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Mobile Robotic Telepresence: A New Social Hierarchy?

Cheng Lin1 Jimin Rhim1 and AJung Moon1

Abstract— In the past decade, Mobile Robotic Telepresence
(MRP) systems have gained popularity as a tool to enable
remote social interactions. However, there is limited work on
the social norms that govern the novel human-MRP interactions
introduced by these systems. For instance, is it possible that the
users piloting MRPs from a remote location and individuals co-
located with the MRPs have different expectations about how
the other should behave? In this paper, we propose a study to
determine if there is a difference in the social hierarchy expected
by MRP pilots and co-located users, and to investigate what
factors impact this expected social hierarchy.

I. INTRODUCTION

MRP systems—devices typically characterized by a video
conference system mounted on a mobile robotic base [1]—
have been adopted and studied in an increasing number of
application contexts this past decade (e.g., office, education,
elderly care, long-distance relationship, and academic con-
ference settings [2]–[6]). Most of the work investigating the
use of MRPs have explored the new types of communication
MRPs enable, rather than the social interaction norms MRPs
change.

One of the few studies exploring the latter is Lee and
Takayama [2]. In this paper, the authors conducted inter-
views, field work, and surveys of people in three companies
where MRPs had been used for over two months. They
found preliminary evidence that the use of MRPs changes
what remote pilots (those who control the MRP) and local
users (those who interact locally with the MRP) deem to
be socially-acceptable behaviour. However, it is still unclear
whether the remote pilot and local user always agree on what
these new social norms should be. Our proposed work builds
on [2] to conduct an empirical investigation on this topic.

As MRPs are more widely adopted, MRP designers and
individuals looking to use MRPs in their organizations will
need to address the potential social norm conflicts between
pilots and local users. Do the social hierarchies pilots and
local users expect the robot to follow differ during human-
MRP interactions, and if so, what factors influence these
hierarchies? We propose to empirically investigate these
social norm expectations; the results of such a study may
guide future MRP designs, future decisions to adopt MRPs,
and future research.

II. BACKGROUND

The need to study the social hierarchy introduced by novel
technologies such as MRPs was first discussed by Paulos
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and Canny [7]. A decade later, the aforementioned work
by Lee and Takayama suggests that, during human-MRP
interactions, MRPs may occupy a different part of the social
hierarchy than both humans and non-teleoperated machines
[2]. However, across the different Human-robot Interactions
(HRI) in [2], a consistent pattern in the reported social norms
was not found: Local users do not always treat MRPs with
the same norms as they would a co-located human (e.g.,
some local users felt oblidged to help the MRP move around
the office), but they do not always treat the systems like any
other communication device either (e.g., some local users
considered it rude to shut off the MRP without asking the
pilot first).

The above findings suggest that the expected social hi-
erarchy between MRPs and local users may depend on
the specific HRI setting and environment (Context). MRPs
are currently being adopted in a plethora of settings, with
the goal of making such settings more accessible [2]–[6].
Determining how the social norms that govern MRP use
vary across different settings and environments may motivate
future research on how MRPs can be designed to be Context-
specific, and guide organizations in determining if MRPs are
the right choice for their specific application.

In addition to the influence of Context on expected social
norms, Lee and Takayama point out the following two
factors that significantly influence a user’s perception of
what is considered rude or polite treatment of an MRP: (i)
whether the participant referred to the MRP as a “robot” or a
“person”; and (ii) whether the participant was a remote pilot
or a local user.

The first factor suggests that the norms local users an-
ticipate in their interaction with an MRP depend on their
perception of the MRP’s autonomy (Perceived Autonomy)—
as an autonomous robot or an embodiment of the pilot.
Booth et al.’s study on user overtrust in robots supports
the idea that a user’s perception of a robot’s autonomy
impacts social interactions: They report that whether or not
participants communicated with a robot (Turtlebot) depended
on the participants’ belief that the robot was autonomous
vs. teleoperated [8]. Clarifying how the Perceived Autonomy
of an MRP influences a local user’s anticipated norms may
motivate more research on how MRPs can communicate a
pilot’s presence (such as [9]), and guide designers to build
MRPs with pilot presence in mind.

The second factor implies that the expected social hierar-
chy between an MRP and those interacting with it depends
on who you ask: the pilot or the local user (User Type).
Takayama argues that the difference in user experience
between a remote pilot and a local user may be so great that



we need separate theories to predict peoples’ perceptions of
the MRP’s agency [10]. In another study of MRPs in office
settings, Takayama and Go observe numerous instances of
remote pilots and local users employing different metaphors
to describe the same MRP, such as remote pilots using human
metaphors (e.g., person with disabilities) and local users
using nonhuman metaphors (e.g., Skype on wheels) [11].
They note that “mixing metaphors can be quite harmful to
interpersonal interactions in the office” [11, p. 501]. Yang
et al. similarly find in a study on the use of MRPs in
a shopping trip between long-distance couples that remote
pilots attributed higher levels of agency to the MRP than
local users [5]. This influenced how the parties interacted
socially, and whether the local users treated the MRPs as
competent adults. The different ways in which pilots and
local users order humans and MRPs on the social hierarchy
is valuable information for organizations considering MRPs
for their remote workers.

Building on the previous work, we propose to explore
the relationship between expected social hierarchy of MRPs
across the factors Context, Perceived Autonomy, and User
Type. We hypothesize the following:

H1. The more the local user perceives the MRP to be an
embodiment of the pilot, the higher the local user will rank
the MRP on the social hierarchy.

H2. Remote pilots expect MRPs to be treated with a higher
social hierarchy than those expected by local users.

H3. The expected social hierarchy between an MRP and
those who interact with the robot varies across different
settings.

III. METHOD

A. Experiment Design

We propose a 2 (User Type: pilot vs. local user) × 4
(Context) × 2 (MRP display: human face vs. blank screen) ×
2 (Scenario outcome: MRP given right-of-way vs. local user
given right-of-way) between-within multi-factor experiment
study to empirically investigate if a social hierarchy ordering
appears across various human-MRP interactions. In this
online experiment, we plan to design and implement video
simulations of various HRI (Contexts) where a human and
an MRP’s needs conflict and the social priority ordering is
ambiguous. One such Context involves a local user and an
MRP running into each other while lining up at a store:
Would the local user expect to be given right-of-way, or
would they allow the MRP to line up first? What does the
MRP pilot expect?

Participants will first be split into two groups according
to User Type (pilots and local users). After answering a
demographic questionnaire and reading an introductory ex-
cerpt about MRPs, participants will watch a random selection
of simulated human-MRP interactions, recorded from the
first-person perspective of their assigned User Type. Each
simulation will be of a different Context, and will have

accompanying text that introduces the participant to the
setting.

For each User Type of each Context, we will vary two
factors: the MRP’s display and the outcome of the scenario.
We will vary the simulated MRP’s display to either contain
the face of a human pilot or a blank screen; this will
manipulate the user’s Perceived Autonomy. Secondly, we will
vary whether the end of the simulated scenarios show the
MRP or the local user receiving right-of-way.

B. Measures and Expected Results

To observe the social hierarchy pilots and local users
expect across the independent variables, we will measure the
acceptability of the HRI scenario outcomes and the perceived
autonomy of the MRP. These measures will be collected
in the form of an online questionnaire accompanying each
recorded simulation, using acceptability and Perceived Au-
tonomy scales that will be validated through a pilot study.

The difference in reported acceptability between the two
scenario outcomes of each Context will indicate the rela-
tive social hierarchy ordering between MRPs and humans.
We will conduct statistical analysis on this difference with
respect to our experiment factors. We expect to find a sig-
nificant relationship between the difference in acceptability
scores and the Perceived Autonomy of the MRP (H1) and
also between the difference in acceptability scores and the
User Type of the participant (H2). We expect to find an effect
of varying Context on the measures as well (H3).

IV. CONCLUSIONS
Despite the growing popularity of MRPs in various social

settings, there is limited work on the social norms that govern
human-MRP interactions. Potential conflict between the ex-
pected social norms of MRP pilots and local users presents a
challenge for both MRP designers and organizations looking
to adopt MRPs. Our proposed study contributes to the design
and deployment of MRPs through an empirical investigation
of the social hierarchy pilots and local users expect and the
factors that influence the expected hierarchy.
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 

Abstract— Trust is one of the hallmarks of human-human and 

human-robot interaction. Extensive evidence has shown that 

trust among humans requires reciprocity. Conversely, research 

in human-robot interaction (HRI) has mostly relied on a 

unidirectional view of trust that focuses on robots' reliability and 

performance. The current paper argues that reciprocity may 

also play a key role in the emergence of mutual trust and 

successful collaboration between humans and robots. We will 

gather and discuss works that reveal a reciprocal dimension in 

human-robot trust, paving the way to a bidirectional and 

dynamic view of trust in HRI. 

I. INTRODUCTION 

Humans are inherently social and cooperative beings. This 
aspect of human behavior is somewhat puzzling, since natural 
selection should theoretically favor selfish behavior. A crucial 
mechanism sustaining the emergence and maintenance of 
cooperation among human is reciprocity, which assumes that 
one’s tendency to cooperate is conditional upon others’ 
cooperation. Reciprocity is also fundamental for the 
maintenance of mutual trust between peers: if we never trust 
others, it is unlikely that others will trust us in the future. 
Indeed, trust among humans is a relational phenomenon, 
which requires that all the individuals involved in interactions 
and relationships accept a condition of vulnerability to others, 
believing that others will not exploit this vulnerability [1]. For 
these reasons, reciprocity has been established in human 
societies as a social norm [2]. 

However, reciprocity has not been given a crucial role in 
human-robot interaction (HRI) research, especially in the 
study of human-robot trust. The unspoken assumption, which 
stems from the traditional view of trust in automation, is that 
the emergence of trust between humans and robots does not 
need reciprocity due to the intrinsic asymmetrical nature of 
human-machine relationships. In fact, the research emphasis is 
almost entirely on the physical, behavioral and functional 
characteristics of robots: humans trust robots if they are 
functionally reliable, whereas they do not trust them otherwise.  

The main thesis of the current paper is that reciprocity may 
play a role in supporting mutual trust between humans and 
robots. In other words, we argue that human trust towards 
robots may be influenced by the trust expressed, in turn, by 
robots towards humans during interaction. We will gather 
existent studies revealing the emergence of reciprocal 
dynamics in human-robot trust-based interactions and outline 
a research agenda that see reciprocity as one of the factors 
shaping human-robot trust and collaboration.  
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II. TRUST AND RECIPROCITY IN HRI 

Trust is undoubtedly one of the main mechanisms 
supporting collaboration with robots. Trusting our 
autonomous partners is crucial to delegate responsibility and 
accept help from them. Historically, research on trust in HRI 
conceptualized trust as a one-sided process of evaluation of the 
functional competence and reliability of robotic agents. 
Extensive evidence has shown that the main determinant of 
trust in robots is their performance (e.g. [3, 4]). Humans trust 
robots as long as they show reliable behavior, but they quickly 
lose trust in in presence of failures [5, 6], leading to disuse of 
the robotic system [7, 8].  

Nonetheless, evidence in HRI highlighted the emergence 
of distortions in the process of weighting of robots’ 
competence and the relative expression of trust in them. For 
instance, recent studies have shown that individuals may over-
comply with the instructions of robots, even if they have 
previously shown faulty or unreliable behavior [9-12]. One 
possibility is that the overt expression of trust towards robots 
does not always match the individual internal representation of 
the robot’s reliability. This effect might be driven by pro-social 
attitudes towards social robots, which have been observed in 
numerous studies (e.g., see [13-15]). At the same time, recent 
evidence highlighted the emergence of reciprocity in repeated 
and multi-stage games such as the Prisoner’s Dilemma and the 
Ultimatum Game [16]. Altogether, we hypothesize that trust-
based relationships between humans and robots could be 
shaped, at least in part, by those relational and reciprocal 
mechanisms typically intervening in human-human 
interaction.  

A recent study by Zonca and colleagues [17] tested this 
hypothesis by a novel experimental paradigm investigating the 
emergence of reciprocal trust in human-robot interaction. In a 
joint task, a human participant and a humanoid robot iCub 
made perceptual judgments and signaled their trust in the 
partner. The robot’s trust was dynamically manipulated along 
the experiment and participants could observe both robots' 
perceptual responses (that were extremely accurate) and trust 
feedback. Results show that participants did not learn from a 
robot that was showing high trust in them, since the robot’s 
trust signaled incompetence. However, they were unwilling to 
disclose their distrust to the robot if they expected future 
interactions with it. These findings reveal that the overt 
expression of trust in robots may be modulated by reciprocity, 
mirroring recent findings observed in human peer interaction 
and child-adult interaction [18-21].  
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Strohkorb Sebo and colleagues [22] tested the impact of a 
robot showing vulnerability on human groups of participants 
during a collaborative game. Results suggest that robots’ 
vulnerability had a “ripple effect” on the trust-related behavior 
of participants, who were in turn more willing to disclose their 
vulnerable state to their teammates, reducing the amount of 
tension of the team. In line with these findings, a recent study 
[23] revealed that individuals are more prone to trust a robot 
and collaborate with it when the robot blames itself for 
collaborative failures. 

In line with this “reciprocal” conceptualization of trust, 
recent works started to model trust from a robot-centered 
perspective. In particular, the cognitive architecture developed 
by Vinanzi and colleagues [24, 25] combines trust and Theory 
of Mind (TOM) modules with an episodic memory system to 
allow a humanoid robot to evaluate the trustworthiness of 
human partners in joint tasks. The authors have shown that 
allowing robots to monitor the current performance of the 
human partner(s) and take control of the task in case of need 
enhances collaborative performance in a joint task.  

III. TOWARDS A “RECIPROCAL” VIEW OF TRUST IN HRI 

Altogether, recent research in HRI put the accent on a 
bidirectional view of human-robot trust: our trust towards a 
robot may be influenced by the trust shown by the robot itself, 
following those reciprocal mechanisms that we generally 
observe in human-human interaction. In line with this view, 
social and collaborative robots should be able to adapt their 
trust-related behavior to modulate and maximize human trust. 
To achieve this goal, a social robot should be endowed with 
the ability to track human partners' capabilities and their trust 
in the robot itself. Moreover, it should react to the ongoing 
functional and relational joint dynamics to preserve or improve 
collaboration by increasing its trustworthiness in the eyes of 
the current human partner(s). Following reciprocal dynamics 
in interaction, the robot might need to balance the attempts to 
take the lead or comply with the human partner during a joint 
task, in order to optimize task-related performance and, at the 
same time, preserve human-robot trust-based collaboration 
and social norms.  

In this respect, one important question is whether robots 
should exhibit negative reciprocity, that is, should distrust a 
human partner who does not trust the robot. In fact, this might 
appear as an anti-social behavior in the eyes of human partner: 
do we really want robots that distrust and possibly upset 
humans? The answer depends on the human-robot 
collaborative context and the relative goals of the interacting 
partners. In particular, we suggest that negative reciprocal trust 
could be useful in contexts in which robots must assist people 
in need (e.g., elderly people, patients with reduced mobility), 
who should trust the robot to accomplish their everyday goals. 
In human-human interaction, negative reciprocity has the 
peculiar function to signal to a selfish or anti-social partner the 
inappropriateness of their behavior. In many cases, the selfish 
individual re-starts to behave pro-socially to preserve the trust 
relationship. In the same way, a robot that negatively 
reciprocates trust (i.e., a robot that stop to trust the human 
partner when the human does not trust the robot) would signal 
that a social norm has been broken, possibly leading the human 
partner to increase their trust in the robot, with benefit for the 
human. Ironically, special attention should be put on the 

implementation of positive reciprocal trust in assistive robots. 
In this case, the robot would reciprocate trust by increasing its 
own level of trust in the human partner (e.g., a patient), 
possibly conceding more autonomy to the human. In this 
scenario, the robot should be careful in blindly reciprocating 
trust, since it should prioritize the patient’s safety, even if this 
comes at the expenses of social norms.  

In this regard, a key aspect concerning the development of 
“reciprocal” robots is the definition of the actual robots’ goals, 
especially in the case of social robots that would collaborate 
with humans and assist them. Enabling robots to act with the 
unique goal of producing specific contextual actions (e.g., 
lifting a heavy object, accompanying a patient to a specific 
location) might lead back to an asymmetrical relationship 
between a human and a robot intended as a mechanical tool. 
To overcome this limitation, Man and Damasio [26] 
ambitiously suggested that robots, as intelligent and 
intentional agents, should hold their own meta-goal of self-
preservation, acting as mechanical peers in human societies. 
This new class of autonomous agents would rely on 
homeostatic principles, which regulate body and mental states 
in order to maintain conditions compatible with life. At the 
same time, Man and Damasio argue that the goal of self-
preservation should be combined with empathy, which would 
prevent robots to arm humans, or other robotic agents. We 
believe that further research should be conducted to investigate 
the impact of different robots’ high-level goals on the human 
willingness to trust robots and collaborate with them. In this 
respect, a delicate issue is how a robot could manage a set of 
distinct, complementary goals in case of conflict between 
them. For instance, we need to understand how a robot should 
decide if reciprocating trust by balancing considerations on the 
immediate humans’ emotional consequences of reciprocity 
with the long-term benefits of sustained human-robot 
collaboration. 

Furthermore, it is still unclear whether humans should be 
aware of robots’ goals and how this knowledge may influence 
the emergence of relational dynamics such as reciprocity. Can 
reciprocity arise when interacting with agents without 
transparent goals, motives and desires? In fact, reciprocity 
among humans settled as a social norm due to common 
knowledge on 1) the immediate, individual incentives to defect 
during cooperation and on 2) the complementary long-term 
benefits of cooperative behavior. On the contrary, knowledge 
of the motivations driving robots’ actions can be extremely 
fuzzy in naïve individuals, possibly hindering the 
establishment of human-like relational mechanisms. For 
instance, reciprocity in human-robot interaction requires that 
humans know that robots are aware of social norms and may 
comply with them to achieve successful collaboration or 
please their human partner(s). In this sense, transparency about 
the purposes underlying the behavior of a robotic system may 
be crucial in promoting human-robot collaboration [27]. 
Further research is needed to understand whether a certain 
degree of transparency is necessary for the establishment of 
social norms in human-robot interactions. Human knowledge 
about the robot’s goals and motives might be either general 
(e.g., the robot has the goal to preserve my safety and well-
being) or domain-specific (e.g., the robot has the goal to help 
me get out of bed). Future studies may reveal the impact of 
partial or complete knowledge about different types of robots’ 



  

goals on the establishment of social norms and the success of 
human-robot interaction and collaboration. 

IV. CONCLUSION 

The ambition of designing robotic collaborators, rather 

than anthropomorphic mechanical tools, opens the question 

of whether human-robot trust relationships should be 

reciprocal, as those among human peers. Although research 

on the role of reciprocity in human-robot trust is still very 

limited, recent findings suggest that trust towards robots is not 

a mere function of their perceived competence and reliability. 

Further research is needed to unveil the extent to which 

human trust in robots can be shaped by relational and 

reciprocal dynamics in joint activities. Crucially, these 

aspects may be fundamental in the design of robots that 

effectively act as collaborative companions in contexts such 

as healthcare, rehabilitation, education and assistance for the 

elderly. 
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Abstract— 

In this paper, we present our ongoing research on socially 
acceptable robot navigation for an indoor elevator sharing 
scenario. We highlight the current challenge of designing 
interactions for a robot behavior, both effective in accomplishing 
tasks but not intrusive or at risk of breakdown. We discuss the 
advantages and limitations of modeling these behaviors based on a 
full human-like approach. In particular, we discuss the risk that a 
full human-like approach presents of creating the illusion of social 
competence. It has been observed that this illusion often leads to 
breakdowns when the technology is faced with complex and 
potentially ambiguous social situations. We propose the principle 
of “machine-like yet human-friendly” behavior to address the 
risks of the completely human mimicking approach. We believe 
that this approach can provide more understandable and less 
disruptive behaviors for routine integration into human spaces. 
We conclude by discussing the need for a multi-layer experiment 
set up to evaluate and validate this approach. 

Keywords: Social norms; Robot navigation; Robot legibility. 

I. INTRODUCTION 
Questions around what constitutes socially acceptable 

behavior for autonomous agents are not new to the HRI 
community [1]. The safe and harmonious deployment of robots 
in public spaces requires their social behavior to be 
understandable and predictable [2]. The social norms that 
constitute the fabric of human interactions can be very 
informative to model the robot behaviors and blend them into a 
social setting. These norms are potentially useful for modeling 
machine behavior in an understandable way and adapting it to 
the context [3]. 

In this paper, we present how our current work in the area of 
social navigation has benefited from a fine-grained 
understanding of the social norms that are present during the 
activity of taking a shared elevator. In this work, we have 
focused on indoor scenarios using a robot platform developed by 
our organization. These robots are capable of navigating 
autonomously and carrying objects (Figure 1). These scenarios 
include delivering parcels and food orders in the context of a 
large office building. The robots we design have some dedicated 
infrastructure (such as dedicated elevators in a specific office 
building). However, they also have to be able to utilize shared 

infrastructure and spaces with humans at certain times. The 
robots are controlled by a centralized processing robot brain to 
keep each robot relatively simple and modular, reducing unit 
costs. In these office scenarios, we focus our investigation on 
aspects of social robot navigation involving the use of shared 
elevators with humans. 

Previous research has focused on the technical development 
of robots able to autonomously operate and ride elevators with 
humans, such as [4] and [5].  However, we are not aware of any 
prior art that explicitly investigates the appropriate navigation 
behavior a robot should display considering social norms and 
human preferences for that specific context. Indeed, this context 
presents a range of challenges that go beyond the interaction 
with the infrastructure, such as negotiation of priorities or 
movement and coordination in reduced spaces. 

 
Figure 1. The NAVER robotic platform. 

When investigating the broader domain of social robot 
navigation, we have come across several approaches and 
specific contributions to enable a socially acceptable interaction. 
However, we encountered the lack of a common approach that 
characterizes the aimed-for human-friendliness that we could 
adopt in our work. This led to the definition of our own 
approach, which is design-driven and grounded in a fine-grained 
understanding of the social interactions at play in the context of 
interest. In doing so, we also drew inspiration from the body of 
work that has highlighted the challenges involved in making 
complex AI systems and decision making transparent to lay 
users, when encountering these systems in shared spaces and 
infrastructure [6][7], e.g., in the context of Autonomous 
Vehicles.  
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II. SOCIAL NAVIGATION WHILE TAKING A SHARED 
ELEVATOR 

As mentioned in the introduction, our research focuses on 
indoor office scenarios. These scenarios involve robots sharing 
elevators with employees and visitors at our corporate 
headquarters. The robots deliver parcels and food orders in the 
context of a large office building, where they display 
autonomous behaviors and are controlled by a dedicated 
infrastructure. This dedicated infrastructure foresees the use of 
robot-only elevators and moments in which robots would need 
to be able to use shared elevators, e.g., when the workload is 
high. While we have seen commercial robots navigate in and out 
of elevators, there is little focus on the issues of proxemics and 
cultural preferences [8] in this context. Designing for such issues 
requires a distinction between what might be characterized and 
reduced to rules easily built into the robots’ navigation behaviors 
and more nuanced matters of elevator social norms that would 
require the robots to identify things like human gaze and posture 
and read their interactional meaning and valence. While in our 
corporate headquarters, the centralized robot “brain” can operate 
the elevators for the robots, the scenario of robots using the 
elevators also points to the need for more complex interactions 
designed to enhance the robots’ flexibility. Such interactions 
include robots requesting assistance operating elevators that 
might not be explicitly designed for their use and not integrated 
into the robotic platform’s infrastructure. This need is similar to 
those investigated in the context of collaborative robotics [4] 
aimed at creating robots capable of compensating for their 
physical (ability to manipulate the environment) or perceptual 
limitations by eliciting human assistance [9].  

We are aware of existing commercial robots using elevators, 
which rely mainly on speech interfaces, i.e., the robot 
announcing its intention to enter the elevator and declaring 
where they will position themselves [10]. While this can be an 
effective strategy, it clearly places the burden of making the 
interaction work on the people sharing the elevator with the 
robot. It may even be socially acceptable if the interactions are 
occasional (as might be the case, for example, with delivery 
robots in a hotel where any given guest might encounter the 
robot once during their stay). However, in an office environment 
with service robots performing routine tasks, encounters with 
robots in elevators are likely to be a daily occurrence for people 
working in the building, which means that negotiating the use of 
elevators through loud verbal announcements could quickly 
become tiresome.  

A different and far more ambitious technology and 
interaction design paradigm might be to develop a platform 
capable of reading non-verbal behavior and the social context 
and its norms. This understanding could enable more subtle 
interactions, with robots that treat people as agents occupying a 
shared space with rules to follow for things like order of service 
and priority, rather than just obstacles to be avoided. This, of 
course, presents a substantial challenge as there is a semantic gap 
to be bridged between detecting things like posture or predicting 
movement (intentionality) and making dynamic and 
contextually appropriate decisions in what is (most of the time, 
but not always) for us a straightforward, but quite nuanced social 
interaction.  

A. Understanding the activity 
In our approach to the elevator scenario, we first studied 

what we might call the practice of taking the elevator. While it 
is in many ways a straightforward accomplishment (arguably 
more than driving a car in traffic), it is also constituted of 
practices that are methodical and accountable, with normative 
components and nuanced, often non-verbal use of space and 
resources. We analyzed approximately 16 hours of video data 
gathered by placing a video camera in the elevator lobby of one 
of our company’s research labs. We adopted an 
ethnomethodological analytic orientation [11] to understand the 
specific practices of waiting for, entering, and exiting an 
elevator.  We do not go into all the findings in detail here, but 
for the purpose of this discussion, we focus on how the order of 
service is managed (who enters the elevator first when multiple 
people are waiting). Our observations reveal that there is a 
general first-come-first-served principle that is applied, but it is 
a weak one. People do not form proper queues, especially where 
multiple elevators are linked to a single call function. In this 
common scenario, people often drift towards the lobby’s center 
and only position themselves clearly in front of a door when the 
elevator lights indicate it will be the next available elevator. 
However, the elevator lights are not entirely reliable as the 
elevator status may change, and the next available elevator may, 
in fact, be at the other end of the lobby. In such cases, people 
moving back and forth across the lobby (chasing the next 
available elevator) may lose or have to renegotiate their priority 
in the order of service. Additionally, groups of people wait in the 
lobby with the intention of taking the elevator together. These 
groups also have weak form attributes regarding closeness and 
body orientation, making it ambiguous sometimes even to a 
human observer. These groups might stand in front of the 
elevator, even calling for it while waiting for another member 
(Figure 2). The difference between a fully formed group and one 
under composition is related to elements like distance and body 
orientation. However, also in this case, several ambiguous 
situations have been observed in our videos. 

 

 
Figure 2. Waiting for another member to join in front of the elevator. 

This seemingly obvious and easily accomplished behavior 
would present serious challenges if we wanted a socially 
competent robot to fully understand and mimic it. For example, 
what [12] describes as the order of waiting is constituted of both 
ordered and disordered formations, with demarcations and 
affiliations that are constantly produced and renegotiated. Even 
if we had computer vision technology that was capable of 



 

reliably and dynamically detecting things like posture, 
orientation, distance and displacement with respect to other 
people and elevator doors [13], gaze and facial expression, and 
computing the semantically and situationally appropriate 
reading of the situation, the nuances of the context would still be 
hard to capture, as they are for a human being at times. 
Additionally, we question how comfortable people would be 
with robots that fully mimic human-like behaviors and how 
these behaviors might contribute to an illusion of social 
competence. 

One of the problems that concern us here and that we think 
is of interest to the HRI community is that, as [14] observed 
many years ago, the breakdowns in the interactions between 
technology and its users were often instantiated by what could 
be described as the illusion of social competence. Therefore, the 
design challenge we are exposed to is how an agent can 
effectively navigate shared spaces with people, focusing on 
safety and minimal disruption, but without necessarily being 
burdened with the normative expectations of being perceived as 
a fully human-like socially competent agent. This challenge 
resonates with discussions that have been done in a broader 
sense on the use (and extent of use) of anthropomorphic 
elements for robotic visual and behavioral elements’ design [15]. 

With these considerations, we are experimenting with an 
intermediate option in which robots both exploit an 
understanding of the social situation and retain its representation 
as a tool to exhibit “machine-like yet human-friendly 
behaviors.” Previous research [16] has defined machine-like 
behavior as the behavior that exploits machines' characteristics 
like sensors that humans do not have. For instance, autonomous 
vehicles (AVs) can know the position of other AVs without 
seeing them and act accordingly. Human-like behaviors are 
defined as the typical behaviors exhibited by humans based on 
their social understanding of other actors and the context. In our 
machine-like yet human-friendly behavior paradigm, we mix 
machine and human-like behaviors. We adopt human behavior 
elements that allow the robot to demonstrate the necessary level 
of social understanding that avoids disrupting the activity while 
ensuring task completion (e.g., position and direction with 
respect to the elevator door). We further incorporate machine-
specific elements that convey the robot's role as subordinate 
entities with limited social understanding (e.g., unidirectional 
communication of intent and priority to humans as much as 
possible). We hypothesize that this approach would prevent the 
illusion problem introduced by taking a full human-like 
approach. 

Our approach is reflected in a number of design choices 
aimed at creating robots with elegant, clear, and direct 
interaction mechanisms that encourage users to, for example, 
limit their needs of engaging with the service robots to what is 
part of their tasks and within their scope, and not beyond. This 
approach can limit potential breakdowns while ensuring that the 
robot does not disrupt the routine activity, i.e., taking the 
elevator. Indeed, this activity should be designed to become a 
non-experience, something people do without thinking and 
without consciously experiencing the interactions [17]. 

B.  The reality of social competence 
The notions of social competence come into play when 

technology designers use generic interaction metaphors like 
human-like or pet-like that give connotations that burden the 
agent individual and culturally dependent expectations. 
Moreover, as mentioned, the complicated technology 
computations required to model these socially nuanced and 
potentially ambiguous situations contextually are still a limiting 
factor to consider.  

TABLE I.  DEFINING OUR PROPOSED APPROACH WITHIN THE SPECTRUM 
OF MACHINE-LIKE AND HUMAN-LIKE BEHAVIORS IN THE SHARED ELEVATOR 

CONTEXT 

 

 

To explain, we can take an example of waiting for an elevator 
scenario in which the robot is designed to have human-like 
behaviors. In this scenario, the robot should detect if a crowd of 
people is actually waiting for the elevator to act accordingly. 
This would require understanding if the group is waiting for the 
elevator or another group member to join them. In our video 
observations, we identify human pose and distance to the 
elevator as indicators of intention. However, we recognize that 
these elements are not enough to identify with confidence the 
group intention, even for a human evaluator. In order to 
disambiguate the situation, the robot would then need to initiate 
interactions with the group or take guesses to queue behind the 
unstructured group, potentially (and unnecessarily) delaying the 
service accomplishment. We further hypothesize that people 

 Machine-like Machine-like 
yet Human-
friendly 

Human-like 

Social 
awareness 

No. 

The robot is not 
able to 
differentiate 
humans from 
other obstacles. 

Some 

The robot can 
detect humans 
and is aware of 
people entering 
and exiting to 
decide its 
actions. 

Yes 

The robot 
detects humans 
and their 
intentions. It 
adopts queuing 
as done by 
humans and 
moves of 
position 
according to an 
understanding 
of situations. 

Communication 
of intent 

Non-verbal, 
e.g., sounds. 

The robot only 
gives 
information for 
consumption. 

The robot uses 
subtle non-
verbal 
interface 
elements to 
broadcast intent, 
which are 
deliberate 
design choices 
for information 
consumption 
only. 

Verbal and 
non-verbal like 
gaze, body 
posture, etc. 

The robot and 
the humans  
acknowledge 
and exchange 
information. 

Movement and 
position 

The robot 
positions itself 
in front of the 
door and always 
enters first. 

The robot takes 
a fixed waiting 
position and 
gives priority, 
except in 
urgency. 

Mimics 
humans with 
queuing and 
position 
adjustments. 



 

would not feel comfortable with a robot that moves like humans, 
making continuous adjustments rather than taking a designated 
waiting position. Hence, we distance ourselves from following 
the strict approach of fully exploiting understanding and 
adherence to the elevator social norms in our work and establish 
the notion of machine-like yet human-friendly interaction 
behaviors. We define such behaviors as ones that respect human 
and social considerations particularly relevant to this activity and 
social context without explicitly mimicking human behaviors. 
As previously described, one of our findings exposed the fluidity 
of queuing and taking an elevator in a multi-elevator setting 
linked to common call buttons. In this case, a human-like 
behavior of changing queues and moving from elevator to 
elevator, as a human would do, would be relatable yet 
unpredictable, annoying, and potentially hazardous. Considering 
this, we designed specific actions to be taken by the robot based 
on only some elements of the elevator human etiquette while 
also putting in place specific and clear robot behaviors (TABLE 
I. ).  

C. Designing the robot behavior 
The design of the activity is broken down into the following 

stages: waiting, entering, riding, and exiting the elevator. At the 
same time, each stage is divided into several smaller actions 
performed by the robot, during which the robot will display a 
series of communication states. Each state aims to convey a 
specific intent by using different communication modalities (i.e., 
sound, light, displays, projection, and anticipatory movements) 
and combinations of them. For this paper, we only describe the 
waiting and entry stages of the activity, along with the specific 
actions involved.  

Waiting for the elevator: 

a) Calls elevator 
• The robot navigates to the elevator hall (it might 

encounter people waiting for the elevator in an 
unstructured queue or be the first to arrive). 

• The robot calls the elevator and receives the 
information about the elevator that will arrive next. 
Elevator indicators should reflect this information. 

b) Navigate to Waiting Position 
• The robot navigates to the fixed waiting position 

(Figure 3). It commits to the corresponding elevator, 
even if the situation changes and another elevator 
arrives first (unlike a human-like behavior). 

• If it detects humans within 46 cm [18], it tries to go 
around them or starts a Request state to ask 
permission to pass. We should point out that this 
distance might need to change in different cultures or 
contexts (e.g., within the elevator, where there is 
limited space). If the robot detects obstacles within 10 
cm is tries to go around them.  

c) Robot waits 
• Once it reaches the Waiting Position, the robot 

displays it is in Waiting state. 
• Regardless of people’s movements around it, the 

robot remains in that place to avoid disrupting them 

with small position adjustments (unlike a human-like 
behavior). 

 
Entering the elevator: 
d) Elevator arrives 

• The robot detects people exiting the elevator and 
waits for them to exit. 

e) The robot lets people enter first 
• After everyone left the elevator, the robot detects 

people are entering. 
• If people are entering, it remains in place and triggers 

a Yielding state and lets people waiting to enter, 
regardless of the order of arrival (unlike a human-like 
behavior). 

• Once everyone has entered the elevator, the robot 
triggers an In-Motion state. 

 
f) Robot enters first 

• In certain cases, if the robot’s task (such as delivering 
hot coffee or food) is to be completed within a certain 
timeframe, the robot triggers an Urgent state right after 
people stop exiting the elevator. The Urgent state 
communicates the intention to enter first (even if it 
detects people are entering), and the robot enters the 
elevator. This behavior should be triggered only when 
a new (next) elevator arrives to avoid confusing people 
in the process of entering the elevator. 

 

 
 

Figure 3. The robot takes a designated waiting position regardless of the 
position of the humans waiting for the elevator. 

D. Considerations regarding experiment design 
The social navigation behavior that we have designed based 

on the above considerations has resulted in the following 
hypothesis that we will assess with several user experiments, 
each tailored to the specific level of design under consideration.  

• In certain cases (especially related to positioning and 
movements), people will understand and prefer 
machine-like yet human-friendly robot actions rather 
than those mimicking humans, such as the subtle 
movements exhibited by people taking elevators. 



 

• Our proposed robot’s behaviors for communicating 
intent (calling the elevator, waiting, entering) will be 
as understandable and less intrusive than  fully human-
like ones, for the first use as well as for an extended 
period.  

In our elevator-taking scenario, the actions of waiting and 
entering have to be tested under the conditions of machine-like 
yet human-friendly and human-like to provide proof for our first 
hypothesis.  

While to test the second hypothesis, we need to test the 
understandability of different alternate communication 
modalities used by the robot against the baseline of verbal 
interaction modality commonly used in existing service robots.  

E. The layered testing approach 
Our design proposal combines a range of navigation policies 

and different communication modalities to convey the robot’s 
intent. To effectively validate the impact of these different 
elements, we need first to evaluate them independently to 
conduct then tests that integrate them into a comprehensive 
service. For this reason, we decided to adopt a layered testing 
approach consisting of three steps: online experiments, in-situ 
experiments, and naturalistic observations of the robot working 
in context. We also add naturalistic observations to our testing 
toolkit for a better ecological validity of our robotic service. 

Online experiment. While online experiments may have 
limitations related to participants’ profile, level of engagement, 
and quality of results, they can provide preliminary feedback 
without the constraints of participants’ time and exhaustion. We 
will compare several alternatives for each defined action 
through a perceptual, low fidelity experiment in which videos 
of the situations identified around elevators with each condition 
(alternatives for specific features, e.g., position, interfaces, etc.) 
will be shown to participants. We will collect and analyze 
objective and subjective measurements of participants’ 
understanding and preference for each condition. 

In-situ experiment. In-situ evaluations are seen to be more 
valid, especially for performance-related metrics like response 
time, completion time, or tasks completed. We will evaluate the 
pre-selected alternate behaviors/features (from the results of the 
online experiment) in a realistic set-up. Participants will be 
requested to perform the actions related to using elevators while 
sharing the waiting space with a robot. We will collect objective 
measurements of response time and task completion and 
subjective measurements of understanding and preference. 

Naturalistic observation. Evaluations conducted in lab-
based controlled settings often lack ecological validity. To 
counter this, experimenters rely on experimental realism or 
simulating the context of use. While this is effective, it can still 
produce bias as the participants are recruited and briefed about 
the experiment [19], and the introduced novelty can also 
influence them. Hence, naturalistic observations can counter 
these effects. We will deploy the robot in the wild with the 
selected features from the in-situ test. We will capture and 
analyze the reaction of passers-by and people taking a shared 
elevator for first encounters and an extended period. Through 

video analysis, the person or group’s understanding and 
preference will be analyzed. 

III. CONCLUSION 
The real-world deployment of autonomous robots presents 

several complexities. In an indoor environment, robots sharing 
an elevator with people can be considered one of the scenarios 
that will soon be a reality. To design for near-future deployable 
robots, the illusion of social competence of the robots must be 
carefully managed, as well the robot harmoniously blending 
with the social norms of a setting. Indeed, the technology does 
not provide fully reliable solutions to understand and model the 
complex and potentially ambiguous social situations we 
observed. Moreover, it is still an open question if a fully human-
like behavior is desirable in autonomous agents. Hence, we 
propose a machine-like yet human-friendly approach to the 
design of robot navigation behaviors and a layered testing 
approach. Through these experiments, we aim to validate our 
assumption that machine-like yet human-friendly interactions 
are preferable for the robot’s social behaviour. 
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Learning Social Navigation from Demonstrations with Deep Neural
Networks

Yigit Yildirim1 and Emre Ugur2

Abstract— Traditional path planning techniques treat hu-
mans as obstacles. This has changed since robots started to
enter human environments. On modern robots, social naviga-
tion has become an important aspect of navigation systems. To
use learning-based techniques to achieve social navigation, a
powerful framework that is capable of representing complex
functions with as few data as possible is required. In this
study, we benefited from recent advances in deep learning at
both global and local planning levels to achieve human-aware
navigation on a simulated robot. Two distinct deep models are
trained with respective objectives: one for global planning and
one for local planning. These models are then employed in
the simulated robot. In the end, it has been shown that our
model can successfully carry out both global and local planning
tasks. We have shown that our system could generate paths that
successfully reach targets while avoiding obstacles with better
performance compared to feed-forward neural networks.

I. INTRODUCTION

Mobile robot navigation has been studied for decades.
Many notable techniques have been proposed in this area
over the years, [1], [2], [3]. These approaches have prioritized
the safety and the robustness features, i.e. the principal driv-
ing factor behind the development in this field has been the
collision avoidance [4]. On the other hand, as humans start
to share their environments with robots, new requirements
for mobile robot navigation have emerged.

In [5], physical and mental aspects of the safety are
separately evaluated. This separation reveals the need to
question the psychological efficiency of navigation systems
of mobile robots. Keeping in mind the assumption that
humans prefer to interact with machines in the same way
that they interact with other people, in order to achieve a
natural integration to the environments populated by people,
mobile robots must be developed to be not only safe but also
comprehensible.

Broadly speaking, human-aware navigation corresponds to
the navigation that complies with the social rules of the
people. In their own environments, humans tend to work
cooperatively to realize social navigation. Then, it is only
natural to imitate this behavior on the robots to achieve
socially-acceptable navigation. However, imitating people
introduces new constraints to be satisfied by the navigation
systems of robots.

These constraints have been addressed in many studies in
the literature. Essentially, these studies can be divided into

1Yigit Yildirim is with Computer Engineering Department, Bogazici
University, Istanbul, Turkey yigit.yildirim@boun.edu.tr

2Emre Ugur is with Computer Engineering Department, Bogazici Uni-
versity, Istanbul, Turkey emre.ugur@boun.edu.tr

two categories: manually-encoded controllers and learning-
based ones. One of the notable studies of the first category is
the Social Force Model (SFM) [6]. Based on the behavioral
techniques from social sciences, SFM suggests that pedes-
trians move under the effect of certain abstract forces, just
like the particles in an electrical field. While the navigational
goal attracts the pedestrian, obstacles and other people exert
repulsive forces. Despite its wide application[7], [8], [9],
some researchers state that not being based on the statistical
data is a weakness of the model [10].

To create statistics-based socially compliant navigation
frameworks, a large number of machine learning algorithms
have been employed. One of the popular algorithms is
Inverse Reinforcement Learning (IRL) [11], [12], [13]. Given
the perfect expert demonstrations, IRL tries to identify the
underlying reward structure, which in turn can be used by any
Reinforcement Learning (RL) algorithm to create a human-
aware navigation policy. Even though the justification of the
unfixed reward function is appealing, the features that shape
the reward function are assumed to be known, which is
considered as a strong assumption [14]. Generally in this
domain, feature engineering leads to strong assumptions.
This problem can be solved by extracting the social behaviors
and navigation strategies of pedestrians directly from the
data. This is challenging because the controller needs to be
complex enough to capture the non-linearities in the data.

To address this issue in social navigation domain, deep
learning techniques have been used. In [15], Deep Rein-
forcement Learning is used to obtain a socially plausible
navigation policy. As in other RL approaches, this procedure
relies on a predefined reward which is difficult to obtain.
Imitation Learning skips the reward extraction and tries
to learn policies directly from the data. In [16] and [17],
Generative Adversarial Networks are used for this purpose.
These approaches are complex enough to overcome the
aforementioned issues. However, these models need too
much data to be trained [18]. On the other hand, the preferred
system needs to learn from a small dataset and to generalize
to novel configurations.

Moreover, the majority of the studies on this domain
target only the local controller of the robot as it is the part
that creates motion commands to drive the robot. However,
using only the local controller makes the robot vulnerable
to local minima [19]. Today, typical robotic navigation
systems adopt the two-layered hierarchical approach for path
planning tasks. Given a map of the environment, a robot
firstly calculates a trajectory in the so-called global planning
phase. Then, the robot follows the computed trajectory with



a controller in the so-called local planning phase.
In this paper, we use Conditional Neural Processes (CNPs)

[20] in order to address the issues mentioned above in both
global and local planning phases. CNPs can be modified to
generate complete trajectories to replace the global planner.
Also, they can create goal-directed behavior while actively
avoiding obstacles. This characteristic makes it a candidate
for the local planner, as well. CNPs extract the prior knowl-
edge directly from the training data by sampling observations
from it, and uses it to predict a conditional distribution over
any other target points. CNPs can learn complex temporal
relations in connection with external parameters and goals. In
this paper, we present the initial results of our system. Upon
successful preliminary results with this conceptual model,
we aim to extend this work to integrate our path planning
system into an actual robot in another study.

II. RELATED WORK

Traditionally, approaches to solve the path planning prob-
lem can be divided into two categories based on the en-
vironmental knowledge they use: deliberate and reactive.
Deliberate planners exploit the environmental knowledge by
means of static maps and calculate the robot’s trajectory
before execution. On the other hand, reactive planners rely
on sensory information to deal with local parts of the envi-
ronment. Either approach has its advantages and drawbacks.
Hence, the evolution of the path planning approaches leads to
the combination of these two approaches. Hybrid frameworks
have been the typical approach for many years, as explained
in [21].

In the following, we elaborate on this conventional frame-
work’s building blocks and the social navigation concept.

A. Hierarchical Path Planning

The standard hybrid path planning framework combines
the strengths of deliberate and reactive planners. It consists
of a two-phased procedure in a hierarchical manner; global
planning is for the deliberation and local planning for the
reactivity.

1) Global Path Planner: In the first phase of a standard
hierarchical path planning pipeline, a global planning pro-
cedure is applied. On the static map of the environment,
the function of a global planner is to generate a path from
the starting position to the destination. Conventionally, many
graph search algorithms have been applied to calculate the
trajectory between initial and goal configurations, the most
popular being A* explained in [22]. For a more complete
list of global planning approaches, see [23].

The global planning itself is not sufficient to navigate
the robot between two points. Local planning is needed to
create velocity commands that handle the cases with new or
dynamic obstacles.

2) Local Path Planner: In order to realize computed
trajectories, the local planning procedures are used in the
second phase of hierarchical path planning. The most promi-
nent objective of the local planner is to generate velocity

commands so that the robot can follow the computed trajec-
tory. In addition, by using the sensory information about the
robot’s surroundings, it is the local planner’s duty to avoid
obstacles. There are many local planning algorithms in the
literature, such as [24], [4], [25], [26], [27], [28]. For a more
complete list, see [29].

On the other hand, despite being quite safe, these tra-
ditional controllers take no account of social norms. They
consider people as obstacles to be avoided. Recent attempts
to create local controllers that consider these norms has
paved the way for social robot navigation.

B. Social Navigation

According to [30], the benefits of social navigation are
threefold: it increases the comfort of the people around the
robot, it improves the naturalness of the robotic platform and
it also enhances the sociability of the robot. Furthermore,
in [5], physical and mental aspects of safety are separately
evaluated. For us, this separation reveals the need to question
the psychological efficiency of navigation systems of mobile
robots.

The concept of social navigation lies in the intersection
of two concepts: navigation and human-robot interaction. It
describes improving the navigation of the robot to enhance its
comprehensibility by the humans around. Figure 1 is rather
self explanatory. On the left, we see a robot with a perfectly
safe navigation plan. In contrast, although non-optimal, the
planned path on the right is socially compliant.

Fig. 1: Comparison between regular and social navigation.

III. METHOD

In this work, we address two parts of the hierarchical
path planning individually and show that the capabilities
of the model we propose can handle both global and local
planning. We suggest employing a variant of Conditional
Neural Processes (CNPs) for both of them separately.

CNP is a powerful deep learning framework, which is
inspired by the flexibility of stochastic processes, but orga-
nized as neural networks and trained with gradient descent
[20]. Since its emergence, CNPs and variants have been
successfully applied in several robot learning problems [31],
[32], [33]. Instead of outputting a single value, CNP learns a
Gaussian distribution over the demonstrated trajectories. The



Fig. 2: General layout of the training phase of our model.

set D, representing all demonstrations is defined as follows:
D = {Di}Ni=0, where each Di is a trajectory of a number
of points in a high-dimensional space. Essentially, Di =
(Xt, γ(Xt), SM(Xt))

τ
t=0, where X is the state variable,

γ(X) is a function representing task parameters and SM(X)
is the sensorimotor function to be learned. The encoder
network produces a latent representation for each trajectory
and these representations are passed through an averaging
operation to create a compact representation rAVG for the
task at hand. Subsequently, Xq , γ(Xq) and rAVG are fed
to the Query Network to produce an estimate for SM(Xq).
µq and σq respectively represent the estimated mean and the
variance. Figure 2 shows the overall model.

The model consists of an encoder network which outputs
latent representations by using the sampled points on the
demonstrated trajectories. These representations in the latent
space are then averaged to come up with a compact rep-
resentation of the trajectory. At query time, this compact
representation is concatenated with the target point and the
resulting vector is fed to the query network to generate the
estimated sensorimotor response of the model.

1) Global Planning: One of the most powerful aspects
of the CNPs approach is its ability to generate complete
trajectories. Upon training the encoder and query networks,
target points can be simultaneously processed from the
starting point to the end to create an entire trajectory. This
ability can be exploited to create global plans in the first
phase of a hierarchical path planning procedure.

2) Local Planning: We also benefit from CNPs in reac-
tively responding to the changes in its domain. With this,
we substitute the local planning module of the hierarchical
path planners with local CNPs. This requires sensory input to
be processed by the CNP as task parameters. In the current
study, high-level parameters such as distance to the obstacles
or relative position to the goal point are used as input to the
local CNPs. It was shown that CNPs can efficiently handle
low-level and high-dimensional input as well, as shown in
[34].

IV. EXPERIMENTS AND RESULTS

A. Environment

Our system was verified in CoppeliaSim simulation envi-
ronment [35] that includes an omnidirectional robot platform
(Robotino [36]). The Social Force Model, described in

[6], is implemented as the local controller of the robot to
gather demonstration trajectories. With the assumption that
it generates socially plausible trajectories, 1000 trajectories
with randomly different starting, goal and obstacle poses are
recorded. Single, multiple, stationary and dynamic objects
are placed at random positions in each trial. The data
collection process is shown in Figure 3.

Fig. 3: Data collection on the simulation. The motion trajec-
tory is shown with blue line.

B. Global Planner

To show the path planning capability of our method, the
model is fed with the entire trajectories of positions of the
robot and trained on these demonstrations. The representa-
tion of the data is as follows:

X = time step

γ(X) = (start x, start y, goal x, goal y, obs x, obs y)

SM(X) = (position x, position y),

where obs x and obs y refers to the obstacle’s x and y
positions. Fig. 4a illustrates the training phase and Fig. 4b
shows how the entire path is queried.

To show the strength of CNPs over standard neural
networks, we compare their performance on the trajectory
planning task. For this purpose, we implemented a 5-layered
standard feed-forward neural network and trained it on
the same dataset of 1000 trajectories. The comparison of
their performances on a global planning task is given in
Figure 5. This result shows that while a feed-forward neural



(a) Training the network with a randomly chosen demonstration
trajectory.

(b) Generating a global path in test phase.

Fig. 4: CNP as the global planner.

Fig. 5: Comparison between our global planner network
(CNP) and a 5-layered feed-forward neural network (NN)
on global planning in sample environments.

network cannot generate global paths that avoid obstacles,
our system can. We believe that this is due to the capability of
our system to learn multiple-modes of operations. Standard
feed-forward networks, given demonstration paths that avoid
obstacles from different sides, probably interpolates these
paths; whereas our system can learn to generate trajectories
from both sides.

C. Local Planner

From the local perspective, the input parameters of our
local network are distance-to-goal, distance-to-obstacle and
velocity commands. Here, the formulation of the problem is
as follows:

X = (distance to goal x, distance to goal y)

γ(X) = (distance to obs x, distance to obs y)

SM(X) = (velocity x, velocity y)

Note this time that, we do not use a linearly increasing
phase variable, as we did in the case of global planning.
Conditioned on the starting and destination poses, the use
of the task parameter γ(X) gave the model the ability to
reactively change the velocity commands with respect to
changing obstacle positions.

Fig. 6: Robot is avoiding from a vertically moving obstacle.

Fig. 7: Robot is passing through several stationary obstacles.

The resulting local planner is shown to work on several
different configurations, as shown in Figures 6 and 7. Since
our local planner is trained on the trajectories created by
SFM, we believe that the policy it learned imitates SFM’s
behavior. Further comparison is needed to support this claim.

V. LIMITATIONS AND FUTURE WORK

In this study, the preliminary results of our framework
which is a hierarchical framework that is built on top of
CNPs is presented. We showed that our model can gener-
ate reasonable paths at both global and local levels while
avoiding obstacles. This work needs to be extended with a
thorough statistical analysis comparing with strong baselines
in successful social-aware navigation tasks. As a part of this
endeavour, we plan to train our models on actual human data.
Thus, we would elude the critics of SFM and prove that our
model could work with real human data. Furthermore, most
importantly, we plan to transfer and verify learned models
in real robots.

Another direction of research to extend this work is to
incorporate detectors that discover groups of people from



raw sensory information. Human trajectory prediction can
also be added to create smoother paths during navigation.
For this purpose, graph neural networks [37] that represent
the world as nodes and relations between those nodes, can
be employed.

CNPs have a number of drawbacks. The most important
one to mention is that it cannot successfully extrapolate to the
outside of the state space that it is trained on. For a mobile
robot controller, this limitation is crucial since extrapolation
might lead to a collision. Such cases do occur frequently
when the dimensionality of the state space is high and the
dataset is insufficient. We plan to learn models that detect
whether the robot is trying to extrapolate and fall back to
the manual controller when extrapolation occurs.
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Abstract — We examined whether a robot that proactively 

offers moral advice promoting the norm of honesty can 

discourage people from cheating. Participants were presented 

with an opportunity to cheat in a die-rolling game. Prior to 

playing the game, participants received from either a NAO robot 

or a human, a piece of moral advice grounded in either 

deontological, virtue, or Confucian role ethics, or did not receive 

any advice. We found that moral advice grounded in Confucian 

role ethics could reduce cheating when the advice was delivered 

by a human. No advice was effective when a robot delivered 

moral advice. These findings highlight challenges in building 

robots that can possibly guide people to follow moral norms. 

 

I. INTRODUCTION 

For social robots to be fully integrated into human 
societies, robots must be able to understand, follow, and 
communicate about moral norms. To assess whether humans 
are willing to accept robots as entities with such capacities, we 
examined whether a robot could deter people from cheating by 
offering moral advice that promotes the norm of honesty. 

We investigated different approaches to reasoning about 
morality by presenting participants with moral advice 
grounded in either deontological, virtue, or Confucian role 
ethics. Deontological ethics focuses on well-established, 
universalizable principles that dictate morally right or wrong 
actions [1]. Virtue ethics focuses on promoting one’s moral 
character, rather than individual actions [1]. Finally, 
Confucian role ethics emphasizes one’s awareness of societal 
roles in relation to others and devotion to fulfilling role 
responsibilities [2]. 

A recent study suggested that, in facing a temptation to 
cheat for extra monetary gain, people may remain resistant to 
any of the three differentially-framed moral advice delivered 
by a robot [3]. However, this study inferred the likelihood of 
cheating only from the group-level percentages of cheating, 
potentially overlooking individual participant-level 
differences. Further, it did not examine how participants 
responded to the same moral advice when it was delivered by 
a human instead of a robot. Thus, it was unclear whether the 
resistance to moral advice observed in the prior work was due 
to a lack of persuasiveness of the moral advice itself or due to 
the robotic nature of the moral advisor. 

In this study, we attempted to address these limitations in 
the previous study [1]. We asked participants to play a virtual 
die-rolling game from which their bonus payment was 
determined depending on the number they claimed to have 
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thrown. Participants received instructions about the task and 
moral advice from either a robot or a human agent. We 
measured the numbers each participant threw and the numbers 
they reported to have thrown to detect cheating behaviors.  

We hypothesized that, if participants were willing to accept 
a robot as an entity with capacities to guide humans on what is 
right or wrong, they would be less likely to cheat after 
receiving one of the three differentially-framed moral advice 
from a robot agent, compared to after receiving no advice. We 
also expected that participants would be less likely to cheat 
when a human agent encouraged them to make honest choices 
by offering moral advice grounded in one of the three different 
ethical theories, compared to when the agent offered no 
advice.  

 

II. METHODS 

A. Participants 

A total of 663 participants (Mage = 39.30, SDage = 11.87, 
393 male, 265 female, 2 other, 3 preferred not to say) 
completed the study via Amazon Mechanical Turk. 

B. Task 

Participants completed a die-rolling game [4], where they 

were asked to virtually throw a six-sided fair die twice or as 

many times as they wanted. They were informed that they 

would receive a bonus payment determined by the first 

number they report to have thrown. For die rolls between 1 

and 5, the bonus payout increased by 20 cents from 10 to 90 

cents. For a throw of 6, the resulting bonus payment was set 

to zero. Participants were also informed that the maximum 

amount of bonus payment for them and the next participant 

would be restricted to 90 cents. Their claimed earnings 

limited the earnings of the other participant, which could 

induce a sense of communal responsibility. 

C. Video Stimuli 

Participants received instructions about the study and the 

die-rolling game by watching video clips of either a NAO 

robot (Softbank Robotics) or a human who introduced 

it/her/himself as a research assistant. 

D. Moral Advice Stimuli 

After watching the introductory videos, participants 

watched video clips of either a robot or a human giving 
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either no advice (control condition) or one of the three 

differentially-framed moral advice statements listed below. 
• Rule (Deontology) condition: "Cheating to 

maximize your bonus is morally wrong behavior." 
• Identity (Virtue) condition: "Cheating to maximize 

your bonus will make you a cheater." 
• Role (Confucian Role) condition: "A good MTurk 

community member would not cheat to maximize 

their bonus at the expense of other MTurkers." 

E. Design and Procedures 

The study design was a two-way between-subjects design 

where agent type (human vs. robot) and moral advice (control 

vs. rule vs. identity vs. role) varied across participants.  

After agreeing to participate in the study, participants 

were randomly assigned to one of the eight different 

conditions. Depending on their respective condition, 

participants were instructed to watch a series of video clips in 

which either a human or a robot agent gave verbal instructions 

about the task. Participants were then informed that they 

would play the virtual die-rolling game. Before throwing the 

virtual die, participants received from the agent either no 

advice or advice grounded in either deontological, virtue, or 

Confucian role ethical theories. Participants were then 

instructed to submit the first number they threw and report the 

matching bonus payment. At the end of the study, participants 

were asked to indicate their gender and age. 

F. Measures 

We measured cheating by comparing the first number 

each participant threw in the die-rolling game and the 
number they had claimed to have thrown. If the participants 

claimed to have thrown the number resulting in a bonus 

payment larger than the number they actually had obtained, 

we recorded the responses as dishonest choices. When the 

obtained and the claimed numbers matched, we recorded the 

responses as honest choices. 

 

III. DATA ANALYSES AND RESULTS 

To examine the effects of a robot’s and a human’s moral 

advice on the probabilities of cheating, we performed logistic 

regression analyses with agent type as a predictor on the 

datasets for the human and the robot conditions (coded honest 

responses as ‘0’ and dishonest responses as ‘1’). These 

analyses showed that, when the human offered moral advice, 

advice grounded in Confucian role ethics led to less cheating 

compared to the control condition. Specifically, in the human 

condition, there was a significant effect of the role condition, 

b = -0.96, SE = 0.48, z = -2.00, p = .0465, Odds Ratio (OR) = 

0.38, 95% Confidence Interval (CI) = [0.14, 0.95]. 

Within the robot condition, we found no significant effect 

of moral advice (p > .05). Thus, it was unlikely that any of the 

differentially-framed moral advice provided by a robot 

successfully deterred cheating compared to the control 

condition (See Fig.1). 

 

Figure 1. Percentages of participants who cheated in a die-rolling game as a 
function of different agent type (human vs. robot) and moral advice (control 
vs. rule vs. identity vs. role). 
 

IV. DISCUSSION AND CONCLUSION 

We found a human’s moral advice that emphasizes the 

wrongness of cheating for violating role responsibilities as 

community members could deter cheating. However, there 

was no evidence that participants were willing to accept moral 

advice given by a robot as none of the moral advice provided 

by the robot reduced cheating. These results are consistent 

with the previous studies in which participants more willingly 

exploited computers than humans in economic games [5] or 

complied less with a robot’s request to continue practicing a 

visual search task compared to a human’s request [6]. The 

current study indicates challenges to build a robot that can 

help humans comply with moral norms. Future work would 

be necessary to search for psychological factors that elicit 

resistance or promote adherence to a robot’s moral influence. 
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Culture Is Not What You Think It Is: Diversifying the Foundations of
Cultural Robotics

Mark L. Ornelas, Gary B. Smith, and Masoumeh Mansouri

Abstract— Culture is a fundamental constituent of the hu-
man social environment, and as human-robot interactions are
becoming more common, roboticists are increasingly examining
how culture intersects with robotics. However, the current treat-
ment of culture in the robotics literature is largely limited to
the definition of culture as national culture. This is problematic
for a number of reasons: it ignores subcultures and cultural
dynamicity, it excludes refugees and stateless persons, and is
often simplified to nationality, which fails to isolate culture from
politics and economics. We propose to widen the understanding
of culture within robotics to encompass the emergent nature of
culture and the wide range of definitions of culture within the
social sciences.

I. INTRODUCTION

The concept of culture and what constitutes it can be
interpreted in many different ways. Some immediately think
of languages or countries, others may use it to refer to
books or films. Many academics have attempted to formulate
the concept of culture. The book “Redefining Culture” [1]
lists 313 definitions from different disciplines ranging from
psychology, linguistics, anthropology and political science to
philosophy, to name only a few. However, when it comes
to introducing “cultural thinking” to social robotics, this
concept is commonly reduced to one and only one interpreta-
tion: nationality. This paper argues against this and proposes
several alternative avenues for research at the intersection of
culture and robotics.

In a recent review article, Lin et al [2] analysed 50
studies on the intersection of culture and social robotics,
where culture was understood as “culture as national culture
— values, norms, and practices that are undertaken by a
country”. Although it was the authors’ intention to focus
on this particular interpretation of culture, to the best of
our knowledge, there is almost no other work in social
robotics looking at culture from a different view. In general,
we can look at culture within robotics from two important
perspectives: culture in specific interactions, and the interplay
between culture and robotics at a wider scale. Within specific
interactions, the primary concerns of roboticists centre on the
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leverage of cultural knowledge in the production of intelli-
gent behaviour in interactions with humans. At a wider scale,
the key concerns are the impact of culture on perceptions
of robots, trust, and the reciprocal impact robots have on
the cultural environment in which they are situated. The
current definitions and assumptions of culture presently used
in robotics are problematic from both of these perspectives.

II. WHAT IS WRONG WITH CULTURE AS A NATIONALITY

A. Culture is often erroneously equated with nationality

A common theme in social robotics papers that reference
culture is the investigation of perceptions of social accept-
ability and trust of robots. Many authors rightly identify
culture as a key factor influencing perceptions of robots. To
investigate this authors typically include in their experiments
participants with a variety of nationalities, assuming that this
is sufficient to show the influence of culture. Underlying this
is the tacit definition of culture as nationality.

Even if we accept a definition of culture as national
culture, the above move is still unconvincing. Supposing that
including participants with different nationalities illustrates
the influence of culture on experimental results assumes
that culture is the only causally efficacious component of
belonging to a certain nationality. In fact, the interactions
that a person with a certain nationality has with a robot can
be influenced by factors aside from culture. For example, the
economic and political circumstances in a particular country.
In essence, equating culture with nationality fails to isolate
culture as a contributing factor in perceptions of robots.

B. Ignoring subculture and dynamicity

The current emphasis on national culture also ignores sub-
cultures. Subcultures are groups that off-shoot from a larger
group and form a more specific identity within the broader
group. For example, England has a national English culture,
but Manchester has a specific city culture that differentiates it
from Leeds, Newcastle, or Bristol. Even within Manchester,
other specific cultures arise, such as the cultural norms and
chants that distinguish Manchester United from Manchester
City football supporters. Within each subgroup a sub-culture
develops with its own norms, rituals, language, attitudes, and
customs.

The focus on subcultures changes the emphasis on how
large groups generally differ from one another and focuses on
how individuals and groups relate to each other. Recent work
on personal identity makes a similar shift where individuals
report that large macro-cultures are not sufficient to explain
or categorise their individual experiences.



Only recognising national culture and neglecting subcul-
ture constitutes an important knowledge gap that must be
plugged if a robot is to produce behaviour that is culturally
consistent with and recognises the diverse groups that live
in our society.

C. Stateless persons and refugees are excluded by definition

Confounding culture and nationality not only ignores
marginal cultures within a nation-state, but also fails to
recognise those that fall outside of the definition of na-
tionality, e.g., stateless persons and refugee seekers. The
consequence of this exclusion is to pave the way for future
social robots that serve an already privileged few.

III. DIVERSIFYING THE CONCEPTION OF CULTURE IN
ROBOTICS

Given that the assumptions made about culture in the
existing literature are inadequate, what do we do about it?
One way is to advance the field by considering diverse
definitions of culture from a range of disciplines and includ-
ing contemporary theories of social cognition, for example.
Šabanović et al. [3] introduced the concept of culturally
robust robots in a critical response to the use of culture in
social robotics. This concept is based on the co-construction
of culture and scientific practice and technology design.
This paper complements the concept of co-construction by
considering culture as an emergent phenomenon. In the
following, we explain the concept and how it contributes
to diversifying interpretations of culture.

A. Culture is an Emergent Phenomenon

When we consider definitions of culture that go beyond
national culture, it becomes clear that culture is not simply
a collection of facts in a knowledge base or set of norms
that guide behaviour. Instead, culture is a phenomenon that
emerges from interactions between agents. This is particu-
larly apparent when we view definitions of culture through
the lens of contemporary theories of cognition such as
predictive processing and ecological psychology [4].

By emergence we mean a phenomenon that is composed
of several members or parts that is more than the collective
whole. Essentially, something emerges from the component
parts that cannot be reduced to or identified by the compo-
nent parts alone. We argue that culture should be thought of
as an emergent phenomena, which is composed of individual
members that create a collective ‘culture’. This changes
the view that culture is something that is easily bounded,
defined, or static and rather that culture is emergent from the
dynamic interactions amongst individuals and within groups
as a whole. Viewing culture as an emergent phenomena can
benefit cultural robotics by changing how we study cultural
norms and behaviour. Instead of abstracting norms and
standards away from individual members and generalising
to a group, we advocate looking at the interactions among
individual members themselves. This places the emphasis on
looking at patterns and styles of interactions and behaviours
within individuals. In addition, if we take a subculture view,

researchers can investigate the development, maintenance,
rejection, and replacement of cultural norms.

The change, therefore, requires a discussion of adaptive
learning capabilities of new or assimilating agents. Thus, the
discussion about cultural robotics changes from one about
cultural standards to an investigation on adaptive, dynamic
cultural learning processes.

B. Adaptive learning capability
A critical aspect to any emergent theory is that the whole

is greater than the sum of the parts, and for us, this is
where a difficulty presents itself. Because we view culture
as more than just individuals and single interactions, the
methodological challenge of investigating such a phenomena
becomes apparent.

Fortunately, existing cognitive science research into social
cognition has methods that can serve as templates for this
research. Ecological psychology and Dynamical Systems
Theory, for example, are no strangers to emergent phenom-
ena. Both emphasise a mutually constructed, sustaining, and
informing relationship between agents and other systems
(other systems being their environment or other agents).
Agent interactions create a dynamic, coupled relationship
with the environment. Social learning is a product of re-
peated failed and successful couplings. Social learning is,
therefore, dependent on interactions and refining behaviours
in a dynamic sense, which can be scaled up to broader social
interactions within specific contexts.

Our position refocuses the research problem. Currently,
the field focuses on how to design human-robot interactions
that are culturally consistent human-human interactions. Our
approach, however, allows us to think about artificial agents
as mutually informing and participating in a process of
cultural learning and development, rather than importing
cultural knowledge into artificial agents. This allows us to
focus on how interactions and learning from each set of inter-
actions can lead to participatory knowledge of culture. This
participatory knowledge is, we argue, the key to developing
cultural robotics.

IV. OUTLOOK

Diversifying interpretations of culture in robotics lays the
foundation to address the key problem of what capabilities a
robot should have to support the emergence of cultural be-
haviour. This also opens a crucial investigation on technical
(AI) approaches to implementing the capacities necessary for
this emergence. This will be the core of our future research.
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Normative Multi-Agent Systems and Human-Robot Interaction

Stephen Cranefield1 and Bastin Tony Roy Savarimuthu1

Abstract— This position paper provides an overview of the
study of social norms in the normative multi-agent systems (Nor-
MAS) community, and presents avenues for cross-fertilisation
between the NorMAS and social robotics communities.

I. INTRODUCTION

For the last three decades, researchers in the field of Nor-
mative Multi-Agent Systems (NorMAS) have studied how
the concept of norms from human society can be adapted,
modelled and incorporated into computational mechanisms
to promote social order in societies of software agents. Ini-
tially, this endeavour was focused largely on open systems of
autonomous software agents, but as human communication
has become increasingly mediated by computers, the field
has begin to consider how NorMAS reasoning mechanisms
can be used to enable socially aware interaction within soci-
eties comprising both humans and software agents. However,
the field has largely not considered the specific requirements
of human-robot interaction.

This position paper reviews the concept of norms and
norm-aware agents as conceptualised by NorMAS re-
searchers, and considers some possible areas for cross-
fertilisation between this field and human-robot interaction.

II. CONCEPTUALISATIONS OF NORMS

A range of models and representations of norms have
been proposed in the NorMAS literature. Norm languages
based on deontic logic are common [1], [2], allowing norms
of obligation, prohibition and (sometimes) permission to be
expressed logically, often with extra features such as condi-
tions, deadlines and sanctions. Norm representations based
on temporal logic [3], probabilistic logic progamming [4]
and event sequences [5], [6] have also been proposed.

In contrast, simulation studies on the emergence of norms
and the effects of sanctions on norm compliance often adopt
game theory style models, where sets of numerical parame-
ters represent strategies for specific social dilemmas [7], [8].

In recent years, multi-agent reinforcement learning ap-
proaches have also been adapted to enable the learning of
socially beneficial rather than selfish behaviours [9], [10].
These are represented by policies mapping states to actions.

III. NORM-AWARE AGENTS AND SOCIETIES

Agents that are norm-aware should be able to identify
existing norms, and to plan and choose their actions given
knowledge of these norms. This includes understanding when
their actions may fulfill or violate these norms. Note that as
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of Information Science, University of Otago, Dunedin, New Zealand
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agents are usually considered to be automonous, an agent
can choose to violate a norm and risk a sanction if it is
better off to do so. In this section, we highlight a few of the
research questions that have been addressed by researchers
in the field of normative multi-agent systems.

(a) How do agents come to know about norms? We consider
three possible answers (that are not mutually exclusive):

(i) Norms may be created and published or broadcast by
an informed and empowered designer (a human, an
institution or a software agent [2], [11]–[13]). Human
design is only feasible when norms are static. The field
of norm synthesis [2] considers how software agents
can monitor a society, detect undesirable interference
between its members, and generate new norms or adapt
existing ones to discourage these conflicts. However, it
seems unlikely that human members of an agent society
would automatically accept norms imposed on them,
and such mechanisms would need to be combined with
social choice mechanisms to recognise the humans’
individual sense of agency.

(ii) Norms may be learned from observation and experi-
ence [14]. Work on learning symbolically represented
norms has used a range of learning mechanisms, in-
cluding frequent episode data mining [5], [6], plan
recognition [15], probabilistic inference using Bayesian
[3], [16] and Dempster Shafer [17] approaches, and
probabilistic inductive logic programming [4] (we note
that the last two works are from researchers in the fields
of human-robot interaction and social robotics).
Evidence for the existence of norms may come from
recognising signalling actions that indicate the applica-
tion of a reward or sanction (these could be expressions
of approval or disapproval or more overt reactions).
For example, the frequent episode mining approach can
identify prohibition norms that are the most frequent
sequences of actions followed by a negative signalling
action [6]. However, these are not the only possible
forms of evidence. When agents’ goals and their pos-
sible plans (at least for publicly observable behaviour)
can be inferred, plans that are seldom followed can rein-
force obligation and prohibition norm hypotheses that
would explain the selection of alternative plans [15].
A Bayesian approach allows both forms of evidence
to be combined [3], and could easily accommodate
additional types of evidence such as advice about
norms from other agents, suitably moderated by some
measure of the advising agent’s trustworthiness [18],
[19]. However, we believe that evidence from observing



signalling actions has a special role in gaining confi-
dence that an identified norm represents truly normative
rather than merely normal behaviour [20].

(iii) Norms may be proposed by a norm entrepreneur and
subsequently spread through a majority of the society.
While this process has been studied at an abstract level
by researchers in the field of international studies [21]–
[23], there appears to be very little prior work on com-
putational mechanisms for norm entrepreneurship [24].

(b) What is the lifecycle of dynamic social norms, and
how can agents track their status? Several norm lifecycle
models (with minor variations) have been proposed in the
NorMAS community over the years, and an overview of such
works can be found in the recent work of Morris-Martin et
al. [25]. The lifecycle models, in general, describe how a
norm is proposed, propagated (or spread), eventually adopted
and then may possibly lose relevance in an agent society.
The propagation step may involve a variety of mechanisms
such as spreading of norms through explicit communication,
applying rewards for compliance and/or sanctions for viola-
tions, or copying the observed behaviour of other agents,
especially successful ones [5], [6]. A norm may become
obsolete due to losing salience to current conditions or
changes to the goals and/or membership of the society.

For example, researchers have proposed a norm-
recommendation system [26] based on tracking the status
of the norm in a community to recommend whether an
agent (e.g., a robot) should follow or violate a norm based
on factors such as the life-stage of a norm (e.g., emergent
vs. mature), its uptake (a waxing or waning norm) and the
severity of sanctions [27].

(c) How does knowledge of norms interact with other
reasoning processes, such as goal creation and plan
selection? In multi-agent systems, agents are often concep-
tualised in terms of the belief-desire-intention (BDI) practical
reasoning architecture [28]. A BDI agent is considered to
have goals, plans that are indexed by the goals they can
achieve and the contexts they apply to, and intentions: the
plan instantiations the agent is currently committed to (given
that resources are finite, and focused effort is often needed to
make progress towards a goal). Researchers have developed
agent architectures such as n-BDI [29] and N-Jason [30] that
consider norms as an important construct in the reasoning
cycle along with beliefs, desires and intentions. A norm-
aware BDI agent employs norm deliberation during goal
creation and plan selection, i.e., it adopts goals and plans
to satisfy obligations or avoid prohibited actions.

Knowledge of norms can also allow agents to adopt more
efficient plans of action, under the assumption that some
or all other agents will follow the norms. This assumption
may be justified by monitoring the compliance of other
agents [31], by the existence of robust and consistent sanc-
tioning mechanisms, or by maintaining information about
the trustworthiness of other agents [18], [19]. However, the
connection between these mechanisms and plan choice in
BDI agents has not gained much attention.

IV. CROSS-FERTILISATION WITH ROBOTICS

This section identifies five avenues for cross-fertilisation
between NorMAS and social robotics.

First, most NorMAS research is simulation-based. There-
fore, symbolic representations of the physical and social state
of the world are easily obtained and there are no real-time
demands on reasoning. In contrast, human-robot interaction
involves creating knowledge from sensor data, and is likely
to require both high level symbolic and sub-symbolic real-
time reasoning for safe operation. Research on human-robot
interaction will identify more computationally demanding
use cases for normative reasoning that challenge the direct
application of existing NorMAS techniques.

Second, to improve situated norm awareness of robots in
human-robot teams, researchers can adopt or adapt normative
architectures such as n-BDI and N-Jason that consider norms
as top-level entities that influence agents’ intentions and
choice of plans, as outlined in Section III. While robots may
have some planning requirements that differ from those of
traditional BDI agents (e.g., path planning), addressing these
by extending the existing norm-aware practical reasoning
theories, architectures and software platforms should provide
a faster path to developing norm-aware social robots with
declarative goals and plans. These approaches would also
facilitate communication with human partners in terms of
these high-level cognitive concepts that fit well with human
understanding of practical reasoning [32].

Third, norm conflict identification and resolution has
seldom been addressed in human-robot collaborations. For
example, a robot following a norm it acquired in one context
may, in another, run into conflicts with humans or other
robots. Works in NorMAS on these areas (e.g., [33]) hold
promise to be applied in robotic systems.

Fourth, robots could be active partners in norm en-
trepreneurship within human-robot teams. Norm-capable
robots could be norm entrepreneurs by proposing new or
improved norms to their human partners. The techniques
used in norm synthesis to avoid undesirable world states
or agent interactions could be adapted for use in a peer-
to-peer partnership model. Robots could also assist human
norm entrepreneurs to propagate (suitably justified) norms
by exemplifying them and explaining them to others. In both
cases, new mechanisms would be needed to explain the pur-
pose and benefits of newly proposed norms or modifications
to old norms. For robot-generated norms and explanations to
be effective, it may be necessary for the robots to explictly
consider the humans’ mental models of the task and robot
capabilities [34].

Fifth, robots are likely to require fast non-symbolic rea-
soning when interacting physically. Thus, there is a tension
between the representations needed for robot action learning
and selection and those used in traditional NorMAS reason-
ing. This distinction is similar to the contrast between System
1 and System 2 thinking in humans (as studied in the work of
Kahneman [35] and considered in the context of artificial in-
telligence by Booch et al. [36]). Robotics offers a promising



avenue to explore the exchange of normative representations
between these two types of reasoning. One challenge is
to bridge the gap between the state-to-action mappings
(“policies”) learned via reinforcement learning (commonly
applied in robotics) and the symbolic norm expressions
used in NorMAS approaches, especially in the presence of
norms involving temporal patterns of behaviour. While deep
reinforcement learning using recurrent neural networks can
model agent states that depend on past events [37], we are
not aware of existing techniques to map between the resulting
policies and symbolic norm expressions.

We believe the research avenues described above can aid
towards the creation of norm-aware robotic systems.
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[2] J. Morales, M. López-Sánchez, J. A. Rodrı́guez-Aguilar, M. J.
Wooldridge, and W. W. Vasconcelos, “Automated synthesis of nor-
mative systems,” in Proceedings of the 12th International Conference
on Autonomous Agents and Multi-Agent Systems. IFAAMAS, 2013,
pp. 483–490.

[3] S. Cranefield, F. Meneguzzi, N. Oren, and B. T. R. Savarimuthu,
“A Bayesian approach to norm identification,” in 22nd European
Conference on Artificial Intelligence. IOS Press, 2016, pp. 622–629.

[4] Z.-X. Tan, J. Brawer, and B. Scassellati, “That’s mine! learning
ownership relations and norms for robots,” in Proceedings of the
Thirty-Third AAAI Conference on Artificial Intelligence. AAAI Press,
2019, pp. 8058–8065.

[5] B. T. R. Savarimuthu, S. Cranefield, M. Purvis, and M. K. Purvis,
“Obligation norm identification in agent societies,” Journal of Artificial
Societies and Social Simulation, vol. 13, no. 4, 2010.

[6] ——, “Identifying prohibition norms in agent societies,” Artificial
Intelligence and Law, vol. 21, no. 1, pp. 1–46, 2013.

[7] ——, “Role model based mechanism for norm emergence in artificial
agent societies,” in Coordination, Organizations, Institutions, and
Norms in Agent Systems III, ser. Lecture Notes in Computer Science,
vol. 4870. Springer, 2007, pp. 203–217.

[8] S. Sen and S. Airiau, “Emergence of norms through social learning,”
in Proceedings of the 20th International Joint Conference on Artificial
Intelligence, 2007, pp. 1507–1512.

[9] Y. F. Chen, M. Everett, M. Liu, and J. P. How, “Socially aware motion
planning with deep reinforcement learning,” in IEEE/RSJ International
Conference on Intelligent Robots and Systems. IEEE, 2017, pp. 1343–
1350.

[10] A. L. Bazzan, “Aligning individual and collective welfare in complex
socio-technical systems by combining metaheuristics and reinforce-
ment learning,” Engineering Applications of Artificial Intelligence,
vol. 79, pp. 23–33, 2019.
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Abstract - Norms help govern a group’s behaviour as well 

as important group level traits like cooperation and 

culture. Despite its importance, little research has been 

done into the affective basis of norms and normative 

cognition. Here we outline an emerging research program 

as part of the first author’s PhD, towards an affective 

model of norm emergence and adaptation, and discuss its 

relevance to other approaches to norms investigated in the 

HRI community, and to HRI in general. 

I. INTRODUCTION 

Social norms govern a group’s behaviour and are manifested 

in the behaviour of the individuals in that constituent group. 

They change through a process of behavioural adaptation 

when individuals move from group to group. For example, the 

norms governing how we greet each other, or how we speak 

with each other, can differ quite arbitrarily from one culture 

to another [1], and people adapt their behaviour to different 

extents when they move from a cultural group to another. 

Further, strategies related to the regulation of social 

interaction also differ across cultures, e.g. psychobiological 

regulation in infant-parent dyads may vary across cultures and 

nevertheless the different strategies can be successful in their 

own context and result in positive affiliation (“secure 

attachment”) bonds [2]. Adhering to group norms can ensure 

cooperation within a group [1], make social conduct more 

predictable [3] and signal one’s group affiliation to others 

[3,4]. The importance of norms has been acknowledged 

within the HRI community, with research as varied as, for 

example, reciprocity and cooperation in HRI [19], child-robot 

interaction across cultures [23] and even robot accents [5]. 

When it comes to more general research on norms i.e. learning 

how to behave in order to achieve norm legibility or adapt to 

norms it has been largely conducted within a reinforcement 

learning (RL) framework [6,7]. The role of affect, and 

particularly embodied affective mechanisms, has been less 

studied. There are mounting arguments that the evolutionary 

pressures of group living evolved these mechanisms that 

provide the scaffolding for social/norm cognition [8]. In this 

paper, building on embodied robot models of affect based on 

hormonal modulation [16,17,21], we argue that developing 

agent-based computer models of norm cognition, norm 

emergence and its dynamics in artificial agent societies [27]  
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can make a contribution to norm cognition in robots in the 

context of human robot interaction. In the rest of the paper, 

we outline some of the ideas that will be implemented and 

tested as part of the starting PhD research project of the first 

author, concerning a model of the affective basis of the 

emergence of norms and norm adaptation. 

II. AFFECT AND NORMS 

The term “affect” encompasses different phenomena, 

including motivational states and emotions, the types of affect 

that we will consider in this paper. These two phenomena are 

related but distinct: motivations would be concerned with the 

internal and external factors involved in the establishment and 

management of “needs” and “goals” and the initiation and 

execution of goal-oriented action, whereas emotion is rather 

concerned, among other, with evaluative aspects of the 

relation between an agent and its environment [26]. Emotions 

have been described as complex dynamic processes that 

provide a bridge between the physiological and the cognitive 

[9]. They are positively or negatively valenced to push agents 

towards or away from a specific goal, rather than specifying 

any particular trajectory toward such a goal, allowing for 

more robust flexible behaviours as opposed to stereotyped 

ones [10, 11]. Hormonal modulation (for example of 

perception, of attention, of action execution) is one of the 

mechanisms underlying emotions and their interaction with 

physiological and cognitive processes. Some of these 

hormonal mechanisms are part of a family of evolutionarily 

recent “instincts” that support norm-guided behaviour in 

various ways, including sensitivities to markers of group 

membership and specific emotions like anger, contempt, 

disgust, or shame [8, 11]. The model we propose in this paper 

builds on architectures for decision making and social 

interaction for robots and embodied agents that model 

motivations based on a simulated physiology of variables 

controlled homeostatically that give rise to “needs” and 

“goals”, and that can be satisfied by specific (physical or 

social) external stimuli (the motivation’s “incentive 

stimulus”), and emotions in terms of simulated hormones that 

modulate the perception of the internal (“needs”) or external 

(e.g. the salience or “attention grabbing” quality of the 

“incentive stimulus”) element of motivations [17,16,21]. In 
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the context of groups of agents, such modulation has for 

example been applied to the perceived salience of social 

stimuli to give rise to flexible group formation and dynamics 

[21,22]. In related models proposed in the HRI community, 

agents with “hard-coded” prosocial motivations, which can be 

seen as similar to the “instincts” mentioned above, stabilise 

human-virtual agent cooperation even under conditions where 

cooperation would break down [24]. Further, incorporating a 

model of group-based emotions into game playing robots 

engenders more trust and likeability from their human 

teammates [25]. Using a bottom-up approach, we will start 

building our affective model of norm emergence and 

adaptation using the hormone oxytocin (OT) before moving 

on to more complex forms of affect implicated in normative 

cognition such as emotion in future studies [16].  

III. EMPIRICAL INSPIRATION 

We take oxytocin as inspiration for our model because of its 

implication in pro-sociality and group dynamics [13], making 

it a favourable candidate to start modelling norm emergence. 

Initially thought of as the prosocial hormone, more recent 

research concerning both, humans and non-human primates, 

and artificial agent models, have found the effects of oxytocin 

are extremely context-dependent and wide ranging [12, 18, 

21], with one of the key contextual cues being group 

membership [13]. We will highlight a few key features of 

oxytocin that will influence our modelling approach. 

1. When released it increases/decreases the salience of 

features differentially depending on group membership 

e.g. it blunts attention to negative social signals such as 

displays of dominance or angry faces of in-group 

members [13] which may lead to forgiveness in 

noisy/stressful environments. 

2. When released it increases conformity of both public and 

privately held beliefs within the group, thereby helping 

keep norms across the group stable [13,14]. 

3. Oxytocin acts in a positive feedback loop [15] (see Fig. 

1A). 

Together these features of oxytocin make it a good candidate 

for supporting norms/normative cognition in noisy/stressful 

environments. For, instance, the level of OT represents a 

signal history of positive interaction with partners. That 

information can be used to modulate perception in cases of 

conflict which result from stressful environments or noisy 

communication e.g. “I trust you based on our past interactions 

and because OT is high, and you are in my in-group (and 

therefore more likely to share the same cultural practices as 

me). Therefore, I will “forgive” anger/displays of aggression 

by ignoring them.”  

 

Fig. 1.  A: Schematic of the Oxytocin (OT) positive feedback loop. B: Schematic of the Action-Selection Architecture (ASA). The ASA chooses behaviour 

based on internal needs (energy-level deficit/social-level deficit) and presence/salience of external cues that determine the strength of the motivation. The 

ASA monitors which motivation is strongest and selects the appropriate downstream behaviour e.g. if the eat motivation is strongest it will select the eat 

behavior. Oxytocin increases agent salience and therefore makes it more likely for groom behavior to be selected when another agent is in the agent's 
visual field. Which agents have increased social salience is dependent on  group membership (see conditions in section IV). 
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IV. OUTLINE OF APPROACH 

We will investigate whether these aspects of oxytocin 

mentioned above do indeed improve the viability of embodied 

agents in an environment with scarce resources. Given the 

unpredictability of positive feedback loops that OT can give 

rise to (feature 3) we choose an agent-based modelling 

(ABM) approach. ABM’s are used to study the emergent 

population-level phenomena that may arise in the interaction 

between agents; this approach is especially useful for large 

populations where emergent population-level behaviours are 

difficult to predict a-priori [16, 27]. The behaviour of each 

agent will be controlled by an Action-Selection Architecture 

(ASA) [16, 17, 21] which produces motivated behaviour 

based on two internal variables: 1) energy; agent will die if it 

reaches zero and 2) a non-critical social variable, which isn’t 

directly linked to survival but still drives behaviour. The 

environment will comprise of patches of food that agents can 

eat in order to increase their energy, as well as other agents to 

groom with and increase their social variable. The internal 

variables with the largest deficit from their ideal value will 

trigger the downstream motivation; in turn, this will trigger 

the behaviour associated with that motivation (Fig. 1B). In 

addition to the internal variables, the cue found in the agent’s 

field of vision also affects its behaviour; whether it is food or 

another agent. In this model, oxytocin will modulate the 

salience of other agents in the environment e.g. when 

oxytocin levels are high, other agents become more salient 

and therefore the social motivation and its associated 

grooming behaviour are more likely to be triggered. 

Each agent will be assigned a tag with a specific colour hue 

which will be a crude representation of norm and group 

membership. In line with feature 1, we will have different 

conditions where OT modulates salience of other agents in 

different ways and see which condition results in the highest 

viability across the agent society. Our conditions will be 1) 

Egalitarian: OT will increase social salience of for all agents 

regardless of group membership, 2) In-group centric: OT will 

increase social salience of agents only with the same tag (i.e. 

increased salience for just the in-group) and 3) Control: no 

salience effect when OT is released. This can be further 

modified by adding an avoidance behaviour in addition to a 

social behaviour which will allow us to create a more 

complete valanced model which examines the interaction 

between salience of perception and approach-avoid dynamics 

which has been hypothesized to occur with OT [13]. 

 

To incorporate feature 2 of oxytocin (social conformity), we 

will introduce modulation of tags through OT. When 

grooming interactions happen, the hues of the coloured tags 

will become incrementally more similar, especially when 

oxytocin levels are high. In later iterations, the tags will be 

replaced with styles of grooming/greeting, which will entail 

different levels of success signalled by the amount of oxytocin 

released. The level of success will vary due to the 

compatibility of the grooming/greeting norm as inspired by 

culturally patterned social mechanisms e.g. different forms of 

childcare [2]. This will allow us to extend the model to norm 

adaptation and stability in a norm-guided agent society. 

Further, we can also give agents a moral dilemma for sharing 

the food source when resources are scarce, and they have to 

make a decision between being selfish and sharing their food. 

Normally, taking more than a fair share may result in 

punishment from the other partner in the interaction. 

However, in very stressful/noisy environments, where the 

need for food is great, this strategy may result in competition 

between agents that may trigger a cascade of punishment that 

could result in a collapse of the population due to the damage 

incurred from punishments. In this case, feature 1 of OT could 

blunt attention away from food stealing in stressful 

environments and “give the benefit of the doubt” which we 

hypothesise may be an adaptation to increase group-level 

stability in stressful environments. 

V. DISCUSSION  

The summarised features of oxytocin make it a favourable 

candidate for building a model of the emergence of norms and 

adaptation to them. For example, OT gives a summary of the 

social environment taking into account multiple sources of 

information (e.g. past interactions) and induces conformity 

between group members. As well as testing hypotheses in OT 

research [21], we argue that modelling and understanding the 

emergent dynamics of OT are valuable in the design of 

intelligent agents that interact with norms in the 

stressful/noisy environments of the real word. This hormonal 

approach to robotics may also complement other approaches, 

such as RL, which may take many epochs to train; whereas 

the bio-inspired simulated hormones have ready in-built 

mechanisms shaped by evolution, requiring less training and 

making them more computationally frugal. Further research 

can combine coarse-grained information provided by 

hormones with existing individual learning mechanisms such 

as RL. For instance, simulated hormones could modulate the 

amount of “attention” paid to the reward or punishment or 

modify the learning rate [20].  
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