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Abstract –A model forecasting ionospheric disturbances and its impact on GNSS positioning is proposed,
called HAPEE (High lAtitude disturbances Positioning Error Estimator). It allows predicting ROTI index
and corresponding Precise Point Positioning (PPP) error in Arctic region (i.e. latitudes > 50�). The model is
forecasting for the next hour a probability of a disturbance index or PPP error to exceed a given threshold,
from solar wind conditions measured at L1 Lagrange point. Or alternatively, it is forecasting a disturbance
index level that is exceeded during the next hour for a given percentage of the time. The ROTI model has
been derived from NMA network measurements, considering a database covering the years 2007 up to
2019. It is demonstrated that the statistical variability of the ROTI index is mainly following a lognormal
distribution. The proposed model has been tested favorably on measurements performed using measure-
ments from stations of the NMA network that were not used for the model derivation. It is also shown that
the statistics of PPP error conditioned by ROTI is following a Laplace distribution. Then a new compound
model has been proposed, based on a conditional probability combining ROTI distribution conditioned by
solar wind conditions and error distributions conditioned by ROTI index level.

Keywords: Space weather / positioning system / ionosphere (auroral) / ionospheric disturbances / statistics and
probability

1 Introduction

High-latitude regions, in the vicinity of the auroral oval,
frequently experience ionospheric disturbances which leads to
cycle slips, loss of lock and positioning errors. These effects
are feared by the community using GNSS applications, notably
air navigation that requires a high level of accuracy and
integrity. To quantify disturbance effects, different indices are
commonly used to characterize the impact of ionospheric fluc-
tuations on GNSS signal degradation in amplitude and in phase.
In the polar region, where phase and slant total electron content
(STEC) fluctuations are particularly important, r/ and ROTI
(Rate Of Total Electron Content Index) indices are relevant to
study such disturbances events (Cherniak et al., 2015; Jacobsen
& Andalsvik, 2016). However, their forecasting remains a
challenge because our understanding of the causes and conse-
quences of the complex physics involving ionospheric storms
is far from complete.

In Space Weather research, numerous magnetic indices
exist and the relation between magnetic indices and iono-
sphere scintillation indices can be researched. Despite the
complexity, some authors have investigated the topic. In
(Hu et al., 1998), a physical model for ionospheric storm predic-
tion is proposed, based on Dst index to monitor storm onset.
The model is proposing short term (in the hours following a
storm) predictions of ionospheric storm effects on HF
communications.

Fortunately, measurements performed from spacecraft
placed at the L1 Lagrange point between the Sun and the Earth
allow getting information on the solar wind approximately 1 h
upstream before it reaches the Earth. This type of measurement
allows proposing new forecasting approaches such as the
OVATION (Oval Variation, Assessment, Tracking, Intensity
and Online Nowcasting) model (Newell et al., 2010, 2014).
The OVATION model forecasts the average characteristic
energy of precipitating electrons and ions incoming in iono-
sphere layers in the polar region, as well as the total energy flux
(North or South poles) and total number flux.*Corresponding author: vincent.fabbro@onera.fr
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Forecasting models of Space Weather impact on ionosphere
can also be found in the literature. In (Tsagouri & Belehaki,
2015) the SWIF model (Solar Wind driven auto regression
model for Ionospheric short-term Forecast) is presented, produc-
ing nowcasting and forecasting of foF2 disturbances for the
European region. The SWIF model is an empirical temporal
model of ionospheric storms using as proxy the solar wind
parameters from ACE spacecraft (Koutroumbas et al., 2008).
The model predicts a global occurrence of time disturbances
of foF2 due to ionospheric storms.

Prikryl et al. (2012, 2013) are also using as proxy observa-
tions at the L1 point from ACE spacecraft to model phase scin-
tillation occurrence at high latitude, from L1 GPS data collected
with the Canadian High Arctic Ionospheric Network (CHAIN).
They propose a method similar to the McPherron & Siscoe
(2004) one, construed by analogy to an approach used in
weather meteorology forecasting and based on atmospheric air
mass concept.

Lastly, deep learning approaches have also been applied
in this context, as for example the work proposed by
McGranaghan et al. (2018). They have used CHAIN network
scintillation measurements, Solar Wind and Geomagnetic Activ-
ity Data, and Particle Precipitation dataset to develop a predictive
model for high-latitude ionospheric phase scintillation based on
support vector machine (SVM) machine learning algorithm.

To the best of our knowledge, there is no published predic-
tion model of GNSS positioning error at high latitude. In this
work, the precise point positioning (PPP) technique has been
selected to describe GNSS error.

PPP is a processing strategy for GNSS observations that
enables the efficient computation of high-quality coordinates,
utilizing undifferenced dual-frequency code and phase observa-
tions by using precise satellite orbit and clock products. More
detailed descriptions of PPP can be found in e.g. Zumberge
et al. (1997) and Kouba & Héroux (2001).

Previous studies by Tiwari et al. (2009) and Moreno et al.
(2011) have examined the effects of ionospheric disturbances
on PPP calculations at low/equatorial latitudes. Moreno et al.
(2011) concluded that the presence of large ROT (Rate Of
Change of TEC) can induce a significant degradation of the
position estimation.

The Norwegian Mapping Authority (NMA) operates a
national network of GNSS receivers, which is used for position-
ing services and various studies. Researchers at the NMA have
previously studied the statistics of ionospheric disturbances and
their correlation with GNSS positioning errors in Jacobsen &
Dähnn (2014), and published case studies on the effects of space
weather events on GNSS in Jacobsen & Schäfer (2012),
Andalsvik & Jacobsen (2014) and Jacobsen&Andalsvik (2016).

In this study, a global statistical approach for short term
forecasting of ROTI ionospheric disturbances index and associ-
ated GNSS PPP error is proposed for high latitudes. It is based
on statistical regression of large datasets. Because ionospheric
disturbances at high latitude is a highly random process, a
statistical approach is the preferred strategy. Moreover, a statis-
tical approach allows introducing the concept of relative risk,
associated to the definition of a threshold level in ionospheric
disturbance indices, positioning error, or other metrics.

This paper is organized as follows. In Section 2, the NMA
database and Solar wind data used for HAPEE model regression
are presented. Section 3 presents the ROTI index forecasting

model, its solar wind driver, the model regression and its
analysis. In Section 4, a validation of the ROTI forecasting is
presented. Section 5 details the conditional probability approach
used to build the GNSS positioning PPP error statistical model.
The conclusion of the work and the prospects are introduced in
Section 6.

2 Ionospheric disturbances datasets
presentation

2.1 NMA database

The Norwegian Mapping Authority (NMA) has deployed
instrumentation, developed software and services to monitor
space weather impact on the ionosphere over Norway. NMA
is also studying the impact of the ionospheric disturbances on
its real-time kinematic (RTK) positioning service and precise
point positioning (PPP) techniques (Jacobsen & Andalsvik,
2016).

In this study, ionospheric disturbances are measured by the
Rate of TEC Index (ROTI) (Pi et al., 1997). The ROTI index is
able to detect ionosphere disturbances and is a robust index, not
affected by detrending of the phase measurements needed in the
phase scintillation index definition (Ghobadi et al., 2020). While
the use of dual-frequency observations allows the correction of
ionospheric delay to the first order, higher order terms remain.
ROTI main advantage over scintillation indices is that it is
calculated based on measurements from standard dual-
frequency GNSS receivers sampling at 1 Hz, which have been
and still are more common than scintillation receivers. It is
noted that ROTI based on 1 Hz measurements will often be
dominated by contributions from refractive effects, whereas
the scintillation indices calculated based on data with higher
sampling rates are designed to measure contributions from
diffractive effects (McCaffrey & Jayachandran, 2019). Rino
et al. (2019) demonstrates that the phase-scintillation errors
are a negligibly small fraction of the stochastic TEC component
for most global navigation satellite system operating conditions.
ROTI index has been chosen to characterize disturbances and/or
rapid variations of TEC, and is related, but not equivalent, to
scintillation (Basu et al., 1999; Mushini et al., 2012; Yang &
Liu, 2016; Carrano et al., 2019).

In this study, the ROTI values are based on 1 Hz measure-
ments (�t ¼ 1

60 min), and calculated for time intervals of 5 min
(N = 300). An elevation cutoff of 5� was used for the input data.
However, for the ROTI data used in the processing in this paper,
a further elevation angle cutoff of 30� was applied for the ROTI
data records. This is done to avoid errors that occur at low
elevations, in particular those due to reflections or other types
of signal degradation caused by terrain or structures nearby.

The elevation of a ROTI data record is defined as the aver-
age elevation angle of the satellite during the time period used
for the ROTI calculation.

ROTI is defined as the standard deviation of the Rate Of
TEC (ROT) over some time interval. It is calculated as follows,
where Ln, kn and fn are the phase measurement, wavelength and
frequency for the n-th frequency.

LGF(i) is the geometry-free phase combination at time i:

LGFðiÞ ¼ L1ðiÞ � k1 � L2ðiÞ � k2: ð1Þ
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ROT (in TECU/minute) is calculated as,

ROTðiÞ ¼ LGFðiÞ � LGFði� 1Þ
�t � 1016 � 40:3 � 1

f 21
� 1

f 22

� � : ð2Þ

TECU (TEC Unit) is defined as 1016 electrons per m2. Dt is the
time difference between the epochs, in minutes.

Finally, ROTI, calculated over N epochs is,

ROTIðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

Xk
j¼k�N

ðROTðjÞ � ROTÞ2
vuut : ð3Þ

ROT is the average of ROT for the interval k ROT ¼�
1
N

Pk
j¼k�NROTðjÞÞ. ROTI units are TEC unit per minutes.
In addition to basic checks of the input data a particularly

important issue is the detection of cycle slips, as undetected
cycle slips will lead to erroneous and very large ROTI values.
The vast majority of the database used is from a real-time iono-
sphere monitoring system. In the real-time system, several
checks are applied:

� For each signal frequency used, if Doppler measurement
is available, the change in phase from the previous to
the current timestep is compared to the Doppler. If the dif-
ference exceeds a threshold, it is considered as a cycle
slip.

� The acceleration of TEC (second order time difference) is
compared to a threshold. If the threshold is exceeded, it is
considered as a cycle slip.

� The change of the Melbourne–Wübbena linear combina-
tion (Melbourne, 1985; Wübbena, 1985) from the previ-
ous to the current timestep is compared to a threshold.
If the threshold is exceeded, it is considered as a cycle
slip. A description of this cycle slip detection method
can be found in Liu (2011).

If one or more of these checks trigger, the data is considered
to contain a cycle slip. Among these the check using the
Melbourne–Wübbena is the best, as the threshold can be set
quite low compared to the change incurred in this measure by
a cycle slip. However, there are some very special cases of com-
binations of cycle slips that the Melbourne–Wübbena check
cannot detect which may be detected by the other methods.
The processing software will consider the time series before
and after a cycle slip as separate time series, ensuring that ROTI
values are not calculated using data that contains cycle slips.
Some parts of the data may be from a post-processing. The
post-processing is equivalent to the real-time processing except
that a more advanced cycle slip detection method, which is also
based on the Melbourne–Wübbena linear combination, is used.
A description of that detection method is found in Cai et al.
(2013). Regardless of the outcome of the cycle slip detection,
the calculated ROT values are also subject to simple checks
for outliers or obviously false values (i.e. extremely large
values).

A large database composed of ROTI index has been built.
The ROTI database corresponds to the period (2007–2019),
covering the 24th solar cycle. ROTI data have been recorded
every 5 min, with a sample rate of 1 Hz, from 12 stations
deployed all over Norway (see stations positions in Fig. 1).

For the ROTI model developed in this study, only GPS satellites
signals have been considered, leading to 78,990,363 measure-
ments in total. For each ROTI value, the inhomogeneities posi-
tion is estimated considering the link geometry and assuming an
ionosphere layer altitude of 350 km. This generic value is
implying that disturbances occurs at the same altitude whatever
the solar conditions and close to F region peak level. This point
remains questionable and should be studied in further work. For
the purpose of the statistical model researched here, this choice
is assumed as reasonable. In this paper, all coordinates are
converted from geographical to altitude corrected geomagnetic
coordinates using AACGM-v2 code (Altitude Adjusted
Corrected GeoMagnetic (Shepherd, 2014). ROTI values have
been corrected for elevation angle from the theoretical behavior
proposed by Carrano et al. (2019) for the ROTI and assuming
an isotropic ionosphere. This way, the elevation dependency of
ROTI2 is proportional to sec(h) with h the zenith angle at the
ionosphere inhomogeneity position (i.e. the angle complemen-
tary of the elevation angle). A practical reason for the choice
of a duration of 5 min for ROTI is that it is the time resolution
used in the archive from which we retrieved ROTI data.
However, it is generally known that during active conditions,
the ionospheric disturbances can vary on timescales shorter than
5 min. If the disturbance levels change during a 5-min interval,
the ROTI value computed will represent an average of the dis-
turbance level during that time interval. While this may not be
good enough for a scientific study of the exact physics taking
place in the ionosphere, we claim that it is sufficiently good
for statistical characterization.

2.2 Solar wind data

For the purpose of ionosphere disturbance forecasting, the
solar wind and interplanetary magnetic field (IMF) data from
a satellite which is stationed in orbit around the Sun–Earth
Lagrange Point L1 are a very interesting driver. The OMNIweb
site (https://omniweb.gsfc.nasa.gov/) is providing high resolu-
tion solar wind data from the OMNI database. These data,
which are 1 min averages timeshifted to the bow-shock-nose,
have been considered as proxies for ionosphere disturbance
forecasting. The Solar Wind data covering all the ground distur-
bance measurements have been considered, i.e. from 2007 up to
2019.

3 Ionospheric disturbances index model

3.1 Solar wind driver

In previous studies (Fabbro et al., 2019), the two parameters
Bz (component of the interplanetary magnetic field perpendicu-
lar to the ecliptic, created by waves and disturbances in the solar
wind) and p (solar wind pressure) were selected as proxies of
the model. We have studied the correlation between ionospheric
disturbance indices and these parameters. A global trend of
increasing ionosphere ROTI index with increasing pressure
and high negative values of Bz was observed, but the influence
of other solar wind parameters dependency was missing. Hence,
a coupling function that can better represent the interaction
between solar wind and Earth magnetosphere has been
researched. Newell et al. (2007) have investigated a few of
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existing coupling functions over a wide variety of magneto-
spheric activity, and proposed a new one dUMP

dt . This coupling
function corresponds to the rate of magnetic flux that is opened
at the magnetopause. Notably, the dUMP

dt coupling function is used
in OVATION-Prime auroral precipitation model (Newell et al.,
2014). The definition of this coupling function is,

dUMP

dt
¼ m

4
3B

2
3
T sin

8
3ðh=2Þ; ð4Þ

where the clock angle is h ¼ tan�1 By

Bz

� �
and h 2 [0, 2p], the IMF

component transverse to the BT (in nT) is BT ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2
y þ B2

z

q
, and

m is the solar wind velocity in km/s, whereas dUMP
dt is in Wb/s. In

Figure 2 a representation of dUMP
dt variability versus the IMF

components By and Bz is shown. The latter shows the strong
variability of this coupling function with Bz sign, whereas the
sign of By sign has no impact.

In our approach, the coupling function proposed by Newell
et al. (2007) has been chosen as proxy and is computed from solar
wind velocity and IMF parameters individually averaged over
10 min before the coupling function calculation (considering
averaged IMF parameters from t0 – 10 mn up to t0 for a coupling
function at time t0). This choice of 10 min is based on the time
variability of the parameters investigated by Cousins& Shepherd

(2010). To study dUMP
dt , Newell et al. (2007) compared it with the

Kp-index that is a global geomagnetic index, based on 3-h mea-
surements of ground-based magnetometers placed around the
world. Considering Figure 4 of Newell et al. (2007), the relation
between dUMP

dt and mean Kp-index is close to be linear in the range
1–6 for Kp. From these results, a simple linear regression can be
proposed, Kp ffi aþ b dUMP

dt with a = 1.1 and b = 3.74 � 10�4.
In this paper, this relation is used to compute an equivalent
Kp-index to feed a model of Auroral oval boundaries used to
be compared with our approach in Section 3.3.

Fig. 1. Geographic locations of NMA stations used, in blue for ROTI model development (left graph), in red geodetic GNSS receivers for PPP
positioning regressions (left graph), in black for validation (right graph).
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3.2 ROTI model regression

The model has been regressed by a classification of the
coupling function values and of the corresponding disturbance
indices. To build the regression, 11 intervals of dUMP

dt have been
defined in linear scale, with an initial bin [0, 103), in Wb/s,
followed by 9 intervals of width 2 � 103 Wb/s and a final
bin [19 � 103, +1) Wb/s. Considering the position of each
ROTI measure at 350 km and the measurement date, MLat
(Magnetic Latitude) and MLT (Magnetic Local Time) are
estimated by AACGM-v2 routine (Shepherd, 2014), model
recommended by SuperDARN radar community. Then, a clas-
sification in terms of MLat and MLT has been proposed, with
intervals of 1� of latitude between [50, 82)� for MLat, with
two additional intervals [0, 50)� and [82, 90]� for remaining
extra points, and intervals of half an hour between [0, 24) h
for MLT. This choice leads to 34 intervals in MLat and 48
intervals in MLT. To establish the correspondence between
the coupling function at bow-shock-nose and the disturbance
indices at ground level, a time delay has to be defined. As we
propose a statistical forecasting model, the idea is, from a
coupling function value measured at time t0, to consider all
the disturbance indices measurements from t0 up to t0 + Dt. This
leads to propose a model able to estimate the probability of a
disturbance index to be exceeded in the following period Dt.

After deep analysis, the distributions of ROTI index appears
to follow a distribution close to be lognormal. Then, the ROTI
PDF (probability distribution function) is modeled by:

P ðROTIÞ ¼ 1

ROTIr
ffiffiffiffiffiffi
2p

p exp �ðlnðROTIÞ � lÞ2
2r2

 !
: ð5Þ

Its mean and variance are respectively EðROTIÞ ¼ elþ
r2
2 and

varðROTIÞ ¼ EðROTI2Þ � EðROTIÞ2 ¼ ðer2 � 1Þe2lþr2 . The
parameters l and r have been fitted for each combination of
coupling function, MLat and MLT intervals of the whole
database.

The relevance of the lognormal regression of ROTI variabil-
ity has been tested. Three examples of ROTI index CDF
(cumulative distribution function) are presented in Figure 3,
corresponding to different combinations of location (character-
ized by MLat and MLT bins) and coupling function level.
For each example the histogram plotted in blue line is compared
to its lognormal CDF regression, plotted in red line. Examples
(a) and (b) show a good agreement between measurements
and lognormal model. For each graph, the number of point
Npts used in the regression is indicated, and the case (c) clearly
underline a lack of measurements with Npts = 323.

From such an analysis, the ROTI index has been studied
between 0 and 5. Then, the v2 goodness of fit test has been
applied to check the null hypothesis, between the fitted and
measured distributions. The p-value of the v2 test indicates if
the null hypothesis is true. One of the most commonly used
p-value threshold is 0.05. If the calculated p-value turns out
to be less than 0.05, the null hypothesis is considered to be false.
In other words, if p-value is lower than 0.05, it is very probable
that the distribution and the model are different. Then, for each
combined bins in MLat, MLT and coupling function, the v2 test
is computed with ROTI values in the interval [0.1, 5] sampled

with 250 values. The p-values have been computed by the
Python “scipy.stats.chisquare” function.

In Figure 3, the p-value of the three cases are provided. The
p-value equal to zero in the (c) case indicates that it is very
probable that the distribution is not lognormal. The origin of this
is presumably the lack of data points to describe the distribution
in this case.

The results are reported more globally in Figure 4. To focus
on measurements and ignore noise effects, only bins where
mean ROTI values are higher than 1 TECu/min have been
plotted. This global processing is showing that for ROTI index
regression a majority of p-value are higher than the threshold
0.05. Then, it is very probable that the lognormal distribution
and the measurements distribution are similar. Moreover, in
Figure 4 the areas where ROTI p-value is lower than 0.05 are
mainly where the number of points is low (see Fig. 5). So a
too low number of points can explain some low p-values,
because the fit quality is clearly conditioned by the number of
points. This number of points is a function of the solar wind
conditions (or coupling function level) and of the magnetic
coordinates. As expected, a large number of points is observed
for lower coupling function level (higher than 105 in most of the
areas) and decreases with increasing coupling function level.
Note a lower number of points in geomagnetic latitude interval
[70, 80], which is located north of mainland Norway and has a
sparse measurement coverage, mostly from measurements
performed by the Ny–Ålesund station in Svalbard (see Fig. 1).

3.3 ROTI model analysis

The mean and standard deviation of the lognormal distribu-
tion derived by this processing are shown in Figures 6 and 7,
with respect to different intervals of coupling function. Note that
no interpolation has been applied to get these results. For com-
parison, the auroral oval limits modeled by Feldstein–Starkov
model (Starkov, 1994a; Sigernes et al., 2011, 1994b) are
reported in the graphs. This model describes the equatorward
and poleward limits of the auroral oval (drawn in green full line
in Figs. 6 and 7), and the equatorward limit of the diffuse aurora
(represented in green dashed line in Figs. 6 and 7). In the

Fig. 2. dUMP
dt (Wb/s) coupling function variations versus By and Bz in

nT, for m = 850 km/s.
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Fig. 3. Examples of ROTI index CDF measured and fitted for different combinations of location and coupling function level.

Fig. 4. p-value of v2 test for ROTI index modeling versus Mlat and MLT. Each graph corresponds to a different interval of dUMP
dt values in (Wb/s).

Fig. 5. Number of points of ROTI index versus Mlat and MLT, each graph corresponding to a different interval of dUMP
dt values in (Wb/s).
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Feldstein–Starkov model, diffuse aurora is distinguished from
the aurora oval because in diffuse aurora the precipitating
protons do not contribute significantly to the excitation (Lui
et al., 1973). Occasionally subject to controversy in the litera-
ture, the aurora limits proposed here must not be considered
as an absolute reference, but as an indicator of trend. To feed
the Feldstein–Starkov model an equivalent Kp index has been
estimated by the simple linear regression proposed in
Section 3.1, rounded to an accuracy of 0.3 to follow Kp defini-
tion. In graphs Figures 6 and 7, the equivalent Kp is varying

between 0.6 and 9, when dUMP
dt is corresponding to intervals

[1000, 3000) up to [19,000, +1) Wb/s.
Observing the variability of the mean and standard deviation

of ROTI with increasing solar wind disturbance conditions, it is
clear that the typical variations of ionosphere perturbations are
retrieved. As the auroral oval described by Feldstein–Starkov
model, ROTI disturbance index shows an oval that is wider
and more asymmetric with increasing coupling function.
Ionospheric disturbances is more intense during night time,
and still significant during the day. For low level of perturbation,

Fig. 6. Mean ROTI value in (TECu/mn) regressed versus geomagnetic latitude and magnetic local time. Each graph corresponds to a different
interval of dUMP

dt values in (Wb/s).

Fig. 7. Standard deviation of ROTI in (TECu/mn) regressed versus geomagnetic latitude and magnetic local time. Each graph corresponds a
different interval of dUMP

dt values in (Wb/s).
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i.e. dUMP
dt in [1000, 3000) Wb/s, the auroral oval shape is not

observed by ROTI index, but the cusp region can clearly be
distinguished on the day side, centered around 12 h and at
latitude [75–80]�. Its size and intensity increase with the level
of the coupling function. The night side of the auroral oval inten-
sifies and broadens continuously with increasing coupling func-
tion. The auroral oval shape is clearly discernible from interval
[3000, 7000) Wb/s on mean ROTI (Fig. 6) and [7000, 9000)
Wb/s on ROTI standard deviation (Fig. 7). From [7000, 9000)
up to [11,000, 13,000) Wb/s, the ROTI standard deviation limits
between 60� and 70� of magnetic latitude match fairly well with
the aurora limits proposed by Feldstein–Starkov model on the
night side. The dissymmetry of the oval proposed in
Feldstein–Starkov model is not well reproduced by ROTI index.
From [7000, 9000) Wb/s and above levels of coupling function,
at the opposite side of the oval corresponding to MLT time 18 h
and 6 h, areas where ROTI mean and standard deviation have
high values outside the limits proposed by the Feldstein-Starkov
model can be noticed.

From dUMP
dt equal to 7000 Wb/s and above, on the dayside the

high values of ROTI index (mean or standard deviation > 1)
have a larger latitudinal spread than the Feldstein–Starkov oval
model, the equatorward limit is exceeded. However, globally
the ionosphere disturbances measured by ROTI index happens
inside the diffuse aurora limit here described by the Feldstein–
Starkov model. Finally, for dUMP

dt in [11,000, 13,000) Wb/s
(higher values of coupling function reported in Figs. 6 and 7),
two maximum values of ROTI distribution parameters appear
close to 19 h and 5 h MLT. These intensifications of ROTI
index could be due to the plasma inflow and outflow along
R1 and R2 field-aligned currents (FAC) that are in the same
area. (A review of magnetosphere-ionosphere current systems
can be found in Cowley, 2000). Particle precipitation is associ-
ated with changes in plasma density and formation of small-
scale plasma structures in the ionosphere, which would cause
enhanced ROTI values. The enhancements could also be a
result of the combination of the particle precipitation in the
FAC current regions and plasma blobs embedded in the
ionospheric return convection (van der Meeren et al., 2015;
Jin et al., 2017; Jin & Oksavik, 2018).

Assuming a lognormal distribution for ROTI, the
cumulative distribution function (CDF) is described by
PrðROTI � T ROTIÞ ¼ 1

2 erfc � ln TROTI�lsw
rsw
ffiffi
2

p
� �

, where erfc is the

complementary error function and TROTI is the ROTI threshold.
The complementary CDF (CCDF) is more interesting for

operational applications, describing a percentage of the time that
a ROTI value exceeds the ROTI threshold TROTI. It is known as

Pr ROTI > T ROTIð Þ¼1� 1
2 erfc � ln TROTI�lsw

rsw
ffiffi
2

p
� �

. Some examples

of results obtained with the HAPEE model are shown in
Figure 8. The different graphs represent the probability of the
ROTI index to exceed the value 1 with regard of different
values of the Newell et al. (2007) coupling function. The auroral
oval shape appears clearly, its size and thickness growing when
the Newell et al. coupling function increases.

4 Validation

A validation of the HAPEE model has been performed from
measurements of a new set of ROTI data, measured in 2017 by
receivers not used during the HAPEE model regressions. The
receivers are part of the NMA GNSS receiver network, and
the stations positions are plotted in graph (b) of Figure 1. ROTI
data was calculated by NMAs ionosphere monitoring software.
Solar wind data was obtained from NASA/GSFC’s OMNI data
set through OMNIWeb. For every 5 min in the time periods
used, the HAPEE model was run to generate ROTI forecasts
if valid solar wind data was available at that time. The output
was longitude–latitude grids of the probabilities to exceed each
of the thresholds during the coming hour. The grids covered the
region of 10� West to 40� East, and 55–80� North. The grid
resolution was 1 � 1�. For each time and each grid point, the
observed ROTI values for IPPs (ionospheric pierce points)
within the coming hour and spatially close to that grid point
were identified. Spatially close is defined as being within
100 km (great circle distance) of the grid point. For the overall
statistics, the data are sorted into bins by two parameters; the
forecasted ROTI level (low, medium or high), and the fore-
casted percent chance of exceeding that level within the next
hour (a percentage). The number of data points in each bin is
shown in Figure 9. For the Validation, three levels of ROTI
have been defined: low corresponding to 0.75 TECU/min;
medium corresponding to 1.5 TECU/min and high correspond-
ing to 3.0 TECU/min. The observed percentage of data
records that exceeded the ROTI level is shown by the color
in Figure 10. For a perfect match, the colors of the observations
in the figure (percentage of records exceeding levels) should
correspond to the abscissa value describing the percentage
forecasted.

Fig. 8. Examples of probability of occurrence for a ROTI threshold of 1 TECu/mn to be exceeded for different coupling function values,
at 0 h, UTC.
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For the low ROTI level, the forecasts matches the
observations very well. For the medium ROTI level, there is
a shift in the colors on the plot versus the abscissa values, indi-
cating a slight underestimation of the probability of occurrence.
The forecasted probability is up to approximately 20 percentage
points different from the observed probability. For the high
ROTI level the shift is more pronounced, with maximum
differences up to approximately 30 percentage points. The shifts
in probability at high disturbance levels may indicate an inaccu-
rate characterization of the tails of the distributions for the
modeling and/or for the reference data. This is a challenging
part which will be further explored in future work. More data
are necessary and the future study of the solar cycle 25 are
expected to lead to enhancement of the model and of its
validation.

5 Positioning error estimation from ROTI

In this section, the distribution of the PPP errors is calcu-
lated for different bins of ROTI index. Then, these distributions
of the positioning errors are fitted by a canonical distribution
function, and their parameters computed for all the ROTI bins.

5.1 Data sources for characterization of ROTI versus
PPP accuracy

The work to characterize the connection between ROTI and
precise point positioning (PPP) accuracy is based on GNSS data
from a set of geodetic receivers for a selection of dates (see
Table 1). Figure 1 shows the locations of the receivers. All the
receivers are owned and operated by NMA. The receivers record
observations at a sample rate of 1 Hz. The days that are included
are days that were observed to disturb NMAs RTK positioning
systems and/or days with a minimum rating of 2 on NOAAs
G-scale for geomagnetic storms (Poppe, 2000). The data has
been processed to calculate ROTI (see Sect. 2.1) and PPP
coordinates (see Sect. 5.2) at 5 min resolution.

The PPP coordinates were further processed and associated
with the ROTI data as described in Section 5.2.

5.2 ROTI versus PPP data processing

We have used the GIPSY software provided by NASAs Jet
Propulsion Laboratory (JPL) to compute coordinates. The
coordinates were computed with a time resolution of 5 min.
Important parameters/models used for the GIPSY PPP solutions
are summarized in Table 2.

To determine the position error, a true coordinate was
defined for each receiver by estimating a long-term trend and
yearly variations. The long-term trend can be seen as an esti-
mate of multi-year drift caused by e.g. continental drift or
post-glacial rebound, and was modeled as a linear drift over
the entire dataset. The yearly variations were modeled by fitting
a 4-segment 5th order spline with periodic boundary conditions
to the dataset sorted by day-of-year after removing the long-
term trend. The true coordinate is then the sum of the long-term
trend and the yearly variations. The PPP coordinate error is the
difference between the instantaneous coordinate and the “true”
coordinate evaluated at that time.

PPP coordinate errors were transformed from latitude,
longitude, height to local North, East, Vertical coordinates. A
basic outlier detection was applied to remove position records
that were very clearly wrong: All PPP records with a position
error greater than 20 m in East/North, or greater than 50 m in
Vertical, were removed as outliers. This affected approximately
0.2% of the dataset.

For each timetag and each receiver, ROTI was averaged
over all satellites. For each averaged ROTI data record, the posi-
tion error of the PPP data record closest in time (and closer than
300 s) is selected as the position error for that record.

5.3 ROTI versus PPP accuracy

Figure 11 shows the distributions of the Vertical position
errors, along with fits of Gaussian and Laplace distribution func-
tions. Figures 12 and 13 show the same for the North and East
coordinate components. The histograms count the position

Fig. 9. In color scale, the logarithm of the number of data points for
observed percentage of records exceeding the disturbance level, in
each bin, versus forecast in abscissa, and low, medium and high
thresholds in ordinate for time period of validation.

Fig. 10. In color scale, observed percentage of records exceeding the
disturbance level, in each bin, versus forecast in abscissa, and Low,
Medium and High thresholds in ordinate.
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errors to the left/right of the x-axis in the left/rightmost bar, but
the fits have been made to the actual data. For the plots the
distribution functions were evaluated at the points of the center
of the histogram bars and scaled so that the sum of their values
at those points is the same as the sum of the values of the
histogram bars.

Table 3 lists the distribution parameters of the Laplace dis-
tribution function, being the median and the mean absolute
deviation from the median (MAD).

Figures 11–13 show the distributions of the position errors,
along with fits of Gaussian and Laplace distribution functions.

That the Laplace distribution is a much better fit than the
Gaussian distribution can be shown by comparing the
Kolmogorov–Smirnov (KS) test statistic for the two distribu-
tions. Figure 14 shows an example of cumulative distribution
functions (CDF), for the PPP vertical position error with ROTI
in the interval 3–3.5. The blue line is the empirical CDF, while
the red line is the Gaussian CDF and the green line is the

Table 1. List of days included in this study.

Year Month Days G-index

2014 February 15, 18, 19, 20, 27, 28 1, 0, 2, 2, 0, 2
2014 September 12, 24 3, 0
2014 October 14 1
2015 January 7 3
2015 March 17 4
2015 June 22, 23 4, 4
2015 October 7, 8 3, 2
2015 November 7 2
2015 December 20, 21 2, 2
2016 January 20 1
2016 February 16 2
2016 March 6, 7 2, 2
2016 May 8 3
2016 September 25, 26, 27, 28, 29, 30 1, 1, 2, 2, 1
2016 October 1, 2, 3, 4, 13, 14, 25, 26, 27, 28, 29, 30 1, 1, 0, 1, 2, 2, 3, 2, 1, 0, 1, 0
2017 March 1, 2, 27, 28 2, 2, 2, 2
2017 April 20, 22, 23 2, 2, 2
2017 May 27, 28 2, 3
2017 June 16, 17 1, 1
2017 August 22 2
2017 September 7, 8, 9, 15, 16, 27, 28 4, 4, 2, 2, 2, 2, 3
2017 October 11, 12, 13, 14, 15, 16 1, 1, 2, 2, 1, 0
2017 November 7, 8 2, 2

Table 2. Parameters/models used for the GIPSY PPP solution.

GIPSY version: 6.4
Reference frame: IGS08/IGb08
Antenna phase center (receivers): Absolute based on IGS standard e.g. igs08_1645.atx
Antenna phase center (transmitters): Absolute based on IGS standard e.g. igs08_1645.atx
Troposphere mapping function: VMF1
2nd order ionosphere model: Not applied
Ocean loading: FES2004
Ambiguity resolution: Yes (Bertiger et al., 2010)

Fig. 11. Histograms showing distributions of PPP vertical coordinate error within specific ROTI bins (TECu/mn), with Gaussian (red line) and
Laplace (green line) functions fitted to the data. (a) ROTI (TECu/mn) 2 [0.5, 1.0). (b) ROTI (TECu/mn) 2 [3, 3.5). (c) ROTI (TECu/mn) 2 [6, 7).
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Laplace CDF. The KS test statistic is the maximum vertical
difference between a distribution CDF and the reference CDF
(in this case, the empirical CDF). Lower values are better, with
a value of zero being a perfect fit. In this example, the value is
0.182 for the Gaussian distribution and 0.0466 for the Laplace
distribution. From these values, we can conclude that the
Laplace distribution is a better fit to the data. Figure 15 shows

the KS test statistic values for all the bins. Except for the very
first ROTI bin, the Laplace distribution is significantly better.
Based on the KS test statistics results and manual inspection
of the distributions (including more histogram and CDF plots
which are not included in this paper), we conclude that the
Laplace distribution provide a good fit to the distribution of
position errors and that it is a significantly better fit than a

Fig. 12. Histograms showing distributions of PPP north coordinate error within specific ROTI bins (TECu/mn), with Gaussian (red line) and
Laplace (green line) functions fitted to the data. (a) ROTI (TECu/mn) 2 [0.5, 1.0). (b) ROTI (TECu/mn) 2 [3, 3.5). (c) ROTI (TECu/mn) 2 [6, 7).

Fig. 13. Histograms showing distributions of PPP east coordinate error within specific ROTI bins (TECu/mn), with Gaussian (red line) and
Laplace (green line) functions fitted to the data. (a) ROTI (TECu/mn) 2 [0.5, 1.0). (b) ROTI (TECu/mn) 2 [3, 3.5). (c) ROTI (TECu/mn) 2 [6, 7).

Table 3. Fitted Laplace distribution function parameters for PPP error versus ROTI.

ROTI Bin Center
(TECU/min)

Median PPP error,
North (cm)

MAD PPP error,
North (cm)

Median PPP error,
East (cm)

MAD PPP,
East (cm)

Median PPP error,
Vertical (cm)

MAD PPP error,
Vertical (cm)

0.25 0.025 0.549 0.038 0.393 0.000 1.274
0.75 0.020 0.594 0.014 0.470 0.047 1.607
1.25 –0.013 0.923 0.042 0.858 –0.052 2.339
1.75 –0.019 0.976 0.014 0.889 –0.081 2.516
2.25 –0.013 1.059 –0.010 0.877 –0.136 2.577
2.75 –0.064 1.148 0.005 0.849 –0.091 2.618
3.25 0.030 1.132 0.012 0.875 0.166 2.790
3.75 –0.106 1.103 0.023 0.787 –0.280 2.744
4.25 0.003 1.166 0.058 0.927 –0.095 2.904
4.75 –0.096 1.373 0.041 0.857 –0.060 3.348
5.50 0.019 1.371 –0.008 0.950 –0.009 3.397
6.50 –0.108 1.272 0.020 0.947 –0.235 3.082
7.50 –0.122 1.353 –0.092 0.876 –0.250 3.331
8.50 0.019 1.166 0.120 0.754 –0.319 3.286
9.50 –0.191 1.514 0.006 1.252 –0.118 3.881
11.00 –0.020 1.472 0.073 1.070 –0.659 3.976
13.00 –0.168 1.687 0.140 0.993 0.063 4.340
15.00 –0.349 1.428 –0.018 0.887 –0.414 3.259
17.00 –0.204 1.296 –0.008 0.986 –0.311 3.470
19.00 –0.039 1.404 –0.009 1.091 –0.497 3.550
22.50 –0.039 1.630 0.157 1.064 –0.387 4.013
27.50 –0.273 1.732 0.101 1.132 –0.057 4.870
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Gaussian distribution function. Table 3 shows the fitted
parameters for the Laplace distribution functions.

5.4 Modeling PPP error from solar wind conditions

For a given solar wind condition (or coupling function), the
idea is to couple a model forecasting the probability of a distur-
bance index p(ROTI|sol.wind) with a probability of error condi-
tioned by this ROTI value p(Pos|ROTI). The global compound
model giving a probability for a positioning error Pos to exceed
a threshold Te is then written as:

Pr Pos > Tejsol:windð Þ ¼
Z þ1

Te

p Posjsol:windð ÞdPos; ð6Þ

with

pðPosjsol:windÞ ¼Z þ1

0
pðPosjROTIÞ pðROTIjsol:windÞ dROTI: ð7Þ

The problem has been solved supposing the ROTI PDF as
lognormal, such as modeled in the climatological part of the
model described in Section 3. This way, from a given solar
wind condition, the parameters (lsw, rsw) are chosen for the
corresponding coupling function bin and following a lognormal
distribution:

pðROTIjsol:windÞ ¼ 1

ROTIrsw

ffiffiffiffiffiffi
2p

p exp �ðln ROTI� lswÞ2
2r2

sw

 !
:

ð8Þ
Then, the probability p(Pos|ROTI) has to be estimated. The
following section presents the regression of this part of the
model.

5.4.1 Regression of precise point positioning error

In Section 5.3, the statistical relation between positioning
errors and ROTI values has been quantified by regression.
PPP North, East and Vertical error distributions have been fitted
versus ROTI level. The distribution of errors for each ROTI bin
has been fitted by a Laplacian distribution:

pðPosjROTIÞ ¼ 1
2bi

exp � Pos� mij j
bi

� �
; ð9Þ

where mi is the mean and the median of the distribution value,
2b2i is the variance and bi the mean absolute deviation (MAD)
from the median.

The Laplace distribution parameters for the PPP coordinate
errors have been derived per ROTI bin and reported in
Section 5.3.

In practice, the positioning error is characterized by the
absolute value of the error. Moreover, as far as the PPP position-
ing errors are concerned, the fitted mean of North, East and
Vertical PPP errors have been obtained close to zero (see
Sect. 5.3). Then, the PDF considered for the problem becomes
pð Posj jjROTIÞ ¼ 1

2bi
exp � Posj j

bi

� �
. This canonical distribution

is therefore introduced in the global compound model.

5.4.2 Simple case of one link

In this section, the ROTI index is supposed to be estimated
from one GNSS link. In continuous form, the global problem to
solve is the following conditional probability,

Pr Posj j > Tejsol:windð Þ ¼Z þ1

Te

dPos

Z þ1

0
dROTI pð Posj jjROTIÞ pðROTIjsol:windÞ: ð10Þ

Inverting the integrals, introducing the Laplace distribution
parameters (whose values depend on the ROTI bin) and the log-
normal distribution of ROTI, the formulation becomes,

Fig. 14. Cumulative distribution functions for the data (blue line),
the Gaussian fit (red line) and the Laplace fit (green line), for the PPP
vertical position errors with ROTI in the interval 3–3.5 TECu/min.
The Kolmogorov-Smirnov test statistic for the two fitted distributions
are in the legend.

Fig. 15. Kolmogorov-Smirnov test statistic values for PPP vertical
error distributions in all ROTI bins (in TECu/min). The red line is for
the Gaussian fit compared to the data, and the green line is for the
Laplace fit compared to the data.
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Prð Posj j > Tejsol:windÞ ¼
Z þ1

0

dROTI

ROTIrSW

ffiffiffiffiffiffi
2p

p

� exp �ðln ROTI� lSWÞ2
2rSW

2

 !
�
Z þ1

Te

dPos
1
2bi

exp � Posj j
bi

� �
:

ð11Þ

The second integral is
Rþ1
Te dPos 1

2bi
exp � Posj j

bi

� �
¼

Prð Posj j > TeÞ and reminding the Laplace distribution proper-
ties, the complementary cumulative distribution function is,

PrðPos > TeÞ ¼
1� 1

2
exp

Te� mi

bi

� �
if Te < mi

1
2
exp �Te� mi

bi

� �
if Te � mi

8>>><
>>>: ð12Þ

with in case of PPP positioning errors mi; 0 (see Sect. 5.3). So
Te � mi can be assumed, and

Prð Posj j > TeÞ ¼ 1
2
exp �Te

bi

� �
: ð13Þ

The global conditional probability becomes,

Prð Posj j > Tejsol:windÞ ¼
Z þ1

0
dROTI

1

ROTIrSW

ffiffiffiffiffiffi
2p

p

� exp �ðln ROTI� lSWÞ2
2rSW

2

 !
1
2
exp �Te

bi

� �
: ð14Þ

Considering that each i bin of ROTI is defined by a minimum
and a maximum value of ROTI, ROTIimin and ROTIimax, a
discretized form is proposed, via the formula,

Pr Posj j > Tejsol:windð Þ ¼
XNb

i¼1

dR
Pr ROTI � ROTIimax

� �� PR ROTI � ROTIimin

� �
dR

� 1
2
exp �Te

bi

� �
; ð15Þ

with the ROTI bin number i = [1; . . . ; Nb] and dR the ROTI
interval width. In each bin, the ROTI is following the Laplace
distribution with parameters [mi, bi]. PrðROTI � ROTIimaxÞ is
the CDF of the lognormal distribution of ROTI. It can be
written PrðROTI � ROTIimaxÞ ¼ 1

2 erfc � ln ROTIimax�lSW
rSW

ffiffiffiffi
2p

p
� �

, and
leads to,

Prð Posj j > Tejsol:windÞ ¼
XNb

i¼1

1
4

erfc � ln ROTIimax � lSW

rSW

ffiffiffiffiffiffi
2p

p
� �	

�erfc � lnROTIimin � lSW

rSW

ffiffiffiffiffiffi
2p

p
� �

	 exp �Te

bi

� �
: ð16Þ

The final formulation is relatively easy to use once all the
distributions parameters (Laplace for positioning PPP error and
lognormal for ROTI) are known. But the problem is more

complex because positioning error is commonly estimated from
several GNSS links, that can be impacted differently by the iono-
spheric disturbances. Then, the conditional distribution must
consider these different links to estimate a mean ROTI value.

5.4.3 Multiple link case

Several GNSS links have to be taken into account in the
processes of estimating the PPP error. As these links are not cor-
responding to close values of ionosphere pierce point, a main
assumption is that all links are considered as not correlated.
Then, the average ROTIN is estimated from the ROTI values
measured on N links:

ROTIN ¼ 1
N

XN
k¼1

ROTIk: ð17Þ

The number N is of the order of 10, if different satellite constel-
lations are used. We have to estimate the distribution of
N � ROTIN, sum of N ROTIk values following lognormal dis-
tributions. A second approximation is then assumed: as the
GNSS links are corresponding to the same ground station, the
ROTI distribution of each link remains the same. The distribu-
tion of N � ROTIN, estimated by the sum of independent ROTI
values following the same distribution has to be derived. As no
exact analytical expression is known for statistical characteriza-
tion of the combination of N lognormal distributions, one will
turn to approximation strategies.

From Romeo et al. (2003), a sum of N lognormal random
variables of parameters (l, r) can be approximated to a new
lognormal distribution of parameters (lN, rN):

lN ¼ lþ r2

2
þ ln

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ er2�1

N Þ
q

0
B@

1
CA;

r2
N ¼ ln 1þ er

2 � 1
N

 !
;

8>>>>>>><
>>>>>>>:

ð18Þ

with l and r the parameters of the lognormal distributions of
the N processes supposed statistically with the same character-
istics, lN and rN are the parameters of the lognormal distribu-
tion of N � ROTIN. Romeo et al. (2003) show in their paper
that this formulation is correct with r in [0, 1.25].

For a ROTI lognormal distribution, r parameter is r2 ¼
ln 1þ <ROTI2>

<ROTI>2

� �
. From the regression presented in Section 3,

the maximum values obtained for r induce that the formulation
proposed by Romeo et al. (2003) is covering the problem.

From such an approach, the typical sum of lognormal
distribution can be written elNþrNZ where Z is of standard
normal distribution. The average is then performed by dividing
by N, introducing a normalization elNþrN Z�lnN ¼ el

0
NþrN Z . The

final characteristics of the average ROTIN are then:

l0
N ¼ lþ r2

2
þ ln

Nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ er2�1

N

q
0
B@

1
CA� lnðNÞ

r2
N ¼ ln 1þ er

2 � 1
N

 !
:

8>>>>>>><
>>>>>>>:

ð19Þ
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As a conclusion, we propose here an equivalent lognormal dis-
tribution of parameters ðl0

N ; rN Þ of the ROTIN stochastic
variable, obtained from the mean of N lognormal random pro-
cesses. Thanks to this approximation, we can now use the same
strategy presented in Section 5.4.2 replacing ROTI by ROTIN in
order to estimate the PPP error statistics.

Typical results are shown in Figures 16–18 for East, North
and Vertical errors respectively. The four graphs of each figure
correspond to different levels of coupling function from 4000 to
30,000 Wb/s. Here the number of GNSS links N has been fixed
to 10. The results are maps of the percentage of the time that a
given error threshold is exceeded during the hour following 0h
UTC, for the arctic region. To illustrate the variability with dif-
ferent thresholds, the values of 0.5, 0.75 and 1.5 cm are consid-
ered respectively for East, North and Vertical PPP errors, in
Figures 16–18.

This way, in Figure 17 the probability of the East PPP error
to exceed threshold 0.5 cm is reported. It shows that for a
coupling function of 4000 Wb/s, the threshold of error 0.5 cm
is exceeded less than 15% of the time, whereas for 10,000

Wb/s it is exceeded in the cusp close to 20% of the time, and
when dUMP

dt is increasing up to 30,000 Wb/s, in the auroral oval
a percentage close to 30% of the time is reached. In Figure 17
the same representation is proposed, in the same conditions, but
for the probability of North PPP error to exceed 0.75 cm. The
Probability to exceed the error threshold of 0.75 cm is globally
sparsely reached, with a maximum value close to 25% in the
auroral oval for a coupling function of 30,000 Wb/s. Consider-
ing an error threshold of 1.5 cm, the Figure 18 shows that the
Vertical PPP error is exceeded in the cusp around 20% of the
time since dUMP

dt = 4000 Wb/s, and reach a maximum value close
to 30% in the auroral oval for dUMP

dt = 30,000 Wb/s.
From PPP error estimation used to establish the correspon-

dence between ROTI and PPP errors, an exercise of validation
of error model has been performed. It is based on data from a
GNSS ground station named “hamc” and located at the
magnetic latitude 65.5� North. The dataset used is from the days
listed in Table 1. From solar wind conditions measured at L1 at
time t0, characterized by the Newell coupling function, all the
PPP errors in the following hour (up to t0 + 1 h) have been

Fig. 16. Probability of East PPP error to exceed 0.5 cm in North Pole area, at 0 h, UTC.

Fig. 17. Probability of North PPP error to exceed 0.75 cm in North Pole area, at 0 h, UTC.

Fig. 18. Probability of Vertical PPP error to exceed 1.5 cm in North Pole area, at 0 h, UTC.
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computed to establish the statistics. All MLT time have been
considered. Then, this global statistic of error occurence has
been compared to the proposed model. The latter has been
applied to estimate Pr Posj j > TejMLT; dUMP

dt

� �
at the magnetic

latitude corresponding to the station position, using equation
(10) and (16) GNSS links. Regular MLT and coupling function
intervals have been chosen to compute this probability, with
Nh = 48 points used to describe the 24 h of MLT and
Nc = 11 the number of coupling function covering the
conditions between 0 and 20 � 103 Wb/s. The final result is
obtained by the formulation Pr Posj j > TeÞ¼Ph¼1;Nh

P
i¼1;Nc

�
� Pr Posj j > TejMLT; dUMP

dt

� �
=NcNh. In Figure 19 are presented

the results of comparison between direct and modeled CCDF,
for Horizontal, East and Vertical PPP errors. The comparison
shows correct results of compliance between the HAPEE mod-
el and the direct PPP estimations, with a clear lack of data to get
convergence for probabilities lower than 10�2 (in particular for
North error). This validation is a check of the model consis-
tency, and the primary perspective of this work is to realize
an operational validation exercise of the PPP error model. It
necessitates to characterize long term estimation of PPP errors
statistics related to solar wind condition.

6 Conclusion

A new forecasting model called HAPEE is proposed, able to
forecast during the next hour and at latitudes higher than 50� the
distribution of the ROTI index or of the PPP error. The model
proxy is the solar wind conditions at the Earth bow-shock-nose
(typically measured at the L1 Lagrange point and then time-
shifted). These conditions are then reduced to the Newell
et al. (2007) coupling function.

The model is combining a lognormal distribution describing
ROTI conditioned by solar wind conditions and a Laplace
distribution describing PPP error conditioned by ROTI index.
The global trend of the model has been checked regarding the
mean and standard deviation of the ROTI index obtained versus

magnetic local time, magnetic latitude and solar wind condi-
tions. Mean and standard deviation of the ROTI modeled by
HAPEE follow the expected behavior with respect to solar wind
conditions, i.e. an increase of the auroral oval size and width
whereas the solar wind conditions increases.

This study has led to a new global model that can be
improved in different points. Further complementary validations
by comparisons with other disturbances or PPP error data would
be very interesting. An extended version of the model should
also be regressed following the same philosophy and using
more data, covering different countries and other solar cycle.
The statistical approach applied to derive the model is very
global and refinements can be imagined. For example, no dis-
tinction is made between intense solar wind events such as inter-
planetary coronal mass ejections (ICMEs) and corotating
interaction regions (CIRs) events, associated to high-speed
streams (HSSs) from coronal holes. In future work, the type
of Space Weather event at the origin of disturbances could be
distinguished and the regressions adapted.

From the databases available and following the same
approach, fits of other outputs could be proposed to complete
the model, such as the S4 and r/ scintillation indices, or other
error parameters.

Both the part of the model that forecasts ROTI based on solar
wind parameters, and the part that forecasts PPP error based on
ROTI, are empirical models. They are computationally expen-
sive to construct but not computationally expensive to run after-
wards. Input solar wind data can be retrieved in near-real-time
from e.g. the data service of the SpaceWeather Prediction Center
(SWPC) (currently available at this URL: https://services.swpc.
noaa.gov/products/solar-wind/). A proof-of-concept prototype
of an operational service has been implemented at NMA, retriev-
ing the solar wind data from SWPC, running the models to
generate a forecast map and visualizing this on a webpage.
The data retrieval, processing and visualization add less than a
minute of latency. The data latency from being measured by
the satellite to appearing in the SWPC data file appears to be
approximately a few minutes. Thus, forecasts can be made well
in advance (typically 30 min to 1 h, depending on solar wind
velocity) of the arrival of the solar wind structures. Discussions
regarding establishing a full operational service are on-going.
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