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Relaxation moduli of glass-forming systems:temperature e�e
ts and 
u
tuationsL.Klo
hko, J.Bas
hnagel, J.P.Wittmer, A.N.Semenov�Institut Charles Sadron, CNRS - UPR 22, Universit�e de Strasbourg,23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, Fran
e(July 7, 2021)Abstra
tEquilibrium and dynami
al properties of a two-dimensional polydisperse
olloidal model system are 
hara
terized by means of mole
ular dynami
s(MD) and Monte Carlo (MC) simulations. We employed several methods toprepare quasi-equilibrated systems: in parti
ular, by slow 
ooling and tem-pering with MD (method SC-MD), and by tempering with MC dynami
sinvolving swaps of parti
le diameters (methods Sw-MD, Sw-MC). It is re-vealed that the Sw-methods are mu
h more eÆ
ient for equilibration belowthe glass transition temperature Tg leading to denser and more rigid sys-tems whi
h show mu
h slower self-di�usion and shear-stress relaxation thantheir 
ounterparts prepared with the SC-MD method. The shear-stress re-laxation modulus G(t) is obtained based on the 
lassi
al stress-
u
tuationrelation. We demonstrate that the �-relaxation time �� obtained using atime-temperature superposition of G(t) shows a super-Arrhenius behaviorwith the VFT temperature T0 well below Tg. We also derive novel rig-orous 
u
tuation relations providing isothermi
 and adiabati
 
ompressionrelaxation moduli in the whole time range (in
luding the short-time iner-tial regime) based on 
orrelation data for thermostatted systems. It is alsoshown that: (i) The assumption of Gaussian statisti
s for stress 
u
tuationsleads to a

urate predi
tions of the varian
es of the 
u
tuation moduli forboth shear (�F ) and 
ompression (�F ) at T & Tg. (ii) The long-time (quasi-stati
) isothermi
 and adiabati
 moduli in
rease on 
ooling faster than theaÆne 
ompression modulus �A, and this leads to a monotoni
 temperaturedependen
e of �F whi
h is qualitatively di�erent from �F (T ) showing amaximum near Tg.
Typeset using REVTEX



1. Introdu
tionRheologi
al properties of 
omplex and glass-forming 
uids are largely de�ned bytheir dynami
al relaxation vis
oelasti
 moduli, namely the shear relaxation modulusG(t) and the bulk 
ompression modulus K(t) [1℄. The G(t) memory fun
tion
an be de�ned in terms of the transient shear stress response to a small sheardeformation [2℄. Similarly, K(t) provides the mean pressure in
rement �p(t) attime t after a small uniform 
ompression of the system whose volume V de
reasedto V (1� �): �p(t) ' �K(t) for � � 1The shear modulus G(t) of a liquid rapidly de
ays with t at high temperatures,but it develops a long-time plateau in the super
ooled regime. [3,4℄ Thus, G(t)
an be used to 
hara
terize vitri�
ation of a super
ooled liquid and to identify itsglass transition temperature Tg, as demonstrated in numerous simulation studies.[5{10℄ However, the relaxation 
ompression modulus K(t) of glass-forming liquidswas mu
h less investigated. [8,9,14,15℄ In the present paper we tried to redu
ethis gap.To obtain the relaxation moduli, G(t) and K(t), a 
u
tuation-dissipation formal-ism relating them to stress-
orrelation fun
tions is often used. [6,7,10{12℄ Re
ently,we demonstrated that the standard approa
h to get response fun
tions based on
orrelation fun
tions obtained with thermostatted MD simulations is insuÆ
ient inthe general 
ase and, in parti
ular, for a pre
ise 
al
ulation of the dynami
alheat 
apa
ity. [13℄ The problem arises due to an imperfe
t temperature 
ontrol inthermostatted simulations; it a�e
ts those variables (whose response we 
onsider)that are 
oupled with temperature 
u
tuations. This problem 
on
erns the pressure,but not the shear stress, so the 
u
tuation equations for G(t) stay inta
t. By
ontrast, the standard s
heme to obtain K(t) based on the 
u
tuation-dissipationtheorem (FDT; 
f., eg., eq. 48 of ref. [14℄) does not yield a proper isothermi

ompression modulus, but rather a mixture of isothermi
 and adiabati
 responses.In the present paper we develop and employ a rigorous formalism, generalizingthe ideas presented in ref. [13℄, to 
al
ulate both isothermi
 (KT (t)) and adiabati
(KA(t)) 
ompression moduli using the 
orrelation fun
tions obtained in thermostattedsimulations. The theory is based on a number of novel FDT relations derived anddis
ussed in Appendi
es A, B, C, D.The main questions addressed in this paper are:(i) What are the e�e
ts of the equilibration method (in parti
ular, using non-lo
al swaps of parti
le diameters) on dynami
al and stati
 properties of the studiedtwo-dimensional (2D) 
olloidal model system?(ii) Is it possible and how to fully 
hara
terize the linear vis
oelasti
 response ofa mole
ular system based on 
orrelation fun
tions of shear stress, pressure, energy,et
.?(iii) What are the e�e
ts of temperature on both short- and long-time vis
oelasti
relaxation dynami
s 
hara
terized by the isothermi
 and adiabati
 bulk 
ompressionrelaxation moduli and the shear stress response?(iv) How do the stati
 moduli of the 2D super
ooled liquid (both for shearand 
ompression) and their varian
es depend on temperature, in parti
ular, nearthe glass transition? 2



The importan
e of these questions stems from the previous simulation re-sults [9,6,5,10,13℄ and the ongoing theoreti
al dis
ussion on the nature of solidi�-
ation in amorphous materials [36,37,41{43℄.The paper is organized as follows: In the next se
tion we des
ribe the two-dimensional Lennard-Jones polydisperse (2D pLJ) 
olloidal system and the 
ompu-tational approa
h to study it. The simulation results are presented and dis
ussed inse
tions 3, 4, 5 and 6. In parti
ular, the e�e
ts of the system quen
h/temperingmethod on the radial distribution fun
tion, mean-square displa
ement h0(t) andshear relaxation modulus G(t) are dis
ussed in se
tions 3 and 4, the relaxation
ompression moduli are 
onsidered in se
t. 5, while the stati
 moduli and theirstandard deviations are analyzed in se
t. 6. The paper is summarized in se
t. 7,and the key results are highlighted in se
t. 8.2. The model and simulation detailsWe 
onsider a model 
olloidal system of polydisperse Lennard-Jones (pLJ)parti
les in two dimensions [16,17,8,9,21,22℄. The parti
le diameters are uniformlydistributed between 0:8�� and 1:2�� with ��, the mean diameter. The intera
tionrange of a pair (l = ij) of 2 parti
les i and j is de�ned by the Lorentz rule [24℄:�l = (�i + �j) =2. The LJ intera
tion potential isuLJ(r; �l) = 4� �s�12 � s�6� (1)where s = r=�l is trun
ated at s
ut = 27=6 (so that uLJ = 0 for s > s
ut) and shiftedto avoid dis
ontinuity at s = s
ut. The parti
les have identi
al mass whi
h is setto unity (together with �� and �) by using the LJ units.1 The number of parti
lesis N = 104.We employed di�erent approa
hes to quen
h and equilibrate the systems. In the�rst approa
h (method SC-MD) the standard mole
ular dynami
s (MD) simulationswith periodi
 boundary 
onditions were performed as implemented in the LAMMPS
ode [25℄ (velo
ity-Verlet algorithm with MD time-step tMD = 0:005). The systemwas �rst tempered at the initial temperature T = 1 (where the system is well in theliquid regime with short �-relaxation time �� . 1) to prepare m = 100 independentwell-equilibrated 
on�gurations. The Nos�e-Hoover (NH) thermostat and barostatwere used to impose the desired temperature and the external pressure p0 = 2.The obtained 
on�gurations were then slowly 
ooled with rate � � �dT=dt = 10�5keeping the same pressure and allowing the system volume to 
u
tuate. This waywe produ
ed m initial 
on�gurations at � 30 spe
i�
 working temperatures. Atea
h working temperature the system was tempered at 
onstant pressure (p0 = 2)over a time �tmax = 105 (in LJ units). At t = �tmax the instantaneous volume V (t)was �xed and the system was further tempered in the 
anoni
al NVT ensembleover the same time �tmax. Starting from the �nal 
on�guration of this NVTtempering we performed NVT produ
tion runs over a `sampling time' of �t = 105.1Here and below we use LJ units by 
onsidering �, �� and parti
le mass mp as physi
al units.The LJ unit of time is therefore �LJ = ��qmp=�.3



An alternative way to equilibrate the quen
hed 
on�gurations is to performtempering via a hybrid MC/MD approa
h (method Sw-MD). The MC part 
omprisesa 
ombination of lo
al moves (lo
al displa
ements of single parti
les) and parti
leswaps (ex
hanging the diameters of two randomly 
hosen parti
les) [23℄. In addition,we allow for volume 
u
tuations of the system 
ontrolled by an MC barostat [39℄to impose the 
onstant pressure p0 = 2. Lo
al moves, parti
le swaps and volume
u
tuations are a

epted a

ording to the Metropolis 
riterion to ensure detailedbalan
e [39℄. Time in these MC simulations is measured in units of MC steps(MCS) where we de�ne an MC step as an attempt to displa
e randomly ea
hparti
le by a lo
al move [9℄. 2 An ensemble of m independent 
on�gurations(m = 100 for 0:2 � T � 0:3, m = 50 for T > 0:3, and m = 20 for T < 0:2)was tempered over �tmax = 107 MCS (lo
al, swap and volume moves) at 
onstantpressure. At t = �tmax the instantaneous volume V (t) was �xed and the systemfurther equilibrated over 107 MCS (lo
al and swap moves) at 
onstant volume,and then over the same time again with lo
al moves only. As dis
ussed in [17℄,this MC approa
h is su

essful in equilibrating the pLJ system at mu
h lowertemperatures than the MD tempering dis
ussed above. Equilibration is a
hieveddown to Tf = 0:16 (< Tg � 0:26) below whi
h fra
tionation of parti
les of di�erentsizes o

urs. The �nal 
on�gurations of the MC simulations for T � Tf were furthertempered with MD Nos�e-Hoover dynami
s to equilibrate the velo
ities: �rst, at
onstant pressure p0 = 2 over a time of 2 � 105 (in LJ units) and then over thesame time at 
onstant V equal to the volume of the �nal 
on�guration of thepre
eding NPT run.After tempering by either method SC-MD or Sw-MD all produ
tion runs arethen done with MD at V = 
onst . The instantaneous energy, pressure, shear stress(averaged over the system volume) and other parameters were re
orded duringthe sampling time �t = 105 (LJ units) with time spa
ing of Æt = 0:05 or smallerbetween su

essive data entries. In addition, we also used 2 similar approa
hes(SC-MC and Sw-MC) where the standard MC dynami
s (with lo
al moves only)was used instead of MD for ultimate tempering and produ
tion runs.3. The RDF, stru
ture fa
tor and MSDThe system volumes V (T ) have been re
orded for the 
on�gurations preparedby 3 quen
h methods (Sw-MC, SC-MC and SC-MD) at all temperatures; the
orresponding densities � = N=V are shown in Fig. 1. The SC-MC and SC-MDresults are almost identi
al. Moreover, at high temperatures the densities for allthe 3 
ases 
oin
ide. However, the Sw-MC 
urve parts from the SC-
urves at lowtemperatures. The �(T ) 
urves for the SC-systems thus reveal two distin
t linearslopes, while �(T ) for the Sw-MC 
ase does not show any slope 
hange ex
ept forvery low temperatures T . 0:16. All the linear bran
hes of �(T ) interse
t at roughly2A parti
le displa
ement ve
tor Ær for a lo
al move is 
hosen randomly within a disk Ær < Ærmaxwith Ærmax = 0:1. For a swap move we attempt to 
y
le N=2 randomly 
hosen pairs of parti
les.4



the same point de�ning the dilatometri
 glass-transition temperature Tg � 0:26. 3The obtained Tg is in agreement with that estimated previously [9,17℄.The radial distribution (Kirkwood) fun
tions (RDFs) g(r) for 
on�gurationsequilibrated using parti
le swaps (method Sw-MD) at di�erent T 's are shown asbla
k 
urves in Fig. 2. The g(r) fun
tions reveal de
aying os
illations whose periodis roughly equal to the mean parti
le diameter. The obtained RDFs also show arather weak T -dependen
e. These features point to a liquid-like amorphous stru
tureboth above and below Tg (for T � Tf � 0:16). Fig. 2 also in
ludes the g(r) datafor 
on�gurations obtained by slow 
ooling with the realisti
 MD (method SC-MD).A similar 
omparison was performed in ref. [16℄ for T � 0:24. The data reveal nodependen
e of this stati
 property on the equilibration/tempering method (SC-MDor Sw-MD, 
f. se
t. 2) for T > 0:16 (within the statisti
al error). This featureis non-trivial sin
e the SC- and Sw-equilibrated systems have di�erent densitiesat T < Tg � 0:26, so we 
an 
on
lude that g(r) is mu
h less sensitive to theequilibration method than the density.At T = 0:16 a tiny deviation (between the g(r) results obtained with thetwo methods) 
an be observed near the extrema. By 
ontrast, the deviationis rather 
onsiderable at T = 0:15. The RDFs for swap-tempered 
on�gurations(method Sw-MD) start to show the se
ondary in
ommensurate os
illation mode,whi
h apparently signals the onset of a fra
tionation (phase separation) at T <0:16. By 
omparison, no signs of fra
tionation are observed down to T =0:15 for 
on�gurations prepared by method SC-MD, whi
h means that parti
ledemixing is a very slow (interdi�usion) pro
ess ina

essible on the time-s
alesfurnished by the SC-MD tempering proto
ol. On the other hand, with the Sw-MD equilibration method the (arti�
ial) parti
le ex
hanges of the swap algorithm
ir
umvent the physi
al dynami
s, thereby revealing the tenden
y of the studiedsystem to fra
tionation/
rystallization at T � Tg.Qualitatively, the presen
e of a stru
tural transition at T � Tf is also evidentin Fig. 3 showing snapshots of 
on�gurations obtained from method Sw-MD. Thesnapshots illustrate that the system be
omes phase-separated below Tf � 0:16.Moreover, even for Tf � T . 0:2 the stru
ture gradually gets lo
ally heterogeneouson 
ooling due to the formation of small 
lusters of parti
les of similar size. Notethat the 
lustering e�e
t is enhan
ed due to preparation with swap moves (as
ompared with the standard slow 
ooling preparation proto
ols). The enhan
ementis moderate at T > 0:17, but be
omes more dramati
 at low temperatures T .Tf � 0:16. However, all the systems (both SC- and Sw-based) remain homogeneousand isotropi
 at T > Tf on s
ales beyond the 
luster size (. 4��). These qualitativeobservations suggest that a quantitative analysis of the ordering tenden
y, e.g. viathe lo
al bond order parameters [18{20℄, would be rewarding.The stru
ture fa
tor S(q) of the system, where q is the wavenumber (q = ���q���),is shown in Fig. 4 for a wide range of temperatures (0:16 � T � 0:5 in part (a),0:15 � T � 1 in part (b)). All data refer to the hybrid MC/MD equilibration(method Sw-MD). The main peak of S(q) is lo
ated at q = qmax � 6:3 
orrespondingto the mean parti
le size; its height somewhat in
reases at low T together with the3Thus obtained Tg depends on the total time (� �tmax = 105) the system spent at a given Tduring NPT 
ooling and tempering. 5



amplitudes of the se
ondary minima and maxima at higher q's. This T -dependen
eof S(q) for q & qmax re
e
ts a short-range pa
king in neighbor shells around aparti
le, whi
h be
omes tighter on 
ooling. Interestingly, the zero-q limit of S(q),S0 � limq!0 S(q), �rst slightly de
reases on 
ooling down to Tg, but then in
reasessigni�
antly below Tg. Moreover, S(q) shows a dip at qdip � 3 
orresponding toabout 2 parti
le diameters (2�=qdip � 2). The dip gets more pronoun
ed at lowtemperatures. It 
an be explained by lo
al 
lustering of similar parti
les whi
his visible in the snapshots of Fig. 3 at T � Tf . 4 The in
rease of S0 on
ooling towards Tf is apparently due to the same 
lustering e�e
t (a tenden
y fordemixing of larger and smaller parti
les) whi
h may be 
onsidered as a pre
ursor offra
tionation and/or 
rystallization. Note an additional se
ondary peak (see arrowsin Fig. 4b) that appears to the right of the maximum for temperatures belowTf . This peak is 
onsistent with the se
ondary os
illation feature in the RDFat T = 0:15 (
f. Fig. 2). Possibly it originates from suÆ
iently large 
lusters ofsmaller parti
les.The mean-square parti
le displa
ement (MSD) as a fun
tion of time, h0(t),is shown in Fig. 5. Here again we 
ompare the results obtained from the(initial) 
on�gurations prepared using parti
le swaps (method Sw-MD) and slowMD 
ooling (method SC-MD). It is 
lear that for T > Tg � 0:26 the parti
ledynami
s is independent of the tempering pro
edure. Besides, it is obvious thatfor liquid systems (T > Tg) the MSD always enters the purely di�usive regime,h0(t) ' 4Dst, at long enough times t � �d. Here Ds = Ds(T ) is the (mean)self-di�usion 
onstant and �d = �d(T ) is de�ned by the 
ondition Ds�d � ��2 = 1(it is expe
ted that �d . �� in the super
ooled regime sin
e a full stru
turalrelaxation asso
iated with �� 
ould hardly be a
hieved before the parti
les moveon their own size). By 
ontrast, below the glass transition, T < Tg, the linearFi
kian di�usion regime is not a

essible. In this low-T range the MSD developsa transient plateau whi
h sets in at t � 1. Furthermore, at T . Tg the long-timeMSD for the MD-tempered 
on�gurations (method SC-MD) gets signi�
antly largerthan that for the 
on�gurations equilibrated with the Sw-MD method. The latterfeature suggests that the parti
le self-di�usion for T < Tg is mu
h faster for lessequilibrated (and, therefore, less dense, 
f. Fig. 1 and ref. [17℄) 
on�gurationsobtained by method SC-MD.These results 
an be explained in the following way: First, we note that theSw-MD approa
h involving parti
le swaps is mu
h more eÆ
ient for equilibrationthan just MD tempering (method SC-MD), so that an arguably full equilibrium isa
hieved with the Sw-MD approa
h in the studied T -range [17,23℄. By 
ontrast,only partial equilibration 
an be a
hieved by MD tempering (method SC-MD)at T . Tg. Therefore, in `
ooled' systems some stru
tural order parametersmay remain 
loser to their higher-temperature levels, and this out-of-equilibriume�e
t (leading, in parti
ular, to a lower mean density) may result in faster lo
al4A similar, but less signi�
ant dip was observed for a 3D glass-forming system [10℄ (unpublishedresult). Moreover, a dip in S(q) for 0 < q < qmax is not un
ommon in binary mixtures,the simplest representative of multi
omponent systems. For binary mixtures the dip 
an beunderstood by de
omposing S(q) into its 
ontributions stemming from the partial stati
 stru
turefa
tors of like and unlike parti
les (see e.g. [40℄).6



rearrangements of parti
les and their higher Ds. As the Sw-MD approa
h allows toequilibrate the system also below Tg � 0:26, the di�eren
es between the MSD fortwo methods (SC-MD and Sw-MD) at T � 0:26, illustrated in Fig. 5, re
e
t thedegree of deviation from equilibrium for the 
on�gurations obtained by standardMD tempering (method SC-MD).All in all, the results dis
ussed above show that the system remains ma
ros
opi-
ally homogeneous and amorphous also below Tg � 0:26, so long as T > Tf � 0:16.Only for T < Tf does demixing, possibly followed by 
rystallization [17℄, o

ur atthe s
ale of the system size. An analysis of the dynami
s in terms of the shearrelaxation and bulk relaxation moduli is 
arried out in the next se
tions. Thede�nitions of these moduli are based on the assumption of spatially isotropi
 andhomogeneous systems. This is pertinent in the regime T > Tf , whi
h is the fo
usof the following analysis.4. Shear relaxation modulusThe shear-stress relaxation modulus G(t) de�nes the mean shear stress at timet, �(t), generated by a small step 
0 of the shear strain at t = 0:G(t) = lim
0!0 �(t)=
0The response fun
tion G(t) 
an be obtained using the stress-
u
tuation equa-tion [5,9,10℄: G(t) = T� [C�(t)�C�(0)℄ + �A (2)where � = N=V is the mean 
on
entration of parti
les,C�(t) = NT 2 hÆ�(t+ t0)Æ�(t0)i (3)Æ�(t) = �(t) � h�i, �(t) = �xy(t) is the shear stress (xy-
omponent of the stresstensor), h:::i in eq. (3) mean averaging over the ensemble of m independent
on�gurations and the gliding averaging over t0, and h�i is the ensemble- andtime-averaged stress. Note that h�i typi
ally vanishes in the liquid regime. Eq. (2)is appli
able to well-tempered/equilibrated systems that do not show any aginge�e
ts up to the longest sampling time �t [10℄, whi
h is the 
ase for our systems(prepared with either SC- or Sw-methods des
ribed in se
t. 2).In eq. (2) �A = G(0) is the aÆne shear modulus [9,10℄ de�ning the instantresponse of shear stress after a small shear deformation. It is de�ned by bothensemble- and time-averagings of the instantaneous shear modulus �A(t) 
al
ulatedusing eq. (1) of ref. [10℄, �A = h�A(t)i. Thus de�ned �A slightly depends on theorientation of the 
oordinate frame (i.e., of the shear dire
tion) [10℄; the aÆnemodulus for the natural 
oordinate frame (with x,y axes along the sides of thesimulation box) is denoted here as �0A. To improve its pre
ision we pre-averaged�A with respe
t to all orientations of the 
oordinate frame. 5 This is equivalent5This idea was proposed in ref. [10℄ where it was shown that su
h preaveraging leads to asigni�
ant redu
tion of the standard deviation of �A.7



to averaging over all orientations n of the bond ve
tor rl 
onne
ting a pair ofintera
ting parti
les, leading to the following instantaneous modulus [10,5℄ 6�orA (t) = �T + 1V 1d(d + 2) Xl hs2u00(s) + (d+ 1)su0(s)is=sl (4)The 
orresponding average aÆne modulus is �orA � h�orA (t)i. Here d = 2 is the spa
edimension, l is a pair of intera
ting parti
les, rl is the distan
e between their
enters, �l is their intera
tion range, sl = rl=�l, u(s) is the intera
tion potentialde�ned in the r.h.s. of eq. (1), u0 and u00 are its �rst and se
ond derivativeswith respe
t to s, s < s
ut. 7 An additional preaveraging over the equilibrium(Maxwellian) distribution of parti
le velo
ities is also implied here. Further te
hni
aldetails 
on
erning 
al
ulation of �A are delegated to Appendix E.Comparison of �0A (or �A for any �xed 
oordinate frame) with �orA drives usto 
on
lude that the system is ma
ros
opi
ally isotropi
: the deviation j�0A � �orA jis random and small, it amounts to about 0.001% above Tg, while well below Tgit in
reases to just � 0.1% (essentially due to an insuÆ
ient, i.e. e�e
tively morepoor, statisti
s in the glassy regime).The temperature dependen
e of �A for the `swapped' 
on�gurations (method Sw-MD) is shown in Fig. 6(a) (bla
k 
urve). 8 The fun
tion �A(T ) is almost linear,apart from the low-T region, T < 0:16, where a weak but well-resolved deviationfrom the linear behavior is observed. Su
h deviation points to a stru
tural 
hangewhi
h we tend to asso
iate with fra
tionation of parti
les at T < Tf = 0:16. By
ontrast �A(T ) does not show any anomaly in the vi
inity of the glass transition,T � Tg. This feature emphasizes on
e again the apparently dynami
al natureof vitri�
ation: the stati
 properties like density � = N=V , or �A, or g(r) donot 
hange at the glass transition provided that the system is well-equilibratedboth above and below Tg. The latter 
ondition is satis�ed for the `swapped'
on�gurations, but not for the `
ooled' 
on�gurations. As a result, the equilibriumproperties (like � or �A) of `
ooled' systems (prepared with method SC-MD) showa 
usp at T � Tg (
f. red 
urve in Fig. 6(a)).Above Tg the shear modulus G(t) vanishes at long time (the stati
 modulusG(1) = 0), and the same is true for the shear stress 
orrelations, C�(1) = 0.Hen
e, by virtue of eq. (2)6Note that the general 
u
tuation-dissipation relation for G(t), eq. (2), involves �A = G(0)whi
h 
an be 
al
ulated by time-averaging of eq. (4). This equation is based on the 
lassi
alde�nition of �A as a linear 
oeÆ
ient between the shear stress in
rement generated instantlyby a small shear strain and the magnitude of the latter. It 
omes from and agrees with thewell-established theoreti
al framework [14,37,54℄.7It would be better to use a smooth intera
tion potential with 
ontinuous u0(s). [38℄ In thepresent study, however, we used eq. (1) for 
onsisten
y and better 
omparison with the previousresults on the same system.8In fa
t this 
urve shows �A = �or�A 
al
ulated using the pro
edure to eliminate the e�e
t ofmean pressure variations between the 
on�gurations as des
ribed in Appendix F.8



�A = �0 � T� C�(0); T > Tg (5)Note that eqs. (2), (5) lead to a simple well-known relation [5,11,24℄G(t) = T� C�(t); T > Tg (6)The relation, eq. (5), is veri�ed in Fig. 6(b), whi
h shows, in addition, that forthe swap-equilibrated systems �A � �0 not only in the liquid regime, but alsoin a temperature range, Tg > T > Tf , below the glass transition. Noteworthily,however, the s
attering of the �0 data obtained in the glassy regime, Tf < T . Tg,with produ
tion runs involving realisti
 lo
al MC moves only (
f. open 
ir
les inFig. 6(b)) is mu
h stronger than that for �A. Besides, the data s
attering for �0obtained with lo
al MC moves is mu
h stronger than the one obtained for MCdynami
s involving also swap moves (
f. �lled 
ir
les in Fig. 6(b)).The time-dependent shear moduli G(t) for `swapped' 
on�gurations (preparedwith method Sw-MD) are shown in Fig. 7. At all temperatures one 
an observetwo relaxation stages: a fast pro
ess (presumably related to parti
les 
ollisionsand vibrations) with 
hara
teristi
 time �f � 0:1, and a mu
h slower stru
turalrelaxation pro
ess with terminal time �� & 1. The gap between the two timesstrongly in
reases on 
ooling leading to the emergen
e of an intermediate shouldergradually turning into a glassy plateau at T . 0:2. Qualitatively the same Tdependen
e of G(t) was also observed in other simulations of glass-forming 2Dsystems [41,46{48℄. The plateau 
orresponds to the quasi-stati
 elasti
 shearmodulus � � �sf of the glassy system (
f. se
t. 6.1), whi
h in
reases at low T .Interestingly, G(t) also develops short-time os
illations for T < Tg � 0:26 leadingto short-time minima at T � 0:24. This feature is an inertial e�e
t sin
e inoverdamped systems (without inertia) G(t) must be equal to a sum of de
ayingexponentials with positive amplitudes (generalized Maxwell model) [1℄, hen
e G(t)must monotoni
ally de
ay together with all its time-derivatives. This interpretationis also supported by the MC results for G(t) (obtained with lo
al MC moves onlyduring produ
tion runs) whi
h are exempt of inertial e�e
ts by 
onstru
tion andde
rease monotoni
ally with in
reasing t (
f. Fig. 11). Apparently, the os
illationfeatures are due to short-time parti
le vibrations with frequen
y !v � 20rad/s (thisfrequen
y 
orresponds to the period 2�=!v � 0:3 whi
h 
an be read o� from theG(t) 
urves).The shear relaxation 
urves for the systems prepared with parti
le swapping(Sw-MD) and 
ontinuous MD 
ooling (SC-MD) proto
ols are shown in Fig. 8.The results are qualitatively similar to those for the MSD (
f. Fig. 5). One 
anobserve almost no di�eren
e between G(t) for the two types of systems above Tg.By 
ontrast, as T de
reases below the glass transition (at T � Tg) the Sw-MDbased relaxations get in
reasingly slower than those for the SC-MD systems. Thedi�eren
e be
omes really dramati
 at T � 0:21: while G(t) for Sw-MD based
on�gurations develops a long-time plateau, the SC-MD systems show only atransient shoulder. In other words, well below Tg the `swapped' systems (preparedwith method Sw-MD) show a persistent long-time elasti
ity, in 
ontrast to `
ooled'systems (method SC-MD) whi
h exhibit a 
reep-like 
omplex-
uid behavior.The two types of vis
oelasti
 response of the two systems are apparently due toa wide spe
trum of relaxation times whi
h spans over almost the whole run-time9



window (from 1 to 105 LJ time-units) in the `
ooled' 
ase (SC-MD), but is mostlyoutside this time-window (shifted to longer times) in the `swapped' 
ase (Sw-MD).We suggest the following 
riterion to get the stru
tural relaxation time �� basedon a relaxation fun
tion like G(t):�� lnG(t)=� ln t = 1 at t = �� (7)where one should seek for the longest t satisfying the equation above. Indeed, withsingle exponential G(t) = 
onst exp(�t=� ) one gets �� = � using eq. (7), while formulti-exponential fun
tion with well-separated relaxation times the above operational
riterion gives the time of the slowest mode. Clearly, the 
riterion for �� basedon eq. (7) (with any 
onstant in the r.h.s.) is in harmony with (and 
omes from)the time-temperature superposition (TTS) prin
iple. Indeed, this prin
iple says thatrelaxation fun
tions at di�erent T 's 
an be superimposed by shifting them bothverti
ally and horizontally in log-log plots. This means that the points (on G(t)
urves at two T 's) with the same log-derivative � lnG(t)=� ln t must 
orrespond tothe same t=��. To further support this idea we attempted a dire
t TTS of G(t)fun
tions. The result shown in Fig. 9 reveal a reasonable 
ollapse of G(t) 
urvesonto a master 
urve.The T -dependen
e of �� obtained using the 
riterion of eq. (7) is shown inFig. 10. The relaxation times �� for di�erent tempering methods (SC-MD andSw-MD) 
oin
ide for T > Tg, however �� for the `swapped' systems (methodSw-MD) gets longer (than for 
on�gurations prepared with method SC-MD) forT � Tg. The ��(T ) dependen
e for `swapped' 
on�gurations is �tted with theVogel-Ful
her-Tammann (VFT) law�� = �0 exp(E0=(T � T0)) (8)with E0 = 1:21, T0 = 0:162. Note that the �tted T0 is remarkably 
lose to thefra
tionation temperature Tf � 0:16. This �t suggests that the a
tivation energy Eafor the stru
tural relaxation is in
reasing on 
ooling in a super-Arrhenius fashion:Ea = E0T=(T � T0) (9)Starting from similar 
on�gurations equilibrated with the tempering methodSw-MC involving parti
le swaps, G(t) was also obtained via eq. (2) based onprodu
tion runs with pure MC dynami
s using lo
al moves only [17℄. The MDresults (
f. Fig. 7) are 
ompared with the MC data (
f. Fig. 13 of ref. [17℄)in Fig. 11. In order to superimpose the MD and MC 
urves the MC time wasres
aled: 1 LJ time unit was identi�ed with k MCS. Obviously, the data 
annotoverlap in the short-time regime where the sto
hasti
 MC dynami
s 
annot repli
atethe deterministi
 MD dynami
s (a

ounting for the inertial e�e
ts), so we usedthe long-time behavior to determine the shift fa
tor k(T ). Noteworthily, for thethree-dimensional Kob{Andersen mixture it has been shown in ref. [49℄ that MCwith lo
al moves and (mi
ro
anoni
al) MD yield identi
al long-time behavior for theaverage dynami
s (in
oherent s
attering fun
tion, MSD) and dynami
 
u
tuations(four-point sus
eptibility) upon res
aling the time axis so as to optimize theoverlap in the late-time regime. Here we make a similar observation: A reasonablesuperposition of MC and MD 
urves for G(t) is obtained over a broad rangeof temperatures at times t outside the inertial regime, for t > �min, where �min10



somewhat in
reases at low T (�min � 0:3 for T � 0:3 roughly 
orresponds to theperiod of short-time os
illations; �min � 3 for T � 0:24, with time in LJ units).The agreement is very good for T � 0:3, above the glass transition, but it is lessperfe
t in the vi
inity of Tg. Moreover, it turns out that the time-s
aling fa
tork = k(T ) depends on temperature, for example k(0:3) � 600, k(0:24) � 300.Dis
ussion:MC vs. MD produ
tion runs. An imperfe
t superposition of MD and MCrelaxation 
urves at low temperatures may be due to stronger variations of G(t)between individual members of the ensemble (with m = 100 systems) at T < 0:3.Future more pre
ise simulations on larger ensembles may help to better 
hara
terizethe origin of these deviations. We also believe that there is a more general reasonfor small deviations between MD and MC relaxation 
urves: the two dynami
s arenot entirely equivalent even for long time-s
ales. Indeed, the true MD transitionrates (between the inherent states) are generally di�erent from the MC rates (evenwith time-res
aling) due to di�erent dependen
ies of these rates on the potentialenergy barrier width. While this e�e
t leads to some di�eren
e between MD andMC relaxation fun
tions, it is un
lear if it is ever signi�
ant. Note that at verylow T 's well inside the glassy regime the relaxation spe
trum is very wide, butfalls mainly outside the a

essible time-window, so the relaxation fun
tions exhibita plateau at t � �min and a di�eren
e between MC and MD time-dependen
iesbe
omes invisible in this regime. To some extent, an imperfe
t superposition atT < 0:3 may be also related to the system polydispersity whi
h leads to a broaderdistribution of the energy barrier width.Swap-MC vs. MD-
ooling preparation proto
ols. We propose the followingqualitative argument to a

ount for di�erent G(t) relaxation fun
tions for the twotypes of 
on�gurations: Consider a system 
ooled by MD down to the targettemperature T = T1 < Tg. After the 
ooling stage the kineti
 temperature Tkinbe
omes 
lose to T1, yet the system 
on�gurational state remains rather similar tothe equilibrium 
on�guration at Tg (apart from a small density 
hange and minorlo
al di�eren
es) sin
e a stru
tural relaxation at any T < Tg takes longer than the
ooling stage time (whi
h is 
omparable to the sampling time �t = 105). The
on�gurational temperature is therefore Tx � Tg; it 
orresponds to the 
on�gurationentropy S
onf = S
onf (Tx) and the 
on�gurational energy E
onf = E
onf (Tx) de�ned asthe mean of the nearest lo
al energy minimum of the potential energy lands
ape.Note that the total energy E = E
onf +Evib, where Evib is the energy of vibrationsnear a lo
al potential minimum (Evib in
ludes both potential and kineti
 parts),and, in a similar way, the total entropy S = S
onf+Svib; where Svib is the vibrational
ontribution to entropy. The general thermodynami
 relation TdS = dE (here forsimpli
ity of the argument we negle
t 
ompressibility assuming that V = 
onst ) nowsplits in two: TkindSvib = dEvib; TxdS
onf = dE
onfThe energy barrier Ea for the 
ooperative stru
tural relaxation of a `
ooled'
on�guration must 
orrespond to Ea = Ea(Tx) � E0TxTx�T0 (
f. eq. (9)). The relevantstru
tural time ��
 (the apparent �-relaxation time for the `
ooled' system) isde�ned by the a
tivation energy Ea for Tx � Tg and the kineti
 temperatureTkin � T1: 11



��
 � �0 exp(Ea=Tkin) � �0 exp E0Tg(Tg � T0)T1! (10)At low T1 this time gets mu
h shorter than the equilibrium relaxation time relevantfor the `swap-based' 
on�gurations (
f. eq. (8)),�� � �0 exp� E0T1 � T0� (11)Moreover, the ratio ��=��
 diverges as T1 approa
hes the VFT temperature T0.Therefore ��
 
an stay inside the sampling time-window (or near it), while �� growswell beyond �t, thus explaining a dramati
 di�eren
e of G(t) relaxation behaviorsfor the `swap-based' (tempering method Sw-MD) and `MD-
ooled' (method SC-MD)systems at low temperatures, 
f. Fig. 8. 95. Bulk 
ompression moduliIn this se
tion we present the results on the instantaneous (aÆne) 
ompressionmodulus and both the isothermi
 and adiabati
 
ompression relaxation moduli.5.1. AÆne 
ompression modulusThe aÆne 
ompression modulus �A is de�ned by the instantaneous pressureresponse, �p ' �A�, to a 
anoni
 aÆne 
ompression of the system (at t = 0)x! x(1� �=d); v! v=(1 � �=d) (12)where � � 1 de�nes the relative de
rease of the total volume. Here x standsfor all 
oordinates of all parti
les, v for their velo
ity 
omponents, d is thespa
e dimension, and �p = hp(0+)� p(0�)i , where p(t) is the pressure. The aÆnemodulus is a sum of the ex
ess and ideal-gas parts (whi
h are due to, respe
tively,parti
le intera
tions and their momenta):�A = �exA + d + 2d �T (13)For a system of parti
les with pairwise intera
tions the ex
ess part is [9℄�exA = 1V d2 *Xl hsu0(s) + s2u00(s)is=sl++ pex (14)where pex = p � �T is the ex
ess pressure. As before (
f. se
t. 4) l is a pair ofintera
ting parti
les, sl = rl=�l, rl is the distan
e between their 
enters, �l is theirintera
tion range, u(s) is the intera
tion potential de�ned in the r.h.s. of eq. (1), u0and u00 are its �rst and se
ond derivatives with respe
t to s. Using the equations9This argument also explains a similar di�eren
e in the MSD, h0(t), for the two ensembles, 
f.Fig. 5. 12



above and the mi
ros
opi
 de�nition of the instantaneous shear modulus [10℄ wearrive at a rigorous relation between shear and 
ompression aÆne moduli:�A = d+ 2d �orA + 2p0 � 2�T (15)where �orA 
an be 
al
ulated for ea
h independent system by time-averaging ofeq. (4) (
f. se
t. 4). A similar relation for d = 3 was obtained long ago inref. [51℄ where it was 
alled `the generalized Cau
hy identity'. Using eq. (15)we obtained �A for ensembles of pLJ systems at ea
h temperature, and then
al
ulated the 
orre
ted ensemble average, ��A, as explained in Appendix F. Theobtained T -dependen
e of ��A is shown in Fig. 17. As the ideal-gas term �2�Tin eq. (15) only represents a small 
orre
tion to �orA , ��A(T ) behaves essentially as�orA (T ) (
f. Fig. 6): The aÆne 
ompression modulus in
reases monotoni
ally on
ooling, showing a small feature (
hange of slope) at T � 0:16 
orresponding tothe fra
tionation e�e
t (
f. se
t. 4).5.2. Bulk relaxation moduliThe bulk relaxation 
ompression modulus K(t) of a liquid (or of any ma
ro-s
opi
ally homogeneous isotropi
 mole
ular system like an amorphous solid) 
anbe de�ned in terms of the response of the total mean pressure (averaged overthe whole system of volume V ) to a small uniform 
ompression, V ! V (1 � �):K(t) = �p(t)=�, where �p(t) = hp(t)� p(0�)i is the pressure in
rement due to aninstant aÆne step deformation (with �! 0) o

urred at t = 0. 10To 
omplete the de�nition of K one has to spe
ify what happens with temper-ature T (or energy) of the system after the deformation. If no heat is transferredto/from the system (or the total heat 
urrent is always zero), the energy is
onserved leading to the adiabati
 response 
hara
terized by the relaxation modulusKA(t). By 
ontrast, in the 
ase of an ideal temperature 
ontrol (T = 
onst ) wearrive at the isothermi
 relaxation modulus KT (t). The properly de�ned bulkmoduli KA(t) and KT (t) 11 are di�erent, and are both universal: they must notdepend on the statisti
al ensemble, nor on the thermostat properties (in the 
ase of10Note that the stati
 limits (t! 1) of G(t) and K(t) are related to the small-strain elasti
itytensor 
 (
f. eqs. (2.196) and (2.199) of ref. [32℄; in turn, 
 is related to the material andmixed elasti
ity tensors in a well-known way, 
f. eq. (2.195) in [32℄): for an isotropi
 materialG(1) = (
11 � 
12)=2, K(1) = (
11 + (d� 1)
12)=d.11By `properly de�ned' we mean that the adiabati
 or isothermi
 
onditions (E = 
onst or T =
onst ) are imposed at all times after the perturbation. Su
h 
onditions may be naturally satis�edby the dynami
al system like the 
ondition E = 
onst in the 
ase of mi
ro
anoni
al simulations.Alternatively, however, the required 
onditions 
an be also kept by weak perturbations like smallheat inje
tions asso
iated with appropriate velo
ity transformations (
f. eq. (B4)). The latterapproa
h provides a way to obtain KT (t) based, for example, on mi
ro
anoni
al simulations.The underlying general idea here is the same as the one proposed in ref. [13℄ to obtain theiso
hori
 heat 
apa
ity 
v(t) from thermostatted simulations.13



a `de
ent' thermostat that negligibly a�e
ts the parti
le dynami
s at the time-s
aleof fast 
ollisional/vibrational relaxation; 
f. ref. [13℄ for more details).Most of the thermostatting approa
hes used in real experiments or in simulationsare not ideal and allow for some systemati
 T -variations following the perturbativedeformation (sin
e generally the instantaneous temperature T = T (t) does not
oin
ide with the temperature Ti imposed by the thermostat). In parti
ular, thisis true for the Nos�e-Hoover thermostat employed in MD simulations 
onsidered inthe present paper. Note that normally by K(t) we mean the relaxation modulusobtained at a 
onstant imposed temperature, Ti = 
onst . The thus de�ned `bare'modulus K(t) = K0(t) is not universal: it depends on the thermostat/system
oupling parameters (a similar problem for the heat 
apa
ity is dis
ussed inref. [13℄). However, an advantage of the K0(t) response fun
tion is that, by virtueof the FDT, it 
an be easily 
al
ulated based on the pressure auto
orrelationfun
tion Cp(t): K0(t) = �A + T� [Cp(t)� Cp(0)℄ (16)where Cp(t) = NT 2 hÆp(t+ t0)Æp(t0)iNV Ti (17)is the equilibrium 
orrelation fun
tion of pressure in the 
anoni
al NV Ti ensem-ble, Æp(t) = p(t) � hpi, hpi is the ensemble- and time-averaged pressure p (
p.eqs. (2), (3)).Importantly, eq. (16) also implies that the �-
ompression at t = 0 is a 
anoni
al-aÆne transformation of 
oordinates (x) and velo
ities (v) of all parti
les, 
f.eq. (12) (this transformation is adiabati
 sin
e it 
onserves the measure in thephase spa
e). Therefore K0(0) provides the instantaneous adiabati
 response in the
ase of a Nos�e-Hoover or any other thermostat allowing for temperature 
u
tuations:K0(0) = �A is both aÆne and adiabati
.Noteworthily, to derive the FDT relation, eq. (16), one has to 
onsider anextended ensemble in
luding systems of di�erent (but time-independent) volumeswhose equilibrium distribution is de�ned by the imposed pressure p0 (the e�e
tiveHamiltonian of the system therefore is H = E + p0V ). The �nding that the FDTrelation requires an extended (Np0Ti) ensemble is 
onsistent with other approa
hes[14,52℄. For thermostatted (NV Ti) simulations (with the same V for all systems)Cp(t!1) = 0 in the liquid regime, hen
e the equilibrium isothermal 
ompressionmodulus 
an be de�ned as KT e = K0(t!1) = �A�TCp(0)=�, and Eq. (16) 
an berewritten as K0(t) = TCp(t)=� +KT e. In this form, Eq. (16) agrees with eq. (48)in [14℄ and with the Lebowitz{Per
us{Verlet transformation of 
u
tuations betweendi�erent ensembles (here NPT and NVT) [53℄, allowing to identify K0(t) withK0(t) = (V=T )hÆp(t + t0)Æp(t0)iNp0Ti for the extended ensemble where p0 is imposed(but V = 
onst for ea
h system). 1212Note also that K0(t) for mi
ro
anoni
al simulations is equal to the adiabati
 modulus KA(t)whi
h 
an be de�ned in analogy with eq. (19) of ref. [52℄: KA(t) = limq!0(V=T )hÆp(q; t +14



5.3. Results and dis
ussion on 
ompression relaxation moduliAs dis
ussed in the previous se
tion, for thermostatted simulations the relaxationfun
tion K0(t) generally re
e
ts an adiabati
 response at short times, while itslong-time behavior is isothermi
. Hen
e we arrive at the following problem: toobtain the proper (universal) relaxation moduli KT (t) and KA(t) based on K0(t)(or based on the 
orrelation fun
tions measured in simulations). The solution tothis problem is outlined in Appendix A based on the ideas developed in ref. [13℄.The relaxation fun
tions KT (t) for the Sw-MD systems at di�erent temperatures,
al
ulated as des
ribed in Appendi
es A, B, are plotted in Fig. 12. The 
ompressionmodulus shows a minimum around t = 0:2 for T � 0:4 (the minimum timeslightly de
reases on 
ooling). The minimum is deeper than the similar short-timeundershoots of the shear relaxation modulus G(t) (
f. Fig. 8) and it gets morepronoun
ed at lower T 's. This feature points to stronger inertial e�e
ts for KT (t)than for G(t). In both 
ases an undershoot is followed by an overshoot at longertimes (to & 1 for KT (t) at T . 0:3). At low temperatures, T < 0:22, the relaxationmodulus develops a well-de�ned quasistati
 plateau, KTs, in a wide time range (fort > 1). The quasistati
 
ompression modulus KTs (
f. eq. (29)) is always mu
hhigher (by a fa
tor of � 3) than the analogous quasistati
 shear modulus.The adiabati
 
ompression modulus KA(t) for the Sw-MD systems was 
al
ulatedin two ways: First, by solving the exa
t eq. (D7) derived in Appendix D (thenumeri
al approa
h to solve it is des
ribed below eq. (B28) in Appendix B).Se
ond, by using the approximate eq. (A5) (
f. Appendix A). The results are
ompared in Fig. 13 showing that the approximate equation works quite well forall times and all temperatures. There is no di�eren
e between the `exa
t' andapproximate KA(t) for t & 2 (within the numeri
al pre
ision of the data). Atshorter times some minor deviations of the red (approximate) 
urves are dete
tedmostly in the overshoot-undershoot region.The fun
tions KA(t), obtained using the `exa
t' FDT relation, eq. (D7), in awider range of temperatures and times are shown in Fig. 14. One 
an observethe following di�eren
es between adiabati
 and isothermi
 relaxation fun
tions (
f.Figs. 14, 12): KA(t) show stronger variations at short times, t < 1 (in parti
ular,a deeper undershoot and a mu
h sharper and higher overshoot). The short-timeminima of KA(t) are lo
ated at tu � 0:25 at all T 's, whereas for KT (t) this timesomewhat de
reases down to tu . 0:2 at low T 's. On the other hand, the long-timerelaxation (for t > 1) is weaker in the adiabati
 
ase.Noteworthily, the minima of KA(t) emerge already well above Tg, in 
ontrastto G(t) showing undershoots only below Tg. It is reasonable to attribute theseundershoot/overshoot features to the e�e
t of overstressed bonds. It is easier tounderstand this e�e
t at a low T , when ea
h parti
le is 
lose to its equilibriumposition. Upon a perturbative aÆne 
ompression the for
e balan
e may be upset,t0)Æp(�q; t0)iNVT , where q is the wave-ve
tor and Æp(q; t) the pressure 
u
tuation at q andt. As long as q is not stri
tly equal to 0, the thermodynami
 boundary 
ondition of �xedparti
le number and volume is not felt and all 
u
tuations are allowed. Identifying K0(t) formi
ro
anoni
al simulations with the q ! 0 limit of the auto
orrelation fun
tion of Æp(q; t) isthus again 
onsistent with an extended ensemble with imposed pressure.15



so the parti
les have to move to the new equilibrium positions. The 
ontributionof a bond to the pressure in
rement (due to the deformation) is proportionalto the bond for
e in
rement �f whi
h, in turn, is proportional to the elasti

onstant k � r2l �2U=�r2l of the bond (here by a bond we mean any intera
tingpair of parti
les, rl is the bond length). A bond with higher k (than on theaverage) is likely to push the parti
le so as to in
rease rl. After a half-period ofthe resultant os
illating motion the for
e �f de
reases to a minimum (whi
h mayeven be opposite to the initial value �f0), this 
orresponds to the undershoot ofKA(t). Waiting another half period returns the for
e 
loser to the initial value �f0leading to an overshoot. The undershoots for KA(t) are lo
ated at tu � 0:25 andthe overshoots - at a twi
e longer time, to � 0:5, in agreement with the argumentgiven above. The mean vibration frequen
y !v is therefore !v � �=tu � 13rad/s,whi
h is in harmony with an estimate of a typi
al vibration frequen
y in a LJliquid [26℄. Interestingly, the undershoot time is somewhat shorter (tu � 0:2) inthe 
ase of isothermi
 relaxation at low T , while the overshoots for KT (t) are verybroad and weak.6. Stati
 moduli and their deviationsIn this se
tion we 
onsider temperature dependen
ies of the long-time elasti
moduli and their standard deviations for the systems equilibrated with parti
leswaps (method Sw-MD). 6.1. Shear moduliThe aÆne modulus �A shown with bla
k solid line in Fig. 6(a) was dis
ussedin se
t. 4. We applied two di�erent approa
hes to in
rease its pre
ision. The �rstapproa
h boils down to an isotropi
 averaging over all rotations of the 
oordinateframe (
f. se
t. 4). The se
ond approa
h is des
ribed in Appendix F.To assess the eÆ
ien
y of these pre
ision-improving pro
edures for �A we appliedthem independently to obtain �orA (with orientational averaging), ��A (with pressure
orre
tion), and �or�A (with both orientational averaging and pressure 
orre
tion) inaddition to �0A (
f. se
t. 4). The varian
es of the aÆne moduli among the systemsof an m-ensemble have been then evaluated based on these 4 sets of �A leading to4 types of the 
orresponding standard deviations, Æ�0A, Æ�orA , Æ��A and Æ�or�A , whosetemperature dependen
ies are shown in Fig. 15. It is 
lear that Æ�or�A is mu
hsmaller than Æ�0A, i.e., �or�A is mu
h more pre
ise than the raw modulus �0A obtainedin the �xed 
oordinate frame and without the pressure 
orre
tion. The deviationsÆ�0A, Æ�orA (no pressure 
orre
tion) 
oin
ide above the glass transition, and are nearly
onstant at lower temperatures (although the orientational preaveraging results ina slightly lower Æ�orA below Tg). This result suggests that both Æ�0A and Æ�orA aremainly due to quen
hed variations of the total volume and the mean pressurea
ross the ensemble. This view is supported by the observation that the pressure
orre
tion above Tg leads to a drasti
 de
rease of the �A-deviation by a fa
tor of� 20 from Æ�orA � Æ�0A � 0:15 to Æ�or�A < Æ��A . 0:007. The deviations Æ�0A, Æ�orAare therefore quite impre
ise and irrelevant (re
e
ting mostly the volume dispersityof independent 
on�gurations). The remaining deviations, Æ��A and Æ�or�A , show a16



rather sharp in
rease on 
ooling near Tg; a similar behavior of Æ�A was alreadyreported for another glass-forming system (a 3-dimensional oligomer liquid) [10℄.The e�e
t of orientational preaveraging is strong below Tg where Æ�or�A � Æ��A.Its origin was explained in ref. [10℄: the preaveraging wipes out an important
ontribution to Æ�A due to 
u
tuations of bond orientations. Remarkably, all thedeviations of �A show a peak slightly below the fra
tionation temperature Tf ;it is therefore likely that the peak is kineti
 in nature being asso
iated with aphase-separation pro
ess.The long-time shear modulus �sf is de�ned in terms of the relaxation modulusG(t) in eq. (11) of ref. [10℄ whi
h is equivalent to [17℄�sf (�t) = 2(�t)2 Z �t0 G(t) (�t� t) dt (18)Another equivalent de�nition 
omes from eqs. (2), (3), (18):�sf (�t) = �A � �F (�t) (19)where the so-
alled 
u
tuation modulus is [10,17℄�F (�t) = VT D(�(t)� ��)2ENV T (20)where �� is the time-averaged stress (for 0 < t < �t) and h:::iNV T implies bothtime- and ensemble-averaging. To improve the pre
ision of both �F and �sf weapplied the same pro
edures as for �A. The orientation average of �F is obtainedby 
al
ulating �F both in the original 
oordinate frame with x; y axes along thebox sides (yielding �0F ) and in the frame rotated by 45Æ (�45F ):�orF = ��0F + �45F � =2 (21)(Note that eq. (21) is exa
tly equivalent to isotropi
 averaging over all rotations ofthe 
oordinate frame, as follows from the tensorial nature of the stress). A

ordingly�orsf = �orA � �orF (22)Furthermore, in most 
ases we apply the pressure 
orre
tion indi
ated by star (�)as before.The temperature dependen
ies of the quasi-stati
 moduli �or�sf and �or�F are shownin Fig. 16(a). Their behavior is similar to that revealed for another glass-formingsystem [10℄: the glassy modulus �sf vanishes in the liquid regime, but sharplyin
reases on 
ooling near Tg, while �F develops a maximum around Tg. The latterfeature was explained [10℄ by faster in
rease of �A (as 
ompared to �sf ) on 
oolingin the liquid regime, and the opposite behavior (faster in
rease of �sf ) below Tg.Note that at Tg = 0:26 the glassy modulus �or�sf is still small, it is roughly twi
elower than its standard deviation, Æ�or�sf . It is noteworthy that the temperaturedependen
e of v = �F obtained by MC simulations using the same independent
on�gurations as in the present study (
f. Fig. 14 of ref. [17℄) agrees with ourdata for �or�F .The standard deviations Æ��sf , Æ��F and Æ�or�sf , Æ�or�F show similar T -dependen
ies
hara
terized by a rather sharp peak slightly below Tg, 
f. Fig. 16(b). The17



peak of Æ�F was reported for the same system [17℄ and for a 3-dimensionalglass-forming system [10℄; it was explained based on the assumption of Gaussianstress 
u
tuations. 13 This `Gaussian' theory is des
ribed in refs. [10,17℄. Thepredi
ted `Gaussian' standard deviations Æ�(G)F (
al
ulated at di�erent temperaturesbased on the known shear relaxation fun
tion G(t)) are also shown in Fig. 16(b)(bla
k 
urve). 14 It is 
lear that Æ�(G)F quantitatively reprodu
es the behavior ofÆ��F in liquid regime and in the glass-transition zone around Tg. By 
ontrast,Æ��F � Æ�(G)F well below Tg due to a non-ergodi
 (and therefore non-Gaussian)
ontribution, Æ�(ne)F , related to quen
hed stru
tural disorder in glassy systems:(Æ��F )2 = �Æ�(G)F �2 + �Æ�(ne)F �2 (23)(
f. refs. [10,17,27℄). It is important to note that the theory is not expe
ted to beappli
able quantitatively to the standard deviations Æ�or�F of orientationally-averaged�F ; Æ�or�F is typi
ally lower than Æ��F by a fa
tor � p2.To assess the importan
e of the pressure 
orre
tion for �F and �sf we 
omparedÆ��F with Æ�0F and Æ��sf with Æ�0sf (
f. Fig. 16(
)). It turns out that the pressure
orre
tion is not important for Æ�sf (apart from a weak e�e
t at low T � 0:18,where Æ�0sf ex
eeds Æ��sf by � 10%). It is also negligible for Æ�F at T � 0:28.However, the situation is di�erent at higher temperatures (T > 0:28) where Æ��Fgradually be
omes signi�
antly smaller than the bare (un
orre
ted) deviation Æ�0F(by a fa
tor of 4 at T = 0:5). Why is �F strongly a�e
ted by pressure variationsabove Tg in 
ontrast to �sf? The point is that the shear modulus �sf vanishes inthe liquid regime, and thus gets un
orrelated with pressure for this simple reason.As a result Æ�0sf be
omes negligible 
ompared to Æ�0A, and in view of the relation�0F = �0A � �0sf , the deviation Æ�0F gets dominated by the deviations of �0A whi
hstrongly depend on pressure (
f. Fig. 15): Æ�0F � Æ�0A � Æ�0sf in the liquid regime.Fig. 16(
) also shows that in the glass-transition region (T � Tg) the standarddeviations of all the 
u
tuation shear moduli, Æ��F , Æ�0F , Æ��sf , Æ�0sf , are a

uratelydes
ribed (are dominated) by the Gaussian 
ontribution Æ�(G)F .Following the approa
h des
ribed in Appendix F, 
u
tuations of any variable X
an be represented as (ÆX)2 = (ÆX�)2 + (ÆXp)2 (24)where ÆXp a

ounts for the variations of the mean pressure between the systems(ÆXp)2 =  �X�p !2 var(�p) (25)13Note that the pressure 
orre
tion was not applied in ref. [17℄. This di�eren
e led to largerÆv = Æ�F in the high T region (
f. Fig. 15 of ref. [17℄) as 
ompared to Æ��F shown in Fig. 16(
).A part of this e�e
t is also due to shorter sampling times used in [17℄.14Note that the pressure 
orre
tion is irrelevant for Æ�(G)F sin
e the latter is invariant to verti
alshifts of G(t), G(t)! G(t) + 
onst . [10,17℄ 18



where var(�p) � (Æ�p)2 ' TV KTe is the mean pressure varian
e between the indepen-dent 
on�gurations (KTe is de�ned below eq. (29)), and �X�p is the thermodynami
derivative at T = 
onst . Hen
e ÆXp / �X�p Æ�p stems from trivial equilibrium pressure
u
tuations. By 
ontrast, ÆX� re
e
ts more important e�e
ts of stru
tural hetero-geneities. In fa
t, a dispersion of X� between di�erent parts of a super
ooled liquid(whi
h is due to its inherently heterogeneous glassy stru
ture) must be similar tothe dispersion between independent 
on�gurations 
onsidered in the present paper.Thus, a better resolution of stru
tural heterogeneities demands lower ÆXp=ÆX�.Comparing this ratio for X = �A, �F and �sf we found that �F is better suitedthan other moduli for dete
ting stru
tural heterogeneities.6.2. Compression moduliTemperature dependen
e of various 
ompression moduli is shown in Fig. 17. Theinstantaneous (aÆne) modulus �A dis
ussed at the end of se
t. 5.1 (
f. eq. (15))provide the upper bound for all the moduli. The isothermi
 quasi-stati
 modulus�sf is de�ned using the stress-
u
tuation formula in analogy with eqs. (19), (20):�sf (�t) = �A � �F (�t) (26)where �F (�t) is the 
u
tuation 
ompression modulus proportional to the mean-square pressure 
u
tuations in the NV Ti ensemble (at 
onstant volume [9℄ andimposed temperature Ti): �F (�t) = VT D(p(t)� �p)2ENV Ti (27)where h:::iNV Ti indi
ates both time- and ensemble-averaging as before. Equationsequivalent to eq. (26) have been proposed/used in refs. [28,11,9,15℄.Following the same approa
h as applied to the shear stress 
u
tuations in orderto obtain eq. (18) [10,17℄, �sf 
an be related to the relaxation modulus K0(t):�sf (�t) = 2(�t)2 Z �t0 K0(t) (�t� t) dt (28)This relation shows that �sf (�t) is dominated by the long-time level of K0(t) �KT (t).15In addition to �sf we de�ne the long-time modulus KTs in analogy with eq. (28),but with a di�erent lower limit of time:KTs = 
onst Z �t0:3�tKT (t) (�t� t) dt (29)where 
onst is normalization 
onstant. Thus, KTs is a mean of KT (t) over thesegment [0:3�t;�t℄. As the fun
tion K0(t) mostly de
reases with time, KTs isa bit lower than �sf (as follows from eqs. (28), (29); note that there is no15In the long-time limit, K0(t)! 
onst. If K0 = 
onst, eq. (28) gives �sf = K0, implying that�sf(�t!1) is indeed dominated by the long-time level of K0(t).19



di�eren
e between K0(t) and KT (t) in the long-time regime of eq. (29)). However,the di�eren
e between the 2 moduli is barely visible only around Tg where theplateau onset is 
omparable with 0:3�t (
p. red and brown 
urves in Fig. 17).Above Tg the integration segment in eq. (29) (and, therefore, KTs) falls into theequilibrium plateau (
f. Fig. 12), while below Tg it belongs to the glassy plateau.We attempted to obtain the equilibrium isothermi
 
ompression modulus KTeassuming that its T -dependen
e is smooth (featureless) around the glass transition(just like the T -dependen
ies of the aÆne 
ompression modulus �A or the shearmodulus �A). To this end, it was postulated that KTe = KTs for T � 0:29, anda paraboli
 �t of KTs(T ) in the region 0:29 � T � 0:4 was extrapolated to getKTe at T < 0:29. Quite expe
tedly KTs ex
eeds the resultant equilibrium (genuinestati
) 
ompression modulus KTe below Tg, KTs > KTe, sin
e the regime of 
ompleterelaxation is ina

essible in the glassy state (
f. Fig. 17). The di�eren
e KTs�KTeis the magnitude of the terminal relaxation step of KT (t) o

urring at t� �t. Itsigni�
antly in
reases on 
ooling in the glass-transition zone, but then appears tostay nearly 
onstant at lower T 's (T < 0:24). The relative non-equilibrium (glassy)
ontribution KTs�KTe�A amounts to about 4% at Tg � 0:26. This value 
an be
ompared with the analogous ratio for the shear modulus, �sf=�A � 1:3% at T = Tg(note that the genuine equilibrium shear modulus is assumed to be identi
ally zeroboth below and above Tg [2℄ 16). Therefore Tg roughly 
orresponds to the onsetsof both the quasi-stati
 shear elasti
ity and a non-equilibrium 
ontribution to the
ompression modulus.Remarkably, the 
u
tuation 
ompression modulus �F always monotoni
ally in-
reases with temperature (
f. Fig. 17) in 
ontrast to the shear-stress 
u
tuationmodulus �F whi
h shows a maximum near Tg (
f. Fig. 16(a)). The di�eren
estems from their behavior above Tg: �F = �A � �sf de
reases with T be
ause�sf is negligible in this regime, while �A gets lower at higher temperature. By
omparison, �F = �A � �sf in
reases with T both above and below Tg (for T > Tf)be
ause the stati
 modulus �sf � KTs � KTe always de
reases with T faster than�A.Fig. 17 also shows another quasi-stati
 
ompression modulus, Kvv , de�ned usingthe volume-
u
tuation formula [9,8,15,29℄Kvv = TV= D(V � �V )2E (30)where V � �V is instantaneous deviation of the total system volume from its time-averaged value in the NPT ensemble (in this 
ase we used both Nos�e-Hooverthermostat and barostat). Eq. (30) is appli
able if any relevant relaxation time(in
luding those asso
iated with thermostat and barostat) are either mu
h shorteror mu
h longer than �t. This is true both above Tg (where all relaxation timesare � �t) and below Tg (where �� � �t). In these 
ases Kvv ' KTs ' �sf .Fig. 17 
on�rms this expe
tation: a small di�eren
e between Kvv and �sf is onlyvisible in the glass-transition zone near Tg.The statisti
s of V (t) deteriorates below Tg, so Kvv(T ) be
omes noisy at T < 0:2.By 
ontrast, the T -dependen
e of �sf remains smooth in this region. The main16Here we do not 
onsider the non-ergodi
 regime below the putative ideal glass transitiontemperature. 20



reason for this di�eren
e is that in the 
ase of �sf (but not for Kvv) we applied thepro
edure des
ribed in Appendix F to 
ompensate for the mean pressure variationsbetween the 
on�gurations: �sf = ��sf . The importan
e of the pressure 
orre
tionfor �sf is also evident from Fig. 18 showing that Æ�0sf � Æ��sf .The quasi-stati
 adiabati
 modulus KAs was obtained based on the adiabati
relaxation modulus KA(t) (
f. Fig. 14) in analogy with KTs (
f. eq. (29) whereKT (t) should be repla
ed with KA(t)). It shows a monotoni
 and almost linearin
rease on 
ooling ex
ept a shoulder in the glass-transition zone (
f. Fig. 17).Again the di�eren
e KAs�KAe (where KAe was obtained by linear extrapolation ofKAs(T ) at T > 0:3 into the region T < 0:3) de�nes the magnitude of the terminaladiabati
 relaxation step in the glassy regime (T < Tg). Just like the similarquantity (KTs �KTe) for the isothermal relaxation, KAs �KAe rapidly in
reases on
ooling near Tg, but stays almost 
onstant (in
reasing slightly) at lower T 's. Wealso observe that KAs(T ) is always roughly in the middle between the quasi-stati
isothermi
 (�sf � KTs) and instantaneous aÆne (�A) moduli; all the 3 moduli seemto nearly merge at T = 0. The fa
t that KAs = KTs at T = 0 is anti
ipated fromeq. (D22) provided that the thermal pressure pTs is �nite. On the other hand, weknow that �A �KTs � �A � �sf = �F (
f. eq. (26)) and that �F � 0 by de�nition(
f. eq. (27); the inequality �F � 0 at T ! 0 also 
omes from results of ref. [54℄;an analogous inequality for �F is also well-known [55℄). Thus, in the general 
aseboth �F and �F must remain �nite at T = 0, and therefore �A > �sf and �A > �sfat all temperatures. It appears however that �F de
reases very signi�
antly at lowtemperatures (
f. Fig. 17), whereas a similar de
rease of �F is not so pronoun
ed(
f. Fig. 16(a)).To 
al
ulate the standard deviations of 
ompression moduli we determine �A, �Ffor ea
h independent system. For example, the aÆne modulus �A is obtained bytime-averaging of the instantaneous modulus �A(t) de�ned in analogy with eq. (15)�A(t) = d+ 2d �orA (t) + 2p0 � 2�T (31)where �orA (t) is spe
i�ed in eq. (4):�A = 1�t Z �t0 �A(t)dt (32)Similarly, the 
u
tuation modulus is de�ned as (
f. eq. (27))�F = VT 1�t Z �t0 (p(t)� �p)2 dt (33)Temperature dependen
ies of standard deviations for the aÆne and 
u
tuation
ompression moduli, Æ�0A, Æ��A, Æ�0F , Æ��F , are shown in Fig. 18(a). The pressure
orre
tion is obviously important for the aÆne modulus: Æ�0A is always mu
hhigher than Æ��A (by a fa
tor of 10 or more above Tg). By 
ontrast, the pressure
orre
tion for �F (just like for �F ) appears to be insigni�
ant near and belowTg: Æ�0F � Æ��F at T . Tg. The e�e
t of pressure dispersion on Æ�F be
omesdete
table only well in the liquid regime, for T > 0:4. Turning to �sf = �A��F , weobserve that Æ�0sf is de�ned by Æ�0A both above and below Tg outside the peak:Æ�0sf � Æ�0A at T > 0:32 and T < 0:22. On the other hand, elimination of thepressure dispersion e�e
t leads to a signi�
ant de
rease of Æ��sf in the two regions,21




f. Fig. 18(b). Thus both �sf and �A strongly depend on the mean pressure,while su
h e�e
t is mu
h weaker for �F .The Gaussian approximation, Æ�(G)F , for Æ��F 
an be obtained as a straightforwardgeneralization of the theory [10,17℄ for Æ��F : the whole argument remains the sameprovided that the shear relaxation modulus G(t) is repla
ed with the 
ompressionmodulus K0(t). In other words, the varian
e �Æ�(G)F �2 is de�ned by the r.h.s. ofeq. 30 in ref. [10℄ with K0 instead of G. Fig. 18(b) shows that the Gaussianapproximation works very well for T � 0:25, where Æ��F � Æ�(G)F . At lower T 's thedi�eren
e between Æ��F and Æ�(G)F grows to more than 10%; it allows to obtain thestru
tural non-ergodi
ity parameter Æ�(ne)F [17,27℄:�Æ�(ne)F �2 = (Æ��F )2 � �Æ�(G)F �2 (34)The above equation leads to Æ�(ne)F =Æ�(G)F � 0:5 at T � 0:2. The 
orresponding shearnon-ergodi
ity parameter, Æ�(ne)F (
f. eq. (23)) is mu
h larger: Æ�(ne)F =Æ�(G)F & 5 at0:15 . T . 0:2.Noteworthily, the shear and 
ompression 
u
tuation moduli are 
omparable at lowtemperatures: �F � �F � 15. The higher ratio Æ�(ne)F =�F as 
ompared to Æ�(ne)F =�Findi
ates that an order parameter related to �F would be more appropriate than�F to study stru
tural heterogeneities.7. Con
lusions1. We performed MD and MC simulations of a two-dimensional system ofpolydisperse disks with LJ intera
tions using several methods to prepare quasi-equilibrated systems (
f. se
t. 2): by slow 
ooling and tempering with MD orMC (methods SC-MD, SC-MC) and by tempering with MC involving parti
le swapmoves followed by standard equilibration with lo
al MC moves or MD (methodsSw-MC, Sw-MD). It is shown that above the glass transition temperature Tg � 0:26the system properties (RDF, the stru
ture fa
tor S(q), the MSD, the relaxationmoduli) do not depend on the tempering (equilibration) approa
h. Remarkably, theglass transition 
an be easily dete
ted based on the temperature behavior of eitherdensity � (
f. Fig. 1) or the aÆne shear modulus �A (
f. Fig. 6(a)) for systemsprepared with di�erent equilibration approa
hes: both �(T ) and �A(T ) show alower slope at T < Tg for the preparation method SC-MD (
ontinuous MD 
ooling)as 
ompared to the Sw-MD and Sw-MC methods.2. The systems equilibrated with parti
le swaps are thus denser and morerigid below Tg than slowly 
ooled systems. Moreover, the observed temperaturedependen
ies of su
h stati
 quantities as � [17℄, �A and the aÆne 
ompressionmodulus �A are smooth in the vi
inity of Tg for the swapped systems (no 
hangeof slope near Tg, 
f. Figs. 6(a), 17). These features indi
ate that the parti
leswap te
hnique allowed for a nearly 
omplete equilibration both above and belowTg in agreement with results of refs. [23,17℄.3. The dete
ted evolution of the Kirkwood RDF, g(r), at low temperatures(
f. Fig. 2) points to a parti
le demixing (fra
tionation) pro
ess in the swap-based
on�gurations at T < Tf � 0:16 (
f. Fig. 3). This tenden
y is also re
e
tedin the behavior of the stru
ture fa
tor S(q) showing an in
rease at low q's on22




ooling towards Tf (
f. Fig. 4). The fra
tionation transition is also visible in thetemperature dependen
e of the aÆne shear modulus �A obtained for the swap-based
on�gurations (
f. Fig. 6(a)).4. We demonstrate that the system dynami
s below Tg signi�
antly depend onthe applied equilibration/tempering method: the parti
le self-di�usion is 
onsiderablyslower for systems equilibrated using parti
le swaps (method Sw-MD), 
f. Fig. 5,in spite of the fa
t that both ensembles show similar stru
ture (with nearly thesame RDF, 
f. Fig. 2) for Tf < T < Tg. A dramati
 e�e
t of the preparationproto
ol is also re
e
ted in the shear stress relaxation whi
h shows a long-timeplateau at low T 's for swap-equilibrated systems, but a mu
h faster de
ay with atransient shoulder for slowly 
ooled systems (
f. Fig. 8). It is therefore apparentthat the less-equilibrated systems show mu
h faster dynami
s below Tg (
f. Fig. 10and the dis
ussion at the end of se
t. 4).5. The stru
tural relaxation time �� of the swap-equilibrated system shows asuper-Arrhenius temperature dependen
e (
f. the VFT law, eq. (8)). The VFTtemperature T0 (often asso
iated with the Kauzmann or the ideal glass transitiontemperature [3℄) turns out to be remarkably 
lose to the fra
tionation temperatureTf .6. It is shown that the shear-stress relaxation data obtained with MD andMC dynami
s 
an be approximately superimposed by res
aling of the MC-timetMC ! t = tMC=k (
f. Fig. 11). It turns out that the fa
tor k = k(T) showsa non-monotoni
 T -dependen
e with a maximum at T � 0:3 slightly above theglass-transition. However, the superposition gets imperfe
t in the glass-transitionregime (0:24 � T � 0:28). Further simulations with larger ensembles may help to
larify the origin of this dis
repan
y. We argue (
f. dis
ussion in se
t. 4) thatstri
tly speaking the two dynami
s (MD and MC) are not equivalent even in the
ase of negligible inertia.7. The shear-stress 
orrelation fun
tion C�(t) is not sensitive to the ther-mostatting me
hanism sin
e a shear deformation does not produ
e any temperaturevariation in the linear approximation (�T is proportional to the square of theshear rate). This feature is also re
e
ted in the absen
e of 
ross-
orrelationsbetween the shear stress and temperature or energy. By 
ontrast, a normal stressor pressure do 
orrelate with temperature and energy, and this sizeable e�e
t leadsto a dependen
e of the pressure 
orrelation fun
tion Cp(t) on the thermostattingmethod.8. The shear relaxation modulus G(t) was obtained based on shear stress
u
tuations using the well-known FDT formula, eq. (2). The analogous relationde�ning the 
ompression relaxation modulus K0(t) in terms of pressure 
u
tuationsis given in eq. (16). We argue, however, that this relation provides the genuineisothermi
 
ompression modulus KT (t) only in the 
ase of ideal thermostatting,or for long enough times, t� �T , where �T is the thermostat-related temperaturerelaxation time. In the general 
ase KT (t) 6= K0(t) sin
e K0(t) is a `mixture'of isothermi
 and adiabati
 responses (in parti
ular, for t . �T ). We thereforearrived at the following 
hallenge: to get all the response fun
tions like KT (t)or the analogous adiabati
 
ompression modulus KA(t) in the full time-range (toresolve all the relaxation pro
esses in the physi
al system). In other words, the23



goal was to predi
t the universal (thermostat-independent) 17 response fun
tions ofthe very physi
al system based on 
orrelation fun
tions obtained for the extendedthermostatted system. The relevant theory for the time-dependent heat 
apa
ity
v(t) was developed in ref. [13℄. Its generalizations for the 
ompression moduli (andthe thermal pressure relaxation fun
tion pT (t)) are presented in Appendi
es B, C(for KT (t)) and Appendix D (for KA(t)). The theory is based on the FDT relationsbetween Lapla
e transforms of response and 
orrelation fun
tions. These relationsare then 
onverted into the real-time domain to get equations de�ning KT (t) andKA(t). This approa
h is valid for a rather wide range of `de
ent' thermostats(
f. ref. [13℄) in
luding the NH thermostat used in our simulation studies. Therelaxation moduli KT (t) and KA(t) for the pLJ system have been eventuallyobtained using eqs. (B10), (B30) and (D7), respe
tively. We anti
ipate that evenmore pre
ise results 
an be obtained with eqs. (C12), (C15), (D19), (D20) thatdo not involve auto
orrelations of the kineti
 temperature often showing strongos
illations.9. Using the general approa
h des
ribed above we 
al
ulated the isothermi
(KT (t)) and adiabati
 (KA(t)) relaxation fun
tions at di�erent temperatures andreveal that adiabati
 moduli show mu
h stronger short-time undershoots than KT (t)or G(t) (
f. Figs. 7, 12 and 14). We also derived (
f. Appendix A) a simpleapproximate equation (A5) de�ning the adiabati
 relaxation modulus KA(t) interms of pressure, energy and temperature 
orrelation fun
tions and demonstratednumeri
ally its validity for the pLJ model system. The approximation for KA(t)works amazingly well to t & 2 (
f. Fig. 13).10. The mean-square 
u
tuations (MSF) of shear stress and pressure along thetraje
tory are quanti�ed by two 
u
tuation moduli, respe
tively, �F and �F , whi
hshow qualitatively di�erent temperature dependen
ies: while �F exhibits a 
learmaximum near Tg, �F monotoni
ally de
reases on 
ooling (
f. Figs. 16(a) and 17).This means that the MSF of pressure, D(p(t)� �p)2E, de
reases always faster thanT , i.e., that D(p(t)� �p)2E =T falls on 
ooling.11. It is found that the instantaneous (aÆne) moduli for shear (�A) and
ompression (�A) show a smooth temperature dependen
e around Tg for swapped
on�gurations (method Sw-MD). By 
ontrast we reveal a sharp in
rease of thequasi-stati
 shear and 
ompression moduli (�sf and �sf � KTs, respe
tively) on
ooling near Tg (
f. Fig. 17). A similar temperature behavior was found alsofor the quasi-stati
 adiabati
 
ompression modulus KAs. Remarkably, KAs staysroughly in the middle between �A and KTs, and the 3 
ompression moduli (�A, KTsand KAs) seem to nearly merge at zero temperature. Given that the 
u
tuationmodulus �F � �A �KTs is always positive for amorphous systems (�F = 0 at T = 0would imply that there is no stress relaxation at all, K0(t) = 
onst , whi
h isimpossible for systems with heterogeneous stru
ture), we 
on
lude that althoughthe extrapolated �F for the studied system does not vanish at T = 0, it de
reases17The basi
 idea is that the response fun
tions must re
e
t the properties of a physi
al systemas su
h, and therefore must be independent of its 
oupling to a thermostat. [13℄ For this reasonthe moduli like �A; �F ; �sf ; �A; �F ; KTs; KAs are both ensemble- and thermostat-independent(as all these moduli are dire
tly related to the response fun
tions).24



strongly at low temperatures.12. We devise two pro
edures to improve the pre
ision of the aÆne shearmodulus �A and to redu
e its standard deviation Æ�A. They boil down toorientational averaging of �A by the 
oordinate frame rotations (
f. se
t. 4) andto applying a linear regression to 
ompensate for the mean pressure variationsbetween the 
on�gurations (
f. Appendix F). Applied together these te
hniqueslead to a dramati
 redu
tion of Æ�A: by a fa
tor of 40 above Tg and a fa
tor of10 below Tg (
f. Fig. 15). It is also demonstrated that the pressure 
orre
tionis important for the varian
e of the 
u
tuation shear modulus �F above Tg (
f.Fig. 16(
)). Turning to 
ompression moduli, we found that while the standarddeviations of the quasi-stati
 and aÆne moduli (Æ�sf and Æ�A) strongly depend onthe mean pressure dispersion between the independent 
on�gurations, its e�e
t ismu
h weaker for Æ�F (
f. Fig. 18).13. We predi
ted the height, hT , of the terminal step for the isothermi
relaxation modulus, KT (t), in the glassy regime, where the terminal pro
ess o

ursin an ina

essible time range. The height hT is obtained as the di�eren
e betweenthe long-time plateau level (KTs) and the 
orresponding equilibrium 
ompressionmodulus (KTe) whi
h was de�ned by an extrapolation of KTs from the liquid regimeto lower temperatures (T . Tg). The analogous height of the terminal pro
ess forthe adiabati
 relaxation was obtained in a similar way as hA = KAs �KAe. Wellbelow Tg the isothermal step hT is nearly 
onstant and ex
eeds hA for adiabati
relaxation by a fa
tor of � 2.5 (
f. Fig. 17).14. The assumption of Gaussian statisti
s for stress 
u
tuations works verywell near and above Tg both for the shear stress and pressure. This 
on
eptleads to rather a

urate quantitative predi
tions of the non-monotoni
 temperaturedependen
ies for the standard deviations of both shear and 
ompression 
u
tuationmoduli, Æ��F and Æ��F (
f. Figures 16(b) and 18(b)). By 
ontrast, both shearstress and pressure 
u
tuations be
ome strongly non-Gaussian at low temperatures(T . 0:2).15. We established that various shear moduli, �A, �F and �sf , are isotropi
with the relative a

ura
y � 0:1% well below Tg. Around Tg the isotropy is lesspre
ise for �F and �sf : at T � 0:24 their relative angular variations rise to about0.3% and 2%, respe
tively. This e�e
t is apparently due to a stronger sensitivity ofthe shear modulus to variations of external parameters and its stronger dispersionwithin the ensemble near the glass transition. By 
ontrast, the isotropy of thepurely stati
 aÆne modulus �A does not deteriorate near Tg (its a

ura
y graduallyimproves on heating and be
omes � 0.02% at T � 0:24).16. The 
ompression relaxation moduli KT (t), KA(t) obtained using new FDTrelations (
f. point 8 above) together with the shear relaxation modulus G(t) andthe time-dependent heat 
apa
ity 
v(t) [13℄ largely de�ne the linear vis
oelasti
properties of the system (as long as it is ma
ros
opi
ally isotropi
 and homogeneous,whi
h is true for T > Tf). In parti
ular, all the dynami
al moduli and 
omplian
eslike the Young modulus E(t) or the 
reep 
omplian
e J(t) (
f. refs. [33,34℄) 
anbe obtained on this basis. For exampleJ(s) = 1=G(s); ET;A(s) = G(s)d(d� 1)=2 + (1=d)G(s)=KT;A(s) (35)where s indi
ates the s�Lapla
e transform de�ned in Appendix B, eq. (B8). A25



simple way to obtain su
h and similar relations between the material fun
tions 18based on the analogous stati
 relations is outlined at the end of Appendix D.17. Our results 
ould be pertinent for experimental systems of 
olloidalmonolayers 
onsisting of a binary mixture of superparamagneti
 parti
les [42℄. Forsu
h monolayers video-mi
ros
opy gives a

ess to parti
le traje
tories and allowsfor positional analysis as in 2D simulations [44℄. Sin
e in addition the intera
tionpotential between the parti
les is known, shear and 
ompression relaxation moduli
an in prin
iple be 
al
ulated. Su
h an analysis 
ould 
omplement prior studies ofstati
 strain 
u
tuations related to shear rigidity of the 
olloidal glass [41℄ and ofspatio-temporal strain patterns that emerge in super
ooled liquids [45℄.8. The key resultsI. Using the arti�
ial MC dynami
s involving swaps of parti
le diameters wemanaged to almost 
ompletely equilibrate the studied 2D pLJ model systems. Theirequilibrium nature was 
arefully veri�ed based on the following observations:| The temperature dependen
e of density, �(T ), does not show any 
hange ofslope at the glass transition Tg (
orresponding to solidi�
ation).| Using swap MC moves also during the produ
tion runs we found that theshear stress 
orrelation fun
tion rapidly de
ays to zero in this 
ase indi
ating a
omplete stress relaxation during the tempering time.| The same results are obtained on 
ooling from high T and on heatingstarting from quasi-
rystalline 
on�gurations at T = 0:01. These 
on�gurationshad been slowly heated and tempered using the Sw-MC method. At T > 0:16they show only lo
al 
lustering and quantitatively the same dynami
al and stati
properties as their 
ounterparts obtained on 
ooling from T = 0:5.| The equilibrium FDT relation �0 = �A is satis�ed for the Sw-MC systems(
f. Fig. 6(b)).II. The Sw-based systems at T . Tg, whi
h 
an be 
onsidered as a thermo-dynami
ally equilibrium glass, show higher elasti
 moduli, mu
h slower parti
ledi�usion, and a more pronoun
ed and longer plateau of the shear relaxation mod-ulus G(t), as 
ompared to the SC-MC and SC-MD systems prepared by standardslow 
ooling. We thus not only 
on�rmed a signi�
ant dependen
e of glass prop-erties on its formation history, but also provided a tool to quantify the degree ofdeviation from equilibrium for an amorphous system.The stru
ture and properties of the Sw-equilibrated systems are likely to besimilar to that of ultra-stable glasses obtained by vapour deposition, whi
h are alsosupposed to be 
lose to an equilibrium state [56℄. Therefore, the Sw-systems westudied 
an serve as a simple model for vapour-deposited glasses.III. An important step forward of the present manus
ript beyond the priorwork is the development of the linear response theory for the isothermi
 andadiabati
 
ompression moduli (Appendi
es A to D). Together with the results forthe shear relaxation modulus, this provides the general linear vis
oelasti
 response18These relations are useful in pra
ti
e primarily in the regimes where inertial e�e
ts are notimportant. 26



of a system that is ma
ros
opi
ally homogeneous and isotropi
. Small 
lustersof parti
les of similar size appear for Sw-based systems at T = 0:2, but all thesystems remains ma
ros
opi
ally homogeneous and isotropi
 for T > Tf � 0:16. Thedeveloped theory is therefore appli
able to all the systems we studied above thefra
tionation temperature.IV. Both stati
 shear and 
ompression moduli (�sf and �sf ) strongly in
rease on
ooling near Tg (
f. Figs. 16(a) and 17). Their behavior is sharp but 
ontinuous,so the system solidi�
ation o

urs in a �nite T -window (0:23 . T . 0:28) whi
h 
anbe read o� from the peaks of standard deviations of the moduli, Æ��sf (Fig. 16(b))and Æ��sf (Fig. 18(b)). These peaks are a

urately reprodu
ed with a theoreti
alapproa
h assuming Gaussian statisti
s of stress 
u
tuations near and above Tg.The established temperature dependen
ies of the shear and bulk moduli, �sf (T )and �sf (T ), are qualitatively similar to those obtained experimentally on 
olloidalmonolayers of a binary mixture of superparamagneti
 parti
les [42℄, albeit a mu
hstronger in
rease of the bulk modulus near Tg was revealed for the experimentalsystem.Con
i
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e".APPENDIX A: General approa
h to 
al
ulate 
ompressionrelaxation moduliAs explained in se
tions 5.2, 5.3 the isothermi
 and adiabati
 pressure relaxationmoduli, KT (t) and KA(t), 
annot be obtained in the general 
ase solely basedon the pressure auto
orrelation fun
tion Cp(t) (so, generally, KT (t) 6= K0(t), 
f.se
t. 5.2 and eq. (16)). However, as proposed in ref. [13℄ the response fun
tionsof thermostatted system 
an be (under 
ertain 
onditions) expressed in terms ofseveral 
orrelation fun
tions using appropriate FDT relations. A number of su
hrelations eventually de�ning KT (t) and KA(t) are derived in Appendi
es B, C, D.1. Isothermi
 modulusLet us �rst 
onsider the isothermi
 modulus, KT (t). It 
an be written asKT (t) = K0(t) + �KT (t). The FDT expression for �KT (t) is given in eq. (B30)in terms of the auto
orrelation fun
tion of temperature, CT (t), and the thermalpressure response fun
tion pT (t) generalizing the thermodynami
 derivative � �p�T �N;V(
f. Appendix B, eq. (B20)). The fun
tion pT (t) 
an be 
al
ulated using another27



FDT relation, eq. (B28), involving 
ross-
orrelation fun
tions of pressure and energy,CpE(t), and of temperature and energy, CTE(t). Another way to obtain KT (t),whi
h is more eÆ
ient numeri
ally, is des
ribed in Appendix C.While the 
orre
tion �KT (t) vanishes at t ! 1, for �nite times it a

ountsfor the deformation-indu
ed deviation of the instant kineti
 temperature T fromthe thermostat (imposed) temperature. This deviation is rather small at t = 0(�KT (0) = �2dT�, 
f. eq. (B32)), but it 
an signi�
antly in
rease in time in the
ase of a weak system/thermostat 
oupling (large thermal mass Q for the NHthermostat). In our simulations this e�e
t is avoided by using low Q's 
orrespondingto a high Nos�e frequen
y !Q � 100 (!2Q = 2TNd=Q), so that !Q�f � 6, where �f isthe 
ollision/vibration time. In this 
ase, �KT (t) remains always small and de
aysfast (during a short time � 0:2).Thus, generally, the 
orre
tion �KT (t) signi�
antly depends on the strength ofthe system/thermostat 
oupling. A similar e�e
t was 
onsidered in ref. [13℄ forthe dynami
 heat 
apa
ity. For a strong 
oupling (a high Nos�e frequen
y !Q)the 
orre
tion time-range is short. However, the 
orre
tion may be
ome importantif the system/thermostat 
oupling is too weak (!Q�f � 1) or too strong (for!Q�f � 1 in the 
ase of a single NH thermostat).2. Compression modulusIn this se
tion we analyse the relaxation modulus for adiabati
 
ompression,KA(t). As already mentioned, the 
anoni
-aÆne deformation is adiabati
 in nature,so the response at t = 0, K0(0), is equal to KA(0). However, the 2 fun
tions aredi�erent for t > 0, and KA(t) normally ex
eeds K0(t).Let us �rst 
onsider the stati
 limit, t ! 1, assuming that the system 
anbe eventually fully equilibrated after a perturbation. The following thermodynami
relation between adiabati
 and isothermi
 moduli is valid in this regime:KA = 
p
vKT (A1)where 
p, 
v are heat 
apa
ities (per parti
le) at 
onstant pressure and volume,respe
tively. It leads to KA = KT + T� p2T=
v (A2)where pT =  �p�T !V = �KT (A3)is the thermal pressure, and � = �� lnV�T �p is the thermal expansion 
oeÆ
ient.In a glassy state the genuine equilibrium levels of pT and 
v are not a

essible,but they 
an be repla
ed by the 
orresponding long-time plateau values. Itis tempting to 
onsider pT and 
v more generally as time-dependent fun
tions,providing pressure and energy responses to a step-like T -in
rease (
f. eq. (B20)in Appendix B for pT (t) and ref. [13℄ for 
v(t)). In this spirit eq. (A2) 
an beempiri
ally generalized as 28



KA(t) � KT (t) + T� pT (t)2=
v(t) (A4)The above equation must be valid in the stati
 limit (t!1) and in the quasistati
glassy plateau regime where t� �� (sin
e the latter regime is essentially stati
 aswell, and the thermodynami
 relations like eq. (A2) are valid not only at genuineequilibrium but also - albeit approximately - in a glassy state equilibrated withina metabasin [35,36,10℄). Moreover, it is also 
orre
t at t = 0 where its r.h.s. isexa
tly equal to KA(0) = KT (0) + 2dT�. (Note that pT (0) = � and 
v(0) = d=2; 
f.eq. (D27) in Appendix D.)A rigorous approa
h allowing to 
al
ulate the adiabati
 response is des
ribed inAppendix D. A number of relations between the Lapla
e-like s-transform of KA(t),KA(s) = s Z 10 KA(t)e�stdtand similar transforms of 
orrelation fun
tions are established there. Some of theserelations are then 
onverted into the time-domain and expressed as equations whi
h
an be solved for KA(t), 
f. eqs. (D5) and (D7). Remarkably, we also establishedan exa
t relation between the transformed response fun
tions, eq. (D23), whi
h isformally similar to eq. (A4) and 
an serve as a basis to justify its approximatevalidity. In a similar way, eq. (D5) generates the following approximate equationfor the adiabati
 relaxation modulus:KA(t) � K0(t) + T� pT0(t)2=
v0(t) (A5)It involves the fun
tions pT0(t) and 
v0(t) whi
h are dire
tly related to the
orrelation fun
tions of energy and pressure (
f. eqs. (B18), (D4)), whi
h wereobtained by MD simulations.APPENDIX B: FDT relations for isothermi
 
ompressionrelaxation modulus1. De�nition of the relaxation modulusTo obtain the isothermi
 bulk 
ompression relaxation modulus KT (t) using FDTrelations involving pressure and energy 
orrelation fun
tions we note �rst that the
ompression deformation, eq. (12), leads not only to a pressure in
rement�p(t) = �K0(t) (B1)but also to a temperature variation:�T (t) = �T� CTp(t); (B2)where CTp(t) = NT 2 hÆT (t+ t0)Æp(t0)i (B3)29



Here and below h:::i mean both ensemble and gliding averaging as before, ÆT (t) =T (t) � Ti, Æp(t) = p(t) � hpi, and any non-linear terms (for � � 1) are omitted.An NV Ti ensemble is assumed by default (Ti is the temperature imposed by athermostat). Eq. (B2) 
omes from the FDT [12,24,31℄.In addition to the deformation, eq. (12), we 
onsider 2 types of temperatureperturbations: (i) a small jump-like velo
ity in
rease at t = 0:v ! v(1 + �v=d); (B4)and (ii) a small jump (�T ) of the imposed temperature at t = 0:Ti(t) = Ti � �T�(�t) (B5)where �(:::) is the Heaviside fun
tion. By virtue of the FDT the T -perturbation(i) leads to the following responses (at t > 0):�p(t) = �vTCpT (t); �T (t) = �vTCT (t) (B6)where CT (t) = NT 2 hÆT (t+ t0)ÆT (t0)i ; CpT (t) = NT 2 hÆp(t+ t0)ÆT (t0)i (B7)CTp(t) is de�ned in a similar way; CpT (t) = CTp(t) is due to the time reversibility.Combining eqs. (16), (17), (B1), (B2), (B3), (B6), (B7) and doing the followingtransform (labelled below as s�Lapla
e) for all response and 
orrelation fun
tions:�p(s) � s Z �p(t)e�stdt; CpT (s) � s Z CpT (t)e�stdt (B8)et
., we get the following responses to both a 
ompression and a T -perturbationof type (i):�p(s) = �K0(s) + �vTCpT(s); �T (s) = �T� CTp(s) + �vTCT (s) (B9)To obtain the proper isothermi
 modulus KT we must set �T (t) � 0. The latter
ondition 
annot be satis�ed with a 
onstant �v. However, we may allow for asuperposition of T -jumps (de�ned in eq. (B4)) o

urring at any t > 0 (and notonly at t = 0), whi
h is equivalent to 
onsidering �v as a fun
tion of s. Then the
ondition �T (s) = 0 leads to �v = ��CTp(s)= [�CT (s)℄ and �p(s) = �KT (s) withKT (s) = K0(s) + �KT (s); (B10)�KT (s) = �T� CpT (s)2=CT (s) (B11)Here and below the transforms de�ned in eqs. (B8) are indi
ated by s-variablesonly. The isothermi
 relaxation modulus, KT (t), 
an in prin
iple be obtained by
al
ulation of the Lapla
e transforms of CpT (t) and CT (t) 
orrelation fun
tions, andthen by doing the inverse Lapla
e transform of KT (s)=s = R10 KT (t)e�stdt. A moreeÆ
ient alternative way is des
ribed below (in se
t. 3).30



2. De�nition of the thermal pressure response pT (t) and general relationsbetween its Lapla
e transform and the relaxation modulusThe T and p responses to a temperature perturbation of the se
ond type (
f.eq. (B5)) are also related to the equilibrium 
orrelation fun
tions (as follows fromthe FDT [12,24,31,13℄):�p(t) = �T [CpE(0)� CpE(t)℄ ; �T (t) = �T [CTE(0) �CTE(t)℄ (B12)where CpE(t) = T�2 hÆp(t+ t0)ÆE(t0)i ; CTE(t) = T�2 hÆT (t+ t0)ÆE(t0)i (B13)Here the stati
 
orrelations, CTE(0) and pTs0 � CpE(0), re
e
t the properties ofthe equilibrium 
anoni
 ensemble:CTE(0) = 1; pTs0 = pTs + CpE(1) (B14)where pTs �  �p�T !N;V (B15)is the rate of 
hange of the mean (equilibrium) pressure with temperature (thermalpressure), and CpE(1) is the long-time limit of CpE(t). Note that generallyCpE(1) 6= 0 in a glassy state.Combining the above equations with eqs. (16), (17), (B1), (B2) we �nd s-transforms of the responses to both a 
ompression and a T -perturbation of type(ii): �p(s) = �K0(s) + �TpT0(s); �T (s) = �T� CTp(s) + �T [1 � CTE(s)℄ (B16)where pT0(s) � pTs0 � CpE(s) (B17)In the time-domain the latter equation be
omes:pT0(t) � CpE(0)� CpE(t) (B18)Using the same tri
k as before we �nd that the isothermi
 
ondition �T (t) � 0(at � = 
onst ) leads to: �T = ��T�CTp(s)= [1� CTE(s)℄ hen
eKT (s) = K0(s)� T� CTp(s)pT0(s)= [1 �CTE(s)℄ (B19)The time-dependent fun
tion pT (t) generalizing the thermodynami
 
onstant pTs
an be de�ned via the pressure in
rement �p at time t after a step-like in
rease(by �T0) of the ensemble-averaged temperature at t = 0:pT (t) = �p(t)=�T0 (B20)31



Obviously pT (t = 0) = �. 19 Demanding that �T (t) = �T0�(t) and using eqs. (B16)with � = 0 and �T = �T (s) we getpT (s) = pT0(s)1 �CTE(s) (B21)Applying the same operation to eqs. (B9) we obtainpT (s) = CpT (s)=CT (s) (B22)As the response fun
tions (like pT (t)) must be universal (independent of how theT -perturbation was 
reated, 
f. ref. [13℄), eqs. (B21), (B22) de�ne the samefun
tion and lead to an exa
t relation between pressure/energy 
orrelation fun
tions(valid in the thermodynami
 limit N !1):CT (s) [pTs0 � CpE(s)℄ = CpT (s) [1� CTE(s)℄ (B23)This relation is akin to eq. 19 of ref. [13℄ whi
h readsCT (s) [
vs0 � CE(s)℄ = CTE(s) [1� CTE(s)℄ (B24)where CE(t) = hÆE(t+ t0)ÆE(t0)i = �NT 2� (B25)and 
vs0 = CE(t = 0) (B26)Eq. (B23) also ensures that the two results for KT (s) obtained above(eqs. (B11), (B19)) are equivalent, thus supporting the idea of universality ofthe isothermi
 modulus KT (t).Finally, we note that eqs. (B19), (B21), (B22) lead to�KT (s) = �T� CT (s)pT (s)2 = �T� CpT (s)pT (s) (B27)It shows that on
e pT (t) is known, the relaxation modulus KT (t) 
an be readily
al
ulated by 
onvolutions.3. Equations de�ning KT (t).In the previous se
tions we established the relations between Lapla
e transformsof response fun
tions KT (t), pT (t) and of equilibrium 
orrelation fun
tions whi
h 
anbe easily 
al
ulated using thermostatted simulations. However, in order to obtainthe response fun
tions one would have to do dire
t and inverse Lapla
e transformswhi
h may pose a formidable problem given that some of these fun
tions may show19Note that pT (t) is related to the relaxation 
oeÆ
ient of volumetri
 thermal expansion whoses�Lapla
e transform is equal to pT (s)=KT(s). 32



signi�
ant os
illations. A way to bypass this problem was outlined in ref. [13℄where the time-dependent heat 
apa
ity was 
al
ulated using similar relations. Thebasi
 idea is to transform the relevant relations into the time domain (to get ridof Lapla
e transforms), and to use the least os
illating 
orrelation fun
tions. The�rst part of this program is outlined below, the se
ond part is 
lari�ed in theAppendix C.Eq. (B27) 
onne
ts the Lapla
e transforms of the isothermi
 modulus KT (t) andof the thermal pressure response fun
tion pT (t). To obtain the latter fun
tion were
all eqs. (B21), (B17) leading topT (s) [1� CTE(s)℄ = pTs0 � CpE(s)and note that the above equation is equivalent to the following relation betweenthe time-dependent fun
tions:Z t0 pT (t� t0) ddt0CTE(t0)dt0 = CpE(t)� pTs0 (B28)This equation 
an be easily solved for pT (t) in the iterative manner. 20 Thesolution is unique and stable. Its stability follows from the following property ofCTE(s): there are no roots of 1 � CTE(s) with <(s) > 0. It 
an be proved usingeq. (B24) and the approa
h detailed in the Appendix C of ref. [13℄.Finally we get using the se
ond eq. (B27) and the obtained pT (t):�KT (t) = �TCpT(t)� T� Z t0 CpT (t� t0)dpT (t0) (B29)Alternatively, the isothermi
 modulus 
an be found based on the �rst eq. (B27):�KT (t) = ��TCT (t)� T� Z t0 CT (t� t0)dpT2(t0) (B30)where pT2(t) � �pT (t) + Z t0 pT (t� t0)dpT (t0) (B31)Note that at t = 0: pT (0) = �, pT2(0) = �2 and CT (0) = 2=d, so (on re
allingeq. (B10)) KT (0) = K0(0)� 2dT� (B32)The se
ond term in the last equation is typi
ally rather small for super
ooledliquids.20More pre
isely, the time-variable is �rst dis
retized with step Æt: ti = iÆt, and the fun
tionspT (t), CTE(t) are approximated on ea
h segment (ti�Æt < t < ti) by their 
onstant mean valuesp(i)T ; C(i)TE, i = 1; 2::: Then eq. (B28) is applied at t = t1, t2, ... to get one-by-one the values p(1)T ,p(2)T ,... . 33



APPENDIX C: Isothermi
 
ompression modulus in terms of
orrelations of potential energy and ex
ess pressureThe fun
tion CTE(t) shows signi�
ant os
illations at short t. Besides, 1�CTE = 0at t = 0 (s!1). Both these features lead to a poor pre
ision of pT (t) obtainedfrom eqs. (B21), (B28) at short t. For better pre
ision it is bene�
ial to usevariables that are 
oupled weaker to the instantaneous temperature. Su
h moreuseful variables are the potential energy U and the ex
ess pressure pex instead oftotal energy E and total pressure p:U = E � TNd=2; pex = p � �THere TNd=2 = K is the kineti
 energy, �T = pid is the ideal-gas pressure due tomomenta of the parti
les (pex is due to their intera
tions).The relevant 
orrelation fun
tions of U and pex are (
f. eqs. (B7), (B13), (B25)):CU (t) = hÆU(t+ t0)ÆU(t0)i = �NT 2� ; CUE(t) = hÆU(t+ t0)ÆE(t0)i = �NT 2� ;Cpex(t) = NT 2 hÆpex(t+ t0)Æpex(t0)iCTpex(t) = NT 2 hÆT (t+ t0)Æpex(t0)i = CpexT (t) (C1)The fun
tion Cpex(t) de�nes the response of pex after a small 
ompressionx! (1� �=d)x (C2)whi
h does not a�e
t the parti
le velo
ities (hen
e this transformation in the phasespa
e is not 
anoni
al). The relevant FDT relations are:�pex(t) = � "T� Cpex(t) +KexTs0# (C3)and �T (t) = �T� CTpex(t) (C4)where KexTs0 � �exA � T�Cpex(t = 0) and �exA = �A � d+2d �T is the ex
ess part of theaÆne 
ompression modulus (
f. eq. (13)).Next, turning to the T -perturbation of the �rst type, eq. (B4), we �nd�pex(t) = �vTCpexT (t); �T (t) = �vTCT (t) (C5)The analogous FDT relations asso
iated with the se
ond T -perturbation, eq. (B5),are: �pex(t) = �T [CpexE(0)� CpexE(t)℄ ; �T (t) = �T [CTE(0)� CTE(t)℄ (C6)where (
p. eq. (B13)) 34



CpexE(t) = T�2 hÆpex(t+ t0)ÆE(t0)i (C7)The isothermal ex
ess modulus KexT (t) (de�ning ex
ess pressure response to a small
ompression at 
onstant T ) and the ex
ess thermal pressure 
oeÆ
ient pexT (t) 
an beobtained using the above equations following the approa
h des
ribed in Appendix B.In parti
ular, we getpexT (s) = pexTs0 � CpexE(s)1� CTE(s) = CpexT (s)=CT (s) (C8)where pexTs0 = CpexE(t = 0), leading toCT (s) [pexTs0 � CpexE(s)℄ = CpexT (s) [1� CTE(s)℄ (C9)The latter equation is equivalent to eq. (B23) sin
e CpE(s) = CpexE(s) + �CTE(s) +
onst and CpT (s) = CpexT (s) + �CT (s) as follows from p = pex + �T . In a similarway we get the ex
ess 
ompression modulus:KexT (s) = T� Cpex(s) +KexTs0 � T� CpexT (s)pexT (s) (C10)Taking into a

ount that obviously KT (t) = KexT (t) + �T , we arrive atKT (s) = �T +KexTs0 + T� Cpex(s)� T� CpexT (s)pexT (s) (C11)In the time domain it reads (on using pexT (t = 0) = 0)KT (t) = �T +KexTs0 + T� �Cpex(t)� Z t0 CpexT (t� t0)dpexT (t0)� (C12)where dpexT (t0) = dpexT (t0)dt0 dt0.It remains therefore to obtain pexT (t). Using eqs. (C8) we getpexT (s) = pexTs0 � CpexU (s)1 � CTU(s) (C13)where CpexU(s), CTU(s) are the s-transforms ofCpexU (t) = T�2 hÆpex(t+ t0)ÆU(t0)i ; CTU(t) = T�2 hÆT (t+ t0)ÆU(t0)i (C14)The 
orresponding equation for pexT (t) ispexT (t) = pexTs0 � CpexU(t) + Z t0 CTU(t� t0)dpexT (t0) (C15)This equation is similar to eq. 48 of ref. [13℄. It 
an be solved iteratively startingfrom t = 0; it has a unique and stable solution (
f. ref. [13℄ for details). Notethat pexT = 0 and CpexU = pexTs0 at t = 0 (
orresponding to s ! 1) as follows fromthe �rst eq. (C6). Eq. (C15) also de�nes the full response fun
tion pT (t) due tothe obvious relation pT (t) = pexT (t) + �An advantage of eqs. (C15) and (C12) de�ning the relaxation isothermi
 bulk
ompression modulus over eqs. (B28), (B29) is that the 
orrelation fun
tions (likeCpexU(t), CTU(t)) involved in eqs. (C15), (C12) show mu
h weaker os
illations thanthose (like CpE(t), CTE(t)) involved in eqs. (B28), (B29). This feature results ina higher numeri
al pre
ision of the eventually evaluated time-dependent responsefun
tions. 35



APPENDIX D: FDT relations for adiabati
 
ompressionrelaxation modulusThe adiabati
 
ondition means that no heat is transferred into (or out of) thesystem. It therefore implies that the initial deformation (�-
ompression at t = 0)must be a 
anoni
al aÆne transformation of the phase spa
e given in eq. (12),and that the energy E is 
onserved afterwards:E = 
onst ; t > 0 (D1)sin
e no work is done by the system (V = 
onst ). In the 
ase of a thermostattedsystem (in parti
ular, with the Nose-Hoover dynami
s we 
onsider) there is perma-nent heat ex
hange between the system and the thermostat, so the 
ondition (D1)must be maintained by additional 
ompensating heat transfers due to, for example,the Ti-perturbations de�ned in eq. (B5). Let us therefore fo
us on the pressure pand the energy E responses. Considering now 2 perturbations de�ned in eqs. (12)and eq. (B5), respe
tively, we get in analogy with eqs. (B16): 21�p(s) = �K0(s) + �TpT0(s); �E(s) = �V T [CEp(s)� pTs0℄ + �TN
v0(s) (D2)where pT0(s) is de�ned in eq. (B17), pTs0 = CEp(t = 0) and
v0(s) � 
vs0 � CE(s) (D3)(
f. eqs. (B14), (B26)). Upon 
onversion into the time-domain eq. (D3) be
omes
v0(t) = CE(0)� CE(t) (D4)The 
ondition (D1) implies that �E(t) = 0 at t > 0, hen
e �E(s) = 0. Thefun
tions �T = �T (s) and KA(s) � �p(s)=� are then obtained using eqs. (D2) for� = 
onst and �E(s) = 0: �T = �T� pT0(s)
vs0 � CE(s)KA(s) = K0(s) + �K(s); �K(s) � T� pT0(s)2=
v0(s) (D5)Converting the above equations into the time domain we getKA(t) = T� Cp(t) +KTs0 +�K(t) (D6)where KTs0 = �A � T�Cp(t = 0) and the fun
tion �K(t) is de�ned by the followingequation Z t0 �K(t� t0)d
v0(t0) = T� Z t0 pT0(t� t0)dpT0(t0) (D7)21Here by �E(t) we mean E(t)� E(t = 0+).36



where 
v0(t) and pT0(t) are de�ned in eqs. (D4), (B18), respe
tively. Thus, theadiabati
 relaxation modulus KA(t) 
an be easily obtained by solving eq. (D7) for�K(t) using the same numeri
al approa
h as des
ribed below eq. (B28).The adiabati
 modulus KA(t) 
an be also obtained based on 
orrelation fun
tionsinvolving ex
ess pressure pex and potential energy U (in analogy with the isothermi
modulus KT (t), 
f. Appendix C). To this end one 
ould use the approa
h detailedin Appendix C based on new FDT relations. However, we take a slightlydi�erent route: instead of 
onsidering new FDT relations we simply use thealready established eqs. (D5) and transform them in order to get rid of 
orrelationfun
tions of variables that expli
itly depend on T . This is a
hieved using thegeneral relation pT0(s)=
v0(s) = pT (s)=
v(s); (D8)and trivial relations 
oming from E = U +NdT=2 and p = pex + �T :CE(s) = CUE(s) + d2CTE(s); CpE(s) = CpexE(s) + �CTE(s) + 
onst (D9)Here pT0(s), 
v0(s) and pT (s) are de�ned in eqs. (B17), (D3), (B21), and 
v(s)is the s�Lapla
e transform of the time-dependent iso
hori
 heat 
apa
ity, 
v(t),obtained in ref. [13℄ (
f. eq. 13 there):
v(s) = 
v0(s)= [1� CTE(s)℄ (D10)On using eq. (B24) one �nds[
vs0 � d=2 � CU(s)℄CT (s) = CTU(s) [1� CTU(s)℄ (D11)so 
v(s) = 
vs0 � CEU(s)1� CTU(s) (D12)Similarly we get on using either eq. (C9) or (B23):[pexTs0 �CpexU (s)℄CT (s) = CpexT (s) [1� CTU(s)℄ (D13)leading to (in view of eq. (B22))pT (s) = pTs0 � CpU(s)1� CTU(s) (D14)and pT0(s)
v0(s) = pTs0 � CpU(s)
vs0 � CEU(s) (D15)Another useful relation 
omes from eqs. (D13), (D11):[pexTs0 �CpexU (s)℄CTU(s) = CpexT (s) [
vs0 � d=2 �CU (s)℄ (D16)The above relations allow to ex
lude the temperature 
orrelation fun
tion CT (s)from the adiabati
 modulus de�ned in eqs. (D5)37



KA(s) = K0(s) + T� pT0(s)2
v0(s) = KTs0 + T� "Cp(s) + pT0(s)pTs0 � CpU(s)
vs0 � CEU(s)#The result is KA(s) = KexTs0 + 2 + dd �T + T� Cpex(s) + T� h(s) (D17)whereh(s) = [pexTs0 � CpexU(s)℄ [pexTs0 + 2�� CpexE(s)℄ � 2d�2 h
vs0 � d2 �CU (s)i
vs0 � CEU(s) (D18)The adiabati
 relaxation modulus KA(t) 
an be dedu
ed from eq. (D17):KA(t) = KexTs0 + 2 + dd �T + T� Cpex(t) + T� h(t) (D19)where the fun
tion h(t) is de�ned by equationZ t0 [
vs0 � CEU(t� t0)℄ dh(t0) = 2d�2 (CU(t)� 
vs0) + (pexTs0 + �)2 � (D20)� (pexTs0 + 2�) CpexU(t) + Z t0 CpexE(t� t0)dCpexU(t0)with h(t = 0) = 0, as follows from eq. (D18) and the general relation h(t = 0) =h(s!1).Eq. (D20) 
an be solved in the same way as eq. (D7). Although eq. (D20)seems to be more 
ompli
ated, it 
an provide better numeri
al pre
ision sin
e thefun
tion 
v0(t) = 
vs0�CE(t) involved in eq. (D7) generally shows stronger short-timeos
illations than the fun
tion CEU(t � t0) in the l.h.s. of eq. (D20). In the 
aseof strong system/thermostat 
oupling (for example, for the Nos�e-Hoover thermostatwith low enough thermal mass Q) the T -
u
tuations relax fast (during a shorttime � �N = p2=!Q), so all 
orrelations involving T vanish for t � �N . In thisregime, the relevant 
orrelations involve only pex and U , so eq. (D17) 
an besimpli�ed asKA(s) ' KexTs0 + �T + T� "Cpex(s) + (pexTs0 + �� CpexU(s))2
vs0 � CU (s) # (D21)Setting s = 0 (
orresponding to the stati
 limit t!1) we get the stati
 adiabati
modulus KAs: KAs = KTs + T� p2Ts
vs (D22)in agreement with the general thermodynami
 relation between adiabati
 andisothermi
 
ompression moduli. [12℄Finally, note a simple relation between KA and KT :KA(s) = KT (s) + T� pT (s)2
v(s) (D23)38



whi
h 
an be transformed asKA(s) = KT (s) + T� pT (s)pTs0 � CpU(s)
vs0 � CEU(s) (D24)and used to 
al
ulate KA(t) on
e the fun
tions KT (t) and pT (t) are known. Asimilar equation for the isobari
 heat 
apa
ity 
p(s) reads:
p(s) = 
v(s) + T� pT (s)2KT (s) (D25)Both eqs. (D23), (D25) 
an be proved using the general relations derived above.Again, eq. (D25) has exa
tly the same form as the 
orresponding stati
 relation [12℄:
ps = 
vs + T� p2TsKTs (D26)Taking s ! 1 in eq. (D23) leads to a simple relations between instantaneousmoduli (at t = 0): KA(0) = KT (0) + T� pT (0)2
v(0) = KT (0) + 2d�T (D27)where we took into a

ount that pT (0) = � (sin
e instantaneous pressure responseto a T -jump involves solely the ideal-gas pressure) and 
v(0) = d=2 (for a similarreason).Eqs. (D23), (D25) have exa
tly the same stru
ture as the 
lassi
al thermody-nami
 relations for the 
orresponding stati
 quantities (
f. eqs. (D22), (D26)).This feature 
an be in fa
t more general: any equilibrium relation between ther-modynami
 derivatives generates an analogous relation between the 
orrespondingdynami
al response fun
tions (in the s�Lapla
e representation). There is no generalproof of this statement, but we 
an provide a few hints pointing to its validity: (i)The examples given above show that the relations between response fun
tions donot depend expli
itly on the Lapla
e parameter s (generally, this is an assumptionwhi
h 
an be easily 
he
ked). (ii) The s ! 0 limit of a response fun
tion 
anbe redu
ed to a thermodynami
 derivative. (iii) All stati
 relations between thethermodynami
 derivatives 
oming from di�erentiation rules (like the 
hain rule)have their dynami
al analogs based on the Boltzmann superposition prin
iple. (iv)All symmetry relations between 
ross-derivatives (like �p�T ���V = �S�V ���T ) have their dy-nami
al 
ounterparts (symmetry relations between linear response fun
tions) whi
hfollow from the time-reversibility of the dynami
s being akin to the Onsager'sprin
iple of symmetry for kineti
 
oeÆ
ients. [30℄APPENDIX E: Impulsive 
orre
tion to �AThe orientation-averaged instantaneous aÆne shear modulus �orA is de�ned ineq. (4). A straightforward way to employ it is to use analyti
al expressions foru0(s) and u00(s) valid for s < s
ut. This way yields �or(0)A 6= �orA . The problem isthat the potential u(s) shows a kink at s = s
ut leading to a singular 
ontribution,39



�u0(s
ut)Æ(s� s
ut), in u00(s) � d2u=ds2. This 
ontribution gives rise to the so-
alledimpulsive 
orre
tion [5,8,10℄: �orA = �or(0)A + ��AIn the present study ��A was 
al
ulated dire
tly by approximating the Æ-fun
tionas f�(s) = ��1 [4 � 6 (s
ut � s) =�℄ �(s
ut � s)�(� + s� s
ut) (E1)where �(:) is the Heaviside fun
tion, and the width � = 0:025 was 
hosen tosatisfy 2 
onditions: �� 1 and s
ut�N�� 1. Eq. (E1) 
omes from the 
onditionthat Æ(s � s
ut) is approximated by a fun
tion whi
h must be nonzero in theinterval s
ut �� < s < s
ut whose 
enter di�ers from the position of the originalÆ-fun
tion. The resulting impulsive 
orre
tion is negative:��A = � u0(s
ut)V d(d+ 2) Xl s2f�(s) (E2)APPENDIX F: How to redu
e the e�e
t of pressure
u
tuations on a variable XThe method des
ribed below is appli
able to any ma
ros
opi
 variable Xin
luding X = �A and X = �A. A pressure dispersion is inevitable even in theensembles aimed to keep a 
onstant pressure. As explained in se
t. 2 the volumeof ea
h 
on�guration was quen
hed after the equilibration stage (tempering in theNPT ensemble), so that the m independent systems have slightly di�erent volumesand their time-averaged pressures,�p = 1�t Z �t0 p(t)dtobtained from the NVT produ
tion runs for ea
h system, deviate from the imposedpressure p0. These deviations result in quen
hed shifts of the 
hosen variable Xfor all the 
on�gurations (unless X is totally pressure-independent). To 
ompensatefor this e�e
t we used a linear regression approa
h: both X and �p have beenmeasured for ea
h system, and then X was repla
ed by X� = X +�(p0 � �p), wherethe 
oeÆ
ient � = hX (�p� pav)i = D(�p� pav)2E and pav = h�pi is the mean pressureaveraged over the m-ensemble. This way we obtain a set of m values of X� whoseensemble-average hX�i = hXi+� (p0 � pav) 
orresponds to p = p0. At the same timethe standard deviation of the X�-set gets minimized.
40
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FIGURE CAPTIONSFIG. 1. Number density � of the pLJ model at normal pressure P = 2 as afun
tion of temperature T . The old data (open 
ir
les) from ref. [9℄, obtainedfrom a 
ontinuous 
ooling pro
ess using lo
al MC moves only (quen
h methodSC-MC), reveal two distin
t linear slopes whi
h were used to determine a glasstransition temperature Tg � 0:26. The data obtained with the SC-MD methodwith 
ooling rate � = 10�5 (�lled rhombs) show a similar behavior. Using inaddition swap moves (quen
h method Sw-MC or Sw-MD) mu
h higher densitieshave been a
hieved (boxes) below Tg.FIG. 2. The radial distribution fun
tions g(r) for T = 0:4; 0:325; 0:26; 0:19;0:16; 0:15 (from bottom to top: the 
urves are shifted verti
ally with step 0.5for 
larity). Bla
k 
urves 
orrespond to 
on�gurations equilibrated by parti
leswaps (method Sw-MD); 
olor 
urves (blue, brown, magenta, blue, red, magenta)to systems prepared by slow 
ooling with MD (method SC-MD).FIG. 3. Con�guration snapshots for T = 0:10, 0:15, 0:16, 0:2, 0.26 and 0.4 (fromleft to right) obtained with the Sw-MC equilibration method. The 
olor 
oderanges from bla
k (smallest beads) to red (largest beads). The 
on�gurations arehomogeneous, isotropi
 and liquid-like above the demixing temperature Tf � 0:16.Below Tf we observe demixing (segregation) of beads of di�erent diameters and,as a result, hexagonal 
lusters of alike beads. The main part of this work isfo
used on temperatures T > Tf . Note that even at T = 0:2 small 
lusters ofparti
les of similar size are formed, but the system remains homogeneous andisotropi
 beyond the size of these 
lusters.FIG. 4. (a) The stati
 stru
ture fa
tor S(q) for swap-equilibrated 
on�gurations(using method Sw-MD) at T = 0:5 (blue 
urve), 0.4 (bla
k), 0.325 (red),0.26 (brown), 0.19 (green), 0.16 (magenta). (b) The stru
ture fa
tor S(q) fora broader range of temperatures obtained for swapped 
on�gurations (obtainedwith method Sw-MC) using only lo
al MC moves for the produ
tion runs. Mainpanel: Double logarithmi
 representation. Inset: Linear representation fo
usingon waveve
tors q around the �rst maximum.FIG. 5. The parti
le MSD, h0(t), at di�erent temperatures T = 0:4 (bla
k 
urve),0.35 (green), 0.3 (blue), 0.26 (magenta), 0.24 (bla
k), 0.23 (red), 0.21 (brown);T de
reases from top to bottom. The solid lines and 
rosses (�) 
orrespond to`swapped' (Sw-MD) and slowly-
ooled (SC-MD) 
on�gurations, respe
tively. AtT > Tg both data sets overlap 
ompletely. The straight dashed line indi
atesthe slope 
orresponding to Fi
kian di�usion (h0 / t).FIG. 6. (a) Temperature dependen
e of the aÆne modulus �A for the `swapped'
on�gurations obtained with method Sw-MD (bla
k solid line) and for the`
ooled' systems, method SC-MD (red solid line). The brown dashed lineis tangential to the bla
k solid line at T = 0:2 � 0:3. The verti
al dashedlines indi
ate Tf = 0:16 and Tg = 0:26. For `swapped' 
on�gurations �A = �or�Awas 
al
ulated as explained in se
tion 4 and Appendix F. All the resultsare obtained with MD produ
tion runs. (b) The aÆne shear modulus �A;bare(triangles) and the res
aled se
ond moment of the shear stress, �0 = (T=�)C�(0)43



(
ir
les), obtained either using only lo
al MC moves (open symbols) or also withadditional parti
le swap moves during produ
tion runs (�lled symbols). The twostati
 averages are obtained using MC dynami
s for systems equilibrated by bothlo
al and parti
le swap moves (method Sw-MC). We show here �A;bare withoutthe impulsive 
orre
tion ��A � �0:3 (
f. eq. (E2)) instead of �A = �A;bare+��A.FIG. 7. The shear relaxation modulus G(t) for `swapped' 
on�gurations (methodSw-MD) at T = 0:4, 0.35, 0.3, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21,0.19, 0.18, 0.17, 0.16, 0.15 (from bottom to top). The non-monotoni
 behaviorof G(t) at long times, t & �t=2 (at some temperatures) is a trivial e�e
t ofinsuÆ
ient statisti
s.FIG. 8. The shear relaxation modulus G(t) for (a) T = 0:4; 0.35, 0.3, 0.28, 0.27,0.26, 0.25, 0.24 (from bottom to top), (b) T = 0:24, 0.21, 0.17, 0.16 (frombottom to top). In both parts red 
urves 
orrespond to `
ooled' 
on�gurations(obtained with method SC-MD), bla
k 
urves to `swapped' 
on�gurations (methodSw-MD).FIG. 9. The log-log dependen
e of kG(t) vs. t=�� for T = 0:4; 0.35, 0.3, 0.28,0.27, 0.26, 0.25, 0.24, 0.23 (
urves from right to left) for systems equilibratedwith method Sw-MD (using parti
le swaps). The shift-fa
tor k = k(T ) in
reasesfrom 1 to 1.35 (at T = 0:28) and then de
reases ba
k to 1. The T -dependen
eof the terminal relaxation time �� = ��(T ) is shown by rhombs in Fig. 10.FIG. 10. T -dependen
e of the �-relaxation time �� for `
ooled' (SC-MD, 
rosses)and `swap-based' (Sw-MD, rhombs) 
on�gurations. The solid 
urve representsthe �t with the VFT law, eq. (8). The horizontal line 
orresponds to the totalsampling time �t = 105. The verti
al line indi
ates Tg.FIG. 11. G(t) for swap-equilibrated 
on�gurations based on stress-
orrelations ob-tained with MD (bla
k 
urves for Sw-MD) and MC dynami
s (red 
urves forSw-MC [17℄) for temperatures (a) T = 0.4 , 0.35, 0.30; (b) T = 0:3; 0:28; 0:27;0:26; 0:25; 0:24; 0:21; 0:20 (
urves from bottom to top). The time for MC
urves was set to t = tMC=k, where tMC is the number of MC time-steps andk = k(T ): k(0:4) = 488, k(0:35) = 546, k(0:3) = 588, k(0:28) = 556, k(0:27) = 500,k(0:26) = 476, k(0:25) = 385, and k = 294 for T � 0:24.FIG. 12. Time dependen
e of the isothermi
 bulk 
ompression relaxation modulus,KT (t), obtained using FDT relations as des
ribed in the text, for `swapped'
on�gurations (method Sw-MD) at T = 0:4, 0.35, 0.3, 0.28, 0.27, 0.26, 0.25,0.24, 0.23, 0.22, 0.21, 0.19, 0.18, 0.17, 0.16, 0.15 (from bottom to top).FIG. 13. Time dependen
e of the adiabati
 bulk 
ompression relaxation modulus,KA(t), obtained using the FDT relations as des
ribed in the text, for `swapped'
on�gurations (method Sw-MD) at T = 0:4, 0.35, 0.3, 0.27, 0.25, 0.23, 0.21,0.19 (from bottom to top). Bla
k 
urves are based on the `exa
t' eq. (D7);red 
urves 
orrespond to the approximation, eq. (A5).FIG. 14. Time dependen
e of the adiabati
 bulk 
ompression relaxation modulus,KA(t), obtained using the FDT relation, eq. (D7), as des
ribed in the text,for `swapped' 
on�gurations (method Sw-MD) at T = 0:4, 0.35, 0.3, 0.28, 0.27,44



0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.19, 0.18, 0.17, 0.16, 0.15 (from bottomto top).FIG. 15. T -dependen
ies of standard deviations for the aÆne shear moduli: Æ�0A(no orientational averaging, no pressure 
orre
tion: red 
urve with rhombs),Æ�orA with orientational averaging (brown), Æ��A with pressure 
orre
tion (blue),Æ�or�A with both orientational averaging and pressure 
orre
tion (bla
k). Verti
aldashed lines indi
ate Tf and Tg.FIG. 16. T -dependen
ies of: (a) The quasi-stati
 modulus �or�sf (red 
urve) and
u
tuation modulus �or�F (bla
k) for the pLJ systems equilibrated by parti
leswaps (method Sw-MD). The verti
al dashed lines show Tf = 0:16 and Tg = 0:26.(b) The standard deviations Æ��sf (red 
urve), Æ��F (brown), Æ�or�sf (blue), Æ�or�F(magenta) as a fun
tion of T together with Æ�(G)F (bla
k 
urve), the Gaussianapproximation for Æ��F . Note that Æ��sf � Æ��F and Æ�or�sf � Æ�or�F in the peakregion. (
) The standard deviations Æ�0F (red 
urve), Æ�0sf (brown), Æ��F (bla
kwith `x'), Æ��sf (blue), Æ�(G)F (magenta), and Æ�0A (bla
k). In all the 
ases thesampling time is �t = 105.FIG. 17. Temperature dependen
ies of (quasi-)stati
 
ompression moduli for systemsprepared with method Sw-MD: the aÆne modulus �A = ��A (the upper bla
k
urve), its linear extrapolation from T > Tf to T < Tf (bla
k with long dashes),the 
u
tuation modulus �F = ��F (magenta 
urve with `+'), the quasi-stati
moduli: �sf = ��sf (red 
urve), Kvv based on volume 
u
tuation formula, eq. (30)(blue 
urve), KTs (brown 
urve), KTe (bla
k with 
rosses), KAs (magenta), KAe(bla
k with short dashes). Note that ��A, ��F and ��sf were 
al
ulated for thepres
ribed pressure (= p0) using eq. (15) and the pro
edure to 
ompensate forthe mean pressure deviations among the independent 
on�gurations des
ribed inAppendix F. KTs and KAs 
orrespond to long-time plateau levels of isothermi
and adiabati
 relaxation moduli, KT (t) and KA(t), respe
tively. KTe and KAeare equilibrium moduli obtained by extrapolation to low temperatures (T . Tg)of the liquid bran
hes of KTs(T ) and KAs(T ), respe
tively, as des
ribed in thetext. The verti
al dashed lines indi
ate Tf and Tg.FIG. 18. Temperature dependen
ies of standard deviations of 
ompression moduli(obtained using Sw-MD method): (a) Æ��A (blue 
urve), Æ�0A (red), Æ��F (bla
k),Æ�0F (magenta with `�'), Æ�0sf (brown with `+'). (b) Æ��F (bla
k), Æ�(G)F (red),Æ��sf (blue), Æ�0sf (brown with `+'), Æ�0F (magenta with `�'). Verti
al linesindi
ate Tf and Tg.
45
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Fig. 4 (b).
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Fig. 6 (a).
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Fig. 6 (b).
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Fig. 8 (a).
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Fig. 8 (b).G(t)
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Fig.  9.
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Fig. 10.
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Fig. 11 (a).
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Fig. 11 (b).
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Fig. 13.
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Fig. 14.
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Fig. 15.
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Fig. 16 (b).
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Fig. 16 (c).
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