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Relaxation moduli of glass-forming systems:temperature e�ets and utuationsL.Klohko, J.Bashnagel, J.P.Wittmer, A.N.Semenov�Institut Charles Sadron, CNRS - UPR 22, Universit�e de Strasbourg,23 rue du Loess, BP 84047, 67034 Strasbourg Cedex 2, Frane(July 7, 2021)AbstratEquilibrium and dynamial properties of a two-dimensional polydisperseolloidal model system are haraterized by means of moleular dynamis(MD) and Monte Carlo (MC) simulations. We employed several methods toprepare quasi-equilibrated systems: in partiular, by slow ooling and tem-pering with MD (method SC-MD), and by tempering with MC dynamisinvolving swaps of partile diameters (methods Sw-MD, Sw-MC). It is re-vealed that the Sw-methods are muh more eÆient for equilibration belowthe glass transition temperature Tg leading to denser and more rigid sys-tems whih show muh slower self-di�usion and shear-stress relaxation thantheir ounterparts prepared with the SC-MD method. The shear-stress re-laxation modulus G(t) is obtained based on the lassial stress-utuationrelation. We demonstrate that the �-relaxation time �� obtained using atime-temperature superposition of G(t) shows a super-Arrhenius behaviorwith the VFT temperature T0 well below Tg. We also derive novel rig-orous utuation relations providing isothermi and adiabati ompressionrelaxation moduli in the whole time range (inluding the short-time iner-tial regime) based on orrelation data for thermostatted systems. It is alsoshown that: (i) The assumption of Gaussian statistis for stress utuationsleads to aurate preditions of the varianes of the utuation moduli forboth shear (�F ) and ompression (�F ) at T & Tg. (ii) The long-time (quasi-stati) isothermi and adiabati moduli inrease on ooling faster than theaÆne ompression modulus �A, and this leads to a monotoni temperaturedependene of �F whih is qualitatively di�erent from �F (T ) showing amaximum near Tg.
Typeset using REVTEX



1. IntrodutionRheologial properties of omplex and glass-forming uids are largely de�ned bytheir dynamial relaxation visoelasti moduli, namely the shear relaxation modulusG(t) and the bulk ompression modulus K(t) [1℄. The G(t) memory funtionan be de�ned in terms of the transient shear stress response to a small sheardeformation [2℄. Similarly, K(t) provides the mean pressure inrement �p(t) attime t after a small uniform ompression of the system whose volume V dereasedto V (1� �): �p(t) ' �K(t) for � � 1The shear modulus G(t) of a liquid rapidly deays with t at high temperatures,but it develops a long-time plateau in the superooled regime. [3,4℄ Thus, G(t)an be used to haraterize vitri�ation of a superooled liquid and to identify itsglass transition temperature Tg, as demonstrated in numerous simulation studies.[5{10℄ However, the relaxation ompression modulus K(t) of glass-forming liquidswas muh less investigated. [8,9,14,15℄ In the present paper we tried to reduethis gap.To obtain the relaxation moduli, G(t) and K(t), a utuation-dissipation formal-ism relating them to stress-orrelation funtions is often used. [6,7,10{12℄ Reently,we demonstrated that the standard approah to get response funtions based onorrelation funtions obtained with thermostatted MD simulations is insuÆient inthe general ase and, in partiular, for a preise alulation of the dynamialheat apaity. [13℄ The problem arises due to an imperfet temperature ontrol inthermostatted simulations; it a�ets those variables (whose response we onsider)that are oupled with temperature utuations. This problem onerns the pressure,but not the shear stress, so the utuation equations for G(t) stay intat. Byontrast, the standard sheme to obtain K(t) based on the utuation-dissipationtheorem (FDT; f., eg., eq. 48 of ref. [14℄) does not yield a proper isothermiompression modulus, but rather a mixture of isothermi and adiabati responses.In the present paper we develop and employ a rigorous formalism, generalizingthe ideas presented in ref. [13℄, to alulate both isothermi (KT (t)) and adiabati(KA(t)) ompression moduli using the orrelation funtions obtained in thermostattedsimulations. The theory is based on a number of novel FDT relations derived anddisussed in Appendies A, B, C, D.The main questions addressed in this paper are:(i) What are the e�ets of the equilibration method (in partiular, using non-loal swaps of partile diameters) on dynamial and stati properties of the studiedtwo-dimensional (2D) olloidal model system?(ii) Is it possible and how to fully haraterize the linear visoelasti response ofa moleular system based on orrelation funtions of shear stress, pressure, energy,et.?(iii) What are the e�ets of temperature on both short- and long-time visoelastirelaxation dynamis haraterized by the isothermi and adiabati bulk ompressionrelaxation moduli and the shear stress response?(iv) How do the stati moduli of the 2D superooled liquid (both for shearand ompression) and their varianes depend on temperature, in partiular, nearthe glass transition? 2



The importane of these questions stems from the previous simulation re-sults [9,6,5,10,13℄ and the ongoing theoretial disussion on the nature of solidi�-ation in amorphous materials [36,37,41{43℄.The paper is organized as follows: In the next setion we desribe the two-dimensional Lennard-Jones polydisperse (2D pLJ) olloidal system and the ompu-tational approah to study it. The simulation results are presented and disussed insetions 3, 4, 5 and 6. In partiular, the e�ets of the system quenh/temperingmethod on the radial distribution funtion, mean-square displaement h0(t) andshear relaxation modulus G(t) are disussed in setions 3 and 4, the relaxationompression moduli are onsidered in set. 5, while the stati moduli and theirstandard deviations are analyzed in set. 6. The paper is summarized in set. 7,and the key results are highlighted in set. 8.2. The model and simulation detailsWe onsider a model olloidal system of polydisperse Lennard-Jones (pLJ)partiles in two dimensions [16,17,8,9,21,22℄. The partile diameters are uniformlydistributed between 0:8�� and 1:2�� with ��, the mean diameter. The interationrange of a pair (l = ij) of 2 partiles i and j is de�ned by the Lorentz rule [24℄:�l = (�i + �j) =2. The LJ interation potential isuLJ(r; �l) = 4� �s�12 � s�6� (1)where s = r=�l is trunated at sut = 27=6 (so that uLJ = 0 for s > sut) and shiftedto avoid disontinuity at s = sut. The partiles have idential mass whih is setto unity (together with �� and �) by using the LJ units.1 The number of partilesis N = 104.We employed di�erent approahes to quenh and equilibrate the systems. In the�rst approah (method SC-MD) the standard moleular dynamis (MD) simulationswith periodi boundary onditions were performed as implemented in the LAMMPSode [25℄ (veloity-Verlet algorithm with MD time-step tMD = 0:005). The systemwas �rst tempered at the initial temperature T = 1 (where the system is well in theliquid regime with short �-relaxation time �� . 1) to prepare m = 100 independentwell-equilibrated on�gurations. The Nos�e-Hoover (NH) thermostat and barostatwere used to impose the desired temperature and the external pressure p0 = 2.The obtained on�gurations were then slowly ooled with rate � � �dT=dt = 10�5keeping the same pressure and allowing the system volume to utuate. This waywe produed m initial on�gurations at � 30 spei� working temperatures. Ateah working temperature the system was tempered at onstant pressure (p0 = 2)over a time �tmax = 105 (in LJ units). At t = �tmax the instantaneous volume V (t)was �xed and the system was further tempered in the anonial NVT ensembleover the same time �tmax. Starting from the �nal on�guration of this NVTtempering we performed NVT prodution runs over a `sampling time' of �t = 105.1Here and below we use LJ units by onsidering �, �� and partile mass mp as physial units.The LJ unit of time is therefore �LJ = ��qmp=�.3



An alternative way to equilibrate the quenhed on�gurations is to performtempering via a hybrid MC/MD approah (method Sw-MD). The MC part omprisesa ombination of loal moves (loal displaements of single partiles) and partileswaps (exhanging the diameters of two randomly hosen partiles) [23℄. In addition,we allow for volume utuations of the system ontrolled by an MC barostat [39℄to impose the onstant pressure p0 = 2. Loal moves, partile swaps and volumeutuations are aepted aording to the Metropolis riterion to ensure detailedbalane [39℄. Time in these MC simulations is measured in units of MC steps(MCS) where we de�ne an MC step as an attempt to displae randomly eahpartile by a loal move [9℄. 2 An ensemble of m independent on�gurations(m = 100 for 0:2 � T � 0:3, m = 50 for T > 0:3, and m = 20 for T < 0:2)was tempered over �tmax = 107 MCS (loal, swap and volume moves) at onstantpressure. At t = �tmax the instantaneous volume V (t) was �xed and the systemfurther equilibrated over 107 MCS (loal and swap moves) at onstant volume,and then over the same time again with loal moves only. As disussed in [17℄,this MC approah is suessful in equilibrating the pLJ system at muh lowertemperatures than the MD tempering disussed above. Equilibration is ahieveddown to Tf = 0:16 (< Tg � 0:26) below whih frationation of partiles of di�erentsizes ours. The �nal on�gurations of the MC simulations for T � Tf were furthertempered with MD Nos�e-Hoover dynamis to equilibrate the veloities: �rst, atonstant pressure p0 = 2 over a time of 2 � 105 (in LJ units) and then over thesame time at onstant V equal to the volume of the �nal on�guration of thepreeding NPT run.After tempering by either method SC-MD or Sw-MD all prodution runs arethen done with MD at V = onst . The instantaneous energy, pressure, shear stress(averaged over the system volume) and other parameters were reorded duringthe sampling time �t = 105 (LJ units) with time spaing of Æt = 0:05 or smallerbetween suessive data entries. In addition, we also used 2 similar approahes(SC-MC and Sw-MC) where the standard MC dynamis (with loal moves only)was used instead of MD for ultimate tempering and prodution runs.3. The RDF, struture fator and MSDThe system volumes V (T ) have been reorded for the on�gurations preparedby 3 quenh methods (Sw-MC, SC-MC and SC-MD) at all temperatures; theorresponding densities � = N=V are shown in Fig. 1. The SC-MC and SC-MDresults are almost idential. Moreover, at high temperatures the densities for allthe 3 ases oinide. However, the Sw-MC urve parts from the SC-urves at lowtemperatures. The �(T ) urves for the SC-systems thus reveal two distint linearslopes, while �(T ) for the Sw-MC ase does not show any slope hange exept forvery low temperatures T . 0:16. All the linear branhes of �(T ) interset at roughly2A partile displaement vetor Ær for a loal move is hosen randomly within a disk Ær < Ærmaxwith Ærmax = 0:1. For a swap move we attempt to yle N=2 randomly hosen pairs of partiles.4



the same point de�ning the dilatometri glass-transition temperature Tg � 0:26. 3The obtained Tg is in agreement with that estimated previously [9,17℄.The radial distribution (Kirkwood) funtions (RDFs) g(r) for on�gurationsequilibrated using partile swaps (method Sw-MD) at di�erent T 's are shown asblak urves in Fig. 2. The g(r) funtions reveal deaying osillations whose periodis roughly equal to the mean partile diameter. The obtained RDFs also show arather weak T -dependene. These features point to a liquid-like amorphous strutureboth above and below Tg (for T � Tf � 0:16). Fig. 2 also inludes the g(r) datafor on�gurations obtained by slow ooling with the realisti MD (method SC-MD).A similar omparison was performed in ref. [16℄ for T � 0:24. The data reveal nodependene of this stati property on the equilibration/tempering method (SC-MDor Sw-MD, f. set. 2) for T > 0:16 (within the statistial error). This featureis non-trivial sine the SC- and Sw-equilibrated systems have di�erent densitiesat T < Tg � 0:26, so we an onlude that g(r) is muh less sensitive to theequilibration method than the density.At T = 0:16 a tiny deviation (between the g(r) results obtained with thetwo methods) an be observed near the extrema. By ontrast, the deviationis rather onsiderable at T = 0:15. The RDFs for swap-tempered on�gurations(method Sw-MD) start to show the seondary inommensurate osillation mode,whih apparently signals the onset of a frationation (phase separation) at T <0:16. By omparison, no signs of frationation are observed down to T =0:15 for on�gurations prepared by method SC-MD, whih means that partiledemixing is a very slow (interdi�usion) proess inaessible on the time-salesfurnished by the SC-MD tempering protool. On the other hand, with the Sw-MD equilibration method the (arti�ial) partile exhanges of the swap algorithmirumvent the physial dynamis, thereby revealing the tendeny of the studiedsystem to frationation/rystallization at T � Tg.Qualitatively, the presene of a strutural transition at T � Tf is also evidentin Fig. 3 showing snapshots of on�gurations obtained from method Sw-MD. Thesnapshots illustrate that the system beomes phase-separated below Tf � 0:16.Moreover, even for Tf � T . 0:2 the struture gradually gets loally heterogeneouson ooling due to the formation of small lusters of partiles of similar size. Notethat the lustering e�et is enhaned due to preparation with swap moves (asompared with the standard slow ooling preparation protools). The enhanementis moderate at T > 0:17, but beomes more dramati at low temperatures T .Tf � 0:16. However, all the systems (both SC- and Sw-based) remain homogeneousand isotropi at T > Tf on sales beyond the luster size (. 4��). These qualitativeobservations suggest that a quantitative analysis of the ordering tendeny, e.g. viathe loal bond order parameters [18{20℄, would be rewarding.The struture fator S(q) of the system, where q is the wavenumber (q = ���q���),is shown in Fig. 4 for a wide range of temperatures (0:16 � T � 0:5 in part (a),0:15 � T � 1 in part (b)). All data refer to the hybrid MC/MD equilibration(method Sw-MD). The main peak of S(q) is loated at q = qmax � 6:3 orrespondingto the mean partile size; its height somewhat inreases at low T together with the3Thus obtained Tg depends on the total time (� �tmax = 105) the system spent at a given Tduring NPT ooling and tempering. 5



amplitudes of the seondary minima and maxima at higher q's. This T -dependeneof S(q) for q & qmax reets a short-range paking in neighbor shells around apartile, whih beomes tighter on ooling. Interestingly, the zero-q limit of S(q),S0 � limq!0 S(q), �rst slightly dereases on ooling down to Tg, but then inreasessigni�antly below Tg. Moreover, S(q) shows a dip at qdip � 3 orresponding toabout 2 partile diameters (2�=qdip � 2). The dip gets more pronouned at lowtemperatures. It an be explained by loal lustering of similar partiles whihis visible in the snapshots of Fig. 3 at T � Tf . 4 The inrease of S0 onooling towards Tf is apparently due to the same lustering e�et (a tendeny fordemixing of larger and smaller partiles) whih may be onsidered as a preursor offrationation and/or rystallization. Note an additional seondary peak (see arrowsin Fig. 4b) that appears to the right of the maximum for temperatures belowTf . This peak is onsistent with the seondary osillation feature in the RDFat T = 0:15 (f. Fig. 2). Possibly it originates from suÆiently large lusters ofsmaller partiles.The mean-square partile displaement (MSD) as a funtion of time, h0(t),is shown in Fig. 5. Here again we ompare the results obtained from the(initial) on�gurations prepared using partile swaps (method Sw-MD) and slowMD ooling (method SC-MD). It is lear that for T > Tg � 0:26 the partiledynamis is independent of the tempering proedure. Besides, it is obvious thatfor liquid systems (T > Tg) the MSD always enters the purely di�usive regime,h0(t) ' 4Dst, at long enough times t � �d. Here Ds = Ds(T ) is the (mean)self-di�usion onstant and �d = �d(T ) is de�ned by the ondition Ds�d � ��2 = 1(it is expeted that �d . �� in the superooled regime sine a full struturalrelaxation assoiated with �� ould hardly be ahieved before the partiles moveon their own size). By ontrast, below the glass transition, T < Tg, the linearFikian di�usion regime is not aessible. In this low-T range the MSD developsa transient plateau whih sets in at t � 1. Furthermore, at T . Tg the long-timeMSD for the MD-tempered on�gurations (method SC-MD) gets signi�antly largerthan that for the on�gurations equilibrated with the Sw-MD method. The latterfeature suggests that the partile self-di�usion for T < Tg is muh faster for lessequilibrated (and, therefore, less dense, f. Fig. 1 and ref. [17℄) on�gurationsobtained by method SC-MD.These results an be explained in the following way: First, we note that theSw-MD approah involving partile swaps is muh more eÆient for equilibrationthan just MD tempering (method SC-MD), so that an arguably full equilibrium isahieved with the Sw-MD approah in the studied T -range [17,23℄. By ontrast,only partial equilibration an be ahieved by MD tempering (method SC-MD)at T . Tg. Therefore, in `ooled' systems some strutural order parametersmay remain loser to their higher-temperature levels, and this out-of-equilibriume�et (leading, in partiular, to a lower mean density) may result in faster loal4A similar, but less signi�ant dip was observed for a 3D glass-forming system [10℄ (unpublishedresult). Moreover, a dip in S(q) for 0 < q < qmax is not unommon in binary mixtures,the simplest representative of multiomponent systems. For binary mixtures the dip an beunderstood by deomposing S(q) into its ontributions stemming from the partial stati struturefators of like and unlike partiles (see e.g. [40℄).6



rearrangements of partiles and their higher Ds. As the Sw-MD approah allows toequilibrate the system also below Tg � 0:26, the di�erenes between the MSD fortwo methods (SC-MD and Sw-MD) at T � 0:26, illustrated in Fig. 5, reet thedegree of deviation from equilibrium for the on�gurations obtained by standardMD tempering (method SC-MD).All in all, the results disussed above show that the system remains marosopi-ally homogeneous and amorphous also below Tg � 0:26, so long as T > Tf � 0:16.Only for T < Tf does demixing, possibly followed by rystallization [17℄, our atthe sale of the system size. An analysis of the dynamis in terms of the shearrelaxation and bulk relaxation moduli is arried out in the next setions. Thede�nitions of these moduli are based on the assumption of spatially isotropi andhomogeneous systems. This is pertinent in the regime T > Tf , whih is the fousof the following analysis.4. Shear relaxation modulusThe shear-stress relaxation modulus G(t) de�nes the mean shear stress at timet, �(t), generated by a small step 0 of the shear strain at t = 0:G(t) = lim0!0 �(t)=0The response funtion G(t) an be obtained using the stress-utuation equa-tion [5,9,10℄: G(t) = T� [C�(t)�C�(0)℄ + �A (2)where � = N=V is the mean onentration of partiles,C�(t) = NT 2 hÆ�(t+ t0)Æ�(t0)i (3)Æ�(t) = �(t) � h�i, �(t) = �xy(t) is the shear stress (xy-omponent of the stresstensor), h:::i in eq. (3) mean averaging over the ensemble of m independenton�gurations and the gliding averaging over t0, and h�i is the ensemble- andtime-averaged stress. Note that h�i typially vanishes in the liquid regime. Eq. (2)is appliable to well-tempered/equilibrated systems that do not show any aginge�ets up to the longest sampling time �t [10℄, whih is the ase for our systems(prepared with either SC- or Sw-methods desribed in set. 2).In eq. (2) �A = G(0) is the aÆne shear modulus [9,10℄ de�ning the instantresponse of shear stress after a small shear deformation. It is de�ned by bothensemble- and time-averagings of the instantaneous shear modulus �A(t) alulatedusing eq. (1) of ref. [10℄, �A = h�A(t)i. Thus de�ned �A slightly depends on theorientation of the oordinate frame (i.e., of the shear diretion) [10℄; the aÆnemodulus for the natural oordinate frame (with x,y axes along the sides of thesimulation box) is denoted here as �0A. To improve its preision we pre-averaged�A with respet to all orientations of the oordinate frame. 5 This is equivalent5This idea was proposed in ref. [10℄ where it was shown that suh preaveraging leads to asigni�ant redution of the standard deviation of �A.7



to averaging over all orientations n of the bond vetor rl onneting a pair ofinterating partiles, leading to the following instantaneous modulus [10,5℄ 6�orA (t) = �T + 1V 1d(d + 2) Xl hs2u00(s) + (d+ 1)su0(s)is=sl (4)The orresponding average aÆne modulus is �orA � h�orA (t)i. Here d = 2 is the spaedimension, l is a pair of interating partiles, rl is the distane between theirenters, �l is their interation range, sl = rl=�l, u(s) is the interation potentialde�ned in the r.h.s. of eq. (1), u0 and u00 are its �rst and seond derivativeswith respet to s, s < sut. 7 An additional preaveraging over the equilibrium(Maxwellian) distribution of partile veloities is also implied here. Further tehnialdetails onerning alulation of �A are delegated to Appendix E.Comparison of �0A (or �A for any �xed oordinate frame) with �orA drives usto onlude that the system is marosopially isotropi: the deviation j�0A � �orA jis random and small, it amounts to about 0.001% above Tg, while well below Tgit inreases to just � 0.1% (essentially due to an insuÆient, i.e. e�etively morepoor, statistis in the glassy regime).The temperature dependene of �A for the `swapped' on�gurations (method Sw-MD) is shown in Fig. 6(a) (blak urve). 8 The funtion �A(T ) is almost linear,apart from the low-T region, T < 0:16, where a weak but well-resolved deviationfrom the linear behavior is observed. Suh deviation points to a strutural hangewhih we tend to assoiate with frationation of partiles at T < Tf = 0:16. Byontrast �A(T ) does not show any anomaly in the viinity of the glass transition,T � Tg. This feature emphasizes one again the apparently dynamial natureof vitri�ation: the stati properties like density � = N=V , or �A, or g(r) donot hange at the glass transition provided that the system is well-equilibratedboth above and below Tg. The latter ondition is satis�ed for the `swapped'on�gurations, but not for the `ooled' on�gurations. As a result, the equilibriumproperties (like � or �A) of `ooled' systems (prepared with method SC-MD) showa usp at T � Tg (f. red urve in Fig. 6(a)).Above Tg the shear modulus G(t) vanishes at long time (the stati modulusG(1) = 0), and the same is true for the shear stress orrelations, C�(1) = 0.Hene, by virtue of eq. (2)6Note that the general utuation-dissipation relation for G(t), eq. (2), involves �A = G(0)whih an be alulated by time-averaging of eq. (4). This equation is based on the lassialde�nition of �A as a linear oeÆient between the shear stress inrement generated instantlyby a small shear strain and the magnitude of the latter. It omes from and agrees with thewell-established theoretial framework [14,37,54℄.7It would be better to use a smooth interation potential with ontinuous u0(s). [38℄ In thepresent study, however, we used eq. (1) for onsisteny and better omparison with the previousresults on the same system.8In fat this urve shows �A = �or�A alulated using the proedure to eliminate the e�et ofmean pressure variations between the on�gurations as desribed in Appendix F.8



�A = �0 � T� C�(0); T > Tg (5)Note that eqs. (2), (5) lead to a simple well-known relation [5,11,24℄G(t) = T� C�(t); T > Tg (6)The relation, eq. (5), is veri�ed in Fig. 6(b), whih shows, in addition, that forthe swap-equilibrated systems �A � �0 not only in the liquid regime, but alsoin a temperature range, Tg > T > Tf , below the glass transition. Noteworthily,however, the sattering of the �0 data obtained in the glassy regime, Tf < T . Tg,with prodution runs involving realisti loal MC moves only (f. open irles inFig. 6(b)) is muh stronger than that for �A. Besides, the data sattering for �0obtained with loal MC moves is muh stronger than the one obtained for MCdynamis involving also swap moves (f. �lled irles in Fig. 6(b)).The time-dependent shear moduli G(t) for `swapped' on�gurations (preparedwith method Sw-MD) are shown in Fig. 7. At all temperatures one an observetwo relaxation stages: a fast proess (presumably related to partiles ollisionsand vibrations) with harateristi time �f � 0:1, and a muh slower struturalrelaxation proess with terminal time �� & 1. The gap between the two timesstrongly inreases on ooling leading to the emergene of an intermediate shouldergradually turning into a glassy plateau at T . 0:2. Qualitatively the same Tdependene of G(t) was also observed in other simulations of glass-forming 2Dsystems [41,46{48℄. The plateau orresponds to the quasi-stati elasti shearmodulus � � �sf of the glassy system (f. set. 6.1), whih inreases at low T .Interestingly, G(t) also develops short-time osillations for T < Tg � 0:26 leadingto short-time minima at T � 0:24. This feature is an inertial e�et sine inoverdamped systems (without inertia) G(t) must be equal to a sum of deayingexponentials with positive amplitudes (generalized Maxwell model) [1℄, hene G(t)must monotonially deay together with all its time-derivatives. This interpretationis also supported by the MC results for G(t) (obtained with loal MC moves onlyduring prodution runs) whih are exempt of inertial e�ets by onstrution andderease monotonially with inreasing t (f. Fig. 11). Apparently, the osillationfeatures are due to short-time partile vibrations with frequeny !v � 20rad/s (thisfrequeny orresponds to the period 2�=!v � 0:3 whih an be read o� from theG(t) urves).The shear relaxation urves for the systems prepared with partile swapping(Sw-MD) and ontinuous MD ooling (SC-MD) protools are shown in Fig. 8.The results are qualitatively similar to those for the MSD (f. Fig. 5). One anobserve almost no di�erene between G(t) for the two types of systems above Tg.By ontrast, as T dereases below the glass transition (at T � Tg) the Sw-MDbased relaxations get inreasingly slower than those for the SC-MD systems. Thedi�erene beomes really dramati at T � 0:21: while G(t) for Sw-MD basedon�gurations develops a long-time plateau, the SC-MD systems show only atransient shoulder. In other words, well below Tg the `swapped' systems (preparedwith method Sw-MD) show a persistent long-time elastiity, in ontrast to `ooled'systems (method SC-MD) whih exhibit a reep-like omplex-uid behavior.The two types of visoelasti response of the two systems are apparently due toa wide spetrum of relaxation times whih spans over almost the whole run-time9



window (from 1 to 105 LJ time-units) in the `ooled' ase (SC-MD), but is mostlyoutside this time-window (shifted to longer times) in the `swapped' ase (Sw-MD).We suggest the following riterion to get the strutural relaxation time �� basedon a relaxation funtion like G(t):�� lnG(t)=� ln t = 1 at t = �� (7)where one should seek for the longest t satisfying the equation above. Indeed, withsingle exponential G(t) = onst exp(�t=� ) one gets �� = � using eq. (7), while formulti-exponential funtion with well-separated relaxation times the above operationalriterion gives the time of the slowest mode. Clearly, the riterion for �� basedon eq. (7) (with any onstant in the r.h.s.) is in harmony with (and omes from)the time-temperature superposition (TTS) priniple. Indeed, this priniple says thatrelaxation funtions at di�erent T 's an be superimposed by shifting them bothvertially and horizontally in log-log plots. This means that the points (on G(t)urves at two T 's) with the same log-derivative � lnG(t)=� ln t must orrespond tothe same t=��. To further support this idea we attempted a diret TTS of G(t)funtions. The result shown in Fig. 9 reveal a reasonable ollapse of G(t) urvesonto a master urve.The T -dependene of �� obtained using the riterion of eq. (7) is shown inFig. 10. The relaxation times �� for di�erent tempering methods (SC-MD andSw-MD) oinide for T > Tg, however �� for the `swapped' systems (methodSw-MD) gets longer (than for on�gurations prepared with method SC-MD) forT � Tg. The ��(T ) dependene for `swapped' on�gurations is �tted with theVogel-Fulher-Tammann (VFT) law�� = �0 exp(E0=(T � T0)) (8)with E0 = 1:21, T0 = 0:162. Note that the �tted T0 is remarkably lose to thefrationation temperature Tf � 0:16. This �t suggests that the ativation energy Eafor the strutural relaxation is inreasing on ooling in a super-Arrhenius fashion:Ea = E0T=(T � T0) (9)Starting from similar on�gurations equilibrated with the tempering methodSw-MC involving partile swaps, G(t) was also obtained via eq. (2) based onprodution runs with pure MC dynamis using loal moves only [17℄. The MDresults (f. Fig. 7) are ompared with the MC data (f. Fig. 13 of ref. [17℄)in Fig. 11. In order to superimpose the MD and MC urves the MC time wasresaled: 1 LJ time unit was identi�ed with k MCS. Obviously, the data annotoverlap in the short-time regime where the stohasti MC dynamis annot repliatethe deterministi MD dynamis (aounting for the inertial e�ets), so we usedthe long-time behavior to determine the shift fator k(T ). Noteworthily, for thethree-dimensional Kob{Andersen mixture it has been shown in ref. [49℄ that MCwith loal moves and (miroanonial) MD yield idential long-time behavior for theaverage dynamis (inoherent sattering funtion, MSD) and dynami utuations(four-point suseptibility) upon resaling the time axis so as to optimize theoverlap in the late-time regime. Here we make a similar observation: A reasonablesuperposition of MC and MD urves for G(t) is obtained over a broad rangeof temperatures at times t outside the inertial regime, for t > �min, where �min10



somewhat inreases at low T (�min � 0:3 for T � 0:3 roughly orresponds to theperiod of short-time osillations; �min � 3 for T � 0:24, with time in LJ units).The agreement is very good for T � 0:3, above the glass transition, but it is lessperfet in the viinity of Tg. Moreover, it turns out that the time-saling fatork = k(T ) depends on temperature, for example k(0:3) � 600, k(0:24) � 300.Disussion:MC vs. MD prodution runs. An imperfet superposition of MD and MCrelaxation urves at low temperatures may be due to stronger variations of G(t)between individual members of the ensemble (with m = 100 systems) at T < 0:3.Future more preise simulations on larger ensembles may help to better haraterizethe origin of these deviations. We also believe that there is a more general reasonfor small deviations between MD and MC relaxation urves: the two dynamis arenot entirely equivalent even for long time-sales. Indeed, the true MD transitionrates (between the inherent states) are generally di�erent from the MC rates (evenwith time-resaling) due to di�erent dependenies of these rates on the potentialenergy barrier width. While this e�et leads to some di�erene between MD andMC relaxation funtions, it is unlear if it is ever signi�ant. Note that at verylow T 's well inside the glassy regime the relaxation spetrum is very wide, butfalls mainly outside the aessible time-window, so the relaxation funtions exhibita plateau at t � �min and a di�erene between MC and MD time-dependeniesbeomes invisible in this regime. To some extent, an imperfet superposition atT < 0:3 may be also related to the system polydispersity whih leads to a broaderdistribution of the energy barrier width.Swap-MC vs. MD-ooling preparation protools. We propose the followingqualitative argument to aount for di�erent G(t) relaxation funtions for the twotypes of on�gurations: Consider a system ooled by MD down to the targettemperature T = T1 < Tg. After the ooling stage the kineti temperature Tkinbeomes lose to T1, yet the system on�gurational state remains rather similar tothe equilibrium on�guration at Tg (apart from a small density hange and minorloal di�erenes) sine a strutural relaxation at any T < Tg takes longer than theooling stage time (whih is omparable to the sampling time �t = 105). Theon�gurational temperature is therefore Tx � Tg; it orresponds to the on�gurationentropy Sonf = Sonf (Tx) and the on�gurational energy Eonf = Eonf (Tx) de�ned asthe mean of the nearest loal energy minimum of the potential energy landsape.Note that the total energy E = Eonf +Evib, where Evib is the energy of vibrationsnear a loal potential minimum (Evib inludes both potential and kineti parts),and, in a similar way, the total entropy S = Sonf+Svib; where Svib is the vibrationalontribution to entropy. The general thermodynami relation TdS = dE (here forsimpliity of the argument we neglet ompressibility assuming that V = onst ) nowsplits in two: TkindSvib = dEvib; TxdSonf = dEonfThe energy barrier Ea for the ooperative strutural relaxation of a `ooled'on�guration must orrespond to Ea = Ea(Tx) � E0TxTx�T0 (f. eq. (9)). The relevantstrutural time �� (the apparent �-relaxation time for the `ooled' system) isde�ned by the ativation energy Ea for Tx � Tg and the kineti temperatureTkin � T1: 11



�� � �0 exp(Ea=Tkin) � �0 exp E0Tg(Tg � T0)T1! (10)At low T1 this time gets muh shorter than the equilibrium relaxation time relevantfor the `swap-based' on�gurations (f. eq. (8)),�� � �0 exp� E0T1 � T0� (11)Moreover, the ratio ��=�� diverges as T1 approahes the VFT temperature T0.Therefore �� an stay inside the sampling time-window (or near it), while �� growswell beyond �t, thus explaining a dramati di�erene of G(t) relaxation behaviorsfor the `swap-based' (tempering method Sw-MD) and `MD-ooled' (method SC-MD)systems at low temperatures, f. Fig. 8. 95. Bulk ompression moduliIn this setion we present the results on the instantaneous (aÆne) ompressionmodulus and both the isothermi and adiabati ompression relaxation moduli.5.1. AÆne ompression modulusThe aÆne ompression modulus �A is de�ned by the instantaneous pressureresponse, �p ' �A�, to a anoni aÆne ompression of the system (at t = 0)x! x(1� �=d); v! v=(1 � �=d) (12)where � � 1 de�nes the relative derease of the total volume. Here x standsfor all oordinates of all partiles, v for their veloity omponents, d is thespae dimension, and �p = hp(0+)� p(0�)i , where p(t) is the pressure. The aÆnemodulus is a sum of the exess and ideal-gas parts (whih are due to, respetively,partile interations and their momenta):�A = �exA + d + 2d �T (13)For a system of partiles with pairwise interations the exess part is [9℄�exA = 1V d2 *Xl hsu0(s) + s2u00(s)is=sl++ pex (14)where pex = p � �T is the exess pressure. As before (f. set. 4) l is a pair ofinterating partiles, sl = rl=�l, rl is the distane between their enters, �l is theirinteration range, u(s) is the interation potential de�ned in the r.h.s. of eq. (1), u0and u00 are its �rst and seond derivatives with respet to s. Using the equations9This argument also explains a similar di�erene in the MSD, h0(t), for the two ensembles, f.Fig. 5. 12



above and the mirosopi de�nition of the instantaneous shear modulus [10℄ wearrive at a rigorous relation between shear and ompression aÆne moduli:�A = d+ 2d �orA + 2p0 � 2�T (15)where �orA an be alulated for eah independent system by time-averaging ofeq. (4) (f. set. 4). A similar relation for d = 3 was obtained long ago inref. [51℄ where it was alled `the generalized Cauhy identity'. Using eq. (15)we obtained �A for ensembles of pLJ systems at eah temperature, and thenalulated the orreted ensemble average, ��A, as explained in Appendix F. Theobtained T -dependene of ��A is shown in Fig. 17. As the ideal-gas term �2�Tin eq. (15) only represents a small orretion to �orA , ��A(T ) behaves essentially as�orA (T ) (f. Fig. 6): The aÆne ompression modulus inreases monotonially onooling, showing a small feature (hange of slope) at T � 0:16 orresponding tothe frationation e�et (f. set. 4).5.2. Bulk relaxation moduliThe bulk relaxation ompression modulus K(t) of a liquid (or of any maro-sopially homogeneous isotropi moleular system like an amorphous solid) anbe de�ned in terms of the response of the total mean pressure (averaged overthe whole system of volume V ) to a small uniform ompression, V ! V (1 � �):K(t) = �p(t)=�, where �p(t) = hp(t)� p(0�)i is the pressure inrement due to aninstant aÆne step deformation (with �! 0) ourred at t = 0. 10To omplete the de�nition of K one has to speify what happens with temper-ature T (or energy) of the system after the deformation. If no heat is transferredto/from the system (or the total heat urrent is always zero), the energy isonserved leading to the adiabati response haraterized by the relaxation modulusKA(t). By ontrast, in the ase of an ideal temperature ontrol (T = onst ) wearrive at the isothermi relaxation modulus KT (t). The properly de�ned bulkmoduli KA(t) and KT (t) 11 are di�erent, and are both universal: they must notdepend on the statistial ensemble, nor on the thermostat properties (in the ase of10Note that the stati limits (t! 1) of G(t) and K(t) are related to the small-strain elastiitytensor  (f. eqs. (2.196) and (2.199) of ref. [32℄; in turn,  is related to the material andmixed elastiity tensors in a well-known way, f. eq. (2.195) in [32℄): for an isotropi materialG(1) = (11 � 12)=2, K(1) = (11 + (d� 1)12)=d.11By `properly de�ned' we mean that the adiabati or isothermi onditions (E = onst or T =onst ) are imposed at all times after the perturbation. Suh onditions may be naturally satis�edby the dynamial system like the ondition E = onst in the ase of miroanonial simulations.Alternatively, however, the required onditions an be also kept by weak perturbations like smallheat injetions assoiated with appropriate veloity transformations (f. eq. (B4)). The latterapproah provides a way to obtain KT (t) based, for example, on miroanonial simulations.The underlying general idea here is the same as the one proposed in ref. [13℄ to obtain theisohori heat apaity v(t) from thermostatted simulations.13



a `deent' thermostat that negligibly a�ets the partile dynamis at the time-saleof fast ollisional/vibrational relaxation; f. ref. [13℄ for more details).Most of the thermostatting approahes used in real experiments or in simulationsare not ideal and allow for some systemati T -variations following the perturbativedeformation (sine generally the instantaneous temperature T = T (t) does notoinide with the temperature Ti imposed by the thermostat). In partiular, thisis true for the Nos�e-Hoover thermostat employed in MD simulations onsidered inthe present paper. Note that normally by K(t) we mean the relaxation modulusobtained at a onstant imposed temperature, Ti = onst . The thus de�ned `bare'modulus K(t) = K0(t) is not universal: it depends on the thermostat/systemoupling parameters (a similar problem for the heat apaity is disussed inref. [13℄). However, an advantage of the K0(t) response funtion is that, by virtueof the FDT, it an be easily alulated based on the pressure autoorrelationfuntion Cp(t): K0(t) = �A + T� [Cp(t)� Cp(0)℄ (16)where Cp(t) = NT 2 hÆp(t+ t0)Æp(t0)iNV Ti (17)is the equilibrium orrelation funtion of pressure in the anonial NV Ti ensem-ble, Æp(t) = p(t) � hpi, hpi is the ensemble- and time-averaged pressure p (p.eqs. (2), (3)).Importantly, eq. (16) also implies that the �-ompression at t = 0 is a anonial-aÆne transformation of oordinates (x) and veloities (v) of all partiles, f.eq. (12) (this transformation is adiabati sine it onserves the measure in thephase spae). Therefore K0(0) provides the instantaneous adiabati response in thease of a Nos�e-Hoover or any other thermostat allowing for temperature utuations:K0(0) = �A is both aÆne and adiabati.Noteworthily, to derive the FDT relation, eq. (16), one has to onsider anextended ensemble inluding systems of di�erent (but time-independent) volumeswhose equilibrium distribution is de�ned by the imposed pressure p0 (the e�etiveHamiltonian of the system therefore is H = E + p0V ). The �nding that the FDTrelation requires an extended (Np0Ti) ensemble is onsistent with other approahes[14,52℄. For thermostatted (NV Ti) simulations (with the same V for all systems)Cp(t!1) = 0 in the liquid regime, hene the equilibrium isothermal ompressionmodulus an be de�ned as KT e = K0(t!1) = �A�TCp(0)=�, and Eq. (16) an berewritten as K0(t) = TCp(t)=� +KT e. In this form, Eq. (16) agrees with eq. (48)in [14℄ and with the Lebowitz{Perus{Verlet transformation of utuations betweendi�erent ensembles (here NPT and NVT) [53℄, allowing to identify K0(t) withK0(t) = (V=T )hÆp(t + t0)Æp(t0)iNp0Ti for the extended ensemble where p0 is imposed(but V = onst for eah system). 1212Note also that K0(t) for miroanonial simulations is equal to the adiabati modulus KA(t)whih an be de�ned in analogy with eq. (19) of ref. [52℄: KA(t) = limq!0(V=T )hÆp(q; t +14



5.3. Results and disussion on ompression relaxation moduliAs disussed in the previous setion, for thermostatted simulations the relaxationfuntion K0(t) generally reets an adiabati response at short times, while itslong-time behavior is isothermi. Hene we arrive at the following problem: toobtain the proper (universal) relaxation moduli KT (t) and KA(t) based on K0(t)(or based on the orrelation funtions measured in simulations). The solution tothis problem is outlined in Appendix A based on the ideas developed in ref. [13℄.The relaxation funtions KT (t) for the Sw-MD systems at di�erent temperatures,alulated as desribed in Appendies A, B, are plotted in Fig. 12. The ompressionmodulus shows a minimum around t = 0:2 for T � 0:4 (the minimum timeslightly dereases on ooling). The minimum is deeper than the similar short-timeundershoots of the shear relaxation modulus G(t) (f. Fig. 8) and it gets morepronouned at lower T 's. This feature points to stronger inertial e�ets for KT (t)than for G(t). In both ases an undershoot is followed by an overshoot at longertimes (to & 1 for KT (t) at T . 0:3). At low temperatures, T < 0:22, the relaxationmodulus develops a well-de�ned quasistati plateau, KTs, in a wide time range (fort > 1). The quasistati ompression modulus KTs (f. eq. (29)) is always muhhigher (by a fator of � 3) than the analogous quasistati shear modulus.The adiabati ompression modulus KA(t) for the Sw-MD systems was alulatedin two ways: First, by solving the exat eq. (D7) derived in Appendix D (thenumerial approah to solve it is desribed below eq. (B28) in Appendix B).Seond, by using the approximate eq. (A5) (f. Appendix A). The results areompared in Fig. 13 showing that the approximate equation works quite well forall times and all temperatures. There is no di�erene between the `exat' andapproximate KA(t) for t & 2 (within the numerial preision of the data). Atshorter times some minor deviations of the red (approximate) urves are detetedmostly in the overshoot-undershoot region.The funtions KA(t), obtained using the `exat' FDT relation, eq. (D7), in awider range of temperatures and times are shown in Fig. 14. One an observethe following di�erenes between adiabati and isothermi relaxation funtions (f.Figs. 14, 12): KA(t) show stronger variations at short times, t < 1 (in partiular,a deeper undershoot and a muh sharper and higher overshoot). The short-timeminima of KA(t) are loated at tu � 0:25 at all T 's, whereas for KT (t) this timesomewhat dereases down to tu . 0:2 at low T 's. On the other hand, the long-timerelaxation (for t > 1) is weaker in the adiabati ase.Noteworthily, the minima of KA(t) emerge already well above Tg, in ontrastto G(t) showing undershoots only below Tg. It is reasonable to attribute theseundershoot/overshoot features to the e�et of overstressed bonds. It is easier tounderstand this e�et at a low T , when eah partile is lose to its equilibriumposition. Upon a perturbative aÆne ompression the fore balane may be upset,t0)Æp(�q; t0)iNVT , where q is the wave-vetor and Æp(q; t) the pressure utuation at q andt. As long as q is not stritly equal to 0, the thermodynami boundary ondition of �xedpartile number and volume is not felt and all utuations are allowed. Identifying K0(t) formiroanonial simulations with the q ! 0 limit of the autoorrelation funtion of Æp(q; t) isthus again onsistent with an extended ensemble with imposed pressure.15



so the partiles have to move to the new equilibrium positions. The ontributionof a bond to the pressure inrement (due to the deformation) is proportionalto the bond fore inrement �f whih, in turn, is proportional to the elastionstant k � r2l �2U=�r2l of the bond (here by a bond we mean any interatingpair of partiles, rl is the bond length). A bond with higher k (than on theaverage) is likely to push the partile so as to inrease rl. After a half-period ofthe resultant osillating motion the fore �f dereases to a minimum (whih mayeven be opposite to the initial value �f0), this orresponds to the undershoot ofKA(t). Waiting another half period returns the fore loser to the initial value �f0leading to an overshoot. The undershoots for KA(t) are loated at tu � 0:25 andthe overshoots - at a twie longer time, to � 0:5, in agreement with the argumentgiven above. The mean vibration frequeny !v is therefore !v � �=tu � 13rad/s,whih is in harmony with an estimate of a typial vibration frequeny in a LJliquid [26℄. Interestingly, the undershoot time is somewhat shorter (tu � 0:2) inthe ase of isothermi relaxation at low T , while the overshoots for KT (t) are verybroad and weak.6. Stati moduli and their deviationsIn this setion we onsider temperature dependenies of the long-time elastimoduli and their standard deviations for the systems equilibrated with partileswaps (method Sw-MD). 6.1. Shear moduliThe aÆne modulus �A shown with blak solid line in Fig. 6(a) was disussedin set. 4. We applied two di�erent approahes to inrease its preision. The �rstapproah boils down to an isotropi averaging over all rotations of the oordinateframe (f. set. 4). The seond approah is desribed in Appendix F.To assess the eÆieny of these preision-improving proedures for �A we appliedthem independently to obtain �orA (with orientational averaging), ��A (with pressureorretion), and �or�A (with both orientational averaging and pressure orretion) inaddition to �0A (f. set. 4). The varianes of the aÆne moduli among the systemsof an m-ensemble have been then evaluated based on these 4 sets of �A leading to4 types of the orresponding standard deviations, Æ�0A, Æ�orA , Æ��A and Æ�or�A , whosetemperature dependenies are shown in Fig. 15. It is lear that Æ�or�A is muhsmaller than Æ�0A, i.e., �or�A is muh more preise than the raw modulus �0A obtainedin the �xed oordinate frame and without the pressure orretion. The deviationsÆ�0A, Æ�orA (no pressure orretion) oinide above the glass transition, and are nearlyonstant at lower temperatures (although the orientational preaveraging results ina slightly lower Æ�orA below Tg). This result suggests that both Æ�0A and Æ�orA aremainly due to quenhed variations of the total volume and the mean pressureaross the ensemble. This view is supported by the observation that the pressureorretion above Tg leads to a drasti derease of the �A-deviation by a fator of� 20 from Æ�orA � Æ�0A � 0:15 to Æ�or�A < Æ��A . 0:007. The deviations Æ�0A, Æ�orAare therefore quite impreise and irrelevant (reeting mostly the volume dispersityof independent on�gurations). The remaining deviations, Æ��A and Æ�or�A , show a16



rather sharp inrease on ooling near Tg; a similar behavior of Æ�A was alreadyreported for another glass-forming system (a 3-dimensional oligomer liquid) [10℄.The e�et of orientational preaveraging is strong below Tg where Æ�or�A � Æ��A.Its origin was explained in ref. [10℄: the preaveraging wipes out an importantontribution to Æ�A due to utuations of bond orientations. Remarkably, all thedeviations of �A show a peak slightly below the frationation temperature Tf ;it is therefore likely that the peak is kineti in nature being assoiated with aphase-separation proess.The long-time shear modulus �sf is de�ned in terms of the relaxation modulusG(t) in eq. (11) of ref. [10℄ whih is equivalent to [17℄�sf (�t) = 2(�t)2 Z �t0 G(t) (�t� t) dt (18)Another equivalent de�nition omes from eqs. (2), (3), (18):�sf (�t) = �A � �F (�t) (19)where the so-alled utuation modulus is [10,17℄�F (�t) = VT D(�(t)� ��)2ENV T (20)where �� is the time-averaged stress (for 0 < t < �t) and h:::iNV T implies bothtime- and ensemble-averaging. To improve the preision of both �F and �sf weapplied the same proedures as for �A. The orientation average of �F is obtainedby alulating �F both in the original oordinate frame with x; y axes along thebox sides (yielding �0F ) and in the frame rotated by 45Æ (�45F ):�orF = ��0F + �45F � =2 (21)(Note that eq. (21) is exatly equivalent to isotropi averaging over all rotations ofthe oordinate frame, as follows from the tensorial nature of the stress). Aordingly�orsf = �orA � �orF (22)Furthermore, in most ases we apply the pressure orretion indiated by star (�)as before.The temperature dependenies of the quasi-stati moduli �or�sf and �or�F are shownin Fig. 16(a). Their behavior is similar to that revealed for another glass-formingsystem [10℄: the glassy modulus �sf vanishes in the liquid regime, but sharplyinreases on ooling near Tg, while �F develops a maximum around Tg. The latterfeature was explained [10℄ by faster inrease of �A (as ompared to �sf ) on oolingin the liquid regime, and the opposite behavior (faster inrease of �sf ) below Tg.Note that at Tg = 0:26 the glassy modulus �or�sf is still small, it is roughly twielower than its standard deviation, Æ�or�sf . It is noteworthy that the temperaturedependene of v = �F obtained by MC simulations using the same independenton�gurations as in the present study (f. Fig. 14 of ref. [17℄) agrees with ourdata for �or�F .The standard deviations Æ��sf , Æ��F and Æ�or�sf , Æ�or�F show similar T -dependeniesharaterized by a rather sharp peak slightly below Tg, f. Fig. 16(b). The17



peak of Æ�F was reported for the same system [17℄ and for a 3-dimensionalglass-forming system [10℄; it was explained based on the assumption of Gaussianstress utuations. 13 This `Gaussian' theory is desribed in refs. [10,17℄. Thepredited `Gaussian' standard deviations Æ�(G)F (alulated at di�erent temperaturesbased on the known shear relaxation funtion G(t)) are also shown in Fig. 16(b)(blak urve). 14 It is lear that Æ�(G)F quantitatively reprodues the behavior ofÆ��F in liquid regime and in the glass-transition zone around Tg. By ontrast,Æ��F � Æ�(G)F well below Tg due to a non-ergodi (and therefore non-Gaussian)ontribution, Æ�(ne)F , related to quenhed strutural disorder in glassy systems:(Æ��F )2 = �Æ�(G)F �2 + �Æ�(ne)F �2 (23)(f. refs. [10,17,27℄). It is important to note that the theory is not expeted to beappliable quantitatively to the standard deviations Æ�or�F of orientationally-averaged�F ; Æ�or�F is typially lower than Æ��F by a fator � p2.To assess the importane of the pressure orretion for �F and �sf we omparedÆ��F with Æ�0F and Æ��sf with Æ�0sf (f. Fig. 16()). It turns out that the pressureorretion is not important for Æ�sf (apart from a weak e�et at low T � 0:18,where Æ�0sf exeeds Æ��sf by � 10%). It is also negligible for Æ�F at T � 0:28.However, the situation is di�erent at higher temperatures (T > 0:28) where Æ��Fgradually beomes signi�antly smaller than the bare (unorreted) deviation Æ�0F(by a fator of 4 at T = 0:5). Why is �F strongly a�eted by pressure variationsabove Tg in ontrast to �sf? The point is that the shear modulus �sf vanishes inthe liquid regime, and thus gets unorrelated with pressure for this simple reason.As a result Æ�0sf beomes negligible ompared to Æ�0A, and in view of the relation�0F = �0A � �0sf , the deviation Æ�0F gets dominated by the deviations of �0A whihstrongly depend on pressure (f. Fig. 15): Æ�0F � Æ�0A � Æ�0sf in the liquid regime.Fig. 16() also shows that in the glass-transition region (T � Tg) the standarddeviations of all the utuation shear moduli, Æ��F , Æ�0F , Æ��sf , Æ�0sf , are auratelydesribed (are dominated) by the Gaussian ontribution Æ�(G)F .Following the approah desribed in Appendix F, utuations of any variable Xan be represented as (ÆX)2 = (ÆX�)2 + (ÆXp)2 (24)where ÆXp aounts for the variations of the mean pressure between the systems(ÆXp)2 =  �X�p !2 var(�p) (25)13Note that the pressure orretion was not applied in ref. [17℄. This di�erene led to largerÆv = Æ�F in the high T region (f. Fig. 15 of ref. [17℄) as ompared to Æ��F shown in Fig. 16().A part of this e�et is also due to shorter sampling times used in [17℄.14Note that the pressure orretion is irrelevant for Æ�(G)F sine the latter is invariant to vertialshifts of G(t), G(t)! G(t) + onst . [10,17℄ 18



where var(�p) � (Æ�p)2 ' TV KTe is the mean pressure variane between the indepen-dent on�gurations (KTe is de�ned below eq. (29)), and �X�p is the thermodynamiderivative at T = onst . Hene ÆXp / �X�p Æ�p stems from trivial equilibrium pressureutuations. By ontrast, ÆX� reets more important e�ets of strutural hetero-geneities. In fat, a dispersion of X� between di�erent parts of a superooled liquid(whih is due to its inherently heterogeneous glassy struture) must be similar tothe dispersion between independent on�gurations onsidered in the present paper.Thus, a better resolution of strutural heterogeneities demands lower ÆXp=ÆX�.Comparing this ratio for X = �A, �F and �sf we found that �F is better suitedthan other moduli for deteting strutural heterogeneities.6.2. Compression moduliTemperature dependene of various ompression moduli is shown in Fig. 17. Theinstantaneous (aÆne) modulus �A disussed at the end of set. 5.1 (f. eq. (15))provide the upper bound for all the moduli. The isothermi quasi-stati modulus�sf is de�ned using the stress-utuation formula in analogy with eqs. (19), (20):�sf (�t) = �A � �F (�t) (26)where �F (�t) is the utuation ompression modulus proportional to the mean-square pressure utuations in the NV Ti ensemble (at onstant volume [9℄ andimposed temperature Ti): �F (�t) = VT D(p(t)� �p)2ENV Ti (27)where h:::iNV Ti indiates both time- and ensemble-averaging as before. Equationsequivalent to eq. (26) have been proposed/used in refs. [28,11,9,15℄.Following the same approah as applied to the shear stress utuations in orderto obtain eq. (18) [10,17℄, �sf an be related to the relaxation modulus K0(t):�sf (�t) = 2(�t)2 Z �t0 K0(t) (�t� t) dt (28)This relation shows that �sf (�t) is dominated by the long-time level of K0(t) �KT (t).15In addition to �sf we de�ne the long-time modulus KTs in analogy with eq. (28),but with a di�erent lower limit of time:KTs = onst Z �t0:3�tKT (t) (�t� t) dt (29)where onst is normalization onstant. Thus, KTs is a mean of KT (t) over thesegment [0:3�t;�t℄. As the funtion K0(t) mostly dereases with time, KTs isa bit lower than �sf (as follows from eqs. (28), (29); note that there is no15In the long-time limit, K0(t)! onst. If K0 = onst, eq. (28) gives �sf = K0, implying that�sf(�t!1) is indeed dominated by the long-time level of K0(t).19



di�erene between K0(t) and KT (t) in the long-time regime of eq. (29)). However,the di�erene between the 2 moduli is barely visible only around Tg where theplateau onset is omparable with 0:3�t (p. red and brown urves in Fig. 17).Above Tg the integration segment in eq. (29) (and, therefore, KTs) falls into theequilibrium plateau (f. Fig. 12), while below Tg it belongs to the glassy plateau.We attempted to obtain the equilibrium isothermi ompression modulus KTeassuming that its T -dependene is smooth (featureless) around the glass transition(just like the T -dependenies of the aÆne ompression modulus �A or the shearmodulus �A). To this end, it was postulated that KTe = KTs for T � 0:29, anda paraboli �t of KTs(T ) in the region 0:29 � T � 0:4 was extrapolated to getKTe at T < 0:29. Quite expetedly KTs exeeds the resultant equilibrium (genuinestati) ompression modulus KTe below Tg, KTs > KTe, sine the regime of ompleterelaxation is inaessible in the glassy state (f. Fig. 17). The di�erene KTs�KTeis the magnitude of the terminal relaxation step of KT (t) ourring at t� �t. Itsigni�antly inreases on ooling in the glass-transition zone, but then appears tostay nearly onstant at lower T 's (T < 0:24). The relative non-equilibrium (glassy)ontribution KTs�KTe�A amounts to about 4% at Tg � 0:26. This value an beompared with the analogous ratio for the shear modulus, �sf=�A � 1:3% at T = Tg(note that the genuine equilibrium shear modulus is assumed to be identially zeroboth below and above Tg [2℄ 16). Therefore Tg roughly orresponds to the onsetsof both the quasi-stati shear elastiity and a non-equilibrium ontribution to theompression modulus.Remarkably, the utuation ompression modulus �F always monotonially in-reases with temperature (f. Fig. 17) in ontrast to the shear-stress utuationmodulus �F whih shows a maximum near Tg (f. Fig. 16(a)). The di�erenestems from their behavior above Tg: �F = �A � �sf dereases with T beause�sf is negligible in this regime, while �A gets lower at higher temperature. Byomparison, �F = �A � �sf inreases with T both above and below Tg (for T > Tf)beause the stati modulus �sf � KTs � KTe always dereases with T faster than�A.Fig. 17 also shows another quasi-stati ompression modulus, Kvv , de�ned usingthe volume-utuation formula [9,8,15,29℄Kvv = TV= D(V � �V )2E (30)where V � �V is instantaneous deviation of the total system volume from its time-averaged value in the NPT ensemble (in this ase we used both Nos�e-Hooverthermostat and barostat). Eq. (30) is appliable if any relevant relaxation time(inluding those assoiated with thermostat and barostat) are either muh shorteror muh longer than �t. This is true both above Tg (where all relaxation timesare � �t) and below Tg (where �� � �t). In these ases Kvv ' KTs ' �sf .Fig. 17 on�rms this expetation: a small di�erene between Kvv and �sf is onlyvisible in the glass-transition zone near Tg.The statistis of V (t) deteriorates below Tg, so Kvv(T ) beomes noisy at T < 0:2.By ontrast, the T -dependene of �sf remains smooth in this region. The main16Here we do not onsider the non-ergodi regime below the putative ideal glass transitiontemperature. 20



reason for this di�erene is that in the ase of �sf (but not for Kvv) we applied theproedure desribed in Appendix F to ompensate for the mean pressure variationsbetween the on�gurations: �sf = ��sf . The importane of the pressure orretionfor �sf is also evident from Fig. 18 showing that Æ�0sf � Æ��sf .The quasi-stati adiabati modulus KAs was obtained based on the adiabatirelaxation modulus KA(t) (f. Fig. 14) in analogy with KTs (f. eq. (29) whereKT (t) should be replaed with KA(t)). It shows a monotoni and almost linearinrease on ooling exept a shoulder in the glass-transition zone (f. Fig. 17).Again the di�erene KAs�KAe (where KAe was obtained by linear extrapolation ofKAs(T ) at T > 0:3 into the region T < 0:3) de�nes the magnitude of the terminaladiabati relaxation step in the glassy regime (T < Tg). Just like the similarquantity (KTs �KTe) for the isothermal relaxation, KAs �KAe rapidly inreases onooling near Tg, but stays almost onstant (inreasing slightly) at lower T 's. Wealso observe that KAs(T ) is always roughly in the middle between the quasi-statiisothermi (�sf � KTs) and instantaneous aÆne (�A) moduli; all the 3 moduli seemto nearly merge at T = 0. The fat that KAs = KTs at T = 0 is antiipated fromeq. (D22) provided that the thermal pressure pTs is �nite. On the other hand, weknow that �A �KTs � �A � �sf = �F (f. eq. (26)) and that �F � 0 by de�nition(f. eq. (27); the inequality �F � 0 at T ! 0 also omes from results of ref. [54℄;an analogous inequality for �F is also well-known [55℄). Thus, in the general aseboth �F and �F must remain �nite at T = 0, and therefore �A > �sf and �A > �sfat all temperatures. It appears however that �F dereases very signi�antly at lowtemperatures (f. Fig. 17), whereas a similar derease of �F is not so pronouned(f. Fig. 16(a)).To alulate the standard deviations of ompression moduli we determine �A, �Ffor eah independent system. For example, the aÆne modulus �A is obtained bytime-averaging of the instantaneous modulus �A(t) de�ned in analogy with eq. (15)�A(t) = d+ 2d �orA (t) + 2p0 � 2�T (31)where �orA (t) is spei�ed in eq. (4):�A = 1�t Z �t0 �A(t)dt (32)Similarly, the utuation modulus is de�ned as (f. eq. (27))�F = VT 1�t Z �t0 (p(t)� �p)2 dt (33)Temperature dependenies of standard deviations for the aÆne and utuationompression moduli, Æ�0A, Æ��A, Æ�0F , Æ��F , are shown in Fig. 18(a). The pressureorretion is obviously important for the aÆne modulus: Æ�0A is always muhhigher than Æ��A (by a fator of 10 or more above Tg). By ontrast, the pressureorretion for �F (just like for �F ) appears to be insigni�ant near and belowTg: Æ�0F � Æ��F at T . Tg. The e�et of pressure dispersion on Æ�F beomesdetetable only well in the liquid regime, for T > 0:4. Turning to �sf = �A��F , weobserve that Æ�0sf is de�ned by Æ�0A both above and below Tg outside the peak:Æ�0sf � Æ�0A at T > 0:32 and T < 0:22. On the other hand, elimination of thepressure dispersion e�et leads to a signi�ant derease of Æ��sf in the two regions,21



f. Fig. 18(b). Thus both �sf and �A strongly depend on the mean pressure,while suh e�et is muh weaker for �F .The Gaussian approximation, Æ�(G)F , for Æ��F an be obtained as a straightforwardgeneralization of the theory [10,17℄ for Æ��F : the whole argument remains the sameprovided that the shear relaxation modulus G(t) is replaed with the ompressionmodulus K0(t). In other words, the variane �Æ�(G)F �2 is de�ned by the r.h.s. ofeq. 30 in ref. [10℄ with K0 instead of G. Fig. 18(b) shows that the Gaussianapproximation works very well for T � 0:25, where Æ��F � Æ�(G)F . At lower T 's thedi�erene between Æ��F and Æ�(G)F grows to more than 10%; it allows to obtain thestrutural non-ergodiity parameter Æ�(ne)F [17,27℄:�Æ�(ne)F �2 = (Æ��F )2 � �Æ�(G)F �2 (34)The above equation leads to Æ�(ne)F =Æ�(G)F � 0:5 at T � 0:2. The orresponding shearnon-ergodiity parameter, Æ�(ne)F (f. eq. (23)) is muh larger: Æ�(ne)F =Æ�(G)F & 5 at0:15 . T . 0:2.Noteworthily, the shear and ompression utuation moduli are omparable at lowtemperatures: �F � �F � 15. The higher ratio Æ�(ne)F =�F as ompared to Æ�(ne)F =�Findiates that an order parameter related to �F would be more appropriate than�F to study strutural heterogeneities.7. Conlusions1. We performed MD and MC simulations of a two-dimensional system ofpolydisperse disks with LJ interations using several methods to prepare quasi-equilibrated systems (f. set. 2): by slow ooling and tempering with MD orMC (methods SC-MD, SC-MC) and by tempering with MC involving partile swapmoves followed by standard equilibration with loal MC moves or MD (methodsSw-MC, Sw-MD). It is shown that above the glass transition temperature Tg � 0:26the system properties (RDF, the struture fator S(q), the MSD, the relaxationmoduli) do not depend on the tempering (equilibration) approah. Remarkably, theglass transition an be easily deteted based on the temperature behavior of eitherdensity � (f. Fig. 1) or the aÆne shear modulus �A (f. Fig. 6(a)) for systemsprepared with di�erent equilibration approahes: both �(T ) and �A(T ) show alower slope at T < Tg for the preparation method SC-MD (ontinuous MD ooling)as ompared to the Sw-MD and Sw-MC methods.2. The systems equilibrated with partile swaps are thus denser and morerigid below Tg than slowly ooled systems. Moreover, the observed temperaturedependenies of suh stati quantities as � [17℄, �A and the aÆne ompressionmodulus �A are smooth in the viinity of Tg for the swapped systems (no hangeof slope near Tg, f. Figs. 6(a), 17). These features indiate that the partileswap tehnique allowed for a nearly omplete equilibration both above and belowTg in agreement with results of refs. [23,17℄.3. The deteted evolution of the Kirkwood RDF, g(r), at low temperatures(f. Fig. 2) points to a partile demixing (frationation) proess in the swap-basedon�gurations at T < Tf � 0:16 (f. Fig. 3). This tendeny is also reetedin the behavior of the struture fator S(q) showing an inrease at low q's on22



ooling towards Tf (f. Fig. 4). The frationation transition is also visible in thetemperature dependene of the aÆne shear modulus �A obtained for the swap-basedon�gurations (f. Fig. 6(a)).4. We demonstrate that the system dynamis below Tg signi�antly depend onthe applied equilibration/tempering method: the partile self-di�usion is onsiderablyslower for systems equilibrated using partile swaps (method Sw-MD), f. Fig. 5,in spite of the fat that both ensembles show similar struture (with nearly thesame RDF, f. Fig. 2) for Tf < T < Tg. A dramati e�et of the preparationprotool is also reeted in the shear stress relaxation whih shows a long-timeplateau at low T 's for swap-equilibrated systems, but a muh faster deay with atransient shoulder for slowly ooled systems (f. Fig. 8). It is therefore apparentthat the less-equilibrated systems show muh faster dynamis below Tg (f. Fig. 10and the disussion at the end of set. 4).5. The strutural relaxation time �� of the swap-equilibrated system shows asuper-Arrhenius temperature dependene (f. the VFT law, eq. (8)). The VFTtemperature T0 (often assoiated with the Kauzmann or the ideal glass transitiontemperature [3℄) turns out to be remarkably lose to the frationation temperatureTf .6. It is shown that the shear-stress relaxation data obtained with MD andMC dynamis an be approximately superimposed by resaling of the MC-timetMC ! t = tMC=k (f. Fig. 11). It turns out that the fator k = k(T) showsa non-monotoni T -dependene with a maximum at T � 0:3 slightly above theglass-transition. However, the superposition gets imperfet in the glass-transitionregime (0:24 � T � 0:28). Further simulations with larger ensembles may help tolarify the origin of this disrepany. We argue (f. disussion in set. 4) thatstritly speaking the two dynamis (MD and MC) are not equivalent even in thease of negligible inertia.7. The shear-stress orrelation funtion C�(t) is not sensitive to the ther-mostatting mehanism sine a shear deformation does not produe any temperaturevariation in the linear approximation (�T is proportional to the square of theshear rate). This feature is also reeted in the absene of ross-orrelationsbetween the shear stress and temperature or energy. By ontrast, a normal stressor pressure do orrelate with temperature and energy, and this sizeable e�et leadsto a dependene of the pressure orrelation funtion Cp(t) on the thermostattingmethod.8. The shear relaxation modulus G(t) was obtained based on shear stressutuations using the well-known FDT formula, eq. (2). The analogous relationde�ning the ompression relaxation modulus K0(t) in terms of pressure utuationsis given in eq. (16). We argue, however, that this relation provides the genuineisothermi ompression modulus KT (t) only in the ase of ideal thermostatting,or for long enough times, t� �T , where �T is the thermostat-related temperaturerelaxation time. In the general ase KT (t) 6= K0(t) sine K0(t) is a `mixture'of isothermi and adiabati responses (in partiular, for t . �T ). We thereforearrived at the following hallenge: to get all the response funtions like KT (t)or the analogous adiabati ompression modulus KA(t) in the full time-range (toresolve all the relaxation proesses in the physial system). In other words, the23



goal was to predit the universal (thermostat-independent) 17 response funtions ofthe very physial system based on orrelation funtions obtained for the extendedthermostatted system. The relevant theory for the time-dependent heat apaityv(t) was developed in ref. [13℄. Its generalizations for the ompression moduli (andthe thermal pressure relaxation funtion pT (t)) are presented in Appendies B, C(for KT (t)) and Appendix D (for KA(t)). The theory is based on the FDT relationsbetween Laplae transforms of response and orrelation funtions. These relationsare then onverted into the real-time domain to get equations de�ning KT (t) andKA(t). This approah is valid for a rather wide range of `deent' thermostats(f. ref. [13℄) inluding the NH thermostat used in our simulation studies. Therelaxation moduli KT (t) and KA(t) for the pLJ system have been eventuallyobtained using eqs. (B10), (B30) and (D7), respetively. We antiipate that evenmore preise results an be obtained with eqs. (C12), (C15), (D19), (D20) thatdo not involve autoorrelations of the kineti temperature often showing strongosillations.9. Using the general approah desribed above we alulated the isothermi(KT (t)) and adiabati (KA(t)) relaxation funtions at di�erent temperatures andreveal that adiabati moduli show muh stronger short-time undershoots than KT (t)or G(t) (f. Figs. 7, 12 and 14). We also derived (f. Appendix A) a simpleapproximate equation (A5) de�ning the adiabati relaxation modulus KA(t) interms of pressure, energy and temperature orrelation funtions and demonstratednumerially its validity for the pLJ model system. The approximation for KA(t)works amazingly well to t & 2 (f. Fig. 13).10. The mean-square utuations (MSF) of shear stress and pressure along thetrajetory are quanti�ed by two utuation moduli, respetively, �F and �F , whihshow qualitatively di�erent temperature dependenies: while �F exhibits a learmaximum near Tg, �F monotonially dereases on ooling (f. Figs. 16(a) and 17).This means that the MSF of pressure, D(p(t)� �p)2E, dereases always faster thanT , i.e., that D(p(t)� �p)2E =T falls on ooling.11. It is found that the instantaneous (aÆne) moduli for shear (�A) andompression (�A) show a smooth temperature dependene around Tg for swappedon�gurations (method Sw-MD). By ontrast we reveal a sharp inrease of thequasi-stati shear and ompression moduli (�sf and �sf � KTs, respetively) onooling near Tg (f. Fig. 17). A similar temperature behavior was found alsofor the quasi-stati adiabati ompression modulus KAs. Remarkably, KAs staysroughly in the middle between �A and KTs, and the 3 ompression moduli (�A, KTsand KAs) seem to nearly merge at zero temperature. Given that the utuationmodulus �F � �A �KTs is always positive for amorphous systems (�F = 0 at T = 0would imply that there is no stress relaxation at all, K0(t) = onst , whih isimpossible for systems with heterogeneous struture), we onlude that althoughthe extrapolated �F for the studied system does not vanish at T = 0, it dereases17The basi idea is that the response funtions must reet the properties of a physial systemas suh, and therefore must be independent of its oupling to a thermostat. [13℄ For this reasonthe moduli like �A; �F ; �sf ; �A; �F ; KTs; KAs are both ensemble- and thermostat-independent(as all these moduli are diretly related to the response funtions).24



strongly at low temperatures.12. We devise two proedures to improve the preision of the aÆne shearmodulus �A and to redue its standard deviation Æ�A. They boil down toorientational averaging of �A by the oordinate frame rotations (f. set. 4) andto applying a linear regression to ompensate for the mean pressure variationsbetween the on�gurations (f. Appendix F). Applied together these tehniqueslead to a dramati redution of Æ�A: by a fator of 40 above Tg and a fator of10 below Tg (f. Fig. 15). It is also demonstrated that the pressure orretionis important for the variane of the utuation shear modulus �F above Tg (f.Fig. 16()). Turning to ompression moduli, we found that while the standarddeviations of the quasi-stati and aÆne moduli (Æ�sf and Æ�A) strongly depend onthe mean pressure dispersion between the independent on�gurations, its e�et ismuh weaker for Æ�F (f. Fig. 18).13. We predited the height, hT , of the terminal step for the isothermirelaxation modulus, KT (t), in the glassy regime, where the terminal proess oursin an inaessible time range. The height hT is obtained as the di�erene betweenthe long-time plateau level (KTs) and the orresponding equilibrium ompressionmodulus (KTe) whih was de�ned by an extrapolation of KTs from the liquid regimeto lower temperatures (T . Tg). The analogous height of the terminal proess forthe adiabati relaxation was obtained in a similar way as hA = KAs �KAe. Wellbelow Tg the isothermal step hT is nearly onstant and exeeds hA for adiabatirelaxation by a fator of � 2.5 (f. Fig. 17).14. The assumption of Gaussian statistis for stress utuations works verywell near and above Tg both for the shear stress and pressure. This oneptleads to rather aurate quantitative preditions of the non-monotoni temperaturedependenies for the standard deviations of both shear and ompression utuationmoduli, Æ��F and Æ��F (f. Figures 16(b) and 18(b)). By ontrast, both shearstress and pressure utuations beome strongly non-Gaussian at low temperatures(T . 0:2).15. We established that various shear moduli, �A, �F and �sf , are isotropiwith the relative auray � 0:1% well below Tg. Around Tg the isotropy is lesspreise for �F and �sf : at T � 0:24 their relative angular variations rise to about0.3% and 2%, respetively. This e�et is apparently due to a stronger sensitivity ofthe shear modulus to variations of external parameters and its stronger dispersionwithin the ensemble near the glass transition. By ontrast, the isotropy of thepurely stati aÆne modulus �A does not deteriorate near Tg (its auray graduallyimproves on heating and beomes � 0.02% at T � 0:24).16. The ompression relaxation moduli KT (t), KA(t) obtained using new FDTrelations (f. point 8 above) together with the shear relaxation modulus G(t) andthe time-dependent heat apaity v(t) [13℄ largely de�ne the linear visoelastiproperties of the system (as long as it is marosopially isotropi and homogeneous,whih is true for T > Tf). In partiular, all the dynamial moduli and omplianeslike the Young modulus E(t) or the reep ompliane J(t) (f. refs. [33,34℄) anbe obtained on this basis. For exampleJ(s) = 1=G(s); ET;A(s) = G(s)d(d� 1)=2 + (1=d)G(s)=KT;A(s) (35)where s indiates the s�Laplae transform de�ned in Appendix B, eq. (B8). A25



simple way to obtain suh and similar relations between the material funtions 18based on the analogous stati relations is outlined at the end of Appendix D.17. Our results ould be pertinent for experimental systems of olloidalmonolayers onsisting of a binary mixture of superparamagneti partiles [42℄. Forsuh monolayers video-mirosopy gives aess to partile trajetories and allowsfor positional analysis as in 2D simulations [44℄. Sine in addition the interationpotential between the partiles is known, shear and ompression relaxation modulian in priniple be alulated. Suh an analysis ould omplement prior studies ofstati strain utuations related to shear rigidity of the olloidal glass [41℄ and ofspatio-temporal strain patterns that emerge in superooled liquids [45℄.8. The key resultsI. Using the arti�ial MC dynamis involving swaps of partile diameters wemanaged to almost ompletely equilibrate the studied 2D pLJ model systems. Theirequilibrium nature was arefully veri�ed based on the following observations:| The temperature dependene of density, �(T ), does not show any hange ofslope at the glass transition Tg (orresponding to solidi�ation).| Using swap MC moves also during the prodution runs we found that theshear stress orrelation funtion rapidly deays to zero in this ase indiating aomplete stress relaxation during the tempering time.| The same results are obtained on ooling from high T and on heatingstarting from quasi-rystalline on�gurations at T = 0:01. These on�gurationshad been slowly heated and tempered using the Sw-MC method. At T > 0:16they show only loal lustering and quantitatively the same dynamial and statiproperties as their ounterparts obtained on ooling from T = 0:5.| The equilibrium FDT relation �0 = �A is satis�ed for the Sw-MC systems(f. Fig. 6(b)).II. The Sw-based systems at T . Tg, whih an be onsidered as a thermo-dynamially equilibrium glass, show higher elasti moduli, muh slower partiledi�usion, and a more pronouned and longer plateau of the shear relaxation mod-ulus G(t), as ompared to the SC-MC and SC-MD systems prepared by standardslow ooling. We thus not only on�rmed a signi�ant dependene of glass prop-erties on its formation history, but also provided a tool to quantify the degree ofdeviation from equilibrium for an amorphous system.The struture and properties of the Sw-equilibrated systems are likely to besimilar to that of ultra-stable glasses obtained by vapour deposition, whih are alsosupposed to be lose to an equilibrium state [56℄. Therefore, the Sw-systems westudied an serve as a simple model for vapour-deposited glasses.III. An important step forward of the present manusript beyond the priorwork is the development of the linear response theory for the isothermi andadiabati ompression moduli (Appendies A to D). Together with the results forthe shear relaxation modulus, this provides the general linear visoelasti response18These relations are useful in pratie primarily in the regimes where inertial e�ets are notimportant. 26



of a system that is marosopially homogeneous and isotropi. Small lustersof partiles of similar size appear for Sw-based systems at T = 0:2, but all thesystems remains marosopially homogeneous and isotropi for T > Tf � 0:16. Thedeveloped theory is therefore appliable to all the systems we studied above thefrationation temperature.IV. Both stati shear and ompression moduli (�sf and �sf ) strongly inrease onooling near Tg (f. Figs. 16(a) and 17). Their behavior is sharp but ontinuous,so the system solidi�ation ours in a �nite T -window (0:23 . T . 0:28) whih anbe read o� from the peaks of standard deviations of the moduli, Æ��sf (Fig. 16(b))and Æ��sf (Fig. 18(b)). These peaks are aurately reprodued with a theoretialapproah assuming Gaussian statistis of stress utuations near and above Tg.The established temperature dependenies of the shear and bulk moduli, �sf (T )and �sf (T ), are qualitatively similar to those obtained experimentally on olloidalmonolayers of a binary mixture of superparamagneti partiles [42℄, albeit a muhstronger inrease of the bulk modulus near Tg was revealed for the experimentalsystem.Conits of interestThere are no onits of interest to delare.AknowledgementsA grant of omputer time at the HPC omputing luster of the University ofStrasbourg is gratefully aknowledged. We thank O. Benzerara and H. Meyer (allfrom Strasbourg) for assistane in some aspets of MD simulations and helpfuldisussions. L.K. was supported by a dotoral ontrat from the University ofStrasbourg in the framework of the IRTG \Soft Matter Siene".APPENDIX A: General approah to alulate ompressionrelaxation moduliAs explained in setions 5.2, 5.3 the isothermi and adiabati pressure relaxationmoduli, KT (t) and KA(t), annot be obtained in the general ase solely basedon the pressure autoorrelation funtion Cp(t) (so, generally, KT (t) 6= K0(t), f.set. 5.2 and eq. (16)). However, as proposed in ref. [13℄ the response funtionsof thermostatted system an be (under ertain onditions) expressed in terms ofseveral orrelation funtions using appropriate FDT relations. A number of suhrelations eventually de�ning KT (t) and KA(t) are derived in Appendies B, C, D.1. Isothermi modulusLet us �rst onsider the isothermi modulus, KT (t). It an be written asKT (t) = K0(t) + �KT (t). The FDT expression for �KT (t) is given in eq. (B30)in terms of the autoorrelation funtion of temperature, CT (t), and the thermalpressure response funtion pT (t) generalizing the thermodynami derivative � �p�T �N;V(f. Appendix B, eq. (B20)). The funtion pT (t) an be alulated using another27



FDT relation, eq. (B28), involving ross-orrelation funtions of pressure and energy,CpE(t), and of temperature and energy, CTE(t). Another way to obtain KT (t),whih is more eÆient numerially, is desribed in Appendix C.While the orretion �KT (t) vanishes at t ! 1, for �nite times it aountsfor the deformation-indued deviation of the instant kineti temperature T fromthe thermostat (imposed) temperature. This deviation is rather small at t = 0(�KT (0) = �2dT�, f. eq. (B32)), but it an signi�antly inrease in time in thease of a weak system/thermostat oupling (large thermal mass Q for the NHthermostat). In our simulations this e�et is avoided by using low Q's orrespondingto a high Nos�e frequeny !Q � 100 (!2Q = 2TNd=Q), so that !Q�f � 6, where �f isthe ollision/vibration time. In this ase, �KT (t) remains always small and deaysfast (during a short time � 0:2).Thus, generally, the orretion �KT (t) signi�antly depends on the strength ofthe system/thermostat oupling. A similar e�et was onsidered in ref. [13℄ forthe dynami heat apaity. For a strong oupling (a high Nos�e frequeny !Q)the orretion time-range is short. However, the orretion may beome importantif the system/thermostat oupling is too weak (!Q�f � 1) or too strong (for!Q�f � 1 in the ase of a single NH thermostat).2. Compression modulusIn this setion we analyse the relaxation modulus for adiabati ompression,KA(t). As already mentioned, the anoni-aÆne deformation is adiabati in nature,so the response at t = 0, K0(0), is equal to KA(0). However, the 2 funtions aredi�erent for t > 0, and KA(t) normally exeeds K0(t).Let us �rst onsider the stati limit, t ! 1, assuming that the system anbe eventually fully equilibrated after a perturbation. The following thermodynamirelation between adiabati and isothermi moduli is valid in this regime:KA = pvKT (A1)where p, v are heat apaities (per partile) at onstant pressure and volume,respetively. It leads to KA = KT + T� p2T=v (A2)where pT =  �p�T !V = �KT (A3)is the thermal pressure, and � = �� lnV�T �p is the thermal expansion oeÆient.In a glassy state the genuine equilibrium levels of pT and v are not aessible,but they an be replaed by the orresponding long-time plateau values. Itis tempting to onsider pT and v more generally as time-dependent funtions,providing pressure and energy responses to a step-like T -inrease (f. eq. (B20)in Appendix B for pT (t) and ref. [13℄ for v(t)). In this spirit eq. (A2) an beempirially generalized as 28



KA(t) � KT (t) + T� pT (t)2=v(t) (A4)The above equation must be valid in the stati limit (t!1) and in the quasistatiglassy plateau regime where t� �� (sine the latter regime is essentially stati aswell, and the thermodynami relations like eq. (A2) are valid not only at genuineequilibrium but also - albeit approximately - in a glassy state equilibrated withina metabasin [35,36,10℄). Moreover, it is also orret at t = 0 where its r.h.s. isexatly equal to KA(0) = KT (0) + 2dT�. (Note that pT (0) = � and v(0) = d=2; f.eq. (D27) in Appendix D.)A rigorous approah allowing to alulate the adiabati response is desribed inAppendix D. A number of relations between the Laplae-like s-transform of KA(t),KA(s) = s Z 10 KA(t)e�stdtand similar transforms of orrelation funtions are established there. Some of theserelations are then onverted into the time-domain and expressed as equations whihan be solved for KA(t), f. eqs. (D5) and (D7). Remarkably, we also establishedan exat relation between the transformed response funtions, eq. (D23), whih isformally similar to eq. (A4) and an serve as a basis to justify its approximatevalidity. In a similar way, eq. (D5) generates the following approximate equationfor the adiabati relaxation modulus:KA(t) � K0(t) + T� pT0(t)2=v0(t) (A5)It involves the funtions pT0(t) and v0(t) whih are diretly related to theorrelation funtions of energy and pressure (f. eqs. (B18), (D4)), whih wereobtained by MD simulations.APPENDIX B: FDT relations for isothermi ompressionrelaxation modulus1. De�nition of the relaxation modulusTo obtain the isothermi bulk ompression relaxation modulus KT (t) using FDTrelations involving pressure and energy orrelation funtions we note �rst that theompression deformation, eq. (12), leads not only to a pressure inrement�p(t) = �K0(t) (B1)but also to a temperature variation:�T (t) = �T� CTp(t); (B2)where CTp(t) = NT 2 hÆT (t+ t0)Æp(t0)i (B3)29



Here and below h:::i mean both ensemble and gliding averaging as before, ÆT (t) =T (t) � Ti, Æp(t) = p(t) � hpi, and any non-linear terms (for � � 1) are omitted.An NV Ti ensemble is assumed by default (Ti is the temperature imposed by athermostat). Eq. (B2) omes from the FDT [12,24,31℄.In addition to the deformation, eq. (12), we onsider 2 types of temperatureperturbations: (i) a small jump-like veloity inrease at t = 0:v ! v(1 + �v=d); (B4)and (ii) a small jump (�T ) of the imposed temperature at t = 0:Ti(t) = Ti � �T�(�t) (B5)where �(:::) is the Heaviside funtion. By virtue of the FDT the T -perturbation(i) leads to the following responses (at t > 0):�p(t) = �vTCpT (t); �T (t) = �vTCT (t) (B6)where CT (t) = NT 2 hÆT (t+ t0)ÆT (t0)i ; CpT (t) = NT 2 hÆp(t+ t0)ÆT (t0)i (B7)CTp(t) is de�ned in a similar way; CpT (t) = CTp(t) is due to the time reversibility.Combining eqs. (16), (17), (B1), (B2), (B3), (B6), (B7) and doing the followingtransform (labelled below as s�Laplae) for all response and orrelation funtions:�p(s) � s Z �p(t)e�stdt; CpT (s) � s Z CpT (t)e�stdt (B8)et., we get the following responses to both a ompression and a T -perturbationof type (i):�p(s) = �K0(s) + �vTCpT(s); �T (s) = �T� CTp(s) + �vTCT (s) (B9)To obtain the proper isothermi modulus KT we must set �T (t) � 0. The latterondition annot be satis�ed with a onstant �v. However, we may allow for asuperposition of T -jumps (de�ned in eq. (B4)) ourring at any t > 0 (and notonly at t = 0), whih is equivalent to onsidering �v as a funtion of s. Then theondition �T (s) = 0 leads to �v = ��CTp(s)= [�CT (s)℄ and �p(s) = �KT (s) withKT (s) = K0(s) + �KT (s); (B10)�KT (s) = �T� CpT (s)2=CT (s) (B11)Here and below the transforms de�ned in eqs. (B8) are indiated by s-variablesonly. The isothermi relaxation modulus, KT (t), an in priniple be obtained byalulation of the Laplae transforms of CpT (t) and CT (t) orrelation funtions, andthen by doing the inverse Laplae transform of KT (s)=s = R10 KT (t)e�stdt. A moreeÆient alternative way is desribed below (in set. 3).30



2. De�nition of the thermal pressure response pT (t) and general relationsbetween its Laplae transform and the relaxation modulusThe T and p responses to a temperature perturbation of the seond type (f.eq. (B5)) are also related to the equilibrium orrelation funtions (as follows fromthe FDT [12,24,31,13℄):�p(t) = �T [CpE(0)� CpE(t)℄ ; �T (t) = �T [CTE(0) �CTE(t)℄ (B12)where CpE(t) = T�2 hÆp(t+ t0)ÆE(t0)i ; CTE(t) = T�2 hÆT (t+ t0)ÆE(t0)i (B13)Here the stati orrelations, CTE(0) and pTs0 � CpE(0), reet the properties ofthe equilibrium anoni ensemble:CTE(0) = 1; pTs0 = pTs + CpE(1) (B14)where pTs �  �p�T !N;V (B15)is the rate of hange of the mean (equilibrium) pressure with temperature (thermalpressure), and CpE(1) is the long-time limit of CpE(t). Note that generallyCpE(1) 6= 0 in a glassy state.Combining the above equations with eqs. (16), (17), (B1), (B2) we �nd s-transforms of the responses to both a ompression and a T -perturbation of type(ii): �p(s) = �K0(s) + �TpT0(s); �T (s) = �T� CTp(s) + �T [1 � CTE(s)℄ (B16)where pT0(s) � pTs0 � CpE(s) (B17)In the time-domain the latter equation beomes:pT0(t) � CpE(0)� CpE(t) (B18)Using the same trik as before we �nd that the isothermi ondition �T (t) � 0(at � = onst ) leads to: �T = ��T�CTp(s)= [1� CTE(s)℄ heneKT (s) = K0(s)� T� CTp(s)pT0(s)= [1 �CTE(s)℄ (B19)The time-dependent funtion pT (t) generalizing the thermodynami onstant pTsan be de�ned via the pressure inrement �p at time t after a step-like inrease(by �T0) of the ensemble-averaged temperature at t = 0:pT (t) = �p(t)=�T0 (B20)31



Obviously pT (t = 0) = �. 19 Demanding that �T (t) = �T0�(t) and using eqs. (B16)with � = 0 and �T = �T (s) we getpT (s) = pT0(s)1 �CTE(s) (B21)Applying the same operation to eqs. (B9) we obtainpT (s) = CpT (s)=CT (s) (B22)As the response funtions (like pT (t)) must be universal (independent of how theT -perturbation was reated, f. ref. [13℄), eqs. (B21), (B22) de�ne the samefuntion and lead to an exat relation between pressure/energy orrelation funtions(valid in the thermodynami limit N !1):CT (s) [pTs0 � CpE(s)℄ = CpT (s) [1� CTE(s)℄ (B23)This relation is akin to eq. 19 of ref. [13℄ whih readsCT (s) [vs0 � CE(s)℄ = CTE(s) [1� CTE(s)℄ (B24)where CE(t) = hÆE(t+ t0)ÆE(t0)i = �NT 2� (B25)and vs0 = CE(t = 0) (B26)Eq. (B23) also ensures that the two results for KT (s) obtained above(eqs. (B11), (B19)) are equivalent, thus supporting the idea of universality ofthe isothermi modulus KT (t).Finally, we note that eqs. (B19), (B21), (B22) lead to�KT (s) = �T� CT (s)pT (s)2 = �T� CpT (s)pT (s) (B27)It shows that one pT (t) is known, the relaxation modulus KT (t) an be readilyalulated by onvolutions.3. Equations de�ning KT (t).In the previous setions we established the relations between Laplae transformsof response funtions KT (t), pT (t) and of equilibrium orrelation funtions whih anbe easily alulated using thermostatted simulations. However, in order to obtainthe response funtions one would have to do diret and inverse Laplae transformswhih may pose a formidable problem given that some of these funtions may show19Note that pT (t) is related to the relaxation oeÆient of volumetri thermal expansion whoses�Laplae transform is equal to pT (s)=KT(s). 32



signi�ant osillations. A way to bypass this problem was outlined in ref. [13℄where the time-dependent heat apaity was alulated using similar relations. Thebasi idea is to transform the relevant relations into the time domain (to get ridof Laplae transforms), and to use the least osillating orrelation funtions. The�rst part of this program is outlined below, the seond part is lari�ed in theAppendix C.Eq. (B27) onnets the Laplae transforms of the isothermi modulus KT (t) andof the thermal pressure response funtion pT (t). To obtain the latter funtion wereall eqs. (B21), (B17) leading topT (s) [1� CTE(s)℄ = pTs0 � CpE(s)and note that the above equation is equivalent to the following relation betweenthe time-dependent funtions:Z t0 pT (t� t0) ddt0CTE(t0)dt0 = CpE(t)� pTs0 (B28)This equation an be easily solved for pT (t) in the iterative manner. 20 Thesolution is unique and stable. Its stability follows from the following property ofCTE(s): there are no roots of 1 � CTE(s) with <(s) > 0. It an be proved usingeq. (B24) and the approah detailed in the Appendix C of ref. [13℄.Finally we get using the seond eq. (B27) and the obtained pT (t):�KT (t) = �TCpT(t)� T� Z t0 CpT (t� t0)dpT (t0) (B29)Alternatively, the isothermi modulus an be found based on the �rst eq. (B27):�KT (t) = ��TCT (t)� T� Z t0 CT (t� t0)dpT2(t0) (B30)where pT2(t) � �pT (t) + Z t0 pT (t� t0)dpT (t0) (B31)Note that at t = 0: pT (0) = �, pT2(0) = �2 and CT (0) = 2=d, so (on reallingeq. (B10)) KT (0) = K0(0)� 2dT� (B32)The seond term in the last equation is typially rather small for superooledliquids.20More preisely, the time-variable is �rst disretized with step Æt: ti = iÆt, and the funtionspT (t), CTE(t) are approximated on eah segment (ti�Æt < t < ti) by their onstant mean valuesp(i)T ; C(i)TE, i = 1; 2::: Then eq. (B28) is applied at t = t1, t2, ... to get one-by-one the values p(1)T ,p(2)T ,... . 33



APPENDIX C: Isothermi ompression modulus in terms oforrelations of potential energy and exess pressureThe funtion CTE(t) shows signi�ant osillations at short t. Besides, 1�CTE = 0at t = 0 (s!1). Both these features lead to a poor preision of pT (t) obtainedfrom eqs. (B21), (B28) at short t. For better preision it is bene�ial to usevariables that are oupled weaker to the instantaneous temperature. Suh moreuseful variables are the potential energy U and the exess pressure pex instead oftotal energy E and total pressure p:U = E � TNd=2; pex = p � �THere TNd=2 = K is the kineti energy, �T = pid is the ideal-gas pressure due tomomenta of the partiles (pex is due to their interations).The relevant orrelation funtions of U and pex are (f. eqs. (B7), (B13), (B25)):CU (t) = hÆU(t+ t0)ÆU(t0)i = �NT 2� ; CUE(t) = hÆU(t+ t0)ÆE(t0)i = �NT 2� ;Cpex(t) = NT 2 hÆpex(t+ t0)Æpex(t0)iCTpex(t) = NT 2 hÆT (t+ t0)Æpex(t0)i = CpexT (t) (C1)The funtion Cpex(t) de�nes the response of pex after a small ompressionx! (1� �=d)x (C2)whih does not a�et the partile veloities (hene this transformation in the phasespae is not anonial). The relevant FDT relations are:�pex(t) = � "T� Cpex(t) +KexTs0# (C3)and �T (t) = �T� CTpex(t) (C4)where KexTs0 � �exA � T�Cpex(t = 0) and �exA = �A � d+2d �T is the exess part of theaÆne ompression modulus (f. eq. (13)).Next, turning to the T -perturbation of the �rst type, eq. (B4), we �nd�pex(t) = �vTCpexT (t); �T (t) = �vTCT (t) (C5)The analogous FDT relations assoiated with the seond T -perturbation, eq. (B5),are: �pex(t) = �T [CpexE(0)� CpexE(t)℄ ; �T (t) = �T [CTE(0)� CTE(t)℄ (C6)where (p. eq. (B13)) 34



CpexE(t) = T�2 hÆpex(t+ t0)ÆE(t0)i (C7)The isothermal exess modulus KexT (t) (de�ning exess pressure response to a smallompression at onstant T ) and the exess thermal pressure oeÆient pexT (t) an beobtained using the above equations following the approah desribed in Appendix B.In partiular, we getpexT (s) = pexTs0 � CpexE(s)1� CTE(s) = CpexT (s)=CT (s) (C8)where pexTs0 = CpexE(t = 0), leading toCT (s) [pexTs0 � CpexE(s)℄ = CpexT (s) [1� CTE(s)℄ (C9)The latter equation is equivalent to eq. (B23) sine CpE(s) = CpexE(s) + �CTE(s) +onst and CpT (s) = CpexT (s) + �CT (s) as follows from p = pex + �T . In a similarway we get the exess ompression modulus:KexT (s) = T� Cpex(s) +KexTs0 � T� CpexT (s)pexT (s) (C10)Taking into aount that obviously KT (t) = KexT (t) + �T , we arrive atKT (s) = �T +KexTs0 + T� Cpex(s)� T� CpexT (s)pexT (s) (C11)In the time domain it reads (on using pexT (t = 0) = 0)KT (t) = �T +KexTs0 + T� �Cpex(t)� Z t0 CpexT (t� t0)dpexT (t0)� (C12)where dpexT (t0) = dpexT (t0)dt0 dt0.It remains therefore to obtain pexT (t). Using eqs. (C8) we getpexT (s) = pexTs0 � CpexU (s)1 � CTU(s) (C13)where CpexU(s), CTU(s) are the s-transforms ofCpexU (t) = T�2 hÆpex(t+ t0)ÆU(t0)i ; CTU(t) = T�2 hÆT (t+ t0)ÆU(t0)i (C14)The orresponding equation for pexT (t) ispexT (t) = pexTs0 � CpexU(t) + Z t0 CTU(t� t0)dpexT (t0) (C15)This equation is similar to eq. 48 of ref. [13℄. It an be solved iteratively startingfrom t = 0; it has a unique and stable solution (f. ref. [13℄ for details). Notethat pexT = 0 and CpexU = pexTs0 at t = 0 (orresponding to s ! 1) as follows fromthe �rst eq. (C6). Eq. (C15) also de�nes the full response funtion pT (t) due tothe obvious relation pT (t) = pexT (t) + �An advantage of eqs. (C15) and (C12) de�ning the relaxation isothermi bulkompression modulus over eqs. (B28), (B29) is that the orrelation funtions (likeCpexU(t), CTU(t)) involved in eqs. (C15), (C12) show muh weaker osillations thanthose (like CpE(t), CTE(t)) involved in eqs. (B28), (B29). This feature results ina higher numerial preision of the eventually evaluated time-dependent responsefuntions. 35



APPENDIX D: FDT relations for adiabati ompressionrelaxation modulusThe adiabati ondition means that no heat is transferred into (or out of) thesystem. It therefore implies that the initial deformation (�-ompression at t = 0)must be a anonial aÆne transformation of the phase spae given in eq. (12),and that the energy E is onserved afterwards:E = onst ; t > 0 (D1)sine no work is done by the system (V = onst ). In the ase of a thermostattedsystem (in partiular, with the Nose-Hoover dynamis we onsider) there is perma-nent heat exhange between the system and the thermostat, so the ondition (D1)must be maintained by additional ompensating heat transfers due to, for example,the Ti-perturbations de�ned in eq. (B5). Let us therefore fous on the pressure pand the energy E responses. Considering now 2 perturbations de�ned in eqs. (12)and eq. (B5), respetively, we get in analogy with eqs. (B16): 21�p(s) = �K0(s) + �TpT0(s); �E(s) = �V T [CEp(s)� pTs0℄ + �TNv0(s) (D2)where pT0(s) is de�ned in eq. (B17), pTs0 = CEp(t = 0) andv0(s) � vs0 � CE(s) (D3)(f. eqs. (B14), (B26)). Upon onversion into the time-domain eq. (D3) beomesv0(t) = CE(0)� CE(t) (D4)The ondition (D1) implies that �E(t) = 0 at t > 0, hene �E(s) = 0. Thefuntions �T = �T (s) and KA(s) � �p(s)=� are then obtained using eqs. (D2) for� = onst and �E(s) = 0: �T = �T� pT0(s)vs0 � CE(s)KA(s) = K0(s) + �K(s); �K(s) � T� pT0(s)2=v0(s) (D5)Converting the above equations into the time domain we getKA(t) = T� Cp(t) +KTs0 +�K(t) (D6)where KTs0 = �A � T�Cp(t = 0) and the funtion �K(t) is de�ned by the followingequation Z t0 �K(t� t0)dv0(t0) = T� Z t0 pT0(t� t0)dpT0(t0) (D7)21Here by �E(t) we mean E(t)� E(t = 0+).36



where v0(t) and pT0(t) are de�ned in eqs. (D4), (B18), respetively. Thus, theadiabati relaxation modulus KA(t) an be easily obtained by solving eq. (D7) for�K(t) using the same numerial approah as desribed below eq. (B28).The adiabati modulus KA(t) an be also obtained based on orrelation funtionsinvolving exess pressure pex and potential energy U (in analogy with the isothermimodulus KT (t), f. Appendix C). To this end one ould use the approah detailedin Appendix C based on new FDT relations. However, we take a slightlydi�erent route: instead of onsidering new FDT relations we simply use thealready established eqs. (D5) and transform them in order to get rid of orrelationfuntions of variables that expliitly depend on T . This is ahieved using thegeneral relation pT0(s)=v0(s) = pT (s)=v(s); (D8)and trivial relations oming from E = U +NdT=2 and p = pex + �T :CE(s) = CUE(s) + d2CTE(s); CpE(s) = CpexE(s) + �CTE(s) + onst (D9)Here pT0(s), v0(s) and pT (s) are de�ned in eqs. (B17), (D3), (B21), and v(s)is the s�Laplae transform of the time-dependent isohori heat apaity, v(t),obtained in ref. [13℄ (f. eq. 13 there):v(s) = v0(s)= [1� CTE(s)℄ (D10)On using eq. (B24) one �nds[vs0 � d=2 � CU(s)℄CT (s) = CTU(s) [1� CTU(s)℄ (D11)so v(s) = vs0 � CEU(s)1� CTU(s) (D12)Similarly we get on using either eq. (C9) or (B23):[pexTs0 �CpexU (s)℄CT (s) = CpexT (s) [1� CTU(s)℄ (D13)leading to (in view of eq. (B22))pT (s) = pTs0 � CpU(s)1� CTU(s) (D14)and pT0(s)v0(s) = pTs0 � CpU(s)vs0 � CEU(s) (D15)Another useful relation omes from eqs. (D13), (D11):[pexTs0 �CpexU (s)℄CTU(s) = CpexT (s) [vs0 � d=2 �CU (s)℄ (D16)The above relations allow to exlude the temperature orrelation funtion CT (s)from the adiabati modulus de�ned in eqs. (D5)37



KA(s) = K0(s) + T� pT0(s)2v0(s) = KTs0 + T� "Cp(s) + pT0(s)pTs0 � CpU(s)vs0 � CEU(s)#The result is KA(s) = KexTs0 + 2 + dd �T + T� Cpex(s) + T� h(s) (D17)whereh(s) = [pexTs0 � CpexU(s)℄ [pexTs0 + 2�� CpexE(s)℄ � 2d�2 hvs0 � d2 �CU (s)ivs0 � CEU(s) (D18)The adiabati relaxation modulus KA(t) an be dedued from eq. (D17):KA(t) = KexTs0 + 2 + dd �T + T� Cpex(t) + T� h(t) (D19)where the funtion h(t) is de�ned by equationZ t0 [vs0 � CEU(t� t0)℄ dh(t0) = 2d�2 (CU(t)� vs0) + (pexTs0 + �)2 � (D20)� (pexTs0 + 2�) CpexU(t) + Z t0 CpexE(t� t0)dCpexU(t0)with h(t = 0) = 0, as follows from eq. (D18) and the general relation h(t = 0) =h(s!1).Eq. (D20) an be solved in the same way as eq. (D7). Although eq. (D20)seems to be more ompliated, it an provide better numerial preision sine thefuntion v0(t) = vs0�CE(t) involved in eq. (D7) generally shows stronger short-timeosillations than the funtion CEU(t � t0) in the l.h.s. of eq. (D20). In the aseof strong system/thermostat oupling (for example, for the Nos�e-Hoover thermostatwith low enough thermal mass Q) the T -utuations relax fast (during a shorttime � �N = p2=!Q), so all orrelations involving T vanish for t � �N . In thisregime, the relevant orrelations involve only pex and U , so eq. (D17) an besimpli�ed asKA(s) ' KexTs0 + �T + T� "Cpex(s) + (pexTs0 + �� CpexU(s))2vs0 � CU (s) # (D21)Setting s = 0 (orresponding to the stati limit t!1) we get the stati adiabatimodulus KAs: KAs = KTs + T� p2Tsvs (D22)in agreement with the general thermodynami relation between adiabati andisothermi ompression moduli. [12℄Finally, note a simple relation between KA and KT :KA(s) = KT (s) + T� pT (s)2v(s) (D23)38



whih an be transformed asKA(s) = KT (s) + T� pT (s)pTs0 � CpU(s)vs0 � CEU(s) (D24)and used to alulate KA(t) one the funtions KT (t) and pT (t) are known. Asimilar equation for the isobari heat apaity p(s) reads:p(s) = v(s) + T� pT (s)2KT (s) (D25)Both eqs. (D23), (D25) an be proved using the general relations derived above.Again, eq. (D25) has exatly the same form as the orresponding stati relation [12℄:ps = vs + T� p2TsKTs (D26)Taking s ! 1 in eq. (D23) leads to a simple relations between instantaneousmoduli (at t = 0): KA(0) = KT (0) + T� pT (0)2v(0) = KT (0) + 2d�T (D27)where we took into aount that pT (0) = � (sine instantaneous pressure responseto a T -jump involves solely the ideal-gas pressure) and v(0) = d=2 (for a similarreason).Eqs. (D23), (D25) have exatly the same struture as the lassial thermody-nami relations for the orresponding stati quantities (f. eqs. (D22), (D26)).This feature an be in fat more general: any equilibrium relation between ther-modynami derivatives generates an analogous relation between the orrespondingdynamial response funtions (in the s�Laplae representation). There is no generalproof of this statement, but we an provide a few hints pointing to its validity: (i)The examples given above show that the relations between response funtions donot depend expliitly on the Laplae parameter s (generally, this is an assumptionwhih an be easily heked). (ii) The s ! 0 limit of a response funtion anbe redued to a thermodynami derivative. (iii) All stati relations between thethermodynami derivatives oming from di�erentiation rules (like the hain rule)have their dynamial analogs based on the Boltzmann superposition priniple. (iv)All symmetry relations between ross-derivatives (like �p�T ���V = �S�V ���T ) have their dy-namial ounterparts (symmetry relations between linear response funtions) whihfollow from the time-reversibility of the dynamis being akin to the Onsager'spriniple of symmetry for kineti oeÆients. [30℄APPENDIX E: Impulsive orretion to �AThe orientation-averaged instantaneous aÆne shear modulus �orA is de�ned ineq. (4). A straightforward way to employ it is to use analytial expressions foru0(s) and u00(s) valid for s < sut. This way yields �or(0)A 6= �orA . The problem isthat the potential u(s) shows a kink at s = sut leading to a singular ontribution,39



�u0(sut)Æ(s� sut), in u00(s) � d2u=ds2. This ontribution gives rise to the so-alledimpulsive orretion [5,8,10℄: �orA = �or(0)A + ��AIn the present study ��A was alulated diretly by approximating the Æ-funtionas f�(s) = ��1 [4 � 6 (sut � s) =�℄ �(sut � s)�(� + s� sut) (E1)where �(:) is the Heaviside funtion, and the width � = 0:025 was hosen tosatisfy 2 onditions: �� 1 and sut�N�� 1. Eq. (E1) omes from the onditionthat Æ(s � sut) is approximated by a funtion whih must be nonzero in theinterval sut �� < s < sut whose enter di�ers from the position of the originalÆ-funtion. The resulting impulsive orretion is negative:��A = � u0(sut)V d(d+ 2) Xl s2f�(s) (E2)APPENDIX F: How to redue the e�et of pressureutuations on a variable XThe method desribed below is appliable to any marosopi variable Xinluding X = �A and X = �A. A pressure dispersion is inevitable even in theensembles aimed to keep a onstant pressure. As explained in set. 2 the volumeof eah on�guration was quenhed after the equilibration stage (tempering in theNPT ensemble), so that the m independent systems have slightly di�erent volumesand their time-averaged pressures,�p = 1�t Z �t0 p(t)dtobtained from the NVT prodution runs for eah system, deviate from the imposedpressure p0. These deviations result in quenhed shifts of the hosen variable Xfor all the on�gurations (unless X is totally pressure-independent). To ompensatefor this e�et we used a linear regression approah: both X and �p have beenmeasured for eah system, and then X was replaed by X� = X +�(p0 � �p), wherethe oeÆient � = hX (�p� pav)i = D(�p� pav)2E and pav = h�pi is the mean pressureaveraged over the m-ensemble. This way we obtain a set of m values of X� whoseensemble-average hX�i = hXi+� (p0 � pav) orresponds to p = p0. At the same timethe standard deviation of the X�-set gets minimized.
40
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FIGURE CAPTIONSFIG. 1. Number density � of the pLJ model at normal pressure P = 2 as afuntion of temperature T . The old data (open irles) from ref. [9℄, obtainedfrom a ontinuous ooling proess using loal MC moves only (quenh methodSC-MC), reveal two distint linear slopes whih were used to determine a glasstransition temperature Tg � 0:26. The data obtained with the SC-MD methodwith ooling rate � = 10�5 (�lled rhombs) show a similar behavior. Using inaddition swap moves (quenh method Sw-MC or Sw-MD) muh higher densitieshave been ahieved (boxes) below Tg.FIG. 2. The radial distribution funtions g(r) for T = 0:4; 0:325; 0:26; 0:19;0:16; 0:15 (from bottom to top: the urves are shifted vertially with step 0.5for larity). Blak urves orrespond to on�gurations equilibrated by partileswaps (method Sw-MD); olor urves (blue, brown, magenta, blue, red, magenta)to systems prepared by slow ooling with MD (method SC-MD).FIG. 3. Con�guration snapshots for T = 0:10, 0:15, 0:16, 0:2, 0.26 and 0.4 (fromleft to right) obtained with the Sw-MC equilibration method. The olor oderanges from blak (smallest beads) to red (largest beads). The on�gurations arehomogeneous, isotropi and liquid-like above the demixing temperature Tf � 0:16.Below Tf we observe demixing (segregation) of beads of di�erent diameters and,as a result, hexagonal lusters of alike beads. The main part of this work isfoused on temperatures T > Tf . Note that even at T = 0:2 small lusters ofpartiles of similar size are formed, but the system remains homogeneous andisotropi beyond the size of these lusters.FIG. 4. (a) The stati struture fator S(q) for swap-equilibrated on�gurations(using method Sw-MD) at T = 0:5 (blue urve), 0.4 (blak), 0.325 (red),0.26 (brown), 0.19 (green), 0.16 (magenta). (b) The struture fator S(q) fora broader range of temperatures obtained for swapped on�gurations (obtainedwith method Sw-MC) using only loal MC moves for the prodution runs. Mainpanel: Double logarithmi representation. Inset: Linear representation fousingon wavevetors q around the �rst maximum.FIG. 5. The partile MSD, h0(t), at di�erent temperatures T = 0:4 (blak urve),0.35 (green), 0.3 (blue), 0.26 (magenta), 0.24 (blak), 0.23 (red), 0.21 (brown);T dereases from top to bottom. The solid lines and rosses (�) orrespond to`swapped' (Sw-MD) and slowly-ooled (SC-MD) on�gurations, respetively. AtT > Tg both data sets overlap ompletely. The straight dashed line indiatesthe slope orresponding to Fikian di�usion (h0 / t).FIG. 6. (a) Temperature dependene of the aÆne modulus �A for the `swapped'on�gurations obtained with method Sw-MD (blak solid line) and for the`ooled' systems, method SC-MD (red solid line). The brown dashed lineis tangential to the blak solid line at T = 0:2 � 0:3. The vertial dashedlines indiate Tf = 0:16 and Tg = 0:26. For `swapped' on�gurations �A = �or�Awas alulated as explained in setion 4 and Appendix F. All the resultsare obtained with MD prodution runs. (b) The aÆne shear modulus �A;bare(triangles) and the resaled seond moment of the shear stress, �0 = (T=�)C�(0)43



(irles), obtained either using only loal MC moves (open symbols) or also withadditional partile swap moves during prodution runs (�lled symbols). The twostati averages are obtained using MC dynamis for systems equilibrated by bothloal and partile swap moves (method Sw-MC). We show here �A;bare withoutthe impulsive orretion ��A � �0:3 (f. eq. (E2)) instead of �A = �A;bare+��A.FIG. 7. The shear relaxation modulus G(t) for `swapped' on�gurations (methodSw-MD) at T = 0:4, 0.35, 0.3, 0.28, 0.27, 0.26, 0.25, 0.24, 0.23, 0.22, 0.21,0.19, 0.18, 0.17, 0.16, 0.15 (from bottom to top). The non-monotoni behaviorof G(t) at long times, t & �t=2 (at some temperatures) is a trivial e�et ofinsuÆient statistis.FIG. 8. The shear relaxation modulus G(t) for (a) T = 0:4; 0.35, 0.3, 0.28, 0.27,0.26, 0.25, 0.24 (from bottom to top), (b) T = 0:24, 0.21, 0.17, 0.16 (frombottom to top). In both parts red urves orrespond to `ooled' on�gurations(obtained with method SC-MD), blak urves to `swapped' on�gurations (methodSw-MD).FIG. 9. The log-log dependene of kG(t) vs. t=�� for T = 0:4; 0.35, 0.3, 0.28,0.27, 0.26, 0.25, 0.24, 0.23 (urves from right to left) for systems equilibratedwith method Sw-MD (using partile swaps). The shift-fator k = k(T ) inreasesfrom 1 to 1.35 (at T = 0:28) and then dereases bak to 1. The T -dependeneof the terminal relaxation time �� = ��(T ) is shown by rhombs in Fig. 10.FIG. 10. T -dependene of the �-relaxation time �� for `ooled' (SC-MD, rosses)and `swap-based' (Sw-MD, rhombs) on�gurations. The solid urve representsthe �t with the VFT law, eq. (8). The horizontal line orresponds to the totalsampling time �t = 105. The vertial line indiates Tg.FIG. 11. G(t) for swap-equilibrated on�gurations based on stress-orrelations ob-tained with MD (blak urves for Sw-MD) and MC dynamis (red urves forSw-MC [17℄) for temperatures (a) T = 0.4 , 0.35, 0.30; (b) T = 0:3; 0:28; 0:27;0:26; 0:25; 0:24; 0:21; 0:20 (urves from bottom to top). The time for MCurves was set to t = tMC=k, where tMC is the number of MC time-steps andk = k(T ): k(0:4) = 488, k(0:35) = 546, k(0:3) = 588, k(0:28) = 556, k(0:27) = 500,k(0:26) = 476, k(0:25) = 385, and k = 294 for T � 0:24.FIG. 12. Time dependene of the isothermi bulk ompression relaxation modulus,KT (t), obtained using FDT relations as desribed in the text, for `swapped'on�gurations (method Sw-MD) at T = 0:4, 0.35, 0.3, 0.28, 0.27, 0.26, 0.25,0.24, 0.23, 0.22, 0.21, 0.19, 0.18, 0.17, 0.16, 0.15 (from bottom to top).FIG. 13. Time dependene of the adiabati bulk ompression relaxation modulus,KA(t), obtained using the FDT relations as desribed in the text, for `swapped'on�gurations (method Sw-MD) at T = 0:4, 0.35, 0.3, 0.27, 0.25, 0.23, 0.21,0.19 (from bottom to top). Blak urves are based on the `exat' eq. (D7);red urves orrespond to the approximation, eq. (A5).FIG. 14. Time dependene of the adiabati bulk ompression relaxation modulus,KA(t), obtained using the FDT relation, eq. (D7), as desribed in the text,for `swapped' on�gurations (method Sw-MD) at T = 0:4, 0.35, 0.3, 0.28, 0.27,44



0.26, 0.25, 0.24, 0.23, 0.22, 0.21, 0.19, 0.18, 0.17, 0.16, 0.15 (from bottomto top).FIG. 15. T -dependenies of standard deviations for the aÆne shear moduli: Æ�0A(no orientational averaging, no pressure orretion: red urve with rhombs),Æ�orA with orientational averaging (brown), Æ��A with pressure orretion (blue),Æ�or�A with both orientational averaging and pressure orretion (blak). Vertialdashed lines indiate Tf and Tg.FIG. 16. T -dependenies of: (a) The quasi-stati modulus �or�sf (red urve) andutuation modulus �or�F (blak) for the pLJ systems equilibrated by partileswaps (method Sw-MD). The vertial dashed lines show Tf = 0:16 and Tg = 0:26.(b) The standard deviations Æ��sf (red urve), Æ��F (brown), Æ�or�sf (blue), Æ�or�F(magenta) as a funtion of T together with Æ�(G)F (blak urve), the Gaussianapproximation for Æ��F . Note that Æ��sf � Æ��F and Æ�or�sf � Æ�or�F in the peakregion. () The standard deviations Æ�0F (red urve), Æ�0sf (brown), Æ��F (blakwith `x'), Æ��sf (blue), Æ�(G)F (magenta), and Æ�0A (blak). In all the ases thesampling time is �t = 105.FIG. 17. Temperature dependenies of (quasi-)stati ompression moduli for systemsprepared with method Sw-MD: the aÆne modulus �A = ��A (the upper blakurve), its linear extrapolation from T > Tf to T < Tf (blak with long dashes),the utuation modulus �F = ��F (magenta urve with `+'), the quasi-statimoduli: �sf = ��sf (red urve), Kvv based on volume utuation formula, eq. (30)(blue urve), KTs (brown urve), KTe (blak with rosses), KAs (magenta), KAe(blak with short dashes). Note that ��A, ��F and ��sf were alulated for thepresribed pressure (= p0) using eq. (15) and the proedure to ompensate forthe mean pressure deviations among the independent on�gurations desribed inAppendix F. KTs and KAs orrespond to long-time plateau levels of isothermiand adiabati relaxation moduli, KT (t) and KA(t), respetively. KTe and KAeare equilibrium moduli obtained by extrapolation to low temperatures (T . Tg)of the liquid branhes of KTs(T ) and KAs(T ), respetively, as desribed in thetext. The vertial dashed lines indiate Tf and Tg.FIG. 18. Temperature dependenies of standard deviations of ompression moduli(obtained using Sw-MD method): (a) Æ��A (blue urve), Æ�0A (red), Æ��F (blak),Æ�0F (magenta with `�'), Æ�0sf (brown with `+'). (b) Æ��F (blak), Æ�(G)F (red),Æ��sf (blue), Æ�0sf (brown with `+'), Æ�0F (magenta with `�'). Vertial linesindiate Tf and Tg.
45



Fig. 1.



Fig. 2.

g(r)

r
0 1 2 3 4 5 6 7 8 9 10

0

1

2

3

4

5

6

.

T =

0.15

0.16

0.19

0.26

0.325

0.4



Fig. 3.



Fig. 4 (a).

S(q)

q
0 2 4 6 8 10 12 14 16 18 20 22 24

0.01

0.1

1

10

.

T=

0.5

0.4

0.325

0.26

0.19

0.16
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Fig. 6 (a).
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Fig. 6 (b).
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Fig. 8 (a).
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Fig. 8 (b).G(t)
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Fig.  9.
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Fig. 10.
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Fig. 11 (a).
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Fig. 11 (b).
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Fig. 13.
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Fig. 14.
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Fig. 15.
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Fig. 16 (b).
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Fig. 16 (c).
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Fig. 18 (a).
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