an example, the gain in

energy between a low-precision 8-bit operation suitable for vision and a 64-bit

double-precision floating-point operation necessary for high-precision scientific

computation can reach up to 50× by considering storage, transport, and com-

putation. The gain in energy efficiency (the number of computations per Joule)

is even larger since the delay of basic operations is greatly reduced. Having sim-

pler operators also reduces the implementation cost, which allows the network

to use more resources in parallel.

Therefore, the major challenge is to find an adequate data representation

for CNNs that fits well with the application and hardware constraints. CNNs

lend themselves well to AxC techniques, especially with fixed-point arithmetic

or low-precision floating-point implementations, which expose large fine-grain

parallelism. For instance, in [22] the authors describe a binary network which

exploits only two values {−1, 1} for the weights representation. Another pro-

posed solution is the ternary network [23]; it quantizes weights into 3 different

values {−1, 0, 1}. Finally, XNOR-Net[24] uses a slightly different methodology:

all computations are performed through XNOR and bit counting operations, at

the same time reducing the precision of the operands involved during the com-

putation. Consequently, it is necessary to understand if those optimized models

are reliable enough to tolerate failures that propagate throughout the system. It

starts to be crucial to evaluate CNNs behaviour in a faulty scenario to determine

if they can still be safely deployed in a safety-critical system. These doubts are

justified if considering the growing technology scaling in chip manufacturing.

Due to the transistors shrinking, newer hardware platforms are more complex

and, at the same time, more susceptible to faults, albeit faster.

The end-goal of this paper is to characterize the impact of permanent faults

affecting a CNN by means of fault injection campaigns, when custom data

types are used for representing the network parameters. We analysed different

implementations of the same CNN architecture, when different data types are

exploited, and we identified the best representation leading to achieve a 4x

reduction of memory footprint with the highest resilience to faults. Two case
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studies are presented: the former targets LeNet-5, a popular CNN, the latter

focuses on a deeper CNN (YOLO) used for the task of detecting objects in real

time.

The rest of the paper is structured as follows: after summarizing the related

works in the field, our main contribution is highlighted (Section 1.1). Section 2

presents the methodology, focusing on the custom data type description and

the data conversion technique. In the same section, both the fault injection

scenario and environment are described. Next, in Section 3, we present the

two case studies (i.e., LeNet-5 and YOLO), along with the experimental results

coming from the FI campaigns. Finally, Section 4 concludes the article and

outlines some of the possible future research directions.

1.1. Related Works

In the literature, increasing attention is paid to the Neural Network Relia-

bility. Depending on multiple factors, such as FI typology, level of abstraction,

and fault models, it is possible to identify different sets of interesting research

activities.

A significant set focuses on analysing a specific fault model: the soft error

(i.e., bit flip). In [25, 26] authors performed a deep analysis of CNN reliability

when 32-bit floating-point values are used as data type for weights represen-

tation, it turned out that bit 30th is the most critical among the overall 32.

Interestingly, we found out the same results with our methodology as shown

in next sections. In [27, 28], the authors evaluate the reliability of one CNN

executed on three different GPU architectures (Kepler, Maxwell, and Pascal).

The soft errors injection has been done by exposing the GPUs running the

CNN under controlled neutron beams. A similar but wider approach is detailed

in [29], where the authors assess the reliability of a 54-layers DNN (NVIDIA

DriveWorks) through fault injection experiments and accelerated neutron beam

testing for permanent and transient faults, respectively. Faults are injected on

the DNN’s weights and on the input images. All inferences are executed on

Volta GPU only targeting 32-bit floating-point values.
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Moving forward, Li et al. present in [30] a different analysis. They character-

ize the propagation of soft errors from the hardware to the application software

of different CNNs. The injections are performed by using a DNN simulator

based on open-source simulator framework, Tiny-CNN [31]. Thanks to the flex-

ibility of the simulator, it is possible to characterize each layer for a more precise

analysis. In this article, CNNs with six different data types are considered: 64-

bit double precision floating-point, 32-bit single precision floating-point, 16-bit

half precision floating-point, 32-bit fixed-point (with two different radix points),

and 16-bit fixed-point. Overall, they conclude that, the larger the dynamic value

range of the network’s data type, the higher the likelihood of having large de-

viations in values in the event of faults leading to wrong predictions.

Furthermore, a different framework is shown in [32]: Ares, a light-weight

DNN fault injection framework. The authors present an empirical study on

the resilience of three prominent types of DNNs (fully connected, CNNs and

Gated Recurrent Unit). In particular, they focus on two fixed-point data types

for each network: Q3,13 i.e, 3 integer and 13 fractional bits, and Q2,6. Their

experiments demonstrate that the optimized Q2,6 data type is 10x more fault

tolerant. The reason lies in the fact that the unnecessary larger range of integer

values increases the chance of failure happening. It is worth noting that this

result is in line with our gathered results, presented in Section 4.2. It is a com-

mon trend to explore fixed-point computations for ultra-low power embedded

systems with a limited power budget [33]. Finally, in [34], the authors analyse

the reliability of a DNN accelerator by following a High Level Synthesis (HLS)

approach. They characterize the effects of both permanent and transient faults

by exploiting a fault injector framework embedded into the RTL design of the

accelerator. Faults are injected during the inference cycle only on a subset of

registers: those that are in charge to store weights, input values, and interme-

diate ones used throughout the inference job, without considering the effects of

faults in the other data-path units. As for the used data representation, they

perform the experiments by only adopting a 16-bits fixed-point low precision

model, claiming a negligible accuracy loss with respect to a full-precision data
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model.

Additionally, it is worth also mentioning the research contribution of [35]

and [36], where the authors investigate the reliability of CNNs exploiting both

the 16-bit and 8-bit integer data representation. Then, moving towards an

even smaller data dimension, related works in [37] and [38] exploit reduced bit-

widths. The former uses 5-bit and 3-bit fixed-point data types and a binary

representation. The latter performs reliability assessment analysis on a binary

neural network, where only 1 bit is used to represent the parameters (weights

and biases).

In this light, the principal contribution of this paper is a comprehensive

analysis on the behavior of CNNs depending on their data representation. In

a previous work [11, 39], we evaluated the impact of permanent faults affecting

CNNs through software FI campaigns. Compared to the state-of-the-art analy-

ses [32, 34, 11, 39], a wider spectrum of floating- and fixed-point representations

is given (five typologies ranging from 32 bits up to 8 bits). As a result, we

identified the best data representation leading to the highest memory footprint

reduction and the highest resilience to faults.

2. Methodology

This section presents the adopted methodology. We exploit the darknet

open source DNN framework [40]. Implemented in C and CUDA language, it

is suitable to perform end-to-end deployment of neural network architectures in

a very simple way. It further supplies a very simple environment where several

configurations of DNNs, including CNNs, can be executed either to perform

training or inference jobs. In our work, we modified darknet framework to (i)

approximate the DNN and (ii) inject faults at the inference time.

2.1. DNN Data Type Approximation

In the neural networks field, a common approximation approach is to reduce

the precision and data type of weights and activation’s values. More in detail,
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we intend to use custom floating-point and fixed-point representations with

different precision (i.e., bit-width) at the inference time.

The darknet framework leverages on 32-bit floating-point data types only.

Therefore, we modified the darknet source code to allow data type conversions.

All the conversions between the standard 32-bit floating-point and custom

data type have been carried out by integrating two open source libraries into

the darknet framework: the libfixmath library [41] for managing fixed-point and

the FloatX library.

… …

0N-1 i

Figure 1: Custom Data Type.

Figure 1 illustrates our custom data type. It is defined as following:

• N : it determines the data bit-width;

• i: it determines the dynamics and the precision of the data type depending

on the data representation:

– Floating Point: i is the mantissa width, N − 1 − i is the exponent

width;

– Fixed Point: i is the fractional width, N − 1− i is the integer width.

Since the end-goal is to characterize fault effect propagation through the

network (speeding up computations and compacting the model size are out of

the scope of this work), we performed on-line conversions while maintaining

all internal operations in floating-point (Figure 2). The benefits coming from

this approach are two-fold: first, it is not necessary to change the framework

structure every time new experiments with a different data type have to be

performed; second, it allows to change the representation without retraining the

DNN model for each data type, exploiting the same set of trained parameters.

In this way, the assessment of the CNN reliability is quicker; it is possible to
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switch between experiments with different numerical formats in a reasonable

amount of time. To confirm the choice suitability, we performed a preliminary

experiment to confirm that the use of the online conversion does not introduce

important accuracy differences while providing execution time benefits. To this

end, in the experiments, we converted the data representation of the darknet

framework from 32-bit floating point to 32-bit fixed point. In this way, all

the operations were performed in the fixed-point arithmetic domain by using

the libfixmath library [41]. We executed the inference of 70,000 images from the

MNIST database with the LeNet-5 CNN (more details in Section 3.1) with both

versions, i.e., the original floating-point one and the modified fixed-point one.

Specifically, we did not retrain the CNN. The results of the experiments showed

that the average accuracy error of the fixed-point version with respect to the

floating-point one was of -0.01%, i.e., a slight accuracy increase. Moreover, while

the execution time of the fixed-point version experiment was 8,566 seconds, i.e.,

≈ 0.122 seconds per image, the execution time of the original floating-point

version was 3,280 seconds, i.e., ≈ 0.047 seconds per image. Therefore, the use

of the darknet 32-bit floating-point framework with on-line conversion allows us

to run 2.6x faster experiments with respect to converting the darknet datatype,

while not incurring in significant inference accuracy differences.

C FI C

x

f

Weight

Input

Conversion to 
Custom Data

Conversion to 
Standard Data

Fault 
Injection

…

Figure 2: On-line Weights Conversions.

For the sake of completeness, we describe how the on-line conversion of a
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32-bit floating-point weight is applied before reaching a single neuron (Figure

2). The applied scheme works in the following way:

1. The weight is converted from standard 32-bit floating-point to a given

custom data type representation.

2. The custom data type weight is corrupted according to a chosen fault list

and a fault location, i.e., the fault is injected.

3. The custom data type weight is converted back to the standard 32-bit

floating-point representation in order to preserve the native implementa-

tion of the framework. In such a way, the gained value reflects the same

fixed-point corrupted value, while still remaining a floating-point data.

4. The weight is multiplied by the input value.

5. The neuron performs the arithmetic computations.

Although all network operations are executed between 32-bit floating-point

variables, it should be outlined that the loss of precision caused by the first

conversion is preserved. Indeed, when moving from the standard 32-bit floating-

point representation to a low-precision one (e.g., 16-bit fixed-point), we are

witnessing a truncation error effect. Then, converting back from a narrow range

of value to a wider one, the truncation error still remains.

2.2. Fault Injector

The intent of the section is to describe the Fault Injection (FI) scenario and

the environment built on the darknet framework.

FI Scenario: Figure 3 illustrates the scenario in which the fault injection

campaign is executed. First of all, we work with the trained CNN with 32-bit

floating-point data types, called Standard. The trained network is approxi-

mated using custom data type representation, called Custom. The inference
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Figure 3: Fault Injection Scenario.

outputs are stored (i.e., the “Golden Std” and the “Golden Custom”) and com-

pared to determine the Accuracy Loss due to the approximation. The fault

injection campaign is carried out on the Custom CNN and the faulty inference

outputs are stored in the “Faulty Custom” log. The latter is then compared

with the “Golden Custom” and the “Golden Std” to assess the resilience.

The Custom CNN (i.e., approximate) is intended to replace the Standard

CNN in edge/resource-limited devices. Thus, we have to assess the reliability

of the Custom CNN with respect to the standard CNN. On the other hand, it

is also possible to train directly the custom-data-type CNN. In this case, the

reference with respect to the reliability has to be assessed is the Custom CNN

itself.

FI Environment: The hardware system can be affected by faults caused

by physical manufacturing defects. As Figure 4 highlights, faults could propa-

gate through the different hardware structures composing the full system. How-

ever, it could happen that they are masked during the propagation either at the

technological or at the architectural level [42]. When a fault reaches the soft-
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Figure 4: System Layers and Fault Propagation.

ware layer of the system, it can corrupt data, instructions or the control flow.

These errors may impact the correct software execution by producing erroneous

results or prevent the execution of the application leading to abnormal termi-

nation or application hangs. The software stack can play an important role in

masking errors; at the same time, this phenomenon is implicitly important for

the system reliability but a hard challenge for engineers that have to ensure the

safeness of their systems.

As stated in the Introduction, HW faults can be transient or permanent

induced by external perturbations (i.e., in a harsh environment) or due to sil-

icon wearout and aging effects. It is important to stress once more, that we

perform fault injection into synaptic weights that are constant values (i.e.,

never rewritten in the memory). It means that, even for transient faults, once

the fault is triggered, it behaves exactly like a permanent one since the flipped

memory cell will not be rewritten. For this reason, as target fault model, we

consider the Stuck-at Fault (SaF ) model at 0/1 (SaF0 and SaF1). The Fault

Location (FLo) is defined by (1).
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1 run CNN (CNN, standard , g o l d e n p r e d i c t i o n s t d ) ;

2 run CNN (CNN, custom , g o l d e n p r e d i c t i o n c s t ) ;

3 f o r ( i =0; i < FLo . s i z e ( ) ; i++) {

4 i n j e c t f a u l t ( Flo [ i ] , CNN) ;

5 run CNN (CNN, custom , f a u l t y p r e d i c t i o n ) ;

6 compare ( f a u l t y p r e d i c t i o n , g o l d e n p r e d i c t i o n c s t ) ;

7 compare ( f a u l t y p r e d i c t i o n , g o l d e n p r e d i c t i o n s t d ) ;

8 r e l e a s e f a u l t ( Flo [ i ] , CNN) ;

9 }

Listing 1: Fault Injection Pseudo-Code

FLo =< Layer, Connection,Bit, Polarity > (1)

where Layer corresponds to the CNN layer, Connection is the edge connect-

ing one node of the Layer, and Bit is one of the bits of the weight associated

with the Connection. Finally, the Polarity can be ‘0’ or ‘1’ depending on the

SaF. The Fault Injector actually works at the software layer, and its pseudo-

code is provided in the Pseudo − Code (Listing 1). It corresponds to a simple

serial fault injector that modifies the CNN topology as described by (1).

The FI process follows the scenario depicted in Figure 3 and consists of the

following: once the CNN is fully trained, a golden run is performed collecting

the golden results (i.e., standard and custom golden prediction), i.e., lines 1 and

2 in Listing 1. Then, the actual fault injection process is performed. The initial

step requires generating the list of faults to be injected. This fault list should

be seen as a list of places to inject the faults, as previously described. Then,

for any fault in the fault list (line 3), a prediction run is performed and the

results collected and named as faulty prediction. It is necessary to underline

that faults are injected regardless of their polarity (stuck-at-0 or stuck-at-1).

Once the fault location is fixed, the target bit is inverted (if ‘0’ it becomes a ‘1’

and vice-versa). In this way, we do not distinguish between the singular effect

of the two fault models while obtaining great flexibility for the considerable
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amount of performed simulations. At this point (lines 6 and 7), the obtained

results are compared with the expected ones (again for both the standard and

custom CNN), and the results are logged for further analysis.

In detail, the function compare of the Pseudo-code (Listing 1) classifies the

prediction/classification of the faulty CNN with respect to the golden one. The

classification depends on the CNN type. In our paper, we consider two types

of CNNs: (i) a classifier and (ii) an object detector. Concerning the classifier,

outputs of the faulty CNN are labelled as follows:

• Masked: No difference is observed between the faulty CNN and the

golden one.

• Observed: A difference is observed between the faulty CNN and the

golden one. Depending on how much the results diverge, we further clas-

sify these as:

– Good: The confidence score of the top-ranked is higher with respect

to the golden CNN. In other words, the faulty CNN provides a better

inference than the golden one;

– Accept: The confidence score of the top-ranked element is reduced

by less than 5% with respect to the golden CNN;

– Warning: The confidence score of the top-ranked element is reduced

by more than 5% with respect to the golden CNN;

– Critical: The top-1 prediction is different. In other words, the faulty

CNN makes a wrong inference.

From a safety assessment perspective, we consider three classes of faults

Critical, Warning, and Accept as events reducing the CNN safety. Indeed,

whenever one of those fault classes occurs, either the top-1 prediction is different

(Critical) or the top-1 prediction confidence level decreases (Warning, Accept).

On the other hand, the two fault classes Masked and Good either leave the

safety of the CNN unaltered (Masked) or even improve it (Good).
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On the other hand, the effects of the injected faults on the object detector

CNN are classified differently. The CNN output is an image having bounding

boxes indicating the detection of the objects. To assess whether any two bound-

ing boxes overlap, we use the intersection over union (IoU) metric as defined in

[12]. IoU is the ratio of the intersection area over the union area of two bounding

boxes. The closer IoU is to 1, the higher overlap the two bounding boxes have.

Thanks to the IoU metric, we can redefine the fault outcome as follows:

• Masked: No difference is observed between the faulty CNN and the

golden one.

• Observed: A difference is observed between the faulty CNN and the

golden one. By using the IoU calculated between the boxes of the golden

CNN and those of the faulty one, we further classify the observed outcomes

as follows:

– Accept: The IoU is lower than 1 and higher than 0.95;

– Warning: The IoU is lower than 0.95 and higher than 0.9;

– Critical: The number of bounding boxes is different, or the label

associated with the boxes does not match the good ones. In other

words, the faulty CNN identified wrong objects. Moreover, if the

IoU is lower than 0.9, the fault is classified as critical, meaning that

the faulty CNN correctly identifies the objects, but it is not able to

locate them precisely enough.

We did not consider the “Good” outcome since it does not make sense for

object detection. It is worth noting that the fault classification used for the

object detector is more stringent than the one used for the classifier. Indeed,

we consider the object detection task more critical than the classification task.

From a safety assessment perspective, we consider faults falling in the Critical,

Warning, and Accept classes as events reducing the CNN safety. Conversely,

Masked faults leave the safety of the CNN unaltered.
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3. Experimental Results

This section first details the two case studies and the related fault injection

campaigns, then it discusses the experimental results.

3.1. First Case Study

Among the existing CNNs, our interest falls on LeNet-5 [43], a well-known

classifier for handwritten digit recognition tasks introduced by Y. Lecun et al.

in 1998. The network architecture is composed of 1 input layer, 5 hidden layers,

and 1 output layer, whose typology ranges from Convolutional, Fully-Connected,

and Max-Pool layers. For running the experiments, the MNIST database [44],

a well-known dataset used to evaluate the accuracy of new emerging models,

has been selected. It is composed of 60,000 images for training and 10,000 for

test/validation of the model, encoded in 28 × 28 pixels in grayscale. However,

to lower the computational cost and time, a workload of 2,023 images was

randomly selected from the MNIST test/validation dataset for the experiments.

Moreover, since we are focusing on the inference phase and on the response of

the network in a faulty scenario, a set of pretrained weights has been adopted.

It is available from the darknet website and includes all weights in a 32-bit

floating-point representation.

3.2. Custom Data Type

The selection of the custom data type is not trivial. Let us resort to an

example to illustrate that point. In our preliminary work [11], we analyzed

different fixed-point data types in terms of resilience to faults. One of those

was configured with N = 16 and i = 8, meaning that 8 bits were devoted to

represent the fractional part and 8 bits the integer one. Figures 5a and 5b show

the “criticality” of each bit of the data type. It can be seen that in the 32-bit

floating-point data type, only one bit (i.e., the bit 30th) is the main responsible

for the Critical Observed faulty behaviors: up to 95% of critical observed faulty

behaviors is due to a fault at bit 30th. On the other hand, in the 16-bit fixed-

point representation (with 8 bits for integers and 8 bits for the fractional part),
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the number of bits responsible for the Critical Observed faulty behaviors is six.

This means that the custom CNN has a lower memory footprint of 50%, but it

also shows a lower resilience with respect to the standard CNN, since a higher

number of faulty bits may seriously affect the inference results.

(a) Standard 32-bit floating-point resilience

(b) Custom 16-bit fixed-point resilience

Figure 5: Critical Bits

To carefully select the custom data representation, we first analyze the

weight distribution of LeNet-5. It is illustrated in Figure 6 and evidences that

all values are in the range -0.6 to 0.6 with most of them around zero. From this

analysis, we simply deduced that the data type does not need higher dynamics

while a high precision is preferred. Hence, we selected the custom data types

reported in Table 1. Two data types are used, the fixed and floating point

with different bit width. Moreover, we computed the accuracy loss of the CNN
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Figure 6: Distribution of pretrained Weights Values for LeNet-5 network.

Table 1: LeNet-5 Data Type Accuracy Loss [%]

Scenario Data type Bit-width Bit encoding [%] Accuracy Loss

FP32 floating-point 32 1 sign, 8 exponent, 23 fractional Ref.

FP16 floating-point 16 1 sign, 5 exponent, 10 fractional 0%

FP8 floating-point 8 1 sign, 4 exponent, 3 fractional 0.02%

FxP32 fixed-point 32 1 integer, 31 fractional 0%

FxP16 fixed-point 16 1 integer, 15 fractional 0%

FxP8 fixed-point 8 1 integer, 7 fractional 0.04%

resulting from the adoption of custom data type weights. As highlighted in

Table 1, five different scenarios have been analyzed. The second column of the

table reports the data type used in each FI campaign, while the third column

reports the bit-width of the weights. The fourth column shows the amount of

bits allocated to encode the different parts of the number, i.e., sign, exponent,

and fractional parts in the case of floating-point representations, and the integer

and fractional part in the case of fixed-point data. To compute the accuracy of

the CNN in the different scenarios, the inference of the images belonging to the

validation set of the MNIST database (10,000 images) has been run on LeNet-
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5, clearly without injecting any faults, i.e., in a golden scenario. The results

showed that only when reducing the bit width to 8 bits, the network exhibited

some accuracy loss. In detail, for the network with weights encoded by using

8-bit floating-point variables (scenario FP8), the accuracy loss was 0.02%, while

it was 0.04% when the weights were encoded by using 8-bit fixed-point variables

(scenario FxP8).

3.3. Fault List

In this section, we discuss the complexity of the considered CNN in terms of

fault injection. Furthermore, we illustrate the approach that we used to manage

this complexity by performing a statistically meaningful subset of fault injec-

tions. For this complex evaluation, we consider only four LeNet-5 layers that

perform arithmetic computations involving trainable weights, i.e., two convo-

lutionals and two Fully Connected. Indeed, we consider the resilience of the

CNN against faults striking the memory, where the weights are stored. Ta-

ble 2 provides details about the configuration as well as the fault list of each

layer. The first two rows (labeled “Layer” and “Detail”) of the table present

the target layers; the third one (“Connections”) specifies the amount of their

connection weights. The number of possible faults is computed as the multi-

plication between the connections number (“Connections”) and the weight size

(“Bit-width”).

As the rows “#Faults” point out, the overall number of possible faults is

very high and this reflects in a non-manageable FI campaign execution time.

Thus, to reduce the fault injection execution time, we can randomly select a

subset of faults. To obtain statistically significant results with an error margin

of 1% and a confidence level of 99%, an average of 15.6k fault injections have to

be considered for 32-bit scenarios (FP32 and FxP32), 15k for 16-bit scenarios

(FP16 and FxP16), and 13.8k for 8-bit scenarios (FP8 and FxP8). The precise

numbers are given in the rows of Table 2 labeled #Injections” and they have

been computed by using the approach presented in [45]. In details, we resorted
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Table 2: LeNet-5 Fault List for Fault Injection Campaigns

Layer L0 L2 L4 L6

Detail Convolutional Convolutional Fully Connected Fully Connected

Connections 2,400 51,200 3,211,264 10,240

Scenarios

FP32, FxP32

Bit-width 32 32 32 32

#Faults 76,800 1,638,400 102,760,448 327,680

#Injections 13,678 16,474 16,638 15,837

Scenarios

FP16, FxP16

Bit-width 16 16 16 16

#Faults 38,400 819,200 51,380,224 163,840

#Injections 11,610 16,310 16,636 15,107

Scenarios

FP8, FxP8

Bit-width 8 8 8 8

#Faults 19,200 409,600 25,690,112 8,1920

#Injections 8,915 15,991 16,630 13,831

to the following formula:

fault injections =
N

1 + e2 · N−1
t2·0.25

(2)

where N is the total number of fault locations (i.e., row #Faults of Table 2), e

is the desired error margin (1%), and t depends on the desired confidence level

(t=2.58 corresponds to 99% confidence level [45]). Equation 2 has an horizontal

asymptotic value (N → ∞) equal to 16,641, thus limiting the number of fault

injections necessary to achieve an evaluation with an error margin of 1% and a

confidence level of 99%. Moreover, it is worth underlining that the injections are

performed by randomly selecting the faulty bit among all bits of the connection

weights.

To perform the FI experiments, the weight conversions are performed as

described in Section 2.1, i.e., the weights are mapped to the custom type and

then reconverted back to the original format. In particular, every time a fault

is placed, the randomly selected weight value must be converted to the custom

representation, injected with the fault, and reconverted back to the original

format to perform the inference. On the one hand, this approach requires an

overhead during the fault injection phase; however, on the other hand, this

technique allows performing the experiments without introducing overhead due
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to external computationally intensive custom floating- and fixed-point libraries

for the arithmetic operations.

3.4. Fault Injection Outcomes

We conducted two sets of experiments (see Figure 3). In the first one, we

evaluated the reliability by using as reference the Standard 32-bit floating-

point CNN. This is useful in the case where a designer wants to approximate

the CNN (i.e., change its data type and/or bit-width) after that it has been

trained. In the second one, we assess the CNN reliability by using as reference

the Custom fault-free CNN. This is useful in the case where a designer wants

to train directly the custom data-type/bit-width CNN. To discuss the results,

we refer to the classification presented in Section 2.2. In particular, we want

to evaluate the safety of the different CNN versions, when subject to faults.

Therefore, we consider faults in the classes Critical, Warning, and Accept as

events reducing the CNN safety. The sum of these contributions is represented

by symbol ‘<’ in tables. Conversely, we consider the faults in the classes Masked

and Good as events either leaving the safety of the CNN unaltered or even

improving it. The sum of these contributions is represented by symbol ‘≥’ in

tables.

The results of the first set of experiments (i.e., having the Standard 32-bit

floating-point CNN as reference) are shown in Table 3 where each row corre-

sponds to one of the CNN variants (FP32-FP16-FP8-FxP32-FxP16-FxP8 de-

fined in Table 1). Each column corresponds to a faulty behavior class as de-

scribed in Section 2.2.

First, we can note a different resilience to faults depending on the data type:

floating versus fixed. More in detail, the safety decreasing effect is lower

for the fixed-point than for the floating-points, for a given bit-width.

As an example, we may resort to scenarios FP32 and FxP32 (32-bit CNNs):

the safety increasing (decreasing) effect varies from 69% (31%) of the floating-

point version (scenario FP32) to 74% (26%) of the fixed-point version (scenario

FxP8). This corresponds to a difference of 5%. The average difference between
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Table 3: LeNet-5 Fault Injection outcomes w.r.t. Golden Std.

Layer Data
Observed

Masked
Safety Gain w.r.t. FP32

Critical Warning Accept Good < ≥ Safety∗ Memory

L0

FP32 1.32% 0.06% 29.96% 28.98% 39.68% 31.34% 68.66% - -

FP16 2.61% 0.12% 53.28% 41.27% 2.71% 56.01% 43.98% -24.67% 2X

FP8 3.41% 0.91% 64.13% 31.53% 0.02% 68.45% 31.55% -37.11% 4X

FxP32 0.03% 0.04% 25.93% 25.54% 48.47% 26.00% 74.01% +5.34% 0

FxP16 0.05% 0.08% 49.98% 46.94% 2.96% 50.11% 49.90% -18.77% 2X

FxP8 0.45% 0.60% 46.74% 52.18% 0.03% 47.79% 52.21% -16.45% 4X

L2

FP32 1.37% 0.02% 23.88% 23.39% 51.34% 25.27% 74.73% - -

FP16 2.59% 0.08% 55.00% 38.57% 3.76% 57.67% 42.33% -32.40% 2X

FP8 1.10% 0.91% 65.86% 32.10% 0.03% 67.87% 32.13% -42.60% 4X

FxP32 0.01% 0.01% 23.82% 23.62% 52.54% 23.84% 76.16% +1.43% 0

FxP16 0.03% 0.02% 49.87% 46.61% 3.47% 49.92% 50.08% -24.65% 2X

FxP8 0.42% 0.45% 46.57% 52.53% 0.03% 47.44% 52.56% -22.17% 4X

L4

FP32 0.71% 0.00% 3.85% 3.86% 91.57% 4.56% 95.44% - -

FP16 0.84% 0.13% 57.79% 36.12% 5.13% 58.75% 41.25% -54.19% 2X

FP8 0.49% 0.06% 66.69% 32.72% 0.04% 67.24% 32.76% -62.67% 4X

FxP32 0.00% 0.00% 10.99% 11.49% 77.52% 10.99% 89.01% -6.43% 0

FxP16 0.00% 0.00% 49.40% 45.59% 5.01% 49.40% 50.60% -44.84% 2X

FxP8 0.40% 0.36% 46.38% 52.82% 0.04% 47.14% 52.86% -42.58% 4X

L6

FP32 0.61% 0.01% 7.69% 8.14% 83.54% 8.32% 91.68% - -

FP16 1.19% 0.03% 56.34% 37.65% 4.78% 57.57% 42.43% -49.25% 2X

FP8 1.76% 0.40% 65.07% 32.74% 0.04% 67.22% 32.78% -58.91% 4X

FxP32 0.01% 0.04% 13.50% 14.11% 72.33% 13.55% 86.45% -5.24% 0

FxP16 0.03% 0.08% 49.15% 46.11% 4.63% 49.26% 50.74% -40.94% 2X

FxP8 0.44% 0.53% 46.28% 52.72% 0.04% 47.25% 52.75% -38.93% 4X

∗ Safety increasing effect difference between a given scenario and FP32

floating- and fixed-point versions with respect to safety increasing/decreasing

effect over the three variants (32, 16, and 8 bits) is 8.96% over all the layers.

This can be seen by comparing the scenarios FP32 with FxP32, FP16 with

FxP16, and FP8 with FxP8, in terms of the average safety increase/decrease

effect variation (columns 8 and 9). Is it worth highlighting that, in general

terms, the safety decreasing effect is critical only in a few cases. The percentage

22



of critical faults is always lower than 3.42% for all the variants. In particular,

fixed-point variants have a very small percentage of critical faults, always lower

than 0.46%. Moreover, the contribution of Good faults to the safety increasing

effect turns out to be significant, especially for 16- and 8-bit versions. As an

example, in the scenario FxP8 for the layer L0, we observed a safety increasing

effect in 52.21% of the cases, with a 52.18% of Good faults.

Furthermore, the bit-width plays an important role for the reliability: the

lower the bit-width the lower the resilience. Therefore, a designer who

wanted to use a more efficient version of the CNN (reduced memory footprint)

has to be aware that it would be also less resilient with respect to the original

CNN (FP32). However, it is worth also remarking that using fixed-point data

representation, instead of the floating-point counterpart, provides the better

results in terms of trade-off between resilience and efficiency. This is reported

in the last two columns of Table 3. For instance, we may compare scenarios

FP8 and FxP8 (8-bit CNNs) for layer L0: we observed a safety loss with respect

to FP32 of 37% in the floating-point version (scenario FP8) and only of 16%

in the fixed-point version (scenario FxP8). Therefore, choosing the CNN in

the scenario FxP8, namely 8-bit fixed-point (1 bit for integer and 7 bits for

fractional), allows the designer to compact the memory footprint by a 4x factor

while reducing the safety only by 16%. Moreover, by looking more closely, the

occurrence of critical faults in scenario FxP8 even decreases from 1.32% of FP32

to 0.45%, while in scenario B it increases to 3.41%. Additionally, for scenario

FxP32 (32-bit fixed-point CNN), it has been observed that the CNN achieves

improved safety with respect to FP32 scenario for the same memory footprint

for layers L0 and L2 (+5.34% and +1.43%, respectively). Thus, simply changing

the CNN data type to a fixed-point representation may improve its resilience

for some layers.

Table 4 reports the results of the second set of experiments (i.e., having

the Custom CNN as a reference). While in the first set we compared the FI

results of each scenario to the ones obtained with the fault-free 32-bit floating-

point CNN (FP32), in this set of experiments we compare the results of each
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scenario to the results obtained with the corresponding fault-free custom CNN.

This scenario corresponds to directly training the custom-data-type CNN, so

the reliability has to be assessed with respect to the Custom CNN itself. For

details, see Figure 3. Note that the row related to the FP32 version is the same

one in both experiment sets.

Table 4: LeNet-5 Fault Injection outcomes w.r.t. Golden Custom

Layer
Data

Observed
Masked

Safety Gain w.r.t. FP32

Critical Warning Accept Good < ≥ Safety∗ Memory

L0

FP32 1.32% 0.06% 29.96% 28.98% 39.68% 31.34% 68.66% -

FP16 2.61% 0.12% 42.10% 40.86% 14.30% 44.84% 55.16% -13.50% 2X

FP8 3.30% 0.88% 47.08% 44.67% 4.07% 51.26% 48.74% -19.91% 4X

FxP32 0.03% 0.04% 24.45% 23.81% 51.67% 24.51% 75.49% +6.83% 0

FxP16 0.05% 0.08% 41.96% 40.81% 17.10% 42.09% 57.91% -10.75% 2X

FxP8 0.11% 0.15% 49.03% 46.94% 3.76% 49.29% 50.71% -17.95% 4X

L2

FP32 1.37% 0.02% 23.88% 23.39% 51.34% 25.27% 74.73% -

FP16 2.59% 0.08% 35.66% 34.59% 27.07% 38.34% 61.66% -13.07% 2X

FP8 0.96% 0.89% 46.21% 43.17% 8.77% 48.06% 51.94% -22.79% 4X

FxP32 0.01% 0.01% 21.41% 20.93% 57.64% 21.43% 78.57% +3.84% 0

FxP16 0.03% 0.02% 38.70% 37.74% 23.52% 38.75% 61.25% -13.47% 2X

FxP8 0.06% 0.05% 47.94% 45.79% 6.17% 48.05% 51.95% -22.77% 4X

L4

FP32 0.71% 0.00% 3.85% 3.86% 91.57% 4.56% 95.44% -

FP16 0.84% 0.13% 6.21% 6.23% 86.59% 7.17% 92.83% -2.61% 2X

FP8 0.32% 0.06% 10.45% 10.11% 79.06% 10.83% 89.17% -6.26% 4X

FxP32 0.00% 0.00% 4.06% 4.02% 91.92% 4.06% 95.94% +0.50% 0

FxP16 0.00% 0.00% 7.83% 7.75% 84.42% 7.83% 92.17% -3.27% 2X

FxP8 0.01% 0.00% 10.67% 10.33% 78.99% 10.68% 89.32% -6.12% 4X

L6

FP32 0.61% 0.01% 7.69% 8.14% 83.54% 8.32% 91.68% -

FP16 1.19% 0.03% 11.47% 12.63% 74.67% 12.70% 87.30% -4.39% 2X

FP8 1.59% 0.39% 15.87% 17.10% 65.05% 17.85% 82.15% -9.53% 4X

FxP32 0.01% 0.04% 7.15% 7.27% 85.52% 7.21% 92.79% +1.11% 0

FxP16 0.03% 0.08% 13.48% 13.72% 72.69% 13.59% 86.41% -5.27% 2X

FxP8 0.05% 0.16% 17.25% 18.27% 64.27% 17.47% 82.53% -9.15% 4X

∗ Safety increasing effect difference between a given scenario and FP32

In general, the trends highlighted in the first set of experiments are observed

24



also in this scenario: (i) the safety is impacted by the bit-width reduction;

(ii) for fixed-point CNN versions, we observed a more graceful safety decrease

compared to floating-point versions. Besides that, an interesting effect is that

for floating-point custom variants (FP16 and FP8) the difference between the

two sets of experiments (Tables 3 and 4) in terms of Safety gain with respect

to FP32 is higher than for fixed-point ones (FxP32, FxP16, and FxP8). For

example, in layer L0, for variant FP8 (8-bit floating-point) the Safety gain with

respect to FP32 is -37.1% for the first set of experiments (Table 3) and -19.9% for

the second set of experiments (Table 4), that is a 17.2% difference. Conversely,

for variant FxP8 (8-bit fixed-point) the Safety gain with respect to FP32 is

-16.4% for the first set of experiments (Table 3) and -17.9% for the second

set of experiments (Table 4), which is a difference of 1.5%. On average, the

difference between the two sets of experiments for floating-point variants (FP16

and FP8) over all the layers is 33.72%, while for fixed-point custom variants

(FxP32, FxP16, and FxP8) is 14.81%. Practically, this means that a designer

who chose to approximate the original Standard FP32 CNN version by using a

custom floating-point variant without retraining it, would be exposed to higher

safety degradation than by using the fixed-point alternative with the same bit-

width. When a training is performed directly on the custom-data-type CNN, the

safety degradation difference between the floating-point variants and the fixed-

point ones is smaller. However, fixed-point ones still guarantee less critical fault

occurrence, i.e., less than 0.12%.

Finally, as a result of the analysis, we think that in general, the CNN in

FxP8 scenario provides the best results in terms of memory footprint reduction,

i.e., 4X, with a significant resilience, i.e. less than 0.45% critical faults.

3.5. Second Case Study

The second case study targets YOLO [46], a CNN capable of detecting ob-

jects in real time, analyzing up to 45 frames per second. YOLO is a predictor

CNN used to detect a certain set of objects (i.e., the list of recognizable objects

came from [40]). In Figure 7, the prediction results are shown highlighting the
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Figure 7: YOLO CNN prediction result

identified objects including the object name and area occupation. This example

presents an image containing three relevant objects to be detected: one dog,

one bike, and one car. Moreover, the car is further recognized as a truck for a

total of four objects detected.

3.6. Custom Data Type

To carefully select the custom data representation, we first analyzed the

the weight distribution of YOLO. It is shown in Figure 8. As evidenced, all
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Figure 8: Distribution of pretrained Weights Values for YOLO network

values are in the range -2.35 to 2.36 with most of them around zero. Thus,

26



Table 5: YOLO Data Type Accuracy Loss [%]

Scenario Data type Bit-width Bit encoding [%] Accuracy Loss

FP32 floating-point 32 1 sign, 8 exponent, 23 fractional Ref.

FP16 floating-point 16 1 sign, 5 exponent, 10 fractional 42% masked, 58% acceptable

FP8 floating-point 8 1 sign, 4 exponent, 3 fractional 28% warning, 72% critical

FxP32 fixed-point 32 3 integer, 29 fractional 100% masked

FxP16 fixed-point 16 3 integer, 13 fractional 42% masked, 58% acceptable

FxP8 fixed-point 8 3 integer, 5 fractional 100% critical

Masked: IoU=1; acceptable: 0.95<IoU<1; warning: 0.9≤IoU≤0.95; critical: IoU<0.9 or different objects recognized

also for this CNN, the data type does not need higher dynamics while a high

precision is preferred. Therefore, we selected the custom data type reported in

Table 5. Moreover, we computed the accuracy loss of the CNN resulting from

the adoption of custom data types. As highlighted in Table 5, five different

scenarios have been analyzed. The second column of the table reports the data

type used in each scenario, while the third column reports the bit-width of the

weights. The fourth column shows the amount of bits allocated to encode the

different parts of the number, i.e., sign, exponent, and fractional parts in the

case of floating-point representations, and integer and fractional part in the

case of fixed-point ones. To compute the accuracy loss of the network in the

different scenarios, the inference for 7 images has been run on YOLO, clearly

without injecting any faults, i.e., in a golden scenario. The results are reported

according to the classification reported in Section 2.2 for the object detector.

The results show that for the FxP32 scenario there is no degradation, for the

16-bit data types (both FP16 and FxP16) in 42% of the cases (3 images out of

7) there is no degradation and for 58% of the cases (4 images out of 7) there is

an acceptable degradation (i.e., all objects are correctly recognized and the IoU

metric is between 0.95 and 1). Finally, when using the 8-bit floating-point data

type (FP8), the CNN is able to deliver usable results (i.e., classified as warning,

0.9≤IoU≤0.95 ) for 28% of the inputs (2 images out of 7) and cannot produce

correct outputs (critical) for the rest (5 images out of 7). On the contrary, with

the 8-bit fixed-point data type (FxP8), the CNN is unable to provide the correct
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results at all, i.e., for all input images the output was classified as critical.

3.7. Fault List

In this section, we present the complexity of YOLO in terms of fault injec-

tion. As for LeNet-5, also for YOLO we consider only the layers performing

arithmetic computations involving trainable weights, i.e., the thirteen convo-

lutional layers. Table 6 provides details about the configuration as well as the

fault list of each layer. The first column (labeled “Layer”) reports the target lay-

ers; the second one (“Connections”) specifies the number of connection weights.

The number of possible faults is computed as the multiplication between the

connections number (“Connections”) and the weight size (“Bit-width”).

Table 6: YOLO Fault List for Fault Injection Campaigns

FP32 and FxP32 FP16 and FxP16 FP8 and FxP8

Bit-width=32 Bit-width=16 Bit-width=8

Layer Connections #Faults #Injections #Faults #Injections #Faults #Injections

L0 432 13,824 7,551 6,912 4,884 3,456 2,862

L2 4,608 147,456 14,954 73,728 13,577 36,864 11,466

L4 18,432 589,824 16,184 294,912 15,752 147,456 14,954

L6 73,728 2,359,296 16,524 1,179,648 16,410 589,824 16,184

L8 294,912 9,437,184 16,612 4,718,592 16,583 2,359,296 16,524

L10 1,179,648 37,748,736 16,634 18,874,368 16,626 9,437,184 16,612

L12 4,718,592 150,994,944 16,639 75,497,472 16,637 37,748,736 16,634

L13 262,144 8,388,608 16,608 4,194,304 16,575 2,097,152 16,510

L14 1,179,648 37,748,736 16,634 18,874,368 16,626 9,437,184 16,612

L15 130,560 4,177,920 16,575 2,088,960 16,509 1,044,480 16,380

L18 32,768 1,048,576 16,381 524,288 16,129 262,144 15,648

L21 884,736 28,311,552 16,631 14,155,776 16,621 7,077,888 16,602

L22 65,280 2,088,960 16,509 1,044,480 16,380 522,240 16,127

As the columns “#Faults” point out, the overall number of possible faults

is very high and this reflects in a non-manageable fault injection campaign

execution time. As done for LeNet-5, we selected a subset of faults in order to

reduce the fault injection execution time. For each layer, we injected the number

of faults reported in the columns “#Injections”. The number of faults to inject

was obtained by using the approach presented in [45] (see Section 3.3) and it
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is statistically representative with an error margin of 1% and a confidence level

of 99%. On average, 15.7k faults are injected in each layer for 32-bit scenarios

(FP32 and FxP32), 15.3k for 16-bit scenarios (FP16 and FxP16), and 14.8k

for 8-bit scenarios (FP8 and FxP8). The injections are performed by randomly

selecting the faulty bit among all bits of the connection weights.

3.8. Fault Injection Outcomes

In this section, we report the results of the FI campaign on the YOLO

CNN. In line with the LeNet-5 FI campaign, two sets of experiments are carried

out. Firstly, we evaluated the reliability by using as reference the Standard

32-bit floating-point CNN and then by using the Custom fault-free one. The

results are reported in terms of the classification presented in Section 2.2. In

the following, we define faults belonging to the classes Critical, Warning, and

Accept as events reducing the CNN safety. The sum of these contributions is

represented by the symbol ‘<’ in the tables. On the other hand, we consider the

masked faults as events leaving the safety of the CNN unaltered. Thus, their

contribution is represented by the symbol ‘=’ in Tables.

Table 7 reports the results of the first set of FI campaigns.

Table 7: YOLO Fault Injection outcomes w.r.t. Golden Std.

Level Data
Observed

Masked
Safety Gain w.r.t. FP32

Critical Warning Accept < = Safety∗ Memory

L0

FP32 20.17% 0.66% 16.25% 62.92% 37.08% 62.92% - -

FP16 30.70% 1.04% 41.32% 26.95% 73.05% 26.95% -35.97% 2x

FP8 48.46% 49.88% 1.66% 0.00% 100.00% 0.00% -62.92% 4x

FxP32 13.35% 0.54% 12.43% 73.68% 26.32% 73.68% 10.76% 0

FxP16 27.23% 1.11% 44.52% 27.14% 72.86% 27.14% -35.78% 2x

L2

FP32 6.81% 0.10% 14.46% 78.63% 21.37% 78.63% - -

FP16 12.07% 0.17% 49.85% 37.91% 62.09% 37.91% -40.72% 2x

FP8 16.67% 78.65% 4.68% 0.00% 100.00% 0.00% -78.63% 4x

FxP32 7.40% 0.43% 12.22% 79.95% 20.05% 79.95% 1.33% 0

FxP16 14.38% 0.84% 51.95% 32.83% 67.17% 32.83% -45.80% 2x

L4

FP32 5.05% 0.05% 11.24% 83.66% 16.34% 83.66% - -

FP16 9.88% 0.10% 49.32% 40.70% 59.30% 40.70% -42.97% 2x

29



FP8 13.30% 82.95% 3.75% 0.00% 100.00% 0.00% -83.66% 4x

FxP32 6.32% 0.35% 11.86% 81.47% 18.53% 81.47% -2.19% 0

FxP16 12.45% 0.70% 52.81% 34.04% 65.96% 34.04% -49.62% 2x

L6

FP32 4.02% 0.01% 7.59% 88.37% 11.63% 88.37% - -

FP16 8.29% 0.04% 49.55% 42.13% 57.87% 42.13% -46.25% 2x

FP8 9.48% 88.49% 2.02% 0.00% 100.00% 0.00% -88.37% 4x

FxP32 4.49% 0.26% 11.04% 84.21% 15.79% 84.21% -4.17% 0

FxP16 8.82% 0.52% 53.75% 36.91% 63.09% 36.91% -51.47% 2x

L8

FP32 3.41% 0.01% 3.94% 92.65% 7.35% 92.65% - -

FP16 7.15% 0.02% 50.53% 42.30% 57.70% 42.30% -50.35% 2x

FP8 7.06% 91.51% 1.44% 0.00% 100.00% 0.00% -92.65% 4x

FxP32 2.84% 0.19% 9.22% 87.75% 12.25% 87.75% -4.90% 0

FxP16 5.49% 0.38% 54.32% 39.81% 60.19% 39.81% -52.84% 2x

L10

FP32 3.26% 0.00% 1.70% 95.04% 4.96% 95.04% - -

FP16 6.42% 0.02% 52.08% 41.49% 58.51% 41.49% -53.55% 2x

FP8 4.93% 94.16% 0.91% 0.00% 100.00% 0.00% -95.04% 4x

FxP32 1.67% 0.11% 6.85% 91.37% 8.63% 91.37% -3.67% 0

FxP16 3.14% 0.21% 54.33% 42.32% 57.68% 42.32% -52.72% 2x

L12

FP32 3.17% 0.00% 0.84% 95.98% 4.02% 95.98% - -

FP16 6.18% 0.07% 52.75% 41.00% 59.00% 41.00% -54.98% 2x

FP8 3.69% 95.54% 0.77% 0.00% 100.00% 0.00% -95.98% 4x

FxP32 0.76% 0.06% 5.34% 93.85% 6.15% 93.85% -2.13% 0

FxP16 1.39% 0.08% 54.87% 43.66% 56.34% 43.66% -52.32% 2x

L13

FP32 3.27% 0.01% 3.37% 93.36% 6.64% 93.36% - -

FP16 6.76% 0.04% 51.46% 41.74% 58.26% 41.74% -51.62% 2x

FP8 6.09% 92.80% 1.10% 0.00% 100.00% 0.00% -93.36% 4x

FxP32 1.86% 0.18% 9.08% 88.87% 11.13% 88.87% -4.49% 0

FxP16 3.61% 0.37% 55.13% 40.88% 59.12% 40.88% -52.47% 2x

L14

FP32 3.13% 0.01% 1.25% 95.61% 4.39% 95.61% - -

FP16 5.83% 0.07% 52.96% 41.13% 58.87% 41.13% -54.47% 2x

FP8 3.92% 96.08% 0.00% 0.00% 100.00% 0.00% -95.61% 4x

FxP32 1.03% 0.13% 5.96% 92.89% 7.11% 92.89% -2.72% 0

FxP16 2.05% 0.30% 54.55% 43.10% 56.90% 43.10% -52.50% 2x

L15

FP32 0.82% 0.01% 0.19% 98.97% 1.03% 98.97% - -

FP16 1.75% 0.04% 65.39% 32.82% 67.18% 32.82% -66.15% 2x

FP8 1.05% 98.95% 0.00% 0.00% 100.00% 0.00% -98.97% 4x

FxP32 0.34% 0.06% 0.36% 99.24% 0.76% 99.24% 0.26% 0

FxP16 0.57% 0.11% 56.69% 42.63% 57.37% 42.63% -56.35% 2x
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L18

FP32 3.26% 0.02% 0.19% 96.53% 3.47% 96.53% - -

FP16 6.10% 0.04% 53.82% 40.04% 59.96% 40.04% -56.49% 2x

FP8 5.55% 92.84% 1.61% 0.00% 100.00% 0.00% -96.53% 4x

FxP32 0.98% 0.14% 0.89% 98.00% 2.00% 98.00% 1.48% 0

FxP16 2.04% 0.26% 57.61% 40.10% 59.90% 40.10% -56.43% 2x

L21

FP32 3.22% 0.00% 0.06% 96.72% 3.28% 96.72% - -

FP16 5.61% 0.02% 53.96% 40.41% 59.59% 40.41% -56.31% 2x

FP8 3.83% 94.51% 1.67% 0.00% 100.00% 0.00% -96.72% 4x

FxP32 0.37% 0.06% 0.56% 99.02% 0.98% 99.02% 2.29% 0

FxP16 0.63% 0.17% 57.73% 41.47% 58.53% 41.47% -55.25% 2x

L22

FP32 0.44% 0.00% 0.03% 99.52% 0.48% 99.52% - -

FP16 0.89% 0.00% 56.66% 42.45% 57.55% 42.45% -57.07% 2x

FP8 1.14% 98.83% 0.03% 0.00% 100.00% 0.00% -99.52% 4x

FxP32 0.14% 0.02% 0.04% 99.79% 0.21% 99.79% 0.27% 0

FxP16 0.29% 0.02% 57.05% 42.63% 57.37% 42.63% -56.89% 2x

∗ Safety increasing effect difference between a given scenario and FP32

While for LeNet-5 we figured out that the fixed-point versions of the CNN

had a higher average safety level (8.96%) with respect to the floating-point

counterparts, for YOLO the difference is not as significant. Indeed, for YOLO,

the fixed-point versions of the CNN have a slightly lower average safety level, i.e.,

-0.44%, with respect to the floating-point versions. This is calculated for the 32-

and 16-bit versions, as the 8-bit fixed-point one always yields critical errors (see

Table 5). If we include also the 8-bit versions, the fixed-point versions have a

lower average safety level of -3.42% compared to the floating-point ones. This is

probably due to the different distribution of the pretrained weight values for the

YOLO network compared to LeNet-5 (compare Figure 8 with Figure 6). Indeed,

for YOLO, the need of more bits for the integer part of the weights reduced the

representation precision. Furthermore, it is worth highlighting that, in general

terms, YOLO turns out to be much less resilient than LeNet-5. Indeed, while

for LeNet-5 the percentage of critical faults is always lower than 3.42%, the

YOLO network reaches up to 48.46% of critical faults (layer L0, FP8 scenario)

31



and, as already mentioned, the FxP8 version produces critical faults even in a

fault-free scenario. This is probably due to the much more stringent definition

that we used for critical faults. Indeed, for LeNet-5 we classified a fault as

critical only when the top-1 prediction was wrong; conversely, for YOLO a fault

is classified as critical also when an object is correctly classified but it is not

located perfectly (IoU<0.9). Finally, as in the LeNet-5 case, also for YOLO

reducing the bit-width implies reducing the CNN resilience.

In Table 8, we report the results of the second set of FI campaigns, where

we compare the results of each scenario with the results obtained with the

corresponding fault-free custom CNN.

Table 8: Yolo Fault Injection outcomes w.r.t. Golden Custom

Level Data
Observed

Masked
Safety Gain w.r.t. FP32

Critical Warning Accept < = Safety∗ Memory

L0

FP32 20.17% 0.66% 16.25% 62.92% 37.08% 62.92% - -

FP16 30.70% 1.03% 28.10% 40.16% 59.84% 40.16% -22.76% 2x

FP8 42.08% 5.63% 37.02% 15.27% 84.73% 15.27% -47.64% 4x

FxP32 13.35% 0.54% 12.43% 73.68% 26.32% 73.68% 10.76% 0

FxP16 27.23% 1.13% 23.50% 48.14% 51.86% 48.14% -14.78% 2x

L2

FP32 6.81% 0.10% 14.46% 78.63% 21.37% 78.63% - -

FP16 12.07% 0.18% 23.04% 64.71% 35.29% 64.71% -13.92% 2x

FP8 14.19% 2.64% 38.61% 44.55% 55.45% 44.55% -34.07% 4x

FxP32 7.40% 0.43% 12.22% 79.95% 20.05% 79.95% 1.33% 0

FxP16 14.39% 0.84% 23.60% 61.16% 38.84% 61.16% -17.46% 2x

L4

FP32 5.05% 0.05% 11.24% 83.66% 16.34% 83.66% - -

FP16 9.88% 0.10% 18.29% 71.73% 28.27% 71.73% -11.94% 2x

FP8 11.84% 1.70% 30.70% 55.76% 44.24% 55.76% -27.90% 4x

FxP32 6.32% 0.35% 11.86% 81.47% 18.53% 81.47% -2.19% 0

FxP16 12.45% 0.70% 22.51% 64.34% 35.66% 64.34% -19.33% 2x

L6

FP32 4.02% 0.01% 7.59% 88.37% 11.63% 88.37% - -

FP16 8.29% 0.04% 13.34% 78.33% 21.67% 78.33% -10.04% 2x

FP8 8.37% 1.25% 22.66% 67.72% 32.28% 67.72% -20.65% 4x

FxP32 4.49% 0.26% 11.04% 84.21% 15.79% 84.21% -4.17% 0

FxP16 8.82% 0.53% 20.99% 69.66% 30.34% 69.66% -18.72% 2x

L8

FP32 3.41% 0.01% 3.94% 92.65% 7.35% 92.65% - -
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FP16 7.15% 0.02% 7.80% 85.03% 14.97% 85.03% -7.61% 2x

FP8 6.22% 1.04% 16.41% 76.33% 23.67% 76.33% -16.31% 4x

FxP32 2.84% 0.19% 9.22% 87.75% 12.25% 87.75% -4.90% 0

FxP16 5.49% 0.38% 17.48% 76.65% 23.35% 76.65% -16.00% 2x

L10

FP32 3.26% 0.00% 1.70% 95.04% 4.96% 95.04% - -

FP16 6.42% 0.02% 3.89% 89.67% 10.33% 89.67% -5.36% 2x

FP8 4.42% 0.52% 10.04% 85.01% 14.99% 85.01% -10.03% 4x

FxP32 1.67% 0.11% 6.85% 91.37% 8.63% 91.37% -3.67% 0

FxP16 3.14% 0.21% 12.41% 84.23% 15.77% 84.23% -10.81% 2x

L12

FP32 3.17% 0.00% 0.84% 95.98% 4.02% 95.98% - -

FP16 6.18% 0.07% 2.20% 91.55% 8.45% 91.55% -4.44% 2x

FP8 3.44% 0.23% 7.94% 88.39% 11.61% 88.39% -7.59% 4x

FxP32 0.76% 0.06% 5.34% 93.85% 6.15% 93.85% -2.13% 0

FxP16 1.39% 0.08% 9.90% 88.63% 11.37% 88.63% -7.35% 2x

L13

FP32 3.27% 0.01% 3.37% 93.36% 6.64% 93.36% - -

FP16 6.76% 0.04% 6.42% 86.78% 13.22% 86.78% -6.58% 2x

FP8 5.20% 1.18% 14.59% 79.03% 20.97% 79.03% -14.33% 4x

FxP32 1.86% 0.18% 9.08% 88.87% 11.13% 88.87% -4.49% 0

FxP16 3.61% 0.37% 16.92% 79.09% 20.91% 79.09% -14.27% 2x

L14

FP32 3.13% 0.01% 1.25% 95.61% 4.39% 95.61% - -

FP16 5.83% 0.07% 2.66% 91.43% 8.57% 91.43% -4.18% 2x

FP8 3.60% 0.25% 4.60% 91.54% 8.46% 91.54% -4.06% 4x

FxP32 1.03% 0.13% 5.96% 92.89% 7.11% 92.89% -2.72% 0

FxP16 2.05% 0.30% 11.29% 86.35% 13.65% 86.35% -9.25% 2x

L15

FP32 0.82% 0.01% 0.19% 98.97% 1.03% 98.97% - -

FP16 1.75% 0.04% 0.34% 97.87% 2.13% 97.87% -1.10% 2x

FP8 0.92% 0.17% 0.46% 98.45% 1.55% 98.45% -0.53% 4x

FxP32 0.34% 0.06% 0.36% 99.24% 0.76% 99.24% 0.26% 0

FxP16 0.57% 0.12% 0.57% 98.74% 1.26% 98.74% -0.23% 2x

L18

FP32 3.26% 0.02% 0.19% 96.53% 3.47% 96.53% - -

FP16 6.10% 0.04% 0.38% 93.48% 6.52% 93.48% -3.05% 2x

FP8 5.22% 0.86% 10.56% 83.35% 16.65% 83.35% -13.18% 4x

FxP32 0.98% 0.14% 0.89% 98.00% 2.00% 98.00% 1.48% 0

FxP16 2.04% 0.26% 2.01% 95.70% 4.30% 95.70% -0.83% 2x

L21

FP32 3.22% 0.00% 0.06% 96.72% 3.28% 96.72% - -

FP16 5.61% 0.02% 0.14% 94.23% 5.77% 94.23% -2.50% 2x

FP8 3.62% 0.48% 9.10% 86.80% 13.20% 86.80% -9.92% 4x
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FxP32 0.37% 0.06% 0.56% 99.02% 0.98% 99.02% 2.29% 0

FxP16 0.63% 0.17% 1.19% 98.00% 2.00% 98.00% 1.28% 2x

L22

FP32 0.44% 0.00% 0.03% 99.52% 0.48% 99.52% - -

FP16 0.89% 0.00% 0.04% 99.07% 0.93% 99.07% -0.45% 2x

FP8 1.13% 0.06% 0.21% 98.61% 1.39% 98.61% -0.91% 4x

FxP32 0.14% 0.02% 0.04% 99.79% 0.21% 99.79% 0.27% 0

FxP16 0.29% 0.02% 0.10% 99.59% 0.41% 99.59% 0.07% 2x

∗ Safety increasing effect difference between a given scenario and FP32

First, it is immediately clear that, also for this FI campaign, the DNN safety

is impacted by the bit-width reduction. Second, also in this case, YOLO exhibits

high critical fault occurrence, i.e., up to 42.08% in the layer L0 in FP8 scenario.

Finally, for YOLO we notice the same phenomenon that we observed for LeNet-

5: for floating-point custom variants (FP16 and FP8), the difference between the

two sets of experiments (Tables 7 and 8) in terms of Safety gain with respect to

FP32 is higher than for fixed-point ones (FxP32, FxP16, and FxP8). Indeed, on

average, the difference for floating-point variants over all the layers is 59.38%,

while for fixed-point custom variants is 13.92%. As already mentioned, this

means that approximating the FP32 CNN version by using a custom floating-

point variant without retraining exposes to higher safety degradation than by

using the same bit-width fixed-point alternative.

4. Conclusions

This paper presents a characterization framework for analyzing the impact

of permanent faults affecting a Convolutional Neural Network intended to be

deployed in safety-critical and resource-constrained systems. The characteriza-

tion is done by means of fault injection campaigns on the darknet open source

framework. The experiments are performed at the software level with the aim

of being independent from the hardware architecture and, on the whole, to
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derive a common characterization of the behavior of CNNs affected by perma-

nent faults. This could be considered an interesting outcome since the designer,

starting from these results, could be able to select the most convenient data

type for his or her CNN application. Compared to previous works, we show

that depending on the data type definition, we can deeply impact the reliability

of the CNN. In particular, the results of the fault injection campaign showed

that YOLO is less resilient than LeNet-5, according to the fault classifications

used. Furthermore, for LeNet-5 CNN, fixed-point data provide a better trade-

off between memory footprint reduction and network resilience compared to

floating-point data. In conclusion, depending on the width of the distribution

of the CNN weight values, a designer can decide to use either the fixed-point

or the floating-point data type, with different bit-widths, to obtain different

trade-offs between resilience and resource gain. For example, the use of 8-bit

fixed-point data type for LeNet-5 provides 4X memory footprint reduction at

the cost of less than 0.45% critical faults. In the future, we intend to investigate

the reliability of DNNs by exploiting other data representations, such as the

integer data type.
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