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Abstract

Equilibrium and dynamical properties of a two-dimensional polydisperse
colloidal model system are characterized by means of molecular dynamics
(MD) and Monte Carlo (MC) simulations. We employed several methods to
prepare quasi-equilibrated systems: in particular, by slow cooling and tem-
pering with MD (method SC-MD), and by tempering with MC dynamics
involving swaps of particle diameters (methods Sw-MD, Sw-MC). It is re-
vealed that the Sw-methods are much more efficient for equilibration below
the glass transition temperature 7, leading to denser and more rigid sys-
tems which show much slower self-diffusion and shear-stress relaxation than
their counterparts prepared with the SC-MD method. The shear-stress re-
laxation modulus G(t) is obtained based on the classical stress-fluctuation
relation. We demonstrate that the a-relaxation time 7, obtained using a
time-temperature superposition of G(¢) shows a super-Arrhenius behavior
with the VFT temperature Ty well below T;,. We also derive novel rig-
orous fluctuation relations providing isothermic and adiabatic compression
relaxation moduli in the whole time range (including the short-time iner-
tial regime) based on correlation data for thermostatted systems. It is also
shown that: (i) The assumption of Gaussian statistics for stress fluctuations
leads to accurate predictions of the variances of the fluctuation moduli for
both shear (ur) and compression (nr) at T' 2 Ty. (ii) The long-time (quasi-
static) isothermic and adiabatic moduli increase on cooling faster than the
affine compression modulus 74, and this leads to a monotonic temperature
dependence of nr which is qualitatively different from pp(7) showing a
maximum near 7.
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1. Introduction

Rheological properties of complex and glass-forming fluids are largely defined by
their dynamical relaxation viscoelastic moduli, namely the shear relaxation modulus
G(t) and the bulk compression modulus K(¢) [1]. The G(t) memory function
can be defined in terms of the transient shear stress response to a small shear
deformation [2]. Similarly, K(¢) provides the mean pressure increment Ap(t) at
time ¢ after a small uniform compression of the system whose volume V decreased

to V(1 —e):
Ap(t) ~ eK(t) for e < 1

The shear modulus G(t) of a liquid rapidly decays with ¢ at high temperatures,
but it develops a long-time plateau in the supercooled regime. [3,4] Thus, G(t)
can be used to characterize vitrification of a supercooled liquid and to identify its
glass transition temperature Ty, as demonstrated in numerous simulation studies.
[5>-10] However, the relaxation compression modulus K(t) of glass-forming liquids
was much less investigated. [8,9,14,15] In the present paper we tried to reduce
this gap.

To obtain the relaxation moduli, G(¢) and K(¢), a fluctuation-dissipation formal-
ism relating them to stress-correlation functions is often used. [6,7,10-12] Recently,
we demonstrated that the standard approach to get response functions based on
correlation functions obtained with thermostatted MD simulations is insufficient in
the general case and, in particular, for a precise calculation of the dynamical
heat capacity. [13] The problem arises due to an imperfect temperature control in
thermostatted simulations; it affects those variables (whose response we consider)
that are coupled with temperature fluctuations. This problem concerns the pressure,
but not the shear stress, so the fluctuation equations for G(¢) stay intact. By
contrast, the standard scheme to obtain K(t) based on the fluctuation-dissipation
theorem (FDT; cf., eg., eq. 48 of ref. [14]) does not yield a proper isothermic
compression modulus, but rather a mixture of isothermic and adiabatic responses.

In the present paper we develop and employ a rigorous formalism, generalizing
the ideas presented in ref. [13], to calculate both isothermic (Kr(t)) and adiabatic
(Ka(t)) compression moduli using the correlation functions obtained in thermostatted
simulations. The theory is based on a number of novel FDT relations derived and
discussed in Appendices A, B, C, D.

The main questions addressed in this paper are:

(i) What are the effects of the equilibration method (in particular, using non-
local swaps of particle diameters) on dynamical and static properties of the studied
two-dimensional (2D) colloidal model system?

(ii) Is it possible and how to fully characterize the linear viscoelastic response of
a molecular system based on correlation functions of shear stress, pressure, energy,
etc.?

(iii) What are the effects of temperature on both short- and long-time viscoelastic
relaxation dynamics characterized by the isothermic and adiabatic bulk compression
relaxation moduli and the shear stress response?

(iv) How do the static moduli of the 2D supercooled liquid (both for shear
and compression) and their variances depend on temperature, in particular, near
the glass transition?



The importance of these questions stems from the previous simulation re-
sults [9,6,5,10,13] and the ongoing theoretical discussion on the nature of solidifi-
cation in amorphous materials [36,37,41-43].

The paper is organized as follows: In the next section we describe the two-
dimensional Lennard-Jones polydisperse (2D pLJ) colloidal system and the compu-
tational approach to study it. The simulation results are presented and discussed in
sections 3, 4, 5 and 6. In particular, the effects of the system quench/tempering
method on the radial distribution function, mean-square displacement ho(¢) and
shear relaxation modulus G(t) are discussed in sections 3 and 4, the relaxation
compression moduli are considered in sect. 5, while the static moduli and their
standard deviations are analyzed in sect. 6. The paper is summarized in sect. 7,
and the key results are highlighted in sect. 8.

2. The model and simulation details

We consider a model colloidal system of polydisperse Lennard-Jones (plJ)
particles in two dimensions [16,17,8,9,21,22]. The particle diameters are uniformly
distributed between 0.80 and 1.20 with o, the mean diameter. The interaction
range of a pair (I =1tj) of 2 particles ¢ and j is defined by the Lorentz rule [24]:
o1 =(0;+0;) /2. The LJ interaction potential is

ury(r,01) = 4e (3_12 — 3_6) (1)

where s = 7/o; is truncated at s., = 27/¢ (so that ugs =0 for s> sq) and shifted
to avoid discontinuity at s = s.u. The particles have identical mass which is set
to unity (together with & and €) by using the LJ units.® The number of particles
is N = 10%

We employed different approaches to quench and equilibrate the systems. In the
first approach (method SC-MD) the standard molecular dynamics (MD) simulations
with periodic boundary conditions were performed as implemented in the LAMMPS
code [25] (velocity-Verlet algorithm with MD time-step typ = 0.005). The system
was first tempered at the initial temperature T'=1 (where the system is well in the
liquid regime with short a-relaxation time 7, < 1) to prepare m = 100 independent
well-equilibrated configurations. The Nosé-Hoover (NH) thermostat and barostat
were used to impose the desired temperature and the external pressure py = 2.
The obtained configurations were then slowly cooled with rate I'= —dT/dt = 107°
keeping the same pressure and allowing the system volume to fluctuate. This way
we produced m initial configurations at ~ 30 specific working temperatures. At
each working temperature the system was tempered at constant pressure (po = 2)
over a time Atpnge = 10° (in LJ units). At ¢t = Atne, the instantaneous volume V(¢)
was fixed and the system was further tempered in the canonical NVT ensemble
over the same time At,g,. Starting from the final configuration of this NVT
tempering we performed NVT production runs over a ‘sampling time’ of At = 10°.

!Here and below we use LJ units by considering €, & and particle mass m, as physical units.

The LJ unit of time is therefore 717 = a(/m,/e.



An alternative way to equilibrate the quenched configurations is to perform
tempering via a hybrid MC/MD approach (method Sw-MD). The MC part comprises
a combination of local moves (local displacements of single particles) and particle
swaps (exchanging the diameters of two randomly chosen particles) [23]. In addition,
we allow for volume fluctuations of the system controlled by an MC barostat [39]
to impose the constant pressure py = 2. Local moves, particle swaps and volume
fluctuations are accepted according to the Metropolis criterion to ensure detailed
balance [39]. Time in these MC simulations is measured in units of MC steps
(MCS) where we define an MC step as an attempt to displace randomly each
particle by a local move [9]. 2 An ensemble of m independent configurations
(m = 100 for 0.2 < T <03, m =50 for T"> 0.3, and m = 20 for T < 0.2)
was tempered over Atpma, = 107 MCS (local, swap and volume moves) at constant
pressure. At t = Atpay the instantaneous volume V(t) was fixed and the system
further equilibrated over 10° MCS (local and swap moves) at constant volume,
and then over the same time again with local moves only. As discussed in [17],
this MC approach is successful in equilibrating the pLJ system at much lower
temperatures than the MD tempering discussed above. Fquilibration is achieved
down to Ty =0.16 (< Ty ~ 0.26) below which fractionation of particles of different
sizes occurs. The final configurations of the MC simulations for T' > Tt were further
tempered with MD Nosé-Hoover dynamics to equilibrate the velocities: first, at
constant pressure pp = 2 over a time of 2-10° (in LJ units) and then over the
same time at constant V equal to the volume of the final configuration of the
preceding NPT run.

After tempering by either method SC-MD or Sw-MD all production runs are
then done with MD at V = const. The instantaneous energy, pressure, shear stress
(averaged over the system volume) and other parameters were recorded during
the sampling time At = 10° (LJ units) with time spacing of §t = 0.05 or smaller
between successive data entries. In addition, we also used 2 similar approaches
(SC-MC and Sw-MC) where the standard MC dynamics (with local moves only)

was used instead of MD for ultimate tempering and production runs.

3. The RDF, structure factor and MSD

The system volumes V(T') have been recorded for the configurations prepared
by 3 quench methods (Sw-MC, SC-MC and SC-MD) at all temperatures; the
corresponding densities p = N/V are shown in Fig. 1. The SC-MC and SC-MD
results are almost identical. Moreover, at high temperatures the densities for all
the 3 cases coincide. However, the Sw-MC curve parts from the SC-curves at low
temperatures. The p(T) curves for the SC-systems thus reveal two distinct linear
slopes, while p(T') for the Sw-MC case does not show any slope change except for
very low temperatures 7' < 0.16. All the linear branches of p(T') intersect at roughly

2 A particle displacement vector 87 for a local move is chosen randomly within a disk 67 < §7qz
with 67,4, = 0.1. For a swap move we attempt to cycle N/2 randomly chosen pairs of particles.



the same point defining the dilatometric glass-transition temperature T, ~ 0.26. *

The obtained Ty is in agreement with that estimated previously [9,17].

The radial distribution (Kirkwood) functions (RDFs) g(r) for configurations
equilibrated using particle swaps (method Sw-MD) at different T’s are shown as
black curves in Fig. 2. The g(r) functions reveal decaying oscillations whose period
is roughly equal to the mean particle diameter. The obtained RDFs also show a
rather weak T-dependence. These features point to a liquid-like amorphous structure
both above and below T, (for T > Ty ~ 0.16). Fig. 2 also includes the g(r) data
for configurations obtained by slow cooling with the realistic MD (method SC-MD).
A similar comparison was performed in ref. [16] for T > 0.24. The data reveal no
dependence of this static property on the equilibration/tempering method (SC-MD
or Sw-MD, cf. sect. 2) for T > 0.16 (within the statistical error). This feature
is non-trivial since the SC- and Sw-equilibrated systems have different densities
at T < T, ~ 0.26, so we can conclude that g¢(r) is much less sensitive to the
equilibration method than the density.

At T = 0.16 a tiny deviation (between the g(r) results obtained with the
two methods) can be observed near the extrema. By contrast, the deviation
is rather considerable at T = 0.15. The RDFs for swap-tempered configurations
(method Sw-MD) start to show the secondary incommensurate oscillation mode,
which apparently signals the onset of a fractionation (phase separation) at T <
0.16. By comparison, no signs of fractionation are observed down to T =
0.15 for configurations prepared by method SC-MD, which means that particle
demixing is a very slow (interdiffusion) process inaccessible on the time-scales
furnished by the SC-MD tempering protocol. On the other hand, with the Sw-
MD equilibration method the (artificial) particle exchanges of the swap algorithm
circumvent the physical dynamics, thereby revealing the tendency of the studied
system to fractionation/crystallization at T < Tj.

Qualitatively, the presence of a structural transition at T~ Ty is also evident
in Fig. 3 showing snapshots of configurations obtained from method Sw-MD. The
snapshots illustrate that the system becomes phase-separated below T% =~ 0.16.
Moreover, even for Ty <T < 0.2 the structure gradually gets locally heterogeneous
on cooling due to the formation of small clusters of particles of similar size. Note
that the clustering effect is enhanced due to preparation with swap moves (as
compared with the standard slow cooling preparation protocols). The enhancement
is moderate at T > 0.17, but becomes more dramatic at low temperatures T <
Ty ~ 0.16. However, all the systems (both SC- and Sw-based) remain homogeneous
and isotropic at T > Ty on scales beyond the cluster size (< 4¢). These qualitative
observations suggest that a quantitative analysis of the ordering tendency, e.g. via
the local bond order parameters [18-20], would be rewarding.

The structure factor S(q) of the system, where ¢ is the wavenumber (g = ‘g),
is shown in Fig. 4 for a wide range of temperatures (0.16 <T < 0.5 in part (a),
0.15 <T <1 in part (b)). All data refer to the hybrid MC/MD equilibration
(method Sw-MD). The main peak of S(q) is located at ¢ = gmae ~ 6.3 corresponding
to the mean particle size; its height somewhat increases at low T' together with the

3Thus obtained T, depends on the total time (~ Aty = 10°) the system spent at a given T
during NPT cooling and tempering.



amplitudes of the secondary minima and maxima at higher ¢’s. This T-dependence
of S(q) for g 2 Gmaee reflects a short-range packing in neighbor shells around a
particle, which becomes tighter on cooling. Interestingly, the zero-¢ limit of S(g),
So = limg—o S(q), first slightly decreases on cooling down to T,, but then increases
significantly below T,. Moreover, S(q) shows a dip at gup ~ 3 corresponding to
about 2 particle diameters (27/qap ~ 2). The dip gets more pronounced at low
temperatures. It can be explained by local clustering of similar particles which
is visible in the snapshots of Fig. 3 at T > T;. * The increase of Sp on
cooling towards T} is apparently due to the same clustering effect (a tendency for
demixing of larger and smaller particles) which may be considered as a precursor of
fractionation and/or crystallization. Note an additional secondary peak (see arrows
in Fig. 4b) that appears to the right of the maximum for temperatures below
Ty;. This peak is consistent with the secondary oscillation feature in the RDF
at T'=0.15 (cf. Fig. 2). Possibly it originates from sufficiently large clusters of
smaller particles.

The mean-square particle displacement (MSD) as a function of time, ho(t),
is shown in Fig. 5. Here again we compare the results obtained from the
(initial) configurations prepared using particle swaps (method Sw-MD) and slow
MD cooling (method SC-MD). It is clear that for T > T, ~ 0.26 the particle
dynamics is independent of the tempering procedure. Besides, it is obvious that
for liquid systems (T > T,) the MSD always enters the purely diffusive regime,
ho(t) ~ 4D,t, at long enough times ¢t > 74. Here D, = D,(T) is the (mean)
self-diffusion constant and 74 = 74(T) is defined by the condition D,7q ~ a* = 1
(it is expected that 74 < 7, in the supercooled regime since a full structural
relaxation associated with 7, could hardly be achieved before the particles move
on their own size). By contrast, below the glass transition, T < Ty, the linear
Fickian diffusion regime is not accessible. In this low-T' range the MSD develops
a transient plateau which sets in at t ~ 1. Furthermore, at T < Ty the long-time
MSD for the MD-tempered configurations (method SC-MD) gets significantly larger
than that for the configurations equilibrated with the Sw-MD method. The latter
feature suggests that the particle self-diffusion for T' < T, is much faster for less
equilibrated (and, therefore, less dense, cf. Fig. 1 and ref. [17]) configurations
obtained by method SC-MD.

These results can be explained in the following way: First, we note that the
Sw-MD approach involving particle swaps is much more efficient for equilibration
than just MD tempering (method SC-MD), so that an arguably full equilibrium is
achieved with the Sw-MD approach in the studied T-range [17,23]. By contrast,
only partial equilibration can be achieved by MD tempering (method SC-MD)
at T < T,. Therefore, in ‘cooled’ systems some structural order parameters
may remain closer to their higher-temperature levels, and this out-of-equilibrium
effect (leading, in particular, to a lower mean density) may result in faster local

4 A similar, but less significant dip was observed for a 3D glass-forming system [10] (unpublished
result). Moreover, a dip in S(g) for 0 < ¢ < ¢max is not uncommon in binary mixtures,
the simplest representative of multicomponent systems. For binary mixtures the dip can be
understood by decomposing S(g) into its contributions stemming from the partial static structure
factors of like and unlike particles (see e.g. [40]).



rearrangements of particles and their higher D,. As the Sw-MD approach allows to
equilibrate the system also below T, ~ 0.26, the differences between the MSD for
two methods (SC-MD and Sw-MD) at T < 0.26, illustrated in Fig. 5, reflect the
degree of deviation from equilibrium for the configurations obtained by standard
MD tempering (method SC-MD).

All in all, the results discussed above show that the system remains macroscopi-
cally homogeneous and amorphous also below T, ~ 0.26, so long as T > T ~ 0.16.
Only for T < Ty does demixing, possibly followed by crystallization [17], occur at
the scale of the system size. An analysis of the dynamics in terms of the shear
relaxation and bulk relaxation moduli is carried out in the next sections. The
definitions of these moduli are based on the assumption of spatially isotropic and
homogeneous systems. This is pertinent in the regime T > Ty, which is the focus
of the following analysis.

4. Shear relaxation modulus

The shear-stress relaxation modulus G(t) defines the mean shear stress at time
t, o(t), generated by a small step 49 of the shear strain at ¢ =0:

G(t) = lim o(t)/vo

Yo—0

The response function G(t) can be obtained using the stress-fluctuation equa-

tion [5,9,10]:

T
G(t) = " [Co(8) = Co(0)] + pa (2)
where p = N/V is the mean concentration of particles,
N ! !
C,(t) = Tz (ba(t + t")ba(t)) (3)

do(t) = o(t) — (o), o(t) = 04y(t) is the shear stress (zy-component of the stress
tensor), (...) in eq. (3) mean averaging over the ensemble of m independent
configurations and the gliding averaging over t', and (o) is the ensemble- and
time-averaged stress. Note that (o) typically vanishes in the liquid regime. Eq. (2)
is applicable to well-tempered/equilibrated systems that do mnot show any aging
effects up to the longest sampling time At [10], which is the case for our systems
(prepared with either SC- or Sw-methods described in sect. 2).

In eq. (2) pa = G(0) is the affine shear modulus [9,10] defining the instant
response of shear stress after a small shear deformation. It is defined by both
ensemble- and time-averagings of the instantaneous shear modulus pa(t) calculated
using eq. (1) of ref. [10], pa = (pa(t)). Thus defined pa slightly depends on the
orientation of the coordinate frame (i.e., of the shear direction) [10]; the affine
modulus for the natural coordinate frame (with x,y axes along the sides of the
simulation box) is denoted here as u%. To improve its precision we pre-averaged

pa with respect to all orientations of the coordinate frame. ® This is equivalent

5This idea was proposed in ref. [10] where it was shown that such preaveraging leads to a
significant reduction of the standard deviation of u4.



to averaging over all orientations n of the bond vector r; connecting a pair of
interacting particles, leading to the following instantaneous modulus [10,5] ¢

HE() = T + 4 gy 2 [0 (6) 4+ (d+ Dsu'(9) (4)

8=3;
l

The corresponding average affine modulus is p%§ = (p5(¢)). Here d =2 is the space
dimension, [ is a pair of interacting particles, r; i1s the distance between their
centers, o; is their interaction range, s = r;/oy, u(s) is the interaction potential
defined in the r.h.s. of eq. (1), v and w” are its first and second derivatives
with respect to s, s < Secue. ' An additional preaveraging over the equilibrium
(Maxwellian) distribution of particle velocities is also implied here. Further technical
details concerning calculation of g4 are delegated to Appendix E.

Comparison of w9 (or ws for any fixed coordinate frame) with u% drives us
to conclude that the system is macroscopically isotropic: the deviation |u% — pu%
is random and small, it amounts to about 0.001% above Ty, while well below T
it increases to just ~ 0.1% (essentially due to an insufficient, i.e. effectively more
poor, statistics in the glassy regime).

The temperature dependence of w4 for the ‘swapped’ configurations (method Sw-
MD) is shown in Fig. 6(a) (black curve). ® The function wa(T) is almost linear,
apart from the low-T region, T < 0.16, where a weak but well-resolved deviation
from the linear behavior is observed. Such deviation points to a structural change
which we tend to associate with fractionation of particles at T < Ty = 0.16. By
contrast pa(T) does not show any anomaly in the vicinity of the glass transition,
T ~ T,. This feature emphasizes once again the apparently dynamical nature
of vitrification: the static properties like density p = N/V, or pa, or g(r) do
not change at the glass transition provided that the system is well-equilibrated
both above and below T,. The latter condition is satisfied for the ‘swapped’
configurations, but not for the ‘cooled’ configurations. As a result, the equilibrium
properties (like p or pa) of ‘cooled’ systems (prepared with method SC-MD) show
a cusp at T~ Ty (cf. red curve in Fig. 6(a)).

Above T, the shear modulus G(t) vanishes at long time (the static modulus
G(<) = 0), and the same is true for the shear stress correlations, C,(co0) = 0.
Hence, by virtue of eq. (2)

6Note that the general fluctuation-dissipation relation for G(t), eq. (2), involves ps = G(0)
which can be calculated by time-averaging of eq. (4). This equation is based on the classical
definition of p4 as a linear coefficient between the shear stress increment generated instantly
by a small shear strain and the magnitude of the latter. It comes from and agrees with the
well-established theoretical framework [14,37,54].

"It would be better to use a smooth interaction potential with continuous u'(s). [38] In the
present study, however, we used eq. (1) for consistency and better comparison with the previous
results on the same system.

®In fact this curve shows ps = p%™ calculated using the procedure to eliminate the effect of

mean pressure variations between the configurations as described in Appendix F.



T
pa = po = ;Ca(o), T >1T, (5)

Note that eqs. (2), (5) lead to a simple well-known relation [5,11,24]

o(t) = %a,(t), T>T, (6)
The relation, eq. (5), is verified in Fig. 6(b), which shows, in addition, that for
the swap-equilibrated systems pa = po not only in the liquid regime, but also
in a temperature range, Ty, > T > Ty, below the glass transition. Noteworthily,
however, the scattering of the po data obtained in the glassy regime, Ty < T < Ty,
with production runs involving realistic local MC moves only (cf. open circles in
Fig. 6(b)) is much stronger than that for pa. Besides, the data scattering for g
obtained with local MC moves is much stronger than the one obtained for MC
dynamics involving also swap moves (cf. filled circles in Fig. 6(b)).

The time-dependent shear moduli G(t) for ‘swapped’ configurations (prepared
with method Sw-MD) are shown in Fig. 7. At all temperatures one can observe
two relaxation stages: a fast process (presumably related to particles collisions
and vibrations) with characteristic time 74 ~ 0.1, and a much slower structural
relaxation process with terminal time 7, = 1. The gap between the two times
strongly increases on cooling leading to the emergence of an intermediate shoulder
gradually turning into a glassy plateau at 7' < 0.2 Qualitatively the same T
dependence of G(t) was also observed in other simulations of glass-forming 2D
systems [41,46-48]. The plateau corresponds to the quasi-static elastic shear
modulus g & psr of the glassy system (cf. sect. 6.1), which increases at low T.

Interestingly, G(t) also develops short-time oscillations for T' < T, ~ 0.26 leading
to short-time minima at T < 0.24. This feature is an Inertial effect since In
overdamped systems (without inertia) G(t) must be equal to a sum of decaying
exponentials with positive amplitudes (generalized Maxwell model) [1], hence G(t)
must monotonically decay together with all its time-derivatives. This interpretation
is also supported by the MC results for G(¢) (obtained with local MC moves only
during production runs) which are exempt of inertial effects by construction and
decrease monotonically with increasing ¢t (cf. Fig. 11). Apparently, the oscillation
features are due to short-time particle vibrations with frequency w, ~ 20rad/s (this
frequency corresponds to the period 27/w, ~ 0.3 which can be read off from the
G(t) curves).

The shear relaxation curves for the systems prepared with particle swapping
(Sw-MD) and continuous MD cooling (SC-MD) protocols are shown in Fig. 8.
The results are qualitatively similar to those for the MSD (cf. Fig. 5). One can
observe almost no difference between G(¢) for the two types of systems above Tj.
By contrast, as T decreases below the glass transition (at 7' < T,) the Sw-MD
based relaxations get increasingly slower than those for the SC-MD systems. The
difference becomes really dramatic at 7' < 0.21: while G(¢) for Sw-MD based
configurations develops a long-time plateau, the SC-MD systems show only a
transient shoulder. In other words, well below T, the ‘swapped’ systems (prepared
with method Sw-MD) show a persistent long-time elasticity, in contrast to ‘cooled’
systems (method SC-MD) which exhibit a creep-like complex-fluid behavior.

The two types of viscoelastic response of the two systems are apparently due to
a wide spectrum of relaxation times which spans over almost the whole run-time



window (from 1 to 10° LJ time-units) in the ‘cooled’ case (SC-MD), but is mostly
outside this time-window (shifted to longer times) in the ‘swapped’ case (Sw-MD).

We suggest the following criterion to get the structural relaxation time 7, based
on a relaxation function like G(¢):

—0InG(t)/0Int =1 at t =1, (7)

where one should seek for the longest t satisfying the equation above. Indeed, with
single exponential G(¢) = const exp(—t/7) one gets 7, = 7 using eq. (7), while for
multi-exponential function with well-separated relaxation times the above operational
criterion gives the time of the slowest mode. Clearly, the criterion for 7, based
on eq. (7) (with any constant in the r.h.s.) is in harmony with (and comes from)
the time-temperature superposition (TTS) principle. Indeed, this principle says that
relaxation functions at different 7”s can be superimposed by shifting them both
vertically and horizontally in log-log plots. This means that the points (on G(t)
curves at two T’s) with the same log-derivative 01InG(¢)/0Int must correspond to
the same t/7,. To further support this idea we attempted a direct TTS of G(t)
functions. The result shown in Fig. 9 reveal a reasonable collapse of G(t) curves
onto a master curve.

The T-dependence of 7, obtained using the criterion of eq. (7) is shown in
Fig. 10. The relaxation times 7, for different tempering methods (SC-MD and
Sw-MD) coincide for T > T, however 7, for the ‘swapped’ systems (method
Sw-MD) gets longer (than for configurations prepared with method SC-MD) for
T < Ty, The 714(T) dependence for ‘swapped’ configurations is fitted with the
Vogel-Fulcher-Tammann (VFT) law

Ta = T0 eXP(Eo/(T - To)) (8)

with Eo = 1.21, Ty = 0.162. Note that the fitted Ty is remarkably close to the
fractionation temperature Ty ~ 0.16. This fit suggests that the activation energy E,
for the structural relaxation is increasing on cooling in a super-Arrhenius fashion:

E. = EyT/(T — Tp) (9)

Starting from similar configurations equilibrated with the tempering method
Sw-MC involving particle swaps, G(t) was also obtained via eq. (2) based on
production runs with pure MC dynamics using local moves only [17]. The MD
results (cf. Fig. 7) are compared with the MC data (cf. Fig. 13 of ref. [17])
in Fig. 11. In order to superimpose the MD and MC curves the MC time was
rescaled: 1 LLJ time unit was identified with & MCS. Obviously, the data cannot
overlap in the short-time regime where the stochastic MC dynamics cannot replicate
the deterministic MD dynamics (accounting for the inertial effects), so we used
the long-time behavior to determine the shift factor k(7). Noteworthily, for the
three-dimensional Kob—Andersen mixture it has been shown in ref. [49] that MC
with local moves and (microcanonical) MD yield identical long-time behavior for the
average dynamics (incoherent scattering function, MSD) and dynamic fluctuations
(four-point susceptibility) upon rescaling the time axis so as to optimize the
overlap in the late-time regime. Here we make a similar observation: A reasonable
superposition of MC and MD curves for G(t) is obtained over a broad range
of temperatures at times t outside the inertial regime, for ¢ > Ty, where 7T
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somewhat increases at low T (Tmin ~ 0.3 for T > 0.3 roughly corresponds to the
period of short-time oscillations; 7 ~ 3 for T < 0.24, with time in LJ units).
The agreement is very good for T > 0.3, above the glass transition, but it is less
perfect in the vicinity of T,. Moreover, it turns out that the time-scaling factor

k= k(T) depends on temperature, for example k(0.3) ~ 600, k(0.24) ~ 300.

Discussion:

MC vs. MD production runs. An imperfect superposition of MD and MC
relaxation curves at low temperatures may be due to stronger variations of G(t)
between individual members of the ensemble (with m = 100 systems) at T < 0.3.
Future more precise simulations on larger ensembles may help to better characterize
the origin of these deviations. We also believe that there is a more general reason
for small deviations between MD and MC relaxation curves: the two dynamics are
not entirely equivalent even for long time-scales. Indeed, the true MD transition
rates (between the inherent states) are generally different from the MC rates (even
with time-rescaling) due to different dependencies of these rates on the potential
energy barrier width. While this effect leads to some difference between MD and
MC relaxation functions, it is unclear if it is ever significant. Note that at very
low T’s well inside the glassy regime the relaxation spectrum is very wide, but
falls mainly outside the accessible time-window, so the relaxation functions exhibit
a plateau at t > mnn and a difference between MC and MD time-dependencies
becomes invisible in this regime. To some extent, an imperfect superposition at
T < 0.3 may be also related to the system polydispersity which leads to a broader
distribution of the energy barrier width.

Swap-MC vs. MD-cooling preparation protocols. We propose the following
qualitative argument to account for different G(t) relaxation functions for the two
types of configurations: Consider a system cooled by MD down to the target
temperature T = Ty < T,. After the cooling stage the kinetic temperature Tj;,
becomes close to Ty, yet the system configurational state remains rather similar to
the equilibrium configuration at T, (apart from a small density change and minor
local differences) since a structural relaxation at any T < T, takes longer than the
cooling stage time (which is comparable to the sampling time At = 10°). The
configurational temperature is therefore T, ~ Ty; it corresponds to the configuration
entropy Seonf = Seonf(Te) and the configurational energy Eong = Eeong(T:) defined as
the mean of the nearest local energy minimum of the potential energy landscape.
Note that the total energy E = Econf + Eyin, where Eu; is the energy of vibrations
near a local potential minimum (E,; includes both potential and kinetic parts),
and, in a similar way, the total entropy S = Scons+Suvin, Where Sy is the vibrational
contribution to entropy. The general thermodynamic relation T'dS = dE (here for
simplicity of the argument we neglect compressibility assuming that V = const) now
splits in two:

TkindSvib — dEvi67 deSconf — dEconf

The energy barrier E, for the cooperative structural relaxation of a ‘cooled’

configuration must correspond to E, = E,(T,) ~ 1120_1;;”,0 (cf. eq. (9)). The relevant

structural time 7, (the apparent a-relaxation time for the ‘cooled’ system) is

defined by the activation energy E, for T, ~ T, and the kinetic temperature
Tkin ~ T12
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ET,
Tac ~ To eXp(Ea/Tkin) R~ Tp €XP (ﬁ) (10)

At low T; this time gets much shorter than the equilibrium relaxation time relevant
for the ‘swap-based’ configurations (cf. eq. (8)),

Ey
a N 11
T, To €Xp <T1 — To) (11)

Moreover, the ratio 7,/74 diverges as Tj approaches the VET temperature Tp.
Therefore 7, can stay inside the sampling time-window (or near it), while 7, grows
well beyond At¢, thus explaining a dramatic difference of G(t) relaxation behaviors

for the ‘swap-based’ (tempering method Sw-MD) and ‘MD-cooled” (method SC-MD)

systems at low temperatures, cf. Fig. 8. ?

5. Bulk compression moduli

In this section we present the results on the instantaneous (affine) compression
modulus and both the isothermic and adiabatic compression relaxation moduli.

5.1. Affine compression modulus

The affine compression modulus 74 is defined by the instantaneous pressure
response, Ap >~ nue, to a canonic affine compression of the system (at ¢=0)

z—z(l —¢/d), v—uv/(l—c¢/d) (12)

where ¢ <« 1 defines the relative decrease of the total volume. Here z stands
for all coordinates of all particles, v for their velocity components, d is the
space dimension, and Ap = (p(0t) — p(07)), where p(¢) is the pressure. The affine
modulus is a sum of the excess and ideal-gas parts (which are due to, respectively,
particle interactions and their momenta):

Ldt2
na=n§ + ——pT (13)

For a system of particles with pairwise interactions the excess part is [9]

ny = % <Z [su’(s) + s2u//(3)] sl> T Pex (14)

l

where pe, = p— pT is the excess pressure. As before (cf. sect. 4) [ is a pair of
interacting particles, s; = r;/ay, r; is the distance between their centers, o; is their
interaction range, u(s) is the interaction potential defined in the r.h.s. of eq. (1), o
and u” are its first and second derivatives with respect to s. Using the equations

9This argument also explains a similar difference in the MSD, ho(t), for the two ensembles, cf.
Fig. 5.
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above and the microscopic definition of the instantaneous shear modulus [10] we
arrive at a rigorous relation between shear and compression affine moduli:

N4 = CZTTZ#Z( + 2po — 2pT (15)
where p% can be calculated for each independent system by time-averaging of
eq. (4) (cf. sect. 4). A similar relation for d = 3 was obtained long ago in
ref. [51] where it was called ‘the generalized Cauchy identity’. Using eq. (15)
we obtained n4 for ensembles of plLJ systems at each temperature, and then
calculated the corrected ensemble average, 7%, as explained in Appendix F. The
obtained T-dependence of 77 is shown in Fig. 17. As the ideal-gas term —2pT
in eq. (15) only represents a small correction to u¥, na(T') behaves essentially as
e (T) (cf. Fig. 6): The affine compression modulus increases monotonically on
cooling, showing a small feature (change of slope) at T & 0.16 corresponding to
the fractionation effect (cf. sect. 4).

5.2. Bulk relaxation moduli

The bulk relaxation compression modulus K(¢t) of a liquid (or of any macro-
scopically homogeneous isotropic molecular system like an amorphous solid) can
be defined in terms of the response of the total mean pressure (averaged over
the whole system of volume V) to a small uniform compression, V. — V(1 —e):
K(t) = Ap(t)/e, where Ap(t) = (p(t) —p(07)) is the pressure increment due to an
instant affine step deformation (with € — 0) occurred at t =0. '°

To complete the definition of K one has to specify what happens with temper-
ature T' (or energy) of the system after the deformation. If no heat is transferred
to/from the system (or the total heat current is always zero), the energy is
conserved leading to the adiabatic response characterized by the relaxation modulus
K4(t). By contrast, in the case of an ideal temperature control (T = const) we
arrive at the isothermic relaxation modulus Kr(t). The properly defined bulk
moduli K4(t) and Kr(t) '* are different, and are both universal: they must not
depend on the statistical ensemble, nor on the thermostat properties (in the case of

10Note that the static limits (¢t — o) of G(¢) and K (¢) are related to the small-strain elasticity
tensor ¢ (cf. egs. (2.196) and (2.199) of ref. [32]; in turn, c is related to the material and
mixed elasticity tensors in a well-known way, cf. eq. (2.195) in [32]): for an isotropic material

G(OO) = (611 - 612)/2, K(OO) = (611 + (d— 1)612)/d.

1By ‘properly defined’ we mean that the adiabatic or isothermic conditions (E = const or T' =
const ) are imposed at all times after the perturbation. Such conditions may be naturally satisfied
by the dynamical system like the condition £ = const in the case of microcanonical simulations.
Alternatively, however, the required conditions can be also kept by weak perturbations like small
heat injections associated with appropriate velocity transformations (cf. eq. (B4)). The latter
approach provides a way to obtain Kr(t) based, for example, on microcanonical simulations.
The underlying general idea here is the same as the one proposed in ref. [13] to obtain the
isochoric heat capacity c¢,(t) from thermostatted simulations.
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a ‘decent’ thermostat that negligibly affects the particle dynamics at the time-scale
of fast collisional/vibrational relaxation; cf. ref. [13] for more details).

Most of the thermostatting approaches used in real experiments or in simulations
are not ideal and allow for some systematic T-variations following the perturbative
deformation (since generally the instantaneous temperature T = T(¢) does not
coincide with the temperature T; imposed by the thermostat). In particular, this
is true for the Nosé-Hoover thermostat employed in MD simulations considered in
the present paper. Note that normally by K(¢) we mean the relaxation modulus
obtained at a constant imposed temperature, T; = const. The thus defined ‘bare’
modulus K(t) = Ko(t) is not universal: it depends on the thermostat/system
coupling parameters (a similar problem for the heat capacity is discussed in
ref. [13]). However, an advantage of the Ko(t) response function is that, by virtue
of the FDT, it can be easily calculated based on the pressure autocorrelation
function Cp(t):

mw=m+§mw—@®] (16)
where
Op(t) = T2 <5P(t + t/)6p(t/)>NVTi (17)

is the equilibrium correlation function of pressure in the canonical NVT; ensem-
ble, ép(t) = p(t) — (p), (p) is the ensemble- and time-averaged pressure p (cp.
eqs. (2), (3)).

Importantly, eq. (16) also implies that the e-compression at t =0 is a canonical-
affine transformation of coordinates (z) and velocities (v) of all particles, cf.
eq. (12) (this transformation is adiabatic since it conserves the measure in the
phase space). Therefore Ko(0) provides the instantaneous adiabatic response in the
case of a Nosé-Hoover or any other thermostat allowing for temperature fluctuations:
Ko(0) =na is both affine and adiabatic.

Noteworthily, to derive the FDT relation, eq. (16), one has to consider an
extended ensemble including systems of different (but time-independent) volumes
whose equilibrium distribution is defined by the imposed pressure pg (the effective
Hamiltonian of the system therefore is H = E + poV'). The finding that the FDT
relation requires an extended (NpoT;) ensemble is consistent with other approaches
[14,52]. For thermostatted (NVT;) simulations (with the same V for all systems)
Cp(t — 00) =0 in the liquid regime, hence the equilibrium isothermal compression
modulus can be defined as Kre = Ko(t — o00) = ga — T'Cp(0)/p, and Eq. (16) can be
rewritten as Ko(t) = TCp(t)/p + Kre. In this form, Eq. (16) agrees with eq. (48)
in [14] and with the Lebowitz—Percus—Verlet transformation of fluctuations between
different ensembles (here NPT and NVT) [53], allowing to identify Ko(¢) with
Ko(t) = (V/T){(6p(t + t')6p(t'))Np,r; for the extended ensemble where po is imposed
(but V = const for each system). '2

12Note also that Ko(t) for microcanonical simulations is equal to the adiabatic modulus K 4(t)
which can be defined in analogy with eq. (19) of ref. [62]: K4(t) = lim,_.o(V/T)(ép(g,t +
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5.3. Results and discussion on compression relaxation moduli

As discussed in the previous section, for thermostatted simulations the relaxation
function Ko(t) generally reflects an adiabatic response at short times, while its
long-time behavior is isothermic. Hence we arrive at the following problem: to
obtain the proper (universal) relaxation moduli Kz(t) and Ka(t) based on Ko(t)
(or based on the correlation functions measured in simulations). The solution to
this problem is outlined in Appendix A based on the ideas developed in ref. [13].

The relaxation functions Krz(t) for the Sw-MD systems at different temperatures,
calculated as described in Appendices A, B, are plotted in Fig. 12. The compression
modulus shows a minimum around ¢ = 0.2 for T < 0.4 (the minimum time
slightly decreases on cooling). The minimum is deeper than the similar short-time
undershoots of the shear relaxation modulus G(¢) (cf. Fig. 8) and it gets more
pronounced at lower T”s. This feature points to stronger inertial effects for Kr(t)
than for G(¢). In both cases an undershoot is followed by an overshoot at longer
times (¢, = 1 for Kr(t) at T <0.3). At low temperatures, T' < 0.22, the relaxation
modulus develops a well-defined quasistatic plateau, Kr,, in a wide time range (for
t > 1). The quasistatic compression modulus Krs (cf. eq. (29)) is always much
higher (by a factor of ~ 3) than the analogous quasistatic shear modulus.

The adiabatic compression modulus K4(t) for the Sw-MD systems was calculated
in two ways: First, by solving the exact eq. (D7) derived in Appendix D (the
numerical approach to solve it is described below eq. (B28) in Appendix B).
Second, by using the approximate eq. (A5) (cf. Appendix A). The results are
compared in Fig. 13 showing that the approximate equation works quite well for
all times and all temperatures. There is no difference between the ‘exact’ and
approximate Ka(t) for ¢ 2 2 (within the numerical precision of the data). At
shorter times some minor deviations of the red (approximate) curves are detected
mostly in the overshoot-undershoot region.

The functions Ka(t), obtained using the ‘exact’ FDT relation, eq. (D7), in a
wider range of temperatures and times are shown in Fig. 14. One can observe
the following differences between adiabatic and isothermic relaxation functions (cf.
Figs. 14, 12): Ka(t) show stronger variations at short times, t <1 (in particular,
a deeper undershoot and a much sharper and higher overshoot). The short-time
minima of K4(t) are located at ¢, ~ 0.25 at all T’s, whereas for Kr(¢) this time
somewhat decreases down to ¢, < 0.2 at low T7s. On the other hand, the long-time
relaxation (for ¢ > 1) is weaker in the adiabatic case.

Noteworthily, the minima of K4(¢) emerge already well above Ty, in contrast
to G(t) showing undershoots only below Ty. It is reasonable to attribute these
undershoot /overshoot features to the effect of overstressed bonds. It is easier to
understand this effect at a low T, when each particle is close to its equilibrium
position. Upon a perturbative affine compression the force balance may be upset,

t')op(—gq,t'))NvT, where ¢ is the wave-vector and ép(q,t) the pressure fluctuation at ¢ and
t. As long as g is not strictly equal to 0, the thermodynamic boundary condition of fixed
particle number and volume is not felt and all fluctuations are allowed. Identifying Ko(t) for
microcanonical simulations with the ¢ — 0 limit of the autocorrelation function of ép(g,t) is

thus again consistent with an extended ensemble with imposed pressure.
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so the particles have to move to the new equilibrium positions. The contribution
of a bond to the pressure increment (due to the deformation) is proportional
to the bond force increment Af which, in turn, is proportional to the elastic
constant k = r?0?U/0r? of the bond (here by a bond we mean any interacting
pair of particles, 7 is the bond length). A bond with higher k£ (than on the
average) is likely to push the particle so as to increase r;. After a half-period of
the resultant oscillating motion the force Af decreases to a minimum (which may
even be opposite to the initial value Afy), this corresponds to the undershoot of
K4(t). Waiting another half period returns the force closer to the initial value Afy
leading to an overshoot. The undershoots for K,4(t) are located at t, ~ 0.25 and
the overshoots - at a twice longer time, ¢, ~ 0.5, in agreement with the argument
given above. The mean vibration frequency w, is therefore w, ~ w/t, ~ 13rad/s,
which is in harmony with an estimate of a typical vibration frequency in a LJ
liquid [26]. Interestingly, the undershoot time is somewhat shorter (¢, ~ 0.2) in
the case of isothermic relaxation at low 7', while the overshoots for Kr(t) are very
broad and weak.

6. Static moduli and their deviations

In this section we consider temperature dependencies of the long-time elastic
moduli and their standard deviations for the systems equilibrated with particle

swaps (method Sw-MD).

6.1. Shear moduli

The affine modulus pa shown with black solid line in Fig. 6(a) was discussed
in sect. 4. We applied two different approaches to increase its precision. The first
approach boils down to an isotropic averaging over all rotations of the coordinate
frame (cf. sect. 4). The second approach is described in Appendix F.

To assess the efficiency of these precision-improving procedures for gy we applied
them independently to obtain u% (with orientational averaging), g% (with pressure
correction), and p%* (with both orientational averaging and pressure correction) in
addition to p% (cf. sect. 4). The variances of the affine moduli among the systems
of an m-ensemble have been then evaluated based on these 4 sets of p,s leading to

or*

4 types of the corresponding standard deviations, §p%, §u5, Su’y and SuS*, whose

temperature dependencies are shown in Fig. 15. It is clear that du%™

smaller than §p9, i.e., p5* is much more precise than the raw modulus p9 obtained

in the fixed coordinate frame and without the pressure correction. The deviations

is much

615, Sug (no pressure correction) coincide above the glass transition, and are nearly
constant at lower temperatures (although the orientational preaveraging results in
a slightly lower §u§ below T,). This result suggests that both §u§ and Su§ are
mainly due to quenched variations of the total volume and the mean pressure
across the ensemble. This view is supported by the observation that the pressure
correction above T, leads to a drastic decrease of the pa-deviation by a factor of
~ 20 from &u§ =~ §uf ~ 0.15 to Sug* < &uy < 0.007. The deviations dp%, Sug
are therefore quite imprecise and irrelevant (reflecting mostly the volume dispersity

of independent configurations). The remaining deviations, §p% and dp§*, show a
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rather sharp increase on cooling near T,; a similar behavior of épus was already
reported for another glass-forming system (a 3-dimensional oligomer liquid) [10].
The effect of orientational preaveraging is strong below T, where op§™ < dpjy.
Its origin was explained in ref. [10]: the preaveraging wipes out an important
contribution to éps due to fluctuations of bond orientations. Remarkably, all the
deviations of pa show a peak slightly below the fractionation temperature TY%;
it is therefore likely that the peak is kinetic in nature being associated with a
phase-separation process.

The long-time shear modulus g, is defined in terms of the relaxation modulus
G(t) in eq. (11) of ref. [10] which is equivalent to [17]

2
(At)”

por ) = —— [ M ) (At —t) dt (18)

Another equivalent definition comes from egs. (2), (3), (18):

psg(AL) = pg — pr(At) (19)
where the so-called fluctuation modulus is [10,17]

pr(80) = 7 (100 = %) (20)

where ¢ is the time-averaged stress (for 0 < ¢ < At) and (...)yyr implies both
time- and ensemble-averaging. To improve the precision of both pr and psr we
applied the same procedures as for py. The orientation average of pp is obtained
by calculating pp both in the original coordinate frame with z,y axes along the
box sides (yielding u%) and in the frame rotated by 45° (up):

ug = (% + u¥) /2 (21)

(Note that eq. (21) is exactly equivalent to isotropic averaging over all rotations of
the coordinate frame, as follows from the tensorial nature of the stress). Accordingly

Moy = KA — HE (22)
Furthermore, in most cases we apply the pressure correction indicated by star (%)
as before.

The temperature dependencies of the quasi-static moduli pg%" and wpF™ are shown
in Fig. 16(a). Their behavior is similar to that revealed for another glass-forming
system [10]: the glassy modulus pss vanishes in the liquid regime, but sharply
increases on cooling near Ty, while pur develops a maximum around 7,. The latter
feature was explained [10] by faster increase of pa (as compared to psf) on cooling
in the liquid regime, and the opposite behavior (faster increase of pgs) below Ty.
Note that at T, = 0.26 the glassy modulus pg¥ is still small, it is roughly twice
lower than its standard deviation, éugF". It is noteworthy that the temperature
dependence of v = pp obtained by MC simulations using the same independent
configurations as in the present study (cf. Fig. 14 of ref. [17]) agrees with our

or>*

data for p%™.

The standard deviations éuj,, dufp and 6ugy, dugF™ show similar T-dependencies
characterized by a rather sharp peak slightly below Ty, cf. Fig. 16(b). The
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peak of éup was reported for the same system [17] and for a 3-dimensional
glass-forming system [10]; it was explained based on the assumption of Gaussian
stress fluctuations. '* This ‘Gaussian’ theory is described in refs. [10,17]. The
predicted ‘Gaussian’ standard deviations 5,u§mG) (calculated at different temperatures
based on the known shear relaxation function G(t)) are also shown in Fig. 16(b)
(black curve). ™ Tt is clear that 5#%(;) quantitatively reproduces the behavior of
dpr in liquid regime and in the glass-transition zone around Ty. By contrast,

Sy > 5,u§mG) well below T, due to a non-ergodic (and therefore non-Gaussian)

(re)

contribution, duy ', related to quenched structural disorder in glassy systems:

(6u5)? = (618) + (505 (23)

(cf. refs. [10,17,27]). It is important to note that the theory is not expected to be
applicable quantitatively to the standard deviations éu%™ of orientationally-averaged
pr; SuS is typically lower than duj by a factor ~ /2.

To assess the importance of the pressure correction for pur and p,s we compared
bpy with dp% and buj, with é6pd, (cf. Fig. 16(c)). It turns out that the pressure
correction is not important for éuss (apart from a weak effect at low T < 0.18,
where 8pj, exceeds épl; by ~ 10%). It is also negligible for éur at T < 0.28.
However, the situation is different at higher temperatures (T > 0.28) where duj
gradually becomes significantly smaller than the bare (uncorrected) deviation &u%
(by a factor of 4 at T'=10.5). Why is up strongly affected by pressure variations
above T, in contrast to p,s? The point is that the shear modulus p,s vanishes in
the liquid regime, and thus gets uncorrelated with pressure for this simple reason.
As a result 5,u2f becomes negligible compared to §u%, and in view of the relation
py = p% — pyy, the deviation &p% gets dominated by the deviations of u% which
strongly depend on pressure (cf. Fig. 15): §p% ~ 6pug > 6p2; in the liquid regime.
Fig. 16(c) also shows that in the glass-transition region (T ~ T,) the standard
deviations of all the fluctuation shear moduli, Sus, Su%, TP 5,u2f, are accurately

described (are dominated) by the Gaussian contribution 5,u£—,,G).
Following the approach described in Appendix F, fluctuations of any variable X
can be represented as

(6X)7 = (6X°)? + (8X7 (21)
where §X? accounts for the variations of the mean pressure between the systems

(5x7)? = (%—ffvar@) (25)

13Note that the pressure correction was not applied in ref. [17]. This difference led to larger
6v = dpg in the high T region (cf. Fig. 15 of ref. [17]) as compared to §u} shown in Fig. 16(c).
A part of this effect is also due to shorter sampling times used in [17].

(&)

14Note that the pressure correction is irrelevant for §uy ’ since the latter is invariant to vertical

shifts of G(t), G(t) — G(t) + const . [10,17]
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where var(p) = (5?)2 ~ %KTE is the mean pressure variance between the indepen-
8X

dent configurations (Kr. is defined below eq. (29)), and 5, 18 the thermodynamic
derivative at T = const. Hence §X? %5? stems from trivial equilibrium pressure
fluctuations. By contrast, §X* reflects more important effects of structural hetero-
geneities. In fact, a dispersion of X* between different parts of a supercooled liquid
(which is due to its inherently heterogeneous glassy structure) must be similar to
the dispersion between independent configurations considered in the present paper.
Thus, a better resolution of structural heterogeneities demands lower §X?/§X*.
Comparing this ratio for X = pa, pr and pss we found that pp is better suited

than other moduli for detecting structural heterogeneities.

6.2. Compression moduli

Temperature dependence of various compression moduli is shown in Fig. 17. The
instantaneous (affine) modulus 74 discussed at the end of sect. 5.1 (cf. eq. (15))
provide the upper bound for all the moduli. The isothermic quasi-static modulus
nss is defined using the stress-fluctuation formula in analogy with eqs. (19), (20):

Ns(AL) = na — nr(At) (26)

where np(At) is the fluctuation compression modulus proportional to the mean-
square pressure fluctuations in the NVT; ensemble (at constant volume [9] and
imposed temperature T;):

ne(A) = o (0t~ 27) (21)

where (...)yyr indicates both time- and ensemble-averaging as before. Equations
equivalent to eq. (26) have been proposed/used in refs. [28,11,9,15].

Following the same approach as applied to the shear stress fluctuations in order
to obtain eq. (18) [10,17], ns¢ can be related to the relaxation modulus Ko(t):

At

nos(AL) = (AQ—W /0 Kolt) (At — ) dt (28)

This relation shows that n,;(At) is dominated by the long-time level of Ko(t) ~
Kr(t).1
In addition to 5, we define the long-time modulus Kr, in analogy with eq. (28),
but with a different lower limit of time:
At
K7, = const Kr(t) (At —t¢)dt (29)

0.3At

where const is normalization constant. Thus, Kr, is a mean of Kr(t) over the
segment [0.3A¢, At]. As the function Ko(¢t) mostly decreases with time, Kr, is
a bit lower than n,; (as follows from eqs. (28), (29); note that there is no

15Tn the long-time limit, Ko(t) — const. If Ko = const, eq. (28) gives 7 = Ko, implying that
Nst( At — 00) is indeed dominated by the long-time level of Ko(t).
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difference between Ko(t) and Kr(t) in the long-time regime of eq. (29)). However,
the difference between the 2 moduli is barely visible only around T, where the
plateau onset is comparable with 0.3At (cp. red and brown curves in Fig. 17).
Above T, the integration segment in eq. (29) (and, therefore, Kr,) falls into the
equilibrium plateau (cf. Fig. 12), while below Ty, it belongs to the glassy plateau.
We attempted to obtain the equilibrium  isothermic compression modulus Kr.
assuming that its T-dependence is smooth (featureless) around the glass transition
(just like the T-dependencies of the affine compression modulus 54 or the shear
modulus pa). To this end, it was postulated that Kr. = Kz, for T > 0.29, and
a parabolic fit of Krs(T) in the region 0.29 < T < 0.4 was extrapolated to get
Kre at T < 0.29. Quite expectedly Kr, exceeds the resultant equilibrium (genuine
static) compression modulus Kr. below Ty, Krs > Kre, since the regime of complete
relaxation is inaccessible in the glassy state (cf. Fig. 17). The difference Kz, — Kr.
is the magnitude of the terminal relaxation step of Kr(t) occurring at t > At. It
significantly increases on cooling in the glass-transition zone, but then appears to
stay nearly constant at lower T7s (T < 0.24). The relative non-equilibrium (glassy)
contribution % amounts to about 4% at Ty ~ 0.26. This value can be
compared with the analogous ratio for the shear modulus, pes/pa ~ 1.3% at T =T,
(note that the genuine equilibrium shear modulus is assumed to be identically zero
both below and above T, [2] ¢). Therefore T, roughly corresponds to the onsets
of both the quasi-static shear elasticity and a non-equilibrium contribution to the
compression modulus.

Remarkably, the fluctuation compression modulus ng always monotonically in-
creases with temperature (cf. Fig. 17) in contrast to the shear-stress fluctuation
modulus g which shows a maximum near Ty (cf. Fig. 16(a)). The difference
stems from their behavior above T,: ur = pa — psy decreases with T because
psy 1s negligible in this regime, while g gets lower at higher temperature. By
comparison, nF = N4 — Nss increases with T both above and below T, (for T > T%)
because the static modulus 7,y ~ Kr, = Kr. always decreases with T faster than
M4-

Fig. 17 also shows another quasi-static compression modulus, K,,, defined using
the volume-fluctuation formula [9,8,15,29]

K, =TV/{(V-V)") (30)

where V —V is instantaneous deviation of the total system volume from its time-
averaged value in the NPT ensemble (in this case we used both Nosé-Hoover
thermostat and barostat). Eq. (30) is applicable if any relevant relaxation time
(including those associated with thermostat and barostat) are either much shorter
or much longer than A¢. This is true both above T, (where all relaxation times
are < At) and below T, (where 74 > At). In these cases K,, ~ Krs =~ 7,4.
Fig. 17 confirms this expectation: a small difference between K,, and n,¢ is only
visible in the glass-transition zone near Tj.

The statistics of V(t) deteriorates below T,, so K,,(T') becomes noisy at T' < 0.2.
By contrast, the T-dependence of 7,y remains smooth in this region. The main

6Here we do not consider the non-ergodic regime below the putative ideal glass transition
temperature.
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reason for this difference is that in the case of 9,4 (but not for K,,) we applied the
procedure described in Appendix F to compensate for the mean pressure variations
between the configurations: 7, = 5;;. The importance of the pressure correction
for n,s is also evident from Fig. 18 showing that &9, > ém};.

The quasi-static adiabatic modulus K4, was obtained based on the adiabatic
relaxation modulus K4(t) (cf. Fig. 14) in analogy with Kz, (cf. eq. (29) where
Kr(t) should be replaced with K4(t)). It shows a monotonic and almost linear
increase on cooling except a shoulder in the glass-transition zone (cf. Fig. 17).
Again the difference Ky, — Kge (where K,4. was obtained by linear extrapolation of
K4s(T) at T > 0.3 into the region T < 0.3) defines the magnitude of the terminal
adiabatic relaxation step in the glassy regime (7' < Ty). Just like the similar
quantity (Krs — Kr.) for the isothermal relaxation, Kas — Ka. rapidly increases on
cooling near T,, but stays almost constant (increasing slightly) at lower T7s. We
also observe that Kas(T) is always roughly in the middle between the quasi-static
isothermic (n,5 &~ Kr,) and instantaneous affine (n4) moduli; all the 3 moduli seem
to nearly merge at T'= 0. The fact that Ky, = Kr, at T =0 is anticipated from
eq. (D22) provided that the thermal pressure pr, is finite. On the other hand, we
know that n4 — Krs ~ na —nsf = nr (cf. eq. (26)) and that ng > 0 by definition
(cf. eq. (27); the inequality nr >0 at T — 0 also comes from results of ref. [54];
an analogous inequality for wp is also well-known [55]). Thus, in the general case
both nF and pr must remain finite at T'=0, and therefore g4 > 7,y and pa > pey
at all temperatures. It appears however that np decreases very significantly at low
temperatures (cf. Fig. 17), whereas a similar decrease of pp is not so pronounced
(cf. Fig. 16(a)).

To calculate the standard deviations of compression moduli we determine n4, nF
for each independent system. For example, the affine modulus n4 is obtained by
time-averaging of the instantaneous modulus na(t) defined in analogy with eq. (15)

d+2
na(t) = —7 Ha (t) + 2po — 2pT (31)

where p%(t) is specified in eq. (4):

1 At .
= [ malt) (32)
Similarly, the fluctuation modulus is defined as (cf. eq. (27))

V1o pae

=T (p(t) — p)* dt (33)

Temperature dependencies of standard deviations for the affine and fluctuation
compression moduli, §7%, én%, on%, &ny, are shown in Fig. 18(a). The pressure
correction is obviously important for the affine modulus: §7§ is always much
higher than én3 (by a factor of 10 or more above Ty). By contrast, the pressure
correction for np (just like for pp) appears to be insignificant near and below
Ty % ~ énp at T < T,. The effect of pressure dispersion on &np becomes
detectable only well in the liquid regime, for T > 0.4. Turning to 7, = na —nr, we
observe that 79y is defined by ény both above and below T, outside the peak:
ongy ~ dny at T > 0.32 and T < 0.22. On the other hand, elimination of the
pressure dispersion effect leads to a significant decrease of ém;; in the two regions,
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cf. Fig. 18(b). Thus both 75, and na strongly depend on the mean pressure,
while such effect is much weaker for ng.

The Gaussian approximation, 577](;;), for ény can be obtained as a straightforward
generalization of the theory [10,17] for duf: the whole argument remains the same
provided that the shear relaxation modulus G(t) is replaced with the compression

modulus Ko(t). In other words, the variance (577%0'))2 is defined by the r.h.s. of
eq. 30 in ref. [10] with Ko instead of G. Fig. 18(b) shows that the Gaussian

approximation works very well for T' > 0.25, where ény ~ 577](?G). At lower T's the

difference between én3 and 577](5,10') grows to more than 10%; it allows to obtain the

structural non-ergodicity parameter 5775—,{“3) [17,27]:

(678)" = (8n)” — (0¥)” (34)

The above equation leads to 577](;1'3)/5775—,9) ~ 0.5 at T~ 0.2. The corresponding shear
non-ergodicity parameter, 5#5;1':) (cf. eq. (23)) is much larger: 5pgle)/5p§§') =5 at
0.15 < T <0.2.

Noteworthily, the shear and compression fluctuation moduli are comparable at low
temperatures: g ~ pp ~ 15. The higher ratio 5,u§,,fle)/yp as compared to 577](;6)/771?
indicates that an order parameter related to pp would be more appropriate than
nr to study structural heterogeneities.

7. Conclusions

1. We performed MD and MC simulations of a two-dimensional system of
polydisperse disks with LJ interactions using several methods to prepare quasi-
equilibrated systems (cf. sect. 2): by slow cooling and tempering with MD or
MC (methods SC-MD, SC-MC) and by tempering with MC involving particle swap
moves followed by standard equilibration with local MC moves or MD (methods
Sw-MC, Sw-MD). It is shown that above the glass transition temperature Ty ~ 0.26
the system properties (RDF, the structure factor S(g), the MSD, the relaxation
moduli) do not depend on the tempering (equilibration) approach. Remarkably, the
glass transition can be easily detected based on the temperature behavior of either
density p (cf. Fig. 1) or the affine shear modulus ps (cf. Fig. 6(a)) for systems
prepared with different equilibration approaches: both p(T) and pa(T) show a
lower slope at T < Ty for the preparation method SC-MD (continuous MD cooling)
as compared to the Sw-MD and Sw-MC methods.

2. The systems equilibrated with particle swaps are thus denser and more
rigid below T, than slowly cooled systems. Moreover, the observed temperature
dependencies of such static quantities as p [17], pa and the affine compression
modulus 74 are smooth in the vicinity of T, for the swapped systems (no change
of slope near Ty, cf. Figs. 6(a), 17). These features indicate that the particle
swap technique allowed for a nearly complete equilibration both above and below
T, in agreement with results of refs. [23,17].

3. The detected evolution of the Kirkwood RDF, g¢(r), at low temperatures
(cf. Fig. 2) points to a particle demixing (fractionation) process in the swap-based
configurations at T < Ty ~ 0.16 (cf. Fig. 3). This tendency is also reflected
in the behavior of the structure factor S(q) showing an increase at low g¢’s on
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cooling towards Ty (cf. Fig. 4). The fractionation transition is also visible in the
temperature dependence of the affine shear modulus gy obtained for the swap-based
configurations (cf. Fig. 6(a)).

4. We demonstrate that the system dynamics below Ty significantly depend on
the applied equilibration/tempering method: the particle self-diffusion is considerably
slower for systems equilibrated using particle swaps (method Sw-MD), cf. Fig. 5,
in spite of the fact that both ensembles show similar structure (with nearly the
same RDF, cf. Fig. 2) for Ty < T < Ty. A dramatic effect of the preparation
protocol is also reflected in the shear stress relaxation which shows a long-time
plateau at low T’s for swap-equilibrated systems, but a much faster decay with a
transient shoulder for slowly cooled systems (cf. Fig. 8). It is therefore apparent
that the less-equilibrated systems show much faster dynamics below T, (cf. Fig. 10
and the discussion at the end of sect. 4).

5. The structural relaxation time 7, of the swap-equilibrated system shows a
super-Arrhenius temperature dependence (cf. the VFT law, eq. (8)). The VFT
temperature To (often associated with the Kauzmann or the ideal glass transition
temperature [3]) turns out to be remarkably close to the fractionation temperature
T;.

6. It is shown that the shear-stress relaxation data obtained with MD and
MC dynamics can be approximately superimposed by rescaling of the MOC-time
tmc — t =tuc/k (cf. Fig. 11). It turns out that the factor k& = k(T) shows
a non-monotonic T-dependence with a maximum at T ~ 0.3 slightly above the
glass-transition. However, the superposition gets imperfect in the glass-transition
regime (0.24 < T <0.28). Further simulations with larger ensembles may help to
clarify the origin of this discrepancy. We argue (cf. discussion in sect. 4) that
strictly speaking the two dynamics (MD and MC) are not equivalent even in the
case of negligible inertia.

7. The shear-stress correlation function C,(t) is not sensitive to the ther-
mostatting mechanism since a shear deformation does not produce any temperature
variation in the linear approximation (AT is proportional to the square of the
shear rate). This feature is also reflected in the absence of cross-correlations
between the shear stress and temperature or energy. By contrast, a normal stress
or pressure do correlate with temperature and energy, and this sizeable effect leads
to a dependence of the pressure correlation function Cp(t) on the thermostatting
method.

8. The shear relaxation modulus G(t) was obtained based on shear stress
fluctuations using the well-known FDT formula, eq. (2). The analogous relation
defining the compression relaxation modulus Kg(t) in terms of pressure fluctuations
is given in eq. (16). We argue, however, that this relation provides the genuine
isothermic compression modulus Kr(t) only in the case of ideal thermostatting,
or for long enough times, ¢ > 7r, where 7r is the thermostat-related temperature
relaxation time. In the general case Krp(t) # Ko(t) since Ko(t) is a ‘mixture’
of isothermic and adiabatic responses (in particular, for t < 7). We therefore
arrived at the following challenge: to get all the response functions like Kr(t)
or the analogous adiabatic compression modulus Ka(t) in the full time-range (to
resolve all the relaxation processes in the physical system). In other words, the
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17 response functions of

goal was to predict the universal (thermostat-independent)
the very physical system based on correlation functions obtained for the extended
thermostatted system. The relevant theory for the time-dependent heat capacity
cy(t) was developed in ref. [13]. Its generalizations for the compression moduli (and
the thermal pressure relaxation function pr(t)) are presented in Appendices B, C
(for Kr(t)) and Appendix D (for K4(¢)). The theory is based on the FDT relations
between Laplace transforms of response and correlation functions. These relations
are then converted into the real-time domain to get equations defining Kr(t) and
K4(t). This approach is valid for a rather wide range of ‘decent’ thermostats
(cf. ref. [13]) including the NH thermostat used in our simulation studies. The
relaxation moduli Kr(¢t) and Ka(t) for the pLJ system have been eventually
obtained using eqs. (B10), (B30) and (D7), respectively. We anticipate that even
more precise results can be obtained with eqs. (C12), (C15), (D19), (D20) that
do not involve autocorrelations of the kinetic temperature often showing strong
oscillations.

9. Using the general approach described above we calculated the isothermic
(Kr(t)) and adiabatic (K4(t)) relaxation functions at different temperatures and
reveal that adiabatic moduli show much stronger short-time undershoots than Kr(t)
or G(t) (cf. Figs. 7, 12 and 14). We also derived (cf. Appendix A) a simple
approximate equation (A5) defining the adiabatic relaxation modulus Ky4(t) in
terms of pressure, energy and temperature correlation functions and demonstrated
numerically its validity for the pLJ model system. The approximation for K4(t)
works amazingly well to t 2> 2 (cf. Fig. 13).

10. The mean-square fluctuations (MSF) of shear stress and pressure along the
trajectory are quantified by two fluctuation moduli, respectively, ur and ng, which
show qualitatively different temperature dependencies: while pp exhibits a clear
maximum near Ty, np monotonically decreases on cooling (cf. Figs. 16(a) and 17).

This means that the MSF of pressure, <(p(t) —ﬁ)2>, decreases always faster than
T, i.e., that <(p(t) —ﬁ)2> /T falls on cooling.

11. It is found that the instantaneous (affine) moduli for shear (pa) and
compression (na) show a smooth temperature dependence around Ty for swapped
configurations (method Sw-MD). By contrast we reveal a sharp increase of the
quasi-static shear and compression moduli (usy and 9,4 ~ Krs, respectively) on
cooling near T, (cf. Fig. 17). A similar temperature behavior was found also
for the quasi-static adiabatic compression modulus K,,. Remarkably, K,, stays
roughly in the middle between n4 and Kr,, and the 3 compression moduli (94, Krs
and Kas) seem to nearly merge at zero temperature. Given that the fluctuation
modulus 9 = 4 — K7, is always positive for amorphous systems (pp =0 at T =0
would imply that there is no stress relaxation at all, Ko(¢t) = const, which is
impossible for systems with heterogeneous structure), we conclude that although
the extrapolated np for the studied system does not vanish at T =0, it decreases

17The basic idea is that the response functions must reflect the properties of a physical system
as such, and therefore must be independent of its coupling to a thermostat. [13] For this reason
the moduli like pa, ur, tts¢,n4,MF, KTs, K as are both ensemble- and thermostat-independent
(as all these moduli are directly related to the response functions).
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strongly at low temperatures.

12. We devise two procedures to improve the precision of the affine shear
modulus g4 and to reduce its standard deviation éus. They boil down to
orientational averaging of pa by the coordinate frame rotations (cf. sect. 4) and
to applying a linear regression to compensate for the mean pressure variations
between the configurations (cf. Appendix F). Applied together these techniques
lead to a dramatic reduction of dua: by a factor of 40 above T, and a factor of
10 below T, (cf. Fig. 15). It is also demonstrated that the pressure correction
is important for the variance of the fluctuation shear modulus pr above Ty (cf.
Fig. 16(c)). Turning to compression moduli, we found that while the standard
deviations of the quasi-static and affine moduli (én, and én4) strongly depend on
the mean pressure dispersion between the independent configurations, its effect is
much weaker for énp (cf. Fig. 18).

13.  We predicted the height, hr, of the terminal step for the isothermic
relaxation modulus, Kr(t), in the glassy regime, where the terminal process occurs
in an inaccessible time range. The height hr is obtained as the difference between
the long-time plateau level (Kr,) and the corresponding equilibrium compression
modulus (Kr.) which was defined by an extrapolation of Kr, from the liquid regime
to lower temperatures (T' < T,). The analogous height of the terminal process for
the adiabatic relaxation was obtained in a similar way as hy = Ky, — Kygo. Well
below T, the isothermal step hgr is nearly constant and exceeds hy for adiabatic
relaxation by a factor of ~ 2.5 (cf. Fig. 17).

14. The assumption of Gaussian statistics for stress fluctuations works very
well near and above T, both for the shear stress and pressure. This concept
leads to rather accurate quantitative predictions of the non-monotonic temperature
dependencies for the standard deviations of both shear and compression fluctuation
moduli, épy and ény (cf. Figures 16(b) and 18(b)). By contrast, both shear
stress and pressure fluctuations become strongly non-Gaussian at low temperatures
(T <0.2).

15. We established that various shear moduli, ps, pr and pss, are isotropic
with the relative accuracy ~ 0.1% well below T,. Around T, the isotropy is less
precise for pr and pep: at T~ 0.24 their relative angular variations rise to about
0.3% and 2%, respectively. This effect is apparently due to a stronger sensitivity of
the shear modulus to variations of external parameters and its stronger dispersion
within the ensemble near the glass transition. By contrast, the isotropy of the
purely static affine modulus s does not deteriorate near T, (its accuracy gradually
improves on heating and becomes ~ 0.02% at T ~ 0.24).

16. The compression relaxation moduli Kr(t), Ka(t) obtained using new FDT
relations (cf. point 8 above) together with the shear relaxation modulus G(¢) and
the time-dependent heat capacity c,(t) [13] largely define the linear viscoelastic
properties of the system (as long as it is macroscopically isotropic and homogeneous,
which is true for T' > T%). In particular, all the dynamical moduli and compliances
like the Young modulus E(¢) or the creep compliance J(t) (cf. refs. [33,34]) can
be obtained on this basis. For example

G(s)d
(d—1)/2+ (1/d)G(s)/Kr,a(s)

where s indicates the s-Laplace transform defined in Appendix B, eq. (B8). A

J(s)=1/G(s), Era(s)= (35)
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simple way to obtain such and similar relations between the material functions '®

based on the analogous static relations is outlined at the end of Appendix D.

17. Our results could be pertinent for experimental systems of colloidal
monolayers consisting of a binary mixture of superparamagnetic particles [42]. For
such monolayers video-microscopy gives access to particle trajectories and allows
for positional analysis as in 2D simulations [44]. Since in addition the interaction
potential between the particles is known, shear and compression relaxation moduli
can in principle be calculated. Such an analysis could complement prior studies of
static strain fluctuations related to shear rigidity of the colloidal glass [41] and of
spatio-temporal strain patterns that emerge in supercooled liquids [45].

8. The key results

[. Using the artificial MC dynamics involving swaps of particle diameters we
managed to almost completely equilibrate the studied 2D pLJ model systems. Their
equilibrium nature was carefully verified based on the following observations:

— The temperature dependence of density, p(T'), does not show any change of
slope at the glass transition T, (corresponding to solidification).

— Using swap MC moves also during the production runs we found that the
shear stress correlation function rapidly decays to zero in this case indicating a
complete stress relaxation during the tempering time.

— The same results are obtained on cooling from high T and on heating
starting from quasi-crystalline configurations at 7' = 0.01. These configurations
had been slowly heated and tempered using the Sw-MC method. At T > 0.16
they show only local clustering and quantitatively the same dynamical and static
properties as their counterparts obtained on cooling from T = 0.5.

— The equilibrium FDT relation po = pa is satisfied for the Sw-MC systems
(cf. Fig. 6(b)).

II. The Sw-based systems at T < T,, which can be considered as a thermo-
dynamically equilibrium glass, show higher elastic moduli, much slower particle
diffusion, and a more pronounced and longer plateau of the shear relaxation mod-
ulus G(¢), as compared to the SC-MC and SC-MD systems prepared by standard
slow cooling. We thus not only confirmed a significant dependence of glass prop-
erties on its formation history, but also provided a tool to quantify the degree of
deviation from equilibrium for an amorphous system.

The structure and properties of the Sw-equilibrated systems are likely to be
similar to that of ultra-stable glasses obtained by vapour deposition, which are also
supposed to be close to an equilibrium state [56]. Therefore, the Sw-systems we
studied can serve as a simple model for vapour-deposited glasses.

III. An important step forward of the present manuscript beyond the prior
work is the development of the linear response theory for the isothermic and
adiabatic compression moduli (Appendices A to D). Together with the results for
the shear relaxation modulus, this provides the general linear viscoelastic response

18These relations are useful in practice primarily in the regimes where inertial effects are not
important.
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of a system that is macroscopically homogeneous and isotropic. Small clusters
of particles of similar size appear for Sw-based systems at T = 0.2, but all the
systems remains macroscopically homogeneous and isotropic for T' > Tt ~ 0.16. The
developed theory is therefore applicable to all the systems we studied above the
fractionation temperature.

IV. Both static shear and compression moduli (pgss and n,s) strongly increase on
cooling near T, (cf. Figs. 16(a) and 17). Their behavior is sharp but continuous,
so the system solidification occurs in a finite T-window (0.23 < 7T < 0.28) which can
be read off from the peaks of standard deviations of the moduli, éuj, (Fig. 16(b))
and &m;; (Fig. 18(b)). These peaks are accurately reproduced with a theoretical
approach assuming Gaussian statistics of stress fluctuations near and above Tj.
The established temperature dependencies of the shear and bulk moduli, p.s(T)
and n,(T), are qualitatively similar to those obtained experimentally on colloidal
monolayers of a binary mixture of superparamagnetic particles [42], albeit a much
stronger increase of the bulk modulus near T, was revealed for the experimental
system.
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APPENDIX A: General approach to calculate compression
relaxation moduli

As explained in sections 5.2, 5.3 the isothermic and adiabatic pressure relaxation
moduli, Kr(t) and K4(¢), cannot be obtained in the general case solely based
on the pressure autocorrelation function Cp(t) (so, generally, Kr(t) # Ko(t), cf.
sect. 5.2 and eq. (16)). However, as proposed in ref. [13] the response functions
of thermostatted system can be (under certain conditions) expressed in terms of
several correlation functions using appropriate FDT relations. A number of such
relations eventually defining Kr(t) and K4(t) are derived in Appendices B, C, D.

1. Isothermic modulus

Let us first consider the isothermic modulus, Kr(t). It can be written as
Kr(t) = Ko(t) + AKr(t). The FDT expression for AKr(t) is given in eq. (B30)
in terms of the autocorrelation function of temperature, Cr(t), and the thermal
pressure response function pr(t) generalizing the thermodynamic derivative (%)NV
(cf. Appendix B, eq. (B20)). The function pr(t) can be calculated using another
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FDT relation, eq. (B28), involving cross-correlation functions of pressure and energy,
Cpr(t), and of temperature and energy, Crg(t). Another way to obtain Kr(t),
which 1s more efficient numerically, is described in Appendix C.

While the correction AKr(t) vanishes at t — oo, for finite times it accounts
for the deformation-induced deviation of the instant kinetic temperature T from
the thermostat (imposed) temperature. This deviation is rather small at ¢t = 0
(AK7(0) = —2Tp, cf. eq. (B32)), but it can significantly increase in time in the
case of a weak system/thermostat coupling (large thermal mass @ for the NH
thermostat). In our simulations this effect is avoided by using low @’s corresponding
to a high Nosé frequency wg ~ 100 (w} = 2TNd/Q), so that wgrs ~ 6, where 74 is
the collision/vibration time. In this case, AKr(¢) remains always small and decays
fast (during a short time ~ 0.2).

Thus, generally, the correction AKr(t) significantly depends on the strength of
the system/thermostat coupling. A similar effect was considered in ref. [13] for
the dynamic heat capacity. For a strong coupling (a high Nosé frequency wq)
the correction time-range is short. However, the correction may become important
if the system/thermostat coupling is too weak (wgry < 1) or too strong (for
woTs > 1 in the case of a single NH thermostat).

2. Compression modulus

In this section we analyse the relaxation modulus for adiabatic compression,
K4(t). As already mentioned, the canonic-affine deformation is adiabatic in nature,
so the response at t =0, Ko(0), is equal to Ka(0). However, the 2 functions are
different for ¢ > 0, and Ka(t) normally exceeds Ko(t).

Let us first consider the static limit, ¢ — oo, assuming that the system can
be eventually fully equilibrated after a perturbation. The following thermodynamic
relation between adiabatic and isothermic moduli is valid in this regime:

Ki= 2Ky (A1)

Cy

where ¢,, ¢, are heat capacities (per particle) at constant pressure and volume,
respectively. It leads to

T
Ky=Kr+ ;P%’/Cv (A2)

where
Op
br = (B_T)V = aKr (A3)

is the thermal pressure, and a = (ag}v) is the thermal expansion coefficient.
p

In a glassy state the genuine equilibrium levels of pr and ¢, are not accessible,
but they can be replaced by the corresponding long-time plateau values. It
is tempting to consider pr and ¢, more generally as time-dependent functions,
providing pressure and energy responses to a step-like T-increase (cf. eq. (B20)
in Appendix B for pr(t) and ref. [13] for ¢,(¢)). In this spirit eq. (A2) can be
empirically generalized as
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Kalt) ~ Kr(t) + fmtf/cv(t) (Ad)

The above equation must be valid in the static limit (¢ — oco) and in the quasistatic
glassy plateau regime where t < 7, (since the latter regime is essentially static as
well, and the thermodynamic relations like eq. (A2) are valid not only at genuine
equilibrium but also - albeit approximately - in a glassy state equilibrated within
a metabasin [35,36,10]). Moreover, it is also correct at ¢t = 0 where its r.h.s. is
exactly equal to K4(0) = K7(0) + 2Tp. (Note that pr(0) = p and c,(0) = d/2; cf.
eq. (D27) in Appendix D.)

A rigorous approach allowing to calculate the adiabatic response is described in
Appendix D. A number of relations between the Laplace-like s-transform of Ka(t),

Kals) = s / T Ka(t)etdt

0

and similar transforms of correlation functions are established there. Some of these
relations are then converted into the time-domain and expressed as equations which
can be solved for Ku(t), cf. eqs. (D5) and (D7). Remarkably, we also established
an exact relation between the transformed response functions, eq. (D23), which is
formally similar to eq. (A4) and can serve as a basis to justify its approximate
validity. In a similar way, eq. (D5) generates the following approximate equation
for the adiabatic relaxation modulus:

Kalt) = Kolt) + —proft)*/calt) (A5)

It involves the functions pro(f) and cyo(t) which are directly related to the
correlation functions of energy and pressure (cf. eqs. (B18), (D4)), which were
obtained by MD simulations.

APPENDIX B: FDT relations for isothermic compression
relaxation modulus

1. Definition of the relaxation modulus

To obtain the isothermic bulk compression relaxation modulus Kr(t) using FDT
relations involving pressure and energy correlation functions we note first that the
compression deformation, eq. (12), leads not only to a pressure increment

Ap(t) = eKolt) (B1)

but also to a temperature variation:

AT(t) = E%CTp(t), (B2)

where

Crylt) = g (6T(1+1)6p(1") (B3)
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Here and below (...) mean both ensemble and gliding averaging as before, §T'(t) =
T(t) —T;, ép(t) = p(t) — (p), and any non-linear terms (for € < 1) are omitted.
An NVT; ensemble is assumed by default (7; is the temperature imposed by a
thermostat). Eq. (B2) comes from the FDT [12,24,31].

In addition to the deformation, eq. (12), we consider 2 types of temperature
perturbations: (i) a small jump-like velocity increase at t = 0:

v—v(l+e/d), (B4)
and (ii) a small jump (er) of the imposed temperature at ¢ = 0:
Tz(t) == Tz — €T®(—t) (B5)

where O(...) is the Heaviside function. By virtue of the FDT the T-perturbation
(i) leads to the following responses (at t > 0):

Ap(t) = €,TCur(t), AT(t)=¢,TCr(t) (B6)
where
Crlt) = s (ST(E+ E)6T(E)), Cyrlt) = o (50l + )6T()) (B7)

Cry(t) is defined in a similar way; Cpr(t) = Crp(t) is due to the time reversibility.
Combining eqs. (16), (17), (B1), (B2), (B3), (B6), (B7) and doing the following

transform (labelled below as s-Laplace) for all response and correlation functions:

Ap(s) = s / Ap(t)e~*tdt, Cpr(s) = s / Cor(t)e*tdt (BS)

etc., we get the following responses to both a compression and a T-perturbation
of type (i):

Ap(s) = eKo(s) + €,TCpr(s), AT(s)= E%OTP(S) + €, TCr(s) (B9)

To obtain the proper isothermic modulus Kr we must set AT(¢) =0. The latter
condition cannot be satisfied with a constant e,. However, we may allow for a
superposition of T-jumps (defined in eq. (B4)) occurring at any ¢t > 0 (and not
only at t=0), which is equivalent to considering €, as a function of s. Then the

condition AT(s) =0 leads to € = —€eCrp(s)/ [pCr(s)] and Ap(s) = eKr(s) with

Kr(s) = Kol(s) + AKp(s), (B10)

Mﬁ@z—fﬂ@W@@> (B11)

Here and below the transforms defined in eqs. (B8) are indicated by s-variables
only. The isothermic relaxation modulus, Kr(¢), can in principle be obtained by
calculation of the Laplace transforms of Cpr(t) and Cr(t) correlation functions, and
then by doing the inverse Laplace transform of Kr(s)/s = [;° Kr(t)e **dt. A more
efficient alternative way is described below (in sect. 3).
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2. Definition of the thermal pressure response pr(t) and general relations
between its Laplace transform and the relaxation modulus

The T and p responses to a temperature perturbation of the second type (cf.
eq. (B5)) are also related to the equilibrium correlation functions (as follows from

the FDT [12,24,31,13]):
Ap(t) = er [Cpp(0) — Cpp(t)],  AT(t) = er [Cru(0) — Cra(t)] (B12)
where
Cop(t) =T 2 (8p(t +t)SE(t)), Crr(t)=T?(8T(t+¢t)SE(t)) (B13)

Here the static correlations, Crg(0) and prs = C,r(0), reflect the properties of
the equilibrium canonic ensemble:

OTE(O) = 17 PTso = Prs + OpE(OO) (B14)

where

_(0p
Prs = (6T)N’V (B15)

is the rate of change of the mean (equilibrium) pressure with temperature (thermal
pressure), and Cpg(oo) is the long-time limit of Cpg(t). Note that generally
Cpr(o0) #0 in a glassy state.

Combining the above equations with eqs. (16), (17), (Bl), (B2) we find s-
transforms of the responses to both a compression and a T-perturbation of type

(i1):
Apls) = ekals) + exprols), AT(s) = - Crylo) +enll = Cas(s)]  (B16
where
Pro(s) = prso — Cpr(s) (B17)
In the time-domain the latter equation becomes:
pro(t) = Cpp(0) — Cpr(t) (B18)

Using the same trick as before we find that the isothermic condition AT(¢) =0
(at €= const) leads to: er = —E%OTP(S)/ [l — Crg(s)] hence

Kr(s) = Kols) - %OT,,(s)pTo(s)/ 1~ Crg(s) (B19)

The time-dependent function pr(t) generalizing the thermodynamic constant pr,
can be defined via the pressure increment Ap at time t after a step-like increase
(by ATp) of the ensemble-averaged temperature at ¢ = 0:

pr(t) = Ap(t)/ ATy (B20)
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Obviously pr(t =0) = p. ' Demanding that AT(t) = AToO(t) and using eqs. (B16)
with e =0 and er = er(s) we get

PTO(S)

= -/ B21
pris) = 2L (B21)

Applying the same operation to eqs. (B9) we obtain
pr(s) = Cpr(s)/Cr(s) (B22)

As the response functions (like pr(t)) must be universal (independent of how the
T-perturbation was created, cf. ref. [13]), egs. (B21), (B22) define the same
function and lead to an exact relation between pressure/energy correlation functions
(valid in the thermodynamic limit N — oo):

Cr(s) [prso — Cpr(s)] = Cpr(s)[1 — Crr(s)] (B23)

This relation is akin to eq. 19 of ref. [13] which reads

Cr(s) [coso — Cr(s)] = Crm(s) [1 — Crr(s)] (B24)
where
Cp(t) = (SE(t+t)SE(t) / (NT?) (B25)
and
Coso = Cp(t = 0) (B26)

Eq. (B23) also ensures that the two results for Kr(s) obtained above
(egs. (B11), (B19)) are equivalent, thus supporting the idea of universality of

the isothermic modulus Kr(t).
Finally, we note that eqs. (B19), (B21), (B22) lead to

ARr(s) = == Crls)pr(s)? = = Cor(s)pa(s) (B27)

It shows that once pr(t) is known, the relaxation modulus Kr(t) can be readily
calculated by convolutions.

3. Equations defining Kr(¢).

In the previous sections we established the relations between Laplace transforms
of response functions Kr(¢), pr(¢) and of equilibrium correlation functions which can
be easily calculated using thermostatted simulations. However, in order to obtain
the response functions one would have to do direct and inverse Laplace transforms
which may pose a formidable problem given that some of these functions may show

19Note that pr(t) is related to the relaxation coefficient of volumetric thermal expansion whose
s-Laplace transform is equal to pr(s)/Kr(s).
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significant oscillations. A way to bypass this problem was outlined in ref. [13]
where the time-dependent heat capacity was calculated using similar relations. The
basic idea is to transform the relevant relations into the time domain (to get rid
of Laplace transforms), and to use the least oscillating correlation functions. The
first part of this program is outlined below, the second part is clarified in the
Appendix C.

Eq. (B27) connects the Laplace transforms of the isothermic modulus Kr(¢) and
of the thermal pressure response function pr(t). To obtain the latter function we

recall eqs. (B21), (B17) leading to
pr(s)[1 — Cre(s)] = prao — Cpn(s)

and note that the above equation is equivalent to the following relation between
the time-dependent functions:

t d
/0 pr(t — ¢)—-Cru(t)dt’ = Cpp(t) — prao (B28)

This equation can be easily solved for pr(t) in the iterative manner. 2 The
solution is unique and stable. Its stability follows from the following property of
Crg(s): there are no roots of 1 — Crg(s) with R(s) > 0. It can be proved using
eq. (B24) and the approach detailed in the Appendix C of ref. [13].

Finally we get using the second eq. (B27) and the obtained pr(t):
T t ! !
AKr(t) = ~TCyr(t) | Corlt = ¢)apr(t) (B29)
Alternatively, the isothermic modulus can be found based on the first eq. (B27):
T st
AKzr(t) = —pTCr(t) /0 Cr(t — ') dpra(t) (B30)
where
¢
pra(t) = ppr(t) + | pr(t—¢)dpr(t) (B31)

Note that at ¢ = 0: pr(0) = p, pr2(0) = p? and Cr(0) = 2/d, so (on recalling
eq. (B10))

2
Kr(0) = Ko(0) — ETP (B32)
The second term in the last equation is typically rather small for supercooled
liquids.

20More precisely, the time-variable is first discretized with step §¢: t; = it, and the functions

pr(t), Cre(t) are approximated on each segment (¢; — §t < t < t;) by their constant mean values

pgf), Cé%, i =1,2... Then eq. (B28) is applied at ¢t = #1, {3, ... to get one-by-one the values pg}),

O
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APPENDIX C: Isothermic compression modulus in terms of
correlations of potential energy and excess pressure

The function Crg(t) shows significant oscillations at short ¢. Besides, 1—Crg =0
at t=0 (s — 00). Both these features lead to a poor precision of pr(¢) obtained
from eqs. (B21), (B28) at short ¢t. For better precision it is beneficial to use
variables that are coupled weaker to the instantaneous temperature. Such more
useful variables are the potential energy U and the excess pressure p., instead of
total energy E and total pressure p:

U=FE—-TNd/2, pe.=p—pT

Here TNd/2 = K is the kinetic energy, pT = p;q is the ideal-gas pressure due to
momenta of the particles (pe, is due to their interactions).
The relevant correlation functions of U and p., are (cf. eqs. (B7), (B13), (B25)):

Cy(t) = (8U(t+1)sU(t)) / (NT?), Cug(t) = (§U(t +t)6E(t)) | (NT?),

Coualt) = o (5pealt + 1)6pee(2)
N
Ctpa(t) = g (6Tt + ¥)6pealt) = Cy (8 (1)

The function C,, () defines the response of p., after a small compression
r— (1 —¢/d)x (C2)

which does not affect the particle velocities (hence this transformation in the phase
space is not canonical). The relevant FDT relations are:

Apealt) = ¢ Ecpw@ ; K;t(,] (3)
and
AT() = - Crp (8 (C4)

where K55, = n% — %Cp”(t =0) and 7§ = na — 92pT is the excess part of the

affine compression modulus (cf. eq. (13)).
Next, turning to the T-perturbation of the first type, eq. (B4), we find

Apes(t) = &TCy1(t), AT(t) = e, TCr(t) (C5)

The analogous FDT relations associated with the second T-perturbation, eq. (B5),
are:

Apex(t) = €1 [Cp,,E(0) — Cp,m(t)], AT(t) = er [Crr(0) — Crr(t)] (C6)

where (cp. eq. (B13))
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Creor(t) = T77 (6pea(t + ) E(t))) (C7)

The isothermal excess modulus Kg¥(¢) (defining excess pressure response to a small
compression at constant T') and the excess thermal pressure coefficient p§(¢) can be
obtained using the above equations following the approach described in Appendix B.
In particular, we get

e, —C 8
pir(s) = 0 = Coablo) _ ()0 ()
1-— OTE(S)
where p§o = Cp..5(t = 0), leading to
C1(8) [P0 — Cpear(8)] = Cp,,(8) [1 — Crr(s)] (C9)

The latter equation is equivalent to eq. (B23) since Cpg(s) = C,..g5(s) + pCrEr(s) +
const and Cpr(s) = Cp..1(s) + pCr(s) as follows from p = pe, + pT. In a similar
way we get the excess compression modulus:

K5*(s) = - Cpua(s) + KFip = - Cpuan(s)pFF (o) (10
Taking into account that obviously Kr(t) = Kg(t) + pT, we arrive at
Ka(s) = T+ Kflo + Gy (8) = = Cpu(s) (0 ()
In the time domain it reads (on using p§(t =0)=0)
Ka(t) = o7 + Ko+ [pa(t) = | Cpunlt = )57 (1) (C12)

where dp§*(t') = %f’)dt’.

It remains therefore to obtain p§(¢). Using eqs. (C8) we get

ex p%msﬂ B Oper(s)
= 1
where C, .v(s), Cru(s) are the s-transforms of
Croor(t) = T7* {8pea (t + £')6U (), Cru(t) =T (6T (¢t +¢")6U(t)) (C14)

The corresponding equation for p§F(¢) is

t
P (1) = o — Cou(t) + [ Crolt—t)dpg (¢) (C15)

This equation is similar to eq. 48 of ref. [13]. It can be solved iteratively starting

from ¢t = 0; it has a unique and stable solution (cf. ref. [13] for details). Note

that pf¥ =0 and C,v = pf,e at t =0 (corresponding to s — oo) as follows from
the first eq. (C6). Eq. (C15) also defines the full response function pr(t) due to

the obvious relation

pr(t) = pr(t) +p
An advantage of eqs. (C15) and (CI12) defining the relaxation isothermic bulk
compression modulus over eqs. (B28), (B29) is that the correlation functions (like

Cp..u(t), Cry(t)) involved in eqs. (C15), (C12) show much weaker oscillations than
those (like Cpg(t), Crg(t)) involved in eqs. (B28), (B29). This feature results in

a higher numerical precision of the eventually evaluated time-dependent response
functions.
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APPENDIX D: FDT relations for adiabatic compression
relaxation modulus

The adiabatic condition means that no heat is transferred into (or out of) the
system. It therefore implies that the initial deformation (e-compression at ¢ = 0)
must be a canonical affine transformation of the phase space given in eq. (12),
and that the energy E is conserved afterwards:

E =const, t>0 (D1)

since no work is done by the system (V = const). In the case of a thermostatted
system (in particular, with the Nose-Hoover dynamics we consider) there is perma-
nent heat exchange between the system and the thermostat, so the condition (D1)
must be maintained by additional compensating heat transfers due to, for example,
the Ti-perturbations defined in eq. (B5). Let us therefore focus on the pressure p
and the energy E responses. Considering now 2 perturbations defined in eqs. (12)
and eq. (B5), respectively, we get in analogy with eqs. (B16): *

Ap(s) = eKo(s) + erpro(s), AB(s) = VT [Cupls) — proo] + erNew(s)  (D2)
where pro(s) is defined in eq. (B17), prso = Crp(t = 0) and
co0(8) = coso — Cx(s) (D3)
(cf. egs. (B14), (B26)). Upon conversion into the time-domain eq. (D3) becormes
cwo(t) = Cp(0) — Cp(t) (D4)

The condition (D1) implies that AE(¢) =0 at ¢t > 0, hence AE(s) = 0. The
functions er = er(s) and Ka(s) = Ap(s)/e are then obtained using eqs. (D2) for
e =const and AE(s)=0:

Z pro(s)
p cvso — CE(S)

€T = €

Ka(s) = Ko(s) + AK(s), AK(s) = —pro(s)?/cwo(s) (D5)

™ |

Converting the above equations into the time domain we get
T
Ka(t) = ;Op(t) + Kroo + AK(2) (D6)

where Krg = 14 — %Cp(t =0) and the function AK(¢) is defined by the following
equation

¢ T st
/0 AK(t ~)dew(t) = /0 pro(t — t')dpro(t!) (D7)
?1Here by AE(t) we mean E(t) — E(t = 0T).
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where cyo(t) and pro(t) are defined in eqs. (D4), (BI8), respectively. Thus, the
adiabatic relaxation modulus K4(t) can be easily obtained by solving eq. (D7) for
AK(t) using the same numerical approach as described below eq. (B28).

The adiabatic modulus Ka(t) can be also obtained based on correlation functions
involving excess pressure p., and potential energy U (in analogy with the isothermic
modulus Kr(t), cf. Appendix C). To this end one could use the approach detailed
in Appendix C based on new FDT relations. However, we take a slightly
different route: instead of considering new FDT relations we simply use the
already established eqs. (D5) and transform them in order to get rid of correlation
functions of variables that explicitly depend on T. This is achieved using the
general relation

pro(s)/cuo(s) = pr(s)/c.(s), (D8)

and trivial relations coming from E =U + NdT/2 and p = p.. + pT":

Cp(s) = Cur(s) + gCTE(S)v Cpp(s) = Cp..u(s) + pCrE(s) + const (D9)

Here pro(s), cwo(s) and pr(s) are defined in eqs. (B17), (D3), (B21), and c¢,(s)
is the s-Laplace transform of the time-dependent isochoric heat capacity, c,(¢),
obtained in ref. [13] (cf. eq. 13 there):

co(s) = co(s)/[1 = Cra(s)] (D10)
On using eq. (B24) one finds
[Csz - d/2 - OU(S)] OT(S) == OTU(S) [1 - OTU(S)] (Dll)

eo(s) = cvso — Cru(s)

D12
1-— OTU(S) ( )
Similarly we get on using either eq. (C9) or (B23):
o0 = Cpe/(8)] Cr(s) = Cpor(s) [1 — Cru(s)] (D13)
leading to (in view of eq. (B22))
Prso — OpU(S)
== &/ D14
pr(s) = o St o1
and
pro(s) _ PTso — Cov(s) (D15)
coo(s)  cuso — Crul(s)
Another useful relation comes from eqs. (D13), (D11):
750 — Opeot1(8)] Cru(8) = Cpo1(8) [coa0 — d/2 — Cur(s)] (D16)

The above relations allow to exclude the temperature correlation function Cr(s)
from the adiabatic modulus defined in eqs. (D5)
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Prso — OpU(S)
Cys0 — OEU(S)

T T
KA(S) = KO(S) + ; = KTsO + ; Op(s) —I_pTO(S)

The result is

2+d T
Ka(s) = Kifo + ——pT + O”( )+ his) (D17)
where
22 0 — Cootr(8)] [550 + 20 — Cpo5(8)] — 2p? |coso — & — Crr(s
o)  PHin = Conet (o) i + 2 = Coun(o)] 36" [eow =3 = Cul)] - )
Cys0 — OEU(S)
The adiabatic relaxation modulus K4(t) can be deduced from eq. (D17):
24+d T
K ( ) K;iﬂ —I_ d pT —I_ O ea:( ) —I_ ;h(t) (D]‘g)
where the function h(t) is defined by equation
t 2
[ levo — Coult ~ ¥)]ab(t') = 25* (Colt) — cun) + 0o+~ (D20)

t
- (p%msﬂ —I_ 2p) Oper(t) —I_ /0 OpezE(t - t/)dOme(t/)

with h(t = 0) = 0, as follows from eq. (D18) and the general relation h(t = 0) =
h(s — o0).

Eq. (D20) can be solved in the same way as eq. (D7). Although eq. (D20)
seems to be more complicated, it can provide better numerical precision since the
function cyo(t) = cyso— Cr(t) involved in eq. (D7) generally shows stronger short-time
oscillations than the function Cgy(t —¢') in the Lh.s. of eq. (D20). In the case
of strong system/thermostat coupling (for example, for the Nosé-Hoover thermostat
with low enough thermal mass @) the T-fluctuations relax fast (during a short
time ~ 7y = ﬂ/wQ), so all correlations involving T vanish for ¢ > 7. In this
regime, the relevant correlations involve only pe, and U, so eq. (DI7) can be
simplified as

ex T pen; + P — C ecU\S 2
Kalo) = Ko + T+ = Gy (o) + Lo T2 Coatl0] (D21)

Setting s =0 (corresponding to the static limit ¢ — oo) we get the static adiabatic
modulus K a,:

(D22)

in agreement with the general thermodynamic relation between adiabatic and
isothermic compression moduli. [12]

Finally, note a simple relation between K, and Kr:
T pr(s)?

KA(S):K ( )—I_; cv(s)

(D23)

38



which can be transformed as

T | Prs0 = Cpul(s)

Ka(s) = Kr(s)+ ;pT(s coro — COmo(s) (D24)

and used to calculate K4(t) once the functions Kr(t) and pr(t) are known. A
similar equation for the isobaric heat capacity c,(s) reads:

T pr(s)”
p Kr(s)

cp(s) = eu(s) + (D25)

Both eqgs. (D23), (D25) can be proved using the general relations derived above.
Again, eq. (D25) has exactly the same form as the corresponding static relation [12]:

T p
P D26
Cp c —I_ p KTs ( )

Taking s — oo in eq. (D23) leads to a simple relations between instantaneous
moduli (at ¢t =0):

Ka(0) = Kp(0) + — _ Kr(0) + %pT (D27)

where we took into account that pr(0) = p (since instantaneous pressure response
to a T-jump involves solely the ideal-gas pressure) and ¢,(0) = d/2 (for a similar
reason).

Eqgs. (D23), (D25) have exactly the same structure as the classical thermody-
namic relations for the corresponding static quantities (cf. eqs. (D22), (D26)).
This feature can be in fact more general: any equilibrium relation between ther-
modynamic derivatives generates an analogous relation between the corresponding
dynamical response functions (in the s-Laplace representation). There is no general
proof of this statement, but we can provide a few hints pointing to its validity: (i)
The examples given above show that the relations between response functions do
not depend explicitly on the Laplace parameter s (generally, this is an assumption
which can be easily checked). (ii) The s — 0 limit of a response function can
be reduced to a thermodynamic derivative. (iii) All static relations between the
thermodynamic derivatives coming from differentiation rules (like the chain rule)
have their dynamical analogs based on the Boltzmann superposition principle. (iv)
All symmetry relations between cross-derivatives (like g—é’, - % T) have their dy-
namical counterparts (symmetry relations between linear response functions) which
follow from the time-reversibility of the dynamics being akin to the Onsager’s
principle of symmetry for kinetic coefficients. [30]

APPENDIX E: Impulsive correction to p4

The orientation-averaged instantaneous affine shear modulus p9 is defined in
eq. (4). A straightforward way to employ it is to use analytical expressions for

uw'(s) and u”(s) valid for s < se. This way yields ,ujf(o) # u%. The problem is
that the potential u(s) shows a kink at s = scu leading to a singular contribution,
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— ' (8eut)8(8 — Scut), in u”(s) = d*u/ds®. This contribution gives rise to the so-called
impulsive correction [5,8,10]:

g = 13 + Apa

In the present study Aps was calculated directly by approximating the é-function
as

fa(s) = AT 4 — 6 (Scut — 8) JA] O(8eut — $)O(A + 8 — Seut) (E1)

where O(.) is the Heaviside function, and the width A = 0.025 was chosen to
satisfy 2 conditions: A < 1 and seupNA > 1. Eq. (E1) comes from the condition
that 6(s — Seut) is approximated by a function which must be nonzero in the
interval e — A < 8 < Sqp Whose center differs from the position of the original
d-function. The resulting impulsive correction is negative:

APPENDIX F: How to reduce the effect of pressure
fluctuations on a variable X

The method described below is applicable to any macroscopic variable X
including X = p4 and X = n4. A pressure dispersion is inevitable even in the
ensembles aimed to keep a constant pressure. As explained in sect. 2 the volume
of each configuration was quenched after the equilibration stage (tempering in the
NPT ensemble), so that the m independent systems have slightly different volumes
and their time-averaged pressures,

1 At .
p— — £)dt
p At/ﬂ p(t)

obtained from the NVT production runs for each system, deviate from the imposed
pressure pg. These deviations result in quenched shifts of the chosen variable X
for all the configurations (unless X is totally pressure-independent). To compensate
for this effect we used a linear regression approach: both X and p have been
measured for each system, and then X was replaced by X* = X + a(po — p), where
the coefficient a = (X (ﬁ—pav)>/<(ﬁ—pav)2> and pg, = (p) is the mean pressure
averaged over the m-ensemble. This way we obtain a set of m values of X* whose
ensemble-average (X*) = (X) 4+ a(po — paw) corresponds to p =po. At the same time
the standard deviation of the X*-set gets minimized.
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FIGURE CAPTIONS

FIG. 1. Number density p of the pLJ model at normal pressure P = 2 as a
function of temperature T'. The old data (open circles) from ref. [9], obtained
from a continuous cooling process using local MC moves only (quench method
SC-MC), reveal two distinct linear slopes which were used to determine a glass
transition temperature T, ~ 0.26. The data obtained with the SC-MD method
with cooling rate I' = 10™® (filled rhombs) show a similar behavior. Using in
addition swap moves (quench method Sw-MC or Sw-MD) much higher densities
have been achieved (boxes) below Tj.

FIG. 2. The radial distribution functions g(r) for T = 0.4, 0.325, 0.26, 0.19,
0.16, 0.15 (from bottom to top: the curves are shifted vertically with step 0.5
for clarity). Black curves correspond to configurations equilibrated by particle
swaps (method Sw-MD); color curves (blue, brown, magenta, blue, red, magenta)
to systems prepared by slow cooling with MD (method SC-MD).

FIG. 3. Configuration snapshots for T'= 0.10, 0.15, 0.16, 0.2, 0.26 and 0.4 (from
left to right) obtained with the Sw-MC equilibration method. The color code
ranges from black (smallest beads) to red (largest beads). The configurations are
homogeneous, isotropic and liquid-like above the demixing temperature Tt ~ 0.16.
Below T} we observe demixing (segregation) of beads of different diameters and,
as a result, hexagonal clusters of alike beads. The main part of this work is
focused on temperatures T > T;. Note that even at T = 0.2 small clusters of
particles of similar size are formed, but the system remains homogeneous and
isotropic beyond the size of these clusters.

FIG. 4. (a) The static structure factor S(q) for swap-equilibrated configurations
(using method Sw-MD) at T = 0.5 (blue curve), 0.4 (black), 0.325 (red),
0.26 (brown), 0.19 (green), 0.16 (magenta). (b) The structure factor S(gq) for
a broader range of temperatures obtained for swapped configurations (obtained
with method Sw-MC) using only local MC moves for the production runs. Main
panel: Double logarithmic representation. Inset: Linear representation focusing
on wavevectors g around the first maximum.

FIG. 5. The particle MSD, hgo(t), at different temperatures T = 0.4 (black curve),
0.35 (green), 0.3 (blue), 0.26 (magenta), 0.24 (black), 0.23 (red), 0.21 (brown);
T decreases from top to bottom. The solid lines and crosses (x) correspond to
‘swapped’ (Sw-MD) and slowly-cooled (SC-MD) configurations, respectively. At
T > T, both data sets overlap completely. The straight dashed line indicates
the slope corresponding to Fickian diffusion (hg o t).

FIG. 6. (a) Temperature dependence of the affine modulus pu for the ‘swapped’
configurations obtained with method Sw-MD (black solid line) and for the
‘cooled’ systems, method SC-MD (red solid line). The brown dashed line
is tangential to the black solid line at T = 0.2 +0.3. The vertical dashed
lines indicate Ty = 0.16 and T, = 0.26. For ‘swapped’ configurations pa = p%”*
was calculated as explained in section 4 and Appendix F. All the results
are obtained with MD production runs. (b) The affine shear modulus gapare

(triangles) and the rescaled second moment of the shear stress, po = (T/p)C,(0)
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(circles), obtained either using only local MC moves (open symbols) or also with
additional particle swap moves during production runs (filled symbols). The two
static averages are obtained using MC dynamics for systems equilibrated by both
local and particle swap moves (method Sw-MC). We show here g4 pare without
the impulsive correction Apa ~ —0.3 (cf. eq. (E2)) instead of pa = papare + Apea.

FIG. 7. The shear relaxation modulus G(¢) for ‘swapped’ configurations (method
Sw-MD) at T = 0.4, 0.35, 0.3, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21,
0.19, 0.18, 0.17, 0.16, 0.15 (from bottom to top). The non-monotonic behavior
of G(t) at long times, t 2> At/2 (at some temperatures) is a trivial effect of
insufficient statistics.

FIG. 8. The shear relaxation modulus G(¢) for (a) T = 0.4, 0.35, 0.3, 0.28, 0.27,
0.26, 0.25, 0.24 (from bottom to top), (b) T = 0.24, 0.21, 0.17, 0.16 (from
bottom to top). In both parts red curves correspond to ‘cooled’ configurations
(obtained with method SC-MD), black curves to ‘swapped’ configurations (method
Sw-MD).

FIG. 9. The log-log dependence of kG(t) vs. t/7o for T = 0.4, 0.35, 0.3, 0.28,
0.27, 0.26, 0.25, 0.24, 0.23 (curves from right to left) for systems equilibrated
with method Sw-MD (using particle swaps). The shift-factor k& = k(T') increases
from 1 to 1.35 (at T =0.28) and then decreases back to 1. The T-dependence
of the terminal relaxation time 7, = 7,(7T") is shown by rhombs in Fig. 10.

FIG. 10. T-dependence of the a-relaxation time 7, for ‘cooled’ (SC-MD, crosses)
and ‘swap-based’ (Sw-MD, rhombs) configurations. The solid curve represents
the fit with the VFT law, eq. (8). The horizontal line corresponds to the total
sampling time At = 10°. The vertical line indicates T,.

FIG. 11. G(¢) for swap-equilibrated configurations based on stress-correlations ob-
tained with MD (black curves for Sw-MD) and MC dynamics (red curves for
Sw-MC [17]) for temperatures (a) T = 0.4, 0.35, 0.30; (b) T'=0.3, 0.28, 0.27,
0.26, 0.25, 0.24, 0.21, 0.20 (curves from bottom to top). The time for MC
curves was set to t = tyc/k, where tyc is the number of MC time-steps and
k=Fk(T): k(0.4) =488, k(0.35) = 546, k(0.3) = 588, £(0.28) = 556, k(0.27) = 500,
k(0.26) = 476, k(0.25) =385, and k=294 for T < 0.24.

FIG. 12. Time dependence of the isothermic bulk compression relaxation modulus,
Kr(t), obtained using FDT relations as described in the text, for ‘swapped’
configurations (method Sw-MD) at T = 0.4, 0.35, 0.3, 0.28, 0.27, 0.26, 0.25,
0.24, 0.23, 0.22, 0.21, 0.19, 0.18, 0.17, 0.16, 0.15 (from bottom to top).

FIG. 13. Time dependence of the adiabatic bulk compression relaxation modulus,
K4(t), obtained using the FDT relations as described in the text, for ‘swapped’
configurations (method Sw-MD) at T = 0.4, 0.35, 0.3, 0.27, 0.25, 0.23, 0.21,
0.19 (from bottom to top). Black curves are based on the ‘exact’ eq. (D7);
red curves correspond to the approximation, eq. (Ab5).

FIG. 14. Time dependence of the adiabatic bulk compression relaxation modulus,
K4(t), obtained using the FDT relation, eq. (D7), as described in the text,
for ‘swapped’ configurations (method Sw-MD) at T =0.4, 0.35, 0.3, 0.28, 0.27,
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0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.19, 0.18, 0.17, 0.16, 0.15 (from bottom
to top).

FIG. 15. T-dependencies of standard deviations for the affine shear moduli: &§u9
(no orientational averaging, no pressure correction: red curve with rhombs),
Sp with orientational averaging (brown), éu’ with pressure correction (blue),

Sp* with both orientational averaging and pressure correction (black). Vertical
dashed lines indicate Ty and T.

or*

FIG. 16. T-dependencies of: (a) The quasi-static modulus u} (red curve) and
fluctuation modulus p%* (black) for the pLJ systems equilibrated by particle
swaps (method Sw-MD). The vertical dashed lines show T; = 0.16 and Ty, = 0.26.

or>* or*

(b) The standard deviations duj, (red curve), dufp (brown), duy (blue), éu%

(magenta) as a function of T together with 5,u§mG) (black curve), the Gaussian

approximation for éux. Note that duj, ~ duy and buly ~ dufF™ in the peak
region. (c) The standard deviations ép (red curve), dugy (brown), épj (black

with x’), éuj, (blue), 5,u§,,1G) (magenta), and &§uY (black). In all the cases the
sampling time is At = 105,

FIG. 17. Temperature dependencies of (quasi-)static compression moduli for systems
prepared with method Sw-MD: the affine modulus n4 = %3 (the upper black
curve), its linear extrapolation from T > Ty to T < Ty (black with long dashes),
the fluctuation modulus nr = 75 (magenta curve with ‘47), the quasi-static
moduli: n,s = n;; (red curve), Ky, based on volume fluctuation formula, eq. (30)
(blue curve), Krs (brown curve), Kr. (black with crosses), K4, (magenta), K.
(black with short dashes). Note that n}, 75 and 7j; were calculated for the
prescribed pressure (= po) using eq. (15) and the procedure to compensate for
the mean pressure deviations among the independent configurations described in
Appendix F. Kr, and K4, correspond to long-time plateau levels of isothermic
and adiabatic relaxation moduli, Kr(¢) and Ka(t), respectively. Kr. and Ka.
are equilibrium moduli obtained by extrapolation to low temperatures (T' < Ty)
of the liquid branches of Kr,(T) and Ka,(T), respectively, as described in the
text. The vertical dashed lines indicate Ty and T,.

FIG. 18. Temperature dependencies of standard deviations of compression moduli
(obtained using Sw-MD method): (a) 8n5 (blue curve), §n% (red), dn3 (black),
ény (magenta with ‘x7), én9; (brown with ‘+7). (b) én; (black), 577](5,10') (red),
éns; (blue), éng; (brown with ‘4+7), én% (magenta with ‘x’). Vertical lines
indicate Ty and Tj.
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