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Abstract

Financial markets allocation is a difficult task as the method
needs to dramatically change its behavior when facing very
rare black swan events like crises that shift market regime. In
order to address this challenge, we present a gradient boosting
decision trees (GBDT) approach to predict large price drops
in equity indexes from a set of 150 technical, fundamental
and macroeconomic features. We report an improved accu-
racy of GBDT over other machine learning (ML) methods on
the S&P 500 futures prices. We show that retaining fewer and
carefully selected features provides improvements across all
ML approaches. We show that this model has a strong predic-
tive power. We train the model from 2000 to 2014, a period
where various crises have been observed and use a validation
period of 3 years to find hyperparameters. The fitted model
timely forecasts the Covid crisis giving us a planning method
for early detection of potential future crises.

Introduction
Numerous studies on stock markets have shown that in a nor-
mal regime, equity markets are rising steadily as investors
get rewarded for risk-taking (Siegel 2007). This is related to
the so called equity risk premium (see (Mehra and Prescott
1985a) or (Fama 1965)) that creates an upward trend in
stocks markets. More specifically, U.S. stocks have returned
6.5 to 7% inflation-adjusted annual returns over the last 200
years. This makes a passive buy-and-hold investment strat-
egy hard to outperform, unless one is able to accurately plan
when stock markets exit the normal rising regime. This dra-
matic shift from normal to Black swan crisis regime makes
the planning exercise of portfolio allocation very arduous. In
order to address this crucial challenge, we devise a gradient
boosting decision trees (GBDT) approach to predict large
price drops in equity indexes. The idea of simply determin-
ing if stock markets are in a normal or a ‘crash regime’ is
motivated by two major observations:

• The exercise of identifying two simple regimes is much
more realistic than trying to forecast stock market re-
turns themselves, as stock markets are notoriously non-
stationary and unpredictable especially when facing tail
events (Taleb 2007).
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• There are repeated patterns in the alternance of financial
booms and busts (Sornette 2003). We can highlight two
stylized facts well documented in the economics litera-
ture. First, some features portend a crisis regime in the
near future, such as herding behavior and leverage in-
crease, resulting in overextended upward trends in equity
markets (Rodriguez and Sbuelz 2006). These features take
their ground in various psychological biases (Kahneman
2011). Second, stock market crashes are often led by an
increase in credit spreads, a flight-to-quality and a slump
in cyclical commodities prices (Caballero and Krishna-
murthy 2008).

As presented in (Samitas, Kampouris, and Dimitris 2020),
machine learning and in particular planning techniques in
machine learning can provide an early signal to predict fi-
nancial crises. The article emphasizes that regional crashes
may spread to the whole market, increase the probability
of re-occurrence of crises in the near term and show uni-
versal and characteristic behavior that machine learning can
capture. Likewise, (Gu, Kelly, and Xiu 2020) proved that
machine learning techniques are able to extract and identify
dominant predictive signals, that includes variations on mo-
mentum, liquidity, and volatility. They show that machine
learning methods are able to provide predictive gains thanks
to capturing nonlinear interactions missed by other meth-
ods.The aim of this article is to present a machine learning
planning algorithm that captures universal and reproducible
behaviours to timely invest in and divest from equity mar-
kets.

On another theme, (Benhamou et al. 2021b), (Benhamou
et al. 2021a), (Benhamou et al. 2020c) or (Benhamou et al.
2020b) showed that planning techniques using deep rein-
forcement learning are a good alternative to traditional port-
folio methods. However, if one wants specifically to tar-
get crisis detection, a good alternative is rather to tackle
this planning exercise as a supervised learning problem. We
therefore devise a planning algorithm specifically geared to-
ward crisis detection that have the following characteristics:

• The planning method leverages more than 150 features
ranging from traditional financial and economics vari-
ables to technical variables.

• It aims specifically at determining if we are in normal or
crisis regime by classifying future returns position below



or above the historical 5 percentile level

• In the method, we tackle the issue of imbalanced data and
feature selection by doing sequential features selection.
We find that this feature selection is critical to achieve
good model performance.

Using modern machine-learning terminology, determin-
ing whether stock markets are in a normal or crash regime
from various fundamental and technical features, is referred
to as a ‘classification problem’. The problem is stated as fol-
lows. We say that a market is in normal regime if its return
is above its 5 percentile. In spirit, it is similar to the exercise
of looking at images that have cats and dogs and using raw
pixels to determine to which class (cat or dog) the image
belongs. Because the answer can depend on the time hori-
zon considered, we examine in turn each of the 15, 20 and
25 days horizons. The choice of these horizons is motivated
by the fact that 20 business days correspond to a month, a
period that is sufficient to capture a significant price trend,
but not long enough to be influenced by exogenous events
that would deteriorate the predictive power of the model.
For each market and horizon, a model that predicts the crash
probability is derived. Each model is then weighed propor-
tionally to its past Sharpe Ratio over the last two years on
the training set. The concept of mixing various models is re-
ferred to as an ‘ensemble approach’ and is known to bring
robustness and precision to machine learning models (see
for instance (Breiman 1996). The underlying machine learn-
ing model is a model available out-of-the-shelves, making
the approach understandable and not too complicated to re-
produce.

Related works
Our work can be related to the ever growing theme of us-
ing machine learning in financial markets. Indeed, with in-
creasing competition and pace in the financial markets, ro-
bust forecasting methods has become a vital subject for asset
managers. The promise of machine learning algorithms to
offer a way to find and model non-linearity in time series has
attracted lot of attention and efforts that can be traced back
as early as the late 2000’s where machine learning started
to pick up. Instead of listing the large amount of works, we
will refer readers to various works that reviewed the existing
literature in chronological order.

In 2009, (Atsalakis and Valavanis 2009) surveyed already
more than 100 related published articles using neural and
neuro-fuzzy techniques derived and applied to forecast stock
markets, or discussing classifications of financial market
data and forecasting methods. In 2010, (Li and Ma 2010)
gave a survey on the application of artificial neural networks
in forecasting financial market prices, including exchange
rates, stock prices, and financial crisis prediction as well as
option pricing. And the stream of machine learning was not
only based on neural network but also generic and evolution-
ary algorithms as reviewed in (Aguilar-Rivera, Valenzuela-
Rendón, and Rodrı́guez-Ortiz 2015).

More recently, (Xing, Cambria, and Welsch 2018) re-
viewed the application of cutting-edge NLP techniques for
financial forecasting, using text from financial news or twit-

ters. (Rundo et al. 2019) covered the wider topic of usage of
machine learning techniques, including deep learning, to fi-
nancial portfolio allocation and optimization systems. (Nti,
Adekoya, and Weyori 2019) focused on the usage of sup-
port vector machine and artificial neural networks to fore-
cast prices and regimes based on fundamental and technical
analysis. Later on, (Shah, Isah, and Zulkernine 2019) dis-
cussed some of the challenges and research opportunities,
including issues for algorithmic trading, back testing and
live testing on single stocks and more generally prediction
in financial market. Finally, (Sezer, Gudelek, and Ozbayo-
glu 2019) reviewed not only deep learning methods but also
other machine learning methods to forecast financial times.
As the hype has been recently mostly on deep learning, it
is not a surprise that most of their reviewed works are on
deep learning. The only work cited that is gradient boosted
decision tree is (Krauss, Do, and Huck 2017)

Recently a growing theme of planning method for port-
folio allocation using deep reinforcement learning has
emerged either applied to a few strategies (Benhamou et al.
2021b), or to the appropriate timing of hedging strategies
(Benhamou et al. 2020b), (Benhamou et al. 2020c), (Ben-
hamou et al. 2021c). The challenge in this approach is
twofold: deep reinforcement learning does not specifically
address the question of forecasting regime and can be less
efficient than a supervised learning method geared toward
crisis prediction. Model explanability can also be challeng-
ing as opposed to GBDT methods that can leverage Shapley
values and various explainable AI methods (Zhang, Yi, and
Chen 2020) or (Ohana et al. 2021).

Another stream of research in machine learning applied
to finance have been to review the best algorithms for pre-
dicting financial markets. With only a few exceptions, these
papers argue that deep networks outperform traditional ma-
chine learning techniques, like support vector machine or
logistic regression. There is however the notable exception
of (Ballings et al. 2015) that argue that Random Forest is the
best algorithm when compared with peers like Support Vec-
tor Machines, Kernel Factory, AdaBoost, Neural Networks,
K-Nearest Neighbors and Logistic Regression. Indeed, for
high frequency trading and a large amount of input data
types coming from financial news and twitter, it comes at no
surprise that deep learning is the method of choice as it can
incorporate large amount of input data types and in particu-
lar text inputs. But when it comes to small data set like daily
data with properly formatted data from times series, the real
choice of the best machine learning is not so obvious.

Interestingly, Gradient boosting decision trees (GBDT)
are almost non-existent in the financial market forecasting
literature. One can argue that GBDT are well known to
suffer from over fitting when tackling regression problems.
However, they are the method of choice for classification
problems as reported by the machine learning platform Kag-
gle. In finance, the only space where GBDT are really cited
in the literature is the credit scoring and retail banking. For
instance, (Brown and Mues 2012) or (Marceau et al. 2019)
reported that GBDT are the best ML method for this specific
task as they can cope with limited amount of data and very
imbalanced classes.



If we are interested in classifying stock market into two
regimes: a normal rising one and a crisis one, we are pre-
cisely facing very imbalanced classes and a binary classifi-
cation challenge. In addition, if we are looking at daily ob-
servations, we have also a machine learning problem with
limited number of data. This two points can hinder seriously
the performance of deep learning algorithms that are well
known to be data greedy. Hence, our work has consisted in
researching whether GBDT can provide a suitable method to
identify regimes in stock markets. In addition, as a byprod-
uct, GBDT provide explicit rules (even if they can be quite
complex) as opposed to deep learning making it an ideal can-
didate to investigate regime qualification for stock markets.
In this work, we apply our methodology to the US S&P 500
future. Naturally, this can be easily transposed and extended
to other main stock markets like the Nasdaq, the Eurostoxx,
the FTSE, the Nikkei or the MSCI Emerging future.

Contribution
Our contributions are threefold:
• We specify a valid methodology using GBDT to do plan-

ning in financial markets and in particular to determine
regimes in financial markets, based on a combination of
more than 150 features including financial metrics, macro
economics, risk aversion, price and technical indicators.
Not only does this provide a suitable explanation for cur-
rent equity levels thanks to features analysis but it also
provides a tool to attempt for early signals should a turn
point in the market come.

• We discuss in greater details technical subtleties for im-
balance data sets and features selection that is key for
the success of this methods. We show that for many other
machine learning algorithm, selecting fewer very specific
features provides improvement across all methods.

• Finally, we compare this methodology with other machine
learning (ML) methods and report improved accuracy of
GBDT over other ML methods on the S& P 500 future.
We finally apply the method to other equity index futures
and show that the method works accross all these 7 equity
index futures.

Data used
We screen more than 150 variables summarized in figure 1,
belonging to the following categories:
• The Risk Aversion metrics include the equities’ and

G10/emerging currencies’ implied volatilities, the High
Yield corporate credit bonds credit spreads, and the shape
of the VIX forward curve, defined as the ratio of the VIX
Spot over the VIX three-month forward. These indicators
characterize the financial assets’ liquidity conditions or
the accessibility of funding, two complementary measures
of risk appetite.

• Financial metrics include the one month, six months and
one year growth of Earnings per Share, Price/Earnings
and Price/Sales for each equity index. These indicators
predict the earnings and sales growth cycle, while provid-
ing an insight into valuation multiples changes.

• Macroeconomic indicators consist of the Citigroup Eco-
nomic Surprise indices in the main economic zones (US,
EU, Japan, Emerging, Worldwide). These indicators con-
vey the cycle of positive or negative economic surprises
on a daily basis.

• US Yields change (10 years yield, 2 years yield, 10 year
breakeven, US Libor) over the same horizons: one month,
six months and one year. A change in yields may either
reflect the business cycle, the inflation cycle, or the mon-
etary stance of the Federal Reserve.

• The steepness of the US yield curve is also computed as
a difference between the government bond yield rate and
the short term LIBOR rate on two distinct maturities (10
years, 2 years). This indicator is a well-known predictor
of the economic cycle as it computes the spread between
long term and short term rates.

• Technical indicators comprise the put/call ratio (as pro-
vided by the CBOE), and the market breadth (the per-
centage of individual stocks above their respective 200
days Moving Average) on the six equity indices and the
MSCI World ACWI. The Put/Call ratio may reflect ex-
treme optimism or pessimism in the investors’ consensus
while market breadth characterizes the unweighted aver-
age participation of individual stocks among the global
equity indices.

• Last but not least, technical indicators from various asset
classes are analyzed:

– Excess returns of six equity indices, BCOM Energy
and Industrial Metals, FX Emerging Bloomberg In-
dex Excess Return (reflecting the aggregate evolution
of 8 emerging currencies vs. the dollar), dollar index,
as computed by the ICE US. Returns are computed
over the same time horizons as before (one month, six
months and one year),

– Historical volatilities, computed over horizons of 10,
20 and 30 days,

– Distance to 250 days and 500 days moving average.
– Sharpe Ratios of all the above-mentioned assets, evalu-

ated over horizons of 6 months and 1 year.

Cyclical commodities, the dollar index as well as emerg-
ing currencies are often leading indicators of the economic
cycle. Furthermore, cyclical asset returns and volatilities
may either be used procyclically or countercyclically to pre-
dict an incoming crisis. It is well known that in case of pos-
itive or negative bubble bursts, there are extreme market re-
versals (see (Kent and Moskowitz 2015)). Overall, 102 fea-
tures are built upon the above variables. These features are
used to predict the crash probability in each of the six equity
markets.

These features capture the universal behaviors docu-
mented in (Kahneman 2011), namely herding and trending
behavior, cross-market contagions, leverage procyclicality
etc. They also contained a mix of fundamental and techni-
cal indicators to capture the two main approaches used in
the asset management industry.



Figure 1: Features used

Why GBDT?
The motivations for Gradient boosting decision trees
(GBDT) are multiple:
• GBDT are well know methods to provide state of the art

ML methods for small data sets and classification prob-
lems. They are supposed to perform better than their state
of the art brother, Deep Learning methods, for small data
sets. In particular, GBDT methods have been one of the
preferred methods from Kagglers and have won multiple
challenges.

• GBDT methods can handle data without any prior re-
scaling as opposed to logistic regression or any penalized
methods. Hence they are less sensitive to data re-scaling

• they can cope with imbalanced data sets as detailed in sec-
tion .

• when using the leaf-wise use leaf-wise tree growth com-
pared to level-wise tree growth, they provide very fast
training.

Methodology
In a normal regime, equity markets are rising as investors
are paid for their risks. This has been referred to as the eq-
uity premium in the financial economics literature (Mehra
and Prescott 1985b). However, there are subsequent down
turns when financial markets are in panic and falling. Hence,
we can simply assume that there are two regimes for equity
markets:
• a normal regime where an asset manager should be long

to benefit from the long bias of equity markets.
• and a crisis regime, where an asset manager should ei-

ther reduce its equity exposure or even sell short it if the
strategy is a long short one.
We formally say that we are in crisis regime if returns

are below the historical 5 percentile computed on the train-
ing data set. The parameter 5 is not taken randomly but has
been validated historically to provide meaningful levels, in-
dicative of real panic and more importantly forecastable. For

instance for the S&P 500 market, typical levels are returns
at minus 6 to minus 5 percents over a period of 15 days.
To make our prediction whether the coming 15 days return
will be below 5 percentile (hence be classified as in crisis
regime), we use more than 150 features described later on
as they deserve a full description. Simply speaking these
150 features are variables ranging from implied volatility of
equities, currencies, commodities, credit and VIX forward
curve, to financial metrics indicators like 12 month forward
estimates for sales, earning per share, price earning, macro
economics surprise indexes (like the aggregated Citigroup
index that compiles and Z-scores most important economic
difference for major figures like ISM numbers, non farm
payrolls, unemployment rates, etc).

We are looking explicitly at only two regimes with a spe-
cific focus on tailed events on the returns distribution be-
cause we found that it is easier to characterize extreme re-
turns than to predict returns using our set of financial fea-
tures. In machine learning language, our regime detection
problem is a pure supervised learning exercise, with two
classes classification. Hence the probability of being in the
normal regime is precisely the opposite of the crisis regime
probability.

In the rest, we assume daily price data are denoted by Pt.
The return over a period p is simply given by the correspond-
ing percentage change over the period: Rd

t = Pt/Pt−d − 1.
The crisis regime is determined by the subset of events
where returns are lower or equal to the historical 5 percentile
or centile denoted by C. Returns that are below this thresh-
old are labeled 1 while the label value for the normal regime
is set to 0. Using traditional binary classification formalism,
we denote the training data X = {xi}i = 1N with xi ∈ RD

and their corresponding labels Y = {yi}Ni=1 with yi ∈ 0, 1.
The goal of our classification is to find the best classification
function F ∗(x) according to the sum of some specific loss
function L(yi, F (xi)) as follows:

F ∗ = argmin
F

N∑
i=1

L(yi, F (xi))

Gradient boosting considers the function estimation of F
to be in additive form where T is the number of boosted
rounds:

F (x) =

T∑
m=1

fm(x)

where T is the number of iterations. The set of weak learn-
ers fm(x) are designed in an incremental fashion. At the
m-th stage, the newly added function, fm is chosen to opti-
mize the aggregated loss while keeping the previous found
weak learners {fj}m−1

j=1 fixed. Each function fm belongs to
a set of parameterized base learners that are modeled as de-
cision trees. Hence, in GBDT, there is an obvious design
choice between taking a large number of boosted round and
very simple based decision trees or a limited number of base
learners but of large size. In other words, we can decide to
use a small boosted round and a large decision trees whose
complexity is mostly driven by its maximum depth or we can
alternatively choose a large boosted round and very simple



decision trees. In our experience, it is better to take small
decision trees to avoid over-fitting and an important number
of boosted round. In our experiment, we use 500 boosted
rounds. The intuition between this design choice is to pre-
fer a large crowd of experts that can not memorize data and
hence should not over fit compared to a small number of
strong experts that are represented by large decision trees. If
these trees go wrong, their failure is not averaged as opposed
to the first solution. Typical implementations of GBDT are
XGBoost as presented in (Chen and Guestrin 2016), Light-
GBM as presented (Ke et al. 2017), or Catboost as presented
(Prokhorenkova et al. 2018). We tested both XGBoost and
LightGBM and found an improvement in terms of speed of
three time faster for LighGBM compared to XGBoost for
similar learning performances. Hence, in the rest of the pa-
per, whenever we will be mentioning GBDT, it will be in-
deed LightGBM.

To make experiments, we take daily historical returns for
the S&P 500 merged back-adjusted futures prices. Our daily
observations are from 01Jan2003 to 15Jan2021. We split our
data into three subsets:
• a train data set from 01Jan2003 to 31Dec2014
• a validation data set used to find best hyper-parameters

from 01Jan2015 to 31Dec2017
• and a test data set from 01Jan2018 to 15 Jan2021

GBDT hyperparamers
GBDT have a lot of hyper parameters to specify. To our ex-
perience, the following hyper parameters are very relevant
for imbalanced data sets and need to be fine tuned using
evolutionary optimisations as presented in (Benhamou et al.
2019):
• min sum hessian in leaf
• min gain to split
• feature fraction
• bagging fraction
• lambda l2
There is a parameter playing a central role in the proper use
of GBDT which is the max depth. On the S&P 500 future,
we found that very small trees with a max depth of one per-
forms better over time than any larger tree. These 5 param-
eters mentioned above are determined as the best hyper pa-
rameters on the validation set.

Process of features selection
Using all the raw features would add too much noise to our
model and would lead to bias decision. We thus need to se-
lect or extract the main meaning full features. As we can see
in figure 2, we do so by removing the features in 2 steps.
• Based on gradient boosting trees, we rank the features by

importance or contribution.
• We then pay attention to the severity of multicollinearity

in an ordinary least squares regression analysis by com-
puting the variance inflation factor (VIF) to remove co-
linear features. Considering a linear model Y = β0 +

β1X1+β2X2+ ..+βnXn+ ε, the VIF is equal to 1
1−R2

j
,

with R2
j the multiple 2 for the regression of Xj . The VIF

reflects all other factors that influence the uncertainty in
the coefficient estimates.

At the end of this 2-part process, we only keep 33% of the
initial dataset.

Figure 2: Features selection process

It is interesting to validate that removing many data makes
the model more robust and less prone to overfiting. In the
next section, we will validate this point experimentally.

Results
Model presentation
Although our work is mostly describing the GBDT model,
we compare it against common machine learning models.
Hence we compare our model with four other models:
• RBF SVM that is a support vector model with a radial ba-

sis function kernel denoted and with a γ parameter of 2
and a C parameter of 1. We use the sklearn implementa-
tion. The two hyper parameters γ and C are found on the
validation set.

• a Random Forest model whose max depth is taken to 1
and its boosted round to 500. On purpose, we take simi-
lar parameters as for our GBDT model so that we bene-
fit from the averaging principle of taking a large boosted
round and small decision trees. We found that for annual
validation data set ranging from year 2015 on-wards and
for the S&P 500 markets, the combination of a small max
depth and a large number of boosted rounds performs
well.

• a first deep learning model, referred in our experiment as
Deep FC (for fully connected layers) that is naive built
with three fully connected layers (64, 32 and one for the
final layer) with a drop out in of 5 % between and Relu ac-
tivation, whose implementation details rely on tensorflow
keras 2.0

• a second more advance deep learning model consisting of
two layers referred in our experiment as Deep LSTM: a



64 nodes LSTM layer followed by a 5% dropout followed
by a 32 nodes dense layer followed by a dense layer with
a single node and a sigmoid activation.

For both deep learning models, we use a standard Adam op-
timizer whose benefit is combine adaptive gradient descent
with root mean square propagation (Kingma and Ba 2014).

For each model, we train them either using the full data
set of features or only the remaining features that are re-
sulting from the features selection process as described in
2. Hence, for each model, we add a suffix ’ raw’ or ’ FS’
to specify if the model is trained on the full data set or af-
ter features selections. We provide the performance of these
models according to different metrics, namely accuracy, pre-
cision, recall, f1-score, auc and auc-pr in tables 1 and 2. The
GBDT with features selection is among all metrics superior
and outperform the deep learning model based on LSTM
validating our assumption that on small and imbalanced data
set, GBDT outperform deep learning models. In tables 3 and
4, we measure the improvement of the model with feature
selection. We specifically make the difference between the
value obtained for the model with feature selection and the
same model without feature selection. We can see that using
a lower and more sparse number of feature improves dra-
matically the performance of all models, as measured by the
AUC and AUC pr metric.

AUC graphics
Figure 3 provides the ROC Curve for the two best perform-
ing models, namely the GBDT and the Deep learning LSTM
model with features selection. Simply said, ROC curves en-
ables to visualize and analyse the relationship between pre-
cision and recall and to stress test the model whether it
makes more error of type I or error of type II when trying
to find the right answer. The receiver operating characteris-
tic (ROC) curve plots the true positive rate (sensitivity) on
the vertical axis against the false positive rate (1 - speci-
ficity, fall-out) on the horizontal axis for all possible thresh-
old values. We can notice that the two curves are well above
the blind guess benchmark that is represented by the dotted
red line. This effectively demonstrates that these two mod-
els have some predictability power, although being far from
a perfect score that will be represented by a half square. The
ROC curve also gives some intuition whether a model is
rather concentrating on accuracy or recall precision. In an
ideal world, if the ROC curve of the model was above all
other models’ ROC curve, it will Pareto dominates all other
and will be the best choice without any doubt. Here, we see
that the area under the curve for the GBDT with features se-
lection is 0.83 to be compared with 0.74 which is the one of
the second best model, namely the Deep LSTM model with
also Features selection. The curve of the first best model
GBDT represented in blue is mostly over the one of the sec-
ond best model the Deep LSTM model. This indicates that
in most situations, we expect this model to perform better
than the Deep LSTM model

Dealing with imbalanced data
Machine learning algorithms work best when samples num-
ber in each class are about equal. However, when one or

Figure 3: ROC Curve of the two best models

Table 1: Model performance

Model accuracy precision recall

GBDT FS 0.89 0.55 0.55
Deep LSTM FS 0.87 0.06 0.02
RBF SVM FS 0.87 0.03 0.07
Random Forest FS 0.87 0.03 0.07
Deep FC FS 0.87 0.01 0.02
Deep LSTM Raw 0.84 0.37 0.33
RBF SVM Raw 0.87 0.02 0.01
Random Forest Raw 0.86 0.30 0.09
GBDT Raw 0.86 0.20 0.03
Deep FC Raw 0.85 0.07 0.05

Table 2: Model performance

Model f1-score auc auc-pr

GBDT FS 0.35 0.83 0.58
Deep LSTM FS 0.13 0.74 0.56
RBF SVM FS 0.13 0.50 0.56
Random Forest FS 0.13 0.54 0.56
Deep FC FS 0.13 0.50 0.56
Deep LSTM Raw 0.21 0.63 0.39
RBF SVM Raw 0.13 0.50 0.36
Random Forest Raw 0.14 0.53 0.25
GBDT Raw 0.13 0.51 0.18
Deep FC Raw 0.13 0.49 0.06

Table 3: Improvement with features selection

Model accuracy precision recall

GBDT 0.02 0.35 0.52
Deep LSTM 0.03 -0.31 -0.31
RBF SVM - 0.01 0.06
Random Forest 0.02 -0.27 -0.02
Deep FC 0.02 -0.06 -0.03



Table 4: Improvement with features selection

Model f1-score auc auc-pr

GBDT 0.23 0.32 0.41
Deep LSTM -0.08 0.11 0.17
RBF SVM - - 0.20
Random Forest -0.02 0.01 0.31
Deep FC - 0.01 0.50

more classes are very rare, many models don’t work too well
at identifying the minority classes. In our case, we have very
imbalanced class as the crisis regime only occurs 5 percents
of the time. Hence the ratio between the normal regime and
the crisis regime occurrence is 20! This is a highly imbal-
anced supervised learning binary classification and can not
be done using standard accuracy metric. To avoid this draw-
back, first, we use the ROC AUC as a loss metric. The ROC
AUC metrics is a good balance between precision and recall
and hence accounts well for imbalanced data sets. We also
weight more the crisis regime occurrence by playing with
the scale pos weight parameter in LightGBM and set it to
20 which is the ratio between the class labeled 0 and the
class labeled 1.

Application to the Covid crisis

We provide in figure 4 the out of sample probabilities in
connection with the evolution of the price of the S&P 500
merged back adjusted rolled future. In order to smooth the
probability, we compute its mean over a rolling window of
one week. We see that the probability spikes in end of Febru-
ary indicating a regime of crisis that is progressively turn
down to normal regime in mid to end of March. Again in
June, we see a spike in our crisis probability indicating a
deterioration of market conditions.

Figure 4: Mean over a rolling window of 5 observation of
the probabilities of crash

Can it act as an early indicator of future crisis?
Although the subject of this paper is to examine if a crisis
model is effective or not, we can do a simple test to check if
the planning model can be an early indicator of future crisis.
Hence, we perform a simple strategy consisting in delever-
aging as soon as we reach a level of 40 % for the crisis
probability. The objective here is by no means to provide
an investment strategy as this is beyond the scope of this
work and would require some other machine learning tech-
niques likes the ones around deep reinforcement learning to
use this early indicator signal as presented in (Benhamou
et al. 2020a) (Benhamou et al. 2021a) or (Benhamou et al.
2020c).

The goal of this simple strategy that deleverages as soon
as we reach the 40% threshold for the crisis probability is
to validate that this crisis probability is an early indicator of
future crisis. To be very realistic, we apply a 5 bps trans-
action cost in this strategy. We see that this simple method
provides a powerful way to identify crisis and to deleverage
accordingly as shown by the figure 5.

Figure 5: Simple strategy

Conclusion
In conclusion, in this work, we see that GBDT methods can
provide a machine learning answer to the planning problem
of determining in which regime a market is. Using a sim-
ple approach of two modes, GBDT is able to learn from
past data and classify financial markets in normal and cri-
sis regimes. When applied to the S&P 500, the method gives
high AUC score providing some evidence that the machine
is able to learn from previous crisis. We also report that
GBDT report improved accuracy over other ML methods,
as the problem is a highly imbalance classification problem
with a limited number of observation.
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