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Abstract 

 

Estimates of climate change’s economic impacts vary widely, depending on the applied 

methodology. This uncertainty is a barrier for policymakers seeking to quantify the benefits of 

mitigation. In this Perspective, we provide a comprehensive overview and categorization of the 

pathways and methods translating biophysical impacts into economic damages. We highlight 

the open question of the persistence of impacts as well as key methodological gaps, in particular 

the effect of including inequality and adaptation in the assessments. We discuss the need for 

intensifying interdisciplinary research, focusing on the uncertainty of econometric estimates of 

damages as well as identification of the most socioeconomically relevant types of impact. A 

structured model intercomparison related to economic impacts is noted as a crucial next step. 

 

 

*** 
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Support for the great societal transformations required to reach the goals of the Paris 

Agreement can be built by a comprehensive integrated assessment weighting the costs of 

mitigation and adaptation measures against the corresponding avoided impacts. Mitigation 

strategies and their associated costs can be robustly assessed due to extensive collaborative 

modelling efforts and model intercomparisons, helping to assess ranges and uncertainties1,2. The 

assessment of biophysical climate change impacts such as changes in yields, water availability 

or sea-level rise has been greatly advanced in recent years by consistent cross-sectoral modelling 

initiatives such as the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)3. 

However, a robust understanding and quantitative assessment of their full future socioeconomic 

impacts remains a substantial challenge. The quantitative estimates of global economic impacts 

provided in the literature vary widely4, depending on the methods used to assess them and the 

types of impact included. In particular, the great advances of empirical studies linking climatic 

conditions and different aspects of socioeconomic systems5 have widened the range of estimates, 

related also to the debate on whether temperature affects level or growth of productivity6–8. 

Integrating such empirical findings into global cost–benefit analysis (CBA) models leads to 

larger social costs of carbon and more stringent mitigation pathways, as does the integration 

of distributional aspects9–12. This disparate and inconclusive understanding of economic impacts 

is a challenge for researchers, policymakers and stakeholders alike. Multiple literature reviews 

have addressed aspects of this complex topic, focusing broadly on linkages between climate and 

the economy and related policy implications13, on key open research questions14, on econometric 

advances5,15,16 or on damage functions in CBA models17. The goal of this Perspective is to add 

a comprehensive, accessible and structured overview of the methods used to derive final 

economic damages from biophysical impacts, explicitly without consideration of adaptation or 

mitigation measures, including their advantages and disadvantages. This is aimed as a 

foundation for researchers from different disciplines (for example, economists, integrated 

assessment modellers, biophysical impact modellers) to advance the integrated research on 

economic impacts, and as a guide for policymakers to contextualize new cost estimates and 

their uncertainties. While not aiming for a complete literature review, we provide an overview 

of key methodological characteristics of recent global studies of economic impacts. Furthermore, 

we contribute a discussion of the key empirical question of persistence of impacts, highlight the 

status of modelling adaptation and inequality as key determinants of final impacts, and outline 

next research steps. 

Translating biophysical into economic damages 

Quantifying the total economic losses resulting from climate change requires a comprehensive 

analysis of social welfare. Generally, they include (1) direct losses of income and production; 

(2) the value of resources, goods and services that become unavailable or of reduced quality; 

(3) damage to productive capital and infrastructure; (4) reductions in ecosystem services; (5) 

effects on morbidity and mortality; and (6) the loss of subjective well-being from less tangible 

benefits, such as the extinction of species or deterioration of ecosystems. These are divided into 

market impacts (1–3), directly valued within markets, and non-market impacts (4–6), which 

are not traded. In order to compare different policy options, market and non-market impacts 

are translated into commensurate units of ‘welfare’. Welfare is assumed to increase with 

consumption, that is, the purchase of goods and services, but also depends on non-market 
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determinants. This allows for the evaluation and comparison of different policies balancing 

income levels with subjective benefits. Non-market damages can be included through a 

translation into monetary units, such as the willingness-to-pay to avoid a given subjective loss, 

or by employing a welfare damage function accounting for both aspects of damages. As the 

units of welfare are arbitrary, total economic damages are often reported as the equivalent loss 

in consumption that would result in the same welfare loss as the combined market and non-

market damages (the Hicksian equivalent variation). 

 

Fig. 1 | Taxonomy of approaches to capture economic impacts of climate change. The different end points capture 

different levels of feedback effects. The column on the right lists some examples for models and studies applying the 

methodologies. Model references: global climate models98, ISIMIP (www.isimip.org/impactmodels), Climate Impact 

Lab (http://www.impactlab.org/), DIVA20, POLES21, ARIO26, DSK24, SEAGLAS53, ICES22, AIM54, ENV-

LINKAGES23, GEM-E357, GTAP-INT58, WITCH99, REMIND37, GCAM100, DICE30, FUND32 and PAGE31 

Figure 1 shows a taxonomy of the different possible approaches to derive economic damages 

from physical climate change, with examples of models. The result crucially depends on the 

type of feedback and dynamic processes captured in the different modelling approaches. As the 

models employed at the different levels depicted in Fig. 1 increase in comprehensiveness, they 

invariably use parameterization to simplify constituent processes. For example, process-based 

crop models represent the biophysical growth processes of individual plants, whereas statistical 

yield models parameterize the relationship between weather and yields, while encompassing the 

dynamic feedbacks between farmers and their fields. Detailed examples are discussed in the 

Supplementary Information (see also Supplementary Fig. 2). Model parameterization forces the 

models to assume forms of stationarity and undermine the representation of adaptation on 

scales below the model’s scale. In particular, macro- and microeconomic econometric estimates 

assume stationarity of the biophysical process as reflected in the observational record. 

Computable general equilibrium (CGE) models allow redistribution of economic activity, but 

typically assume that supply and demand elasticities are constant (but see ref. 18 for a 

relaxation of this assumption). This may be inadequate when projecting climate change impacts 

and adaptation policies over the long term (for example, to 2100), as it fails to capture 
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potentially radical changes in technical systems, investment patterns and consumption 

dynamics (see ref. 19 for a general discussion of the issue of constant elasticity of substitution 

in energy–climate–economy models). Note also that models that describe fundamental 

biophysical relationships reflect current technologies (for example, crop varieties, distribution 

systems, protective gear) and are likely to misrepresent impacts in the distant future. 

 

 

Final economic impacts with dynamic effects are not included as these are typically combined with policy optimization in the 

literature. Instead, for comparison, aggregate damage functions as used in the most prominent CBA models DICE, FUND and 

PAGE are featured, together with recent damage functions based on meta-analysis of the damage literature4. For brevity we 

provide only one example reference per approach; for a more extensive literature overview including methodological details of the 

studies see Supplementary Table 1. 

Table 1 | Comparative overview of aggregate global economic damage estimates following three main different 

approaches as shown in Fig. 1 

A main differentiation in the assessment of impacts is between bottom-up and top-down 

approaches. Bottom-up approaches quantify impacts specifically for individual impact 

channels. The valuation of biophysical impact indicators is a crucial step. Different techniques 

can be used, ranging from simple conversion factors such as the value of statistical life to the 

use of partial equilibrium models20,21, CGE models22,23 or agent-based models24–26 (for example, 
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process-based crop models are used to calculate regional crop failures, which are then valuated 

by agro-economic partial equilibrium models). By contrast, in top-down approaches, climate 

damages are quantified by econometrically estimating aggregate impacts on economic output. 

Furthermore, we classify different end points for a final assessment: the direct economic impact, 

which is simply the sum of sectoral impacts, and two types of final impact capturing system 

readjustment. These are the final impact accounting for interplay between different impacts 

and sectors, and the final impact accounting additionally for dynamic effects such as savings 

or capital accumulation in the economic system. The latter is normally obtained using growth 

models27,28. These feedback effects can increase or decrease overall damages (that is, have an 

adaptation effect) and are crucial for a complete or overall picture. Aggregate damage functions, 

relating temperature change to output change, can be derived from all end points. They are 

used in CBA models for policy optimization. Ref. 17 provides a detailed review of the functions 

applied in the most prominent CBA models DICE29,30, PAGE31 and FUND32. These damage 

functions tend to yield rather small losses (for example, in the case of DICE, 2.1% for a 3 °C 

temperature increase over pre-industrial levels and 8.5% for a 6 °C increase), possibly due to 

the high level of aggregation, outdated underlying impact estimates, and ambitious assumptions 

about adaptation and substitutability. One attempt to improve them includes meta-analysis of 

economic damage assessments (see, for example, refs. 4,29), which can lead to larger effects. 

Damage functions have been criticized for embedding many, typically opaque assumptions and 

poor linkages to the underlying processes33. A number of studies extend the standard damage 

function in the DICE model to account for uncertainty in damages34, the possibility of tipping 

points35 or natural capital36. Another increasing body of literature applies empirical damage 

estimates, yielding larger damages, either directly on output9,37 or through changes in capital 

depreciation or productivity10,38. As we focus on the damage assessments here, see ref. 17 for a 

further review of the critiques as well as a research agenda to improve damage functions. 

A key issue in economic damage assessment is the coverage of impact channels (see 

Supplementary Fig. 1 and associated discussion, and Table 1). No approach is complete, but 

while this is fairly transparent for bottom-up approaches detailing the channels captured, the 

coverage is less clear for top-down approaches or aggregate damage functions. Top-down 

econometric estimates generally capture market effects driven by temperature fluctuations, for 

example, productivity effects, but not sea-level rise, extreme events or non-market effects, some 

of which are included in the CBA models. All available estimates are lower bounds in that 

context, and for many of the missing channels we do not know how large the additional effect 

will be. First steps are being taken now to remedy this gap, for example, in the context of the 

Climate Impact Lab39.  

Modelling approaches for global aggregate impacts 

The estimates of global aggregate economic effects of climate change in the literature vary 

widely, reflecting the methodological diversity described above. Here, we provide a comparative 

overview (Table 1 and Fig. 2) and methodological discussion for results along the different end 

points outlined in Fig. 1. Supplementary Table 1 provides a categorization of individual studies 

from the literature with more methodological detail. Note that, for reasons of clarity and 

manageability, we focus on studies from recent years, as most earlier studies have been updated 
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or built upon4. We do not discuss the end point of final economic impacts with dynamic effects 

here because such estimates are rarely provided in the literature without the application in 

policy optimization (although see ref. 27 for estimations of the size of the dynamic effects). 

This constitutes an important gap in analyses, preventing, for example, the calculation of 

benefits of mitigation or the quantification of the contribution of dynamic effects to the overall 

damage.  

 

Fig. 2 | Global GDP losses at increasing warming levels, estimated with different modelling approaches. a, Direct 

economic impacts based on bottom-up assessment. b, Final economic impacts with sectoral feedback effects based 

on bottom-up assessment. c, Final economic impacts with sectoral feedback effects based on top-down econometric 

studies. d, Aggregate damage functions from the prominent CBA models DICE, FUND and PAGE, and from the 

meta-analysis by ref. 4 (with different specifications). For the FUND and PAGE models, we show the implied 

damage functions based on ref. 17. The meta-analysis by ref. 4 provides three different specifications. 

Final economic impacts based on top-down econometrics 

Top-down estimates of macroeconomic damages provide a simple representation for use in 

integrated assessment models (IAMs), and recent panel-based econometric research improves 

their empirical basis (see ref. 4 for a discussion of earlier cross-sectional estimates). However, 

these results come with important assumptions and limitations, described below. A robust 

observed relationship exists between changes in aggregate economic output (gross domestic 

product (GDP) per capita) and changes in regional temperatures. This relationship has been 

observed on multiple scales (ADM1 and ADM2 indicate first-order and second-order 

administrative units of countries): global–national6,7,40–42, global– ADM18, global–household 

(M. Burke and S. Hsiang, unpublished results), European Union–national43, United States–

ADM141,44, United States–ADM245, United States–metro43, Brazil–ADM1 and Indonesia–

ADM143. The main differences include the measure of temperature (level or change), the 

functional form (typically linear, polynomial or binned), and the inclusion of interaction terms 

and fixed effects. Innovations have focused on functional forms that explore nonlinearity, 
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adaptation8,41 and the effect of different sectors, seasons and periods42,44. The resulting estimates 

vary widely, with GDP losses under Representative Concentration Pathway 8.5 in 2100 of 

between 7%41 and 23%7, and very high uncertainties40. It remains an open question whether all 

countries are affected in a similar way7 or if a negative relation exists only for poor countries, 

due to their level of development as well as dependence on sectors with high climate exposure, 

such as agriculture6,46. One of the most important open questions is for how long climate-

induced economic losses persist. In general, shifts in climate can have an immediate, transitory 

and long-run effect8. A shock to growth in one year can lead to higher, equivalent or 

permanently lower long-term outcomes, depending on rebound effects47. Several authors have 

proposed functional forms for the dynamics of persistence (see Fig. 3). Low impacts can derive 

from a quick return to the baseline per capita GDP after one-year temperature shocks (level 

effects8), whereas larger impacts emerge when the return is slow or non-existent (growth 

effects41,45,48), although this order may be reversed49. Growth effects can also appear when 

temperature levels instead of temperature change are used as the temperature measure, leading 

to an accumulation of damages for permanent temperature increases (ref. 7 versus ref. 8). The 

question of whether a climate shock results in permanently lower economic output is 

fundamentally an empirical question. One approach to resolving it is to construct a multi-

annual impulse response curve, describing the effect of temperatures from multiple past years5,6. 

Unfortunately, datasets are short, estimates are noisy and the question remains unresolved on 

the national40 and subnational (for example, disagreement between refs. 8 and 43) scales. In 

the face of this uncertainty, we should distinguish the empirical question of persistence from 

the effects of the modelling decisions taken when using these results. An empirical relationship 

can be modelled with different persistence assumptions, offering a way to represent this 

uncertainty. 

Two basic approaches are used in IAMs to project economic output. When the trajectory of 

economic output is derived from exogenous growth rates, we call it a ‘growth projection’; when 

it is derived from a scenario of economic output levels, we call it a ‘level projection’. Applied 

to a single-year response, growth projections produce growth effects and level projections 

produce level effects, and a wide gap opens between the two as time progresses (Fig. 3). 

However, both modelling approaches could result in either effect: a growth projection can 

produce a level effect when there is full rebound, and a level projection can become a growth 

effect with an infinite impulse response. In the face of empirical uncertainty, either projection 

approach can be applied to an empirical relationship such as the one described above37,50. 

Either assumption seems plausible a priori. Physically, a growth rate effect could emerge 

because of capital destruction, under-investment, or human capital effects, resulting in long-

term feedback27. Level effects could result if the determinants of economic growth are unaffected 

by climate change (for example, if damages are applied after savings), reflecting resilience (with 

rebound) or adaptation (with a diminishing impulse response). Some authors have developed 

models of partial persistence in response, based on existing approaches37,48. 

Besides persistence, other dimensions of the response of economies to climate change are not 

captured by current top-down empirical assessments. Most importantly, these include 

distributional effects (between producers and consumers, rich and poor, and rural and urban), 

non-market effects, the effects of sea-level rise or extreme events. Recent work suggests that 
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aggregation masks the important effect of precipitation on growth in developing countries, 

which is usually found to be insignificant51. Finally, these empirical estimates assume basic 

stationarity of the climate–economic system: that historical responses can inform future 

responses. This will no longer hold if climate shifts drastically (for example, with widespread 

desertification), or when the economy changes strongly. This reflects the challenge of 

econometric analysis to distinguish the effects of weather (isolated shocks) from climate 

(persistent states that admit adaptation). While econometric papers studying GDP effects 

generally find that the response to shocks has not changed much over the historical record, 

suggesting little adaptation, new methods are emerging to estimate the climate contribution of 

weather responses directly15,39,52. 

 

 

Fig. 3 | Level and growth effects. Simulations of different models of levels and growth effects from a one-year weather 

shock (left) or a step-change in climate (right). The top panels show the simulated shock for each column, consisting 

of a 1% GDP loss, incurred either only once or continuously due to a change in climate in year 2. The middle panels 

show per cent differences in GDP levels, relative to a baseline without damages. The bottom panels show differences 

in growth rate per year relative to the baseline growth rate. In the following, Y indicates GDP, G is the growth rate 

absent climate change, D is the effect of warming on growth, t is the year. Level effect, Yt = Yt(1 − D): damages 

are applied in each year to the baseline trajectory; this results in a compensating rebound to a single-year shock 

and a return to a parallel, lower trend for permanent climate shifts. Growth effect, Yt = Yt−1(1 + G − D): after a 

shock, growth follows a new baseline; this results in permanently lower growth rates and a large gap from the 

baseline trajectory.  

Finally, IAMs cannot directly use parameter coefficients derived from econometric estimates 

(see also ref. 16). These estimates rely on temperature shocks, and their temperature variables 

are local and include annual variability, which is typically missing from IAMs. Jensen’s 

inequality implies that the expected value of one of these convex functions applied to variable 

temperatures will not equal the result of one of these functions applied to the expected value 

of temperature. Two basic approaches can be used to resolve this. One option is to 

stochastically downscale global temperatures to variable, local temperature, with the inclusion 

of random noise accounting for temporal and spatial autocorrelation48. Alternatively, the 
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econometric models can be applied to weather data from general circulation model projections, 

and then a statistical relationship can be found between the average of these impacts and long-

run climatic mean temperature39.  

Bottom-up approaches 

Macroeconomic losses from climate change can be estimated using bottom-up approaches, 

either through the enumeration of direct economic impacts, or by assessing aggregate impacts 

using a sector-detailed CGE model, agent-based supply chain models or agent-based IAMs 

resolving impacts on individual economic agents (for example, firms, households or economic 

sectors). The most prominently covered impact channels in these approaches include 

agriculture, labour productivity, tourism, health (infectious diseases, heat-related mortality), 

energy demand, sea-level rise and more recently extreme events (tropical cyclones, fluvial 

floods). Enumeration is given by the assessment of damages from individual impact channels, 

either econometrically53, by coupling biophysical impact models with a CGE model54, or via 

the valuation of literature-based relations of a given impact with temperature55. These are then 

simply summed up for the aggregate result. However, the enumeration approach ignores 

possible direct feedback effects between different impact channels, even before accounting for 

their impact on the economy. It also usually ignores resulting interactions within the economic 

system (except in the case of CGE coupling). 

However, the assessment of direct economic impacts tells only part of the story. Alternatively, 

individual impact channels can be applied jointly in a multi-channel CGE model, which gives 

the aggregate equilibrium effects of climate change impacts22,23,56–58. Such models apply impacts 

directly on stocks such as land or capital, factor productivity and demand. They account for 

the propagation of impacts across sectors and their economic effects, in particular in terms of 

the redistribution of economic activity (that is, structural change, changes in trade patterns, 

prices and carbon emissions). Similarly, global agent-based supply chain models can capture 

the spreading of, and changes in trade patterns resulting from local climate damages induced 

by extreme weather events across sectors and in the global trade network59. All of these 

mechanisms can increase or decrease the final aggregate impact. It is not a priori clear in which 

direction this goes28. Most CGE models suffer from similarly limited spatial resolution as IAMs, 

due to the computational challenges posed by solving optimization problems with high spatial 

and temporal dimensionality60. Ref. 58 provides an exception, with a large-dimensional CGE 

climate and trade model including 139 countries and 57 commodity sectors. CGE models do 

not effectively incorporate uncertainty, save for a few rare and small-dimensional cases61. 

Finally, although CGE models can account for heterogeneity in land62, labour63 and capital64, 

global CGE multi-channel climate change models do not, which is a serious limitation for 

damage functions that aim at incorporating extensive damages from sea-level rise or age cohort 

effects in labour. Existing global assessments of damages using CGE models yield fairly low 

numbers (see Table 1 and Fig. 2) because they have a limited time horizon65, the global 

aggregate masks large regional differences (for example, more than 20% in annual long-run 

losses for some countries60), or more importantly the damage functions used in global CGE 

models are, by construction, very specific to commodity sector or factors of production and do 

not, at least until now, cover the full range of possible impacts. In refs. 58,55, for example, 

economic damages are limited to losses in labour and agricultural productivity, limited damages 
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from sea-level rise (that is, losses in only arable land) and impacts on tourism. Therefore, 

comparing bottom-up assessments with each other requires detailed knowledge on included 

impact channels. Comparing them with top-down assessments or those based on aggregate 

damage functions is of limited value. The first agent-based IAM24 captures climate impacts 

through microshocks and finds much larger impacts than standard IAMs or CGEs (up to 85% 

GDP loss in 2100 for labour productivity shocks). The reason is the presence of nonlinearities 

and an endogenous emergence of economic tipping points through the interaction of 

heterogeneous agents. 

One main issue for all types of bottom-up study based on biophysical modelling is the reliance 

on one climate-impact model combination per channel. The handling of a multitude of very 

different process-based modelling approaches and the aggregation of data with high spatial and 

temporal resolution leads to a trade-off between the number of impact channels covered 

explicitly and the handling of the uncertainty stemming from impact modelling. However, this 

uncertainty can be large66. Results from projects such as ISIMIP should be better utilized to 

provide input for CGE modelling, allowing for proper quantification of the uncertainty 

surrounding the resulting policy advice. 

Methodological gaps 

A number of open methodological questions are valid for all types of study discussed above and 

crucial for a robust assessment of economic damages. 

Aggregation of impacts 

The empirical assessment and modelling of impacts described above is performed on the 

geospatial scale, country level or macroregion level, and with varying distributional resolution 

(in most studies only one representative household per unit of observation). With regard to the 

spatial dimension, aggregation (for example, from country level to global) removes the 

substantial heterogeneity in impacts, and can even lead to a cancellation of positive and 

negative impacts. An important advance was achieved by refs. 67,68, presenting dynamic 

spatial growth models at a 1 × 1° spatial resolution. The same challenge probably applies to 

different income levels in the same spatial unit of observation and its correlation with impacts, 

which is addressed in more detail in the following section, owing to its prominence in current 

research. Moreover, the assessment of climate change impacts spans time frames from single-

year observations to decades and centuries. The resulting intertemporal aggregation has been 

subject to a large debate with a focus on the social discount rate69. This aggregation dimension 

is particularly relevant when aggregating impacts for computing the social cost of carbon70. 

Finally, in many cases, the impacts are uncertain, for example, owing to different impact or 

climate models used or parametric uncertainties. Different methods and tools to aggregate 

uncertain impact estimates and parameters have been proposed and applied; see ref. 71 for an 

overview. As such, an aggregation across different dimensions is required when summarizing 

impact estimates. Notably, the common choice of decreasing marginal utility of consumption 

(that is, declining satisfaction for an additional unit of consumption with increasing 

consumption), and the related questions of inequality, intertemporal fluctuation and risk 

aversion matter for this aggregation. Note also that the dimensions of aggregation can interact: 

see ref. 72 for an example. 
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The role of inequality 

When aggregating economic impacts, their distributional effect plays an important role (see 

also the review by ref. 56). Together with the spatial distribution of biophysical climate impacts 

(exposure), inequalities in income, wealth, education, health and so on are crucial drivers of 

how severely different people are affected (vulnerability), and whether or how quickly they can 

recover from the impact (resilience). A regressive distribution of climate impacts, together with 

the common assumption of decreasing marginal utility, leads to aggregate welfare losses being 

larger than average monetary losses (for example, ref. 73). These regressive impacts are rarely 

captured in most damage assessments, and especially not in those with high levels of sectoral 

and spatial aggregation. Regarding inequality between countries, recent climate econometric 

results indicate that the distribution of economic damages from climate change is probably 

regressive6–8, so that climate impacts could exacerbate current and future global inequality74–

76. As an example for CGE analyses of climate impacts including heterogeneity between a large 

number of countries, we show the spatial distribution of country-level GDP damages and its 

variation with income level from one particular model58 working with 139 countries (Fig. 4 ; 

see also ‘Bottom-up approaches’). 

 

Fig. 4 | Climate impacts between countries. a, Long-run annual losses in GDP using a 139-country/region climate 

change and trade model: long-run annual percentage losses in GDP by country for an average global temperature 

increase in 2100 of 4°C. Losses in GDP range from <2% to 28% (from lighter to darker red) between countries, with 

an unweighted global average of >7% (note the still incomplete and limited coverage of damage channels). Losses 

in Antarctica capture island nations and other countries that do not have sufficient resolution in the global map. 

The map was produced with the R package ggmap 

(https://www.rdocumentation.org/packages/ggmap/versions/3.0.0). b, Inequality and climate change damages: the 

long-run economic damages from climate change measured as percentage falls in annual GDP (impact) and income 

measured as current per capita GDP (income), with the same temperature increase and limited damage channels as 

in a. The vertical blue line indicates average global per capita GDP (calculated from the database of the Global 

Trade Analysis Project, GTAP) and the size of each circle represents the size of population by country. The graphic 

shows that larger long-run annual percentage losses in GDP tend to correspond to lower current income levels per 

capita. The usual GTAP country indicators are used: ARE, United Arab Emirates; AUS, Australia; BGD, 

Bangladesh; BRA, Brazil; BRN, Brunei Darussalam; CAN, Canada; CHE, Switzerland; CHN, China; CRI, Costa 

Rica; DEU, Germany; ESP, Spain; GHA, Ghana; HKG, Hong Kong; HND, Honduras; IDN, Indonesia; IND, India; 

ISR, Israel; ITA, Italy; JPN, Japan; KOR, South Korea; KWT, Kuwait; LUX, Luxembourg; MOZ, Mozambique; 

MYS, Malaysia; NGA, Nigeria; NOR, Norway; PHL, Philippines; PRI, Puerto Rico; QAT, Qatar; SAU, Saudi 

Arabia; SEN, Senegal; SGP, Singapore; THA, Thailand; TGO, Togo; USA, United States; VNM, Vietnam; ZAF, 

South Africa; ZWE, Zimbabwe. Figure adapted with permission from: a, ref. 58, John Wiley & Sons. 
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In addition to inequality between countries, large disparities also prevail within countries. A 

number of recent econometric studies have combined spatial climatic data with distributional 

data and survey-based socioeconomic outcomes for selected countries53,77,78, finding regressive 

impacts. Moving towards global coverage, district-level data8,43 has so far been the maximum 

degree of spatial resolution, confirming the regressivity of climate impacts. A regressive 

distribution within countries is also obtained when extrapolating the between-country trend to 

the subnational scale79. Despite this, most IAM analyses do not yet include within-country 

inequality and the distribution of climate impacts, making it a high priority for future 

research80,81. A number of approaches have already been pursued; for example, adding quintiles 

of the income distribution to the RICE model12,82, simulations based on micro surveys focusing 

on poor households83, calibrating multi-household general equilibrium models to survey data84 

and considering the interaction with national redistribution schemes85. Building on these initial 

steps, capturing both the full spatial heterogeneity and the distributional effects of climate 

damages in impact models and IAMs would represent a major step forward in assessing the 

economic impacts of climate change. 

The role of adaptation. The effects of climate change adaption are often given little or no 

consideration in the aggregation of impacts, mainly because it is difficult to disentangle the 

adaptation, which is multi-faceted and multi-sectoral, from the resulting impact. Short-run 

adaptation to weather fluctuations should be distinguished from long-run adaption to climate 

change15, adaptation can occur in various sectors under different forms and the adaptation 

decision can occur on a small scale86 or on the wider global scale, in particular, the research 

and development of adaptive technologies6. Some studies found substantial impact reductions 

through adaptation to future climate39,87,88, but empirical evidence for adaptation to ongoing 

climate is mixed7,89,90. Different assumptions on the level of future adaptation lead to notably 

different results for the impacts of future climate change7,10. A comprehensive integrated 

assessment should explicitly account for the costs and benefits of adaptation; however, this is 

still rare in IAMs. Endogenous adaptation has been introduced in the DICE model by splitting 

the global damage function into residual damage and protection cost86. A more comprehensive 

framework can be found in the WITCH model, where several investment channels are 

represented such as adaptive capacity, proactive adaptation and reactive adaptation91. The 

PAGE and FUND models also represent adaptation17. However, in most cases, explicit 

adaptation is modelled as an exogenous input in specific sectors where the adaptation costs 

and climate impact are both available, for example, as for sea-level rise88. Some adaptation 

dynamics often already exist— even partially—in IAMs, whether explicitly or implicitly, for 

example, through the socioeconomic development (that is, enhancing adaptive capacity through 

poverty reduction or education), savings and capital accumulation dynamics, or in the 

modelling of the damage persistency. A clear identification of the effects of adaptation during 

the estimation process of the impacts would help to integrate the damage functions in a 

coherent way in the assessment models, as proposed in refs. 39,92. 

Discussion and suggestions for the way forward 

The impacts of climate change are affecting societies already today93–96: decision makers in 

politics, companies and the financial sector are setting the course for transformation processes 

that will deeply change societies in the near and far future. However, available damage 
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estimates vary strongly. One challenge is the wide variety of metrics (for example, GDP loss, 

changes in welfare, social cost of carbon). But the underlying methodology plays a major role. 

Bottom-up assessments serve well if the goal is a comparison of different types of impact or 

impact channel, a better understanding of feedback processes between impact channels, or a 

study of channel or sector-specific adaptation measures. They offer transparency and greater 

process detail. However, they are very resource intensive: adding new impact channels and 

performing uncertainty analysis is difficult. When using or comparing the—typically rather 

low—global damage results of bottom-up assessments, the coverage of channels has to be taken 

into account. Agent-based modelling and innovative approaches with increased dimensionality 

open new avenues. Top-down econometric assessments can provide relations that are more 

directly applicable in IAMs. However, crucial questions remain, in particular regarding the 

degree of persistence of damage, the treatment of adaptation and the applicability of such 

empirical relations for future projections. This uncertainty should be made explicit when 

applying the empirical results in IAMs, for example, through applying different empirical 

relations or modelling different degrees of persistence. Through collaboration between empirical 

and IAM modellers, improved empirical studies should be designed with the explicit link to 

future projections in mind. It is clear now that the true magnitude of climate change impacts 

is determined by factors we are just starting to capture, such as extreme events, effects on 

economic growth or distributional consequences. Damage estimates including such factors can 

be notably higher than previous estimates, shifting optimal emission pathways towards more 

stringency and in line with the Paris Agreement targets. An increasing number of empirical 

and modelling-based estimates of other impact channels, such as biodiversity, mortality, 

conflict or migration, are becoming available. Priorities should be developed to avoid a certain 

randomness and to ensure that the economically most relevant channels are represented. An 

expert elicitation of the ranking of channels could help to set priorities in this regard. In 

addition, economic models could be applied in sensitivity studies to assess how large an impact 

would have to be to yield a substantial economic (growth) effect97. Biophysical models could 

then be used to assess whether a given driver can feasibly yield such an impact. On the other 

hand, the combination of top-down and bottom-up approaches while avoiding double counting 

should be investigated. Depending on the model type, models need to be advanced structurally 

in different respects. Higher spatial and socioeconomic resolution is required to capture 

distributional effects both between and within countries. Adaptation needs a price, and both 

targeted adaptation measures such as sea walls and system responses such as factor 

reallocation, structural change or migration need to be captured where this is not yet the case. 

An advanced discussion of the evaluation framework of impacts, appropriate welfare measures 

and embedded normative assumptions is necessary. Finally, progress can come from combining 

models of different types as well as their structured comparison, such as in ref. 88. For example, 

biophysical model outputs can be used as the independent variables for estimating micro- and 

macroeconomic econometric models, with the potential for both improving the predictability 

of these models and avoiding the parameterization of the biophysical relationship. Structured 

intermodel comparisons of economic models with a focus on damages can help to pinpoint the 

drivers of different outcomes and key dynamics for the assessment of economic effects such as 

investment dynamics or persistence of damage. Integrated assessment needs to take a leap to 

move away from the simple aggregate damage functions towards capturing the range of climate-

impact estimations better, to appropriately account for uncertainty and to specifically quantify 
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avoided damages, if it is to be truly useful for policy advice. This research endeavour needs to 

bring together all the major modelling paradigms as well as biophysical and empirical impact 

modellers. 
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