Studies of Gamma Ray Shower Reconstruction Using Deep Learning - Archive ouverte HAL
Communication Dans Un Congrès Année : 2021

Studies of Gamma Ray Shower Reconstruction Using Deep Learning

Tomas Bylund
  • Fonction : Auteur
Gašper Kukec Mezek
  • Fonction : Auteur
Mohanraj Senniappan
  • Fonction : Auteur
Yvonne Becherini
Satyendra Thoudam
  • Fonction : Auteur

Résumé

The Cosmic Multiperspective Event Tracker (CoMET) R&D project aims to optimize the techniques for the detection of soft-spectrum sources through very-high-energy gamma-ray observations using particle detectors (called ALTO detectors), and atmospheric Cherenkov light collectors (called CLiC detectors). The accurate reconstruction of the energies and maximum depths of gamma-ray events using a surface array only, is an especially challenging problem at low energies, and the focus of the project. In this contribution, we leverage Convolutional Neural Networks (CNNs) using the ALTO detectors only, to try to improve reconstruction performance at lower energies ( < 1 TeV ) as compared to the SEMLA analysis procedure, which is a more traditional method using manually derived features.

Dates et versions

hal-03320031 , version 1 (13-08-2021)

Identifiants

Citer

Tomas Bylund, Gašper Kukec Mezek, Mohanraj Senniappan, Yvonne Becherini, Michael Punch, et al.. Studies of Gamma Ray Shower Reconstruction Using Deep Learning. 37th International Cosmic Ray Conference, Jul 2021, Berlin, Germany. pp.758, ⟨10.22323/1.395.0758⟩. ⟨hal-03320031⟩
31 Consultations
0 Téléchargements

Altmetric

Partager

More