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Abstract. We study the expressiveness and succinctness of good-for-games pushdown automata
(GFG-PDA) over finite words, that is, pushdown automata whose nondeterminism can be resolved
based on the run constructed so far, but independently of the remainder of the input word.
We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all
context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that
GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially
more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA),
which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTime-
complete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can
be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight.
Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA has
a positional resolver, a function that resolves nondeterminism and that is only dependant on the
current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA,
but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable.

1 Introduction

Nondeterminism adds both expressiveness and succinctness to deterministic pushdown automata. Indeed,
the class of context-free languages (CFL), recognised by nondeterministic pushdown automata (PDA), is
strictly larger than the class of deterministic context-free languages (DCFL), recognised by deterministic
pushdown automata (DPDA), both over finite and infinite words. Even when restricted to languages
in DCFL, there is no computable bound on the relative succinctness of PDA [15,39]. In other words,
nondeterminism is remarkably powerful, even for representing deterministic languages. The cost of such
succinct representations is algorithmic: problems such as universality and solving games with a CFL
winning condition are undecidable for PDA [12,19], while they are decidable for DPDA [40]. Intermediate
forms of automata that lie between deterministic and nondeterministic models have the potential to
mitigate some of the disadvantages of fully nondeterministic automata while retaining some of the benefits
of the deterministic ones.

Unambiguity and bounded ambiguity, for example, restrict nondeterminism by requiring words to
have at most one or at most k, for some fixed k, accepting runs. Holzer and Kutrib survey the noncom-
putable succinctness gaps between unambiguous PDA and both PDA and DPDA [18], while Okhotin
and Salomaa show that unambiguous visibly pushdown automata are exponentially more succinct that
DPDA [32]. Universality of unambiguous PDA is decidable, as it is decidable for unambiguous context-free
grammars [34], which are effectively equivalent [17]. However, to the best of our knowledge, unambiguity
is not known to reduce the algorithmic complexity of solving games with a context-free winning condition.

Another important type of restricted nondeterminism that is known to reduce the complexity of
universality and solving games has been studied under the names of good-for-games (GFG) nonde-
terminism [16] and history-determinism [11]. Intuitively, a nondeterministic automaton is GFG if its
nondeterminism can be resolved on-the-fly, i.e. without knowledge of the remainder of the input word to
be processed.
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For finite automata on finite words, where nondeterminism adds succinctness, but not expressive-
ness, GFG nondeterminism does not even add succinctness: every GFG-NFA contains an equivalent
DFA [6], which can be obtained by pruning transitions from the GFG-NFA. Thus, GFG-NFA cannot be
more succinct than DFA. But for finite automata on infinite words, where nondeterminism again only
adds succintness, but not expressiveness, GFG coBüchi automata can be exponentially more succinct
than deterministic automata [23]. Finally, for certain quantitative automata over infinite words, GFG
nondeterminism adds as much expressiveness as arbitrary nondeterminism [11].

Recently, pushdown automata on infinite words with GFG nondeterminism (ω-GFG-PDA) were
shown to be strictly more expressive than ω-DPDA, while universality and solving games for ω-GFG-
PDA are not harder than for ω-DPDA [25]. Thus, GFG nondeterminism adds expressiveness without
increasing the complexity of these problems, i.e. pushdown automata with GFG nondeterminism induce
a novel and intriguing class of context-free ω-languages.

Here, we continue this work by studying the expressiveness and succinctness of PDA over finite
words. While the decidability results for ω-GFG-PDA on infinite words also hold for GFG-PDA on finite
words, the separation argument between ω-GFG-PDA and ω-DPDA depends crucially on combining
GFG nondeterminism with the coBüchi acceptance condition. Since this condition is only relevant for
infinite words, the separation result does not transfer to the setting of finite words.

Nevertheless, we prove that GFG-PDA are more expressive than DPDA, yielding the first class of
automata on finite words where GFG nondeterminism adds expressiveness. The language witnessing the
separation is remarkably simple, in contrast to the relatively subtle argument for the infinitary result [25]:
the language {ai$aj$bk$ | k 6 max(i, j)} is recognised by a GFG-PDA but not by a DPDA. This yields
a new class of languages, those recognised by GFG-PDA over finite words, for which universality and
solving games are decidable. We also show that this class is incomparable with unambiguous context-free
languages.

We then turn our attention to succinctness of GFG-PDA. We show that the succinctness gap between
DPDA and GFG-PDA is at least exponential, while the gap between GFG-PDA and PDA is at least
double-exponential. These results hold already for finite words.

To the best of our knowledge, both our expressiveness and our succinctness results are the first
examples of good-for-games nondeterminism being used effectively over finite, rather than infinite, words
(recall that all GFG-NFA are determinisable by pruning). Also, this is the first succinctness result for
good-for-games automata that does not depend on the infinitary coBüchi acceptance condition, which
was used to show the exponential succinctness of GFG coBüchi automata, as compared to deterministic
ones [23].

We then study an important subclass of GFG-PDA, namely, GFG visibly pushdown automata (VPA),
in which the stack behaviour (push, pop, skip) is determined by the input letter only. GFG-VPA enjoy
good closure properties: they are closed under complement, union and intersection. We show that there
is an exponential succinctness gap between deterministic VPA and GFG-VPA, as well as between GFG-
VPA and VPA. Both of these are tight, as VPA, and therefore GFG-VPA as well, admit an exponential
determinisation procedure [2]. Furthermore, we show that GFGness of VPA is decidable in ExpTime.
This makes GFG-VPA a particularly interesting class of PDA as they are recognisable, succinct, have
good closure properties and deciding universality and solving games are both in ExpTime. In contrast,
solving ω-VPA games is 2ExpTime-complete [27]. We also relate the problem of checking GFGness with
the good-enough synthesis [1] or uniformization problem [9], which we show to be ExpTime-complete
for DVPA and GFG-PDA.

Nondeterminism in GFG automata is resolved on-the-fly, i.e. the next transition to be taken only
depends on the run prefix constructed so far and the next letter to be processed. Thus, the complexity
of a resolver, mapping run prefixes and letters to transitions, is a natural complexity measure for GFG
automata. For example, finite GFG automata (on finite and infinite words) have a finite-state resolver [16].
For pushdown automata with their infinite configuration space, the situation is markedly different: On
one hand, we show that GFG-PDA admit positional resolvers, that is, resolvers that depend only on
the current configuration, rather than on the entire run prefix produced so far. Note that this result
only holds for GFG-PDA over finite words, but not for ω-GFG-PDA. Yet, positionality does not imply
that resolvers are simple to implement. We show that there are GFG-PDA that do not admit a resolver
implementable by a pushdown transducer. In contrast, all GFG-VPA admit pushdown resolvers, again
showing that GFG-VPA are better behaved than general GFG-PDA. Finally, GFG-PDA with finite-state
resolvers are determinisable.
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All proofs omitted due to space restrictions can be found in the appendix.

Related work The notion of GFG nondeterminism has emerged independently several times, at least as
Colcombet’s history-determinism [11], in Piterman and Henzinger’s GFG automata [16], and as Kupfer-
man, Safra, and Vardi’s nondeterminism for recognising derived languages, that is, the language of trees
of which all branches are in a regular language [24]. Related notions have also emerged in the context
of XML document parsing. Indeed, preorder typed visibly pushdown languages and 1-pass preorder ty-
peable tree languages, considered by Kumar, Madhusudan, and Viswanathan [21] and Martens, Neven,
Schwentick, and Bex [28] respectively, also consider nondeterminism which can be resolved on-the-fly.
However, the restrictions there are stronger than simple GFG nondeterminism, as they also require the
typing to be unique, roughly corresponding to unambiguity in automata models and grammars. This
motivates the further study of unambiguous GFG automata, although this remains out of scope for the
present paper. The XML extension AXML has also inspired Active Context Free Games [30], in which one
player, aiming to produce a word within a target regular language, chooses positions on a word and the
other player chooses a rewriting rule from a context-free grammar. Restricting the strategies of the first
player to moving from left to right makes finding the winner decidable [30,5]; however, since the player
still knows the future of the word, this restriction is not directly comparable to GFG nondeterminism.

Unambiguity, or bounded ambiguity, is an orthogonal way of restricting nondeterminism by limit-
ing the number of permitted accepting runs per word. For regular languages, it leads to polynomial
equivalence and containment algorithms [38]. Minimization remains NP-complete for both unambiguous
automata [20,4] and GFG automata [36] (at least when acceptance is defined on states, see [33]). On
pushdown automata, increasing the permitted degree of ambiguity leads to both greater expressiveness
and unbounded succinctness [17]. Finally, let us mention two more ways of measuring–and restricting–
nondeterminism in PDA: bounded nondeterminism, as studied by Herzog [17] counts the branching in
the run-tree of a word, while the minmax measure [35,14] counts the number of nondeterministic guesses
required to accepts a word. The natural generalisation of GFGness as the width of an automaton [22]
has not yet, to the best of our knowledge, been studied for PDA.

2 Preliminaries

An alphabet Σ is a finite nonempty set of letters. The set of (finite) words over Σ is denoted by Σ∗, the
set of nonempty (finite) words over Σ by Σ+. The empty word is denoted by ε, the length of a word w
is denoted by |w|, and the nth letter of w is denoted by w(n) (starting with n = 0). A language over Σ
is a subset of Σ∗.

For alphabets Σ1, Σ2, we extend functions f : Σ1 → Σ∗2 homomorphically to words over Σ1 via
f(w) = f(w(0))f(w(1))f(w(2)) · · · .

2.1 Pushdown automata

A pushdown automaton (PDA for short) P = (Q,Σ, Γ, qI , ∆, F ) consists of a finite set Q of states with
the initial state qI ∈ Q, an input alphabet Σ, a stack alphabet Γ , a transition relation ∆ to be specified,
and a set F of final states. For notational convenience, we define Σε = Σ ∪ {ε} and Γ⊥ = Γ ∪ {⊥},
where ⊥ /∈ Γ is a designated stack bottom symbol. Then, the transition relation ∆ is a subset of
Q × Γ⊥ × Σε × Q × Γ62

⊥ that we require to neither write nor delete the stack bottom symbol from the
stack: If (q,⊥, a, q′, γ) ∈ ∆, then γ ∈ ⊥ · (Γ ∪ {ε}), and if (q,X, a, q′, γ) ∈ ∆ for X ∈ Γ , then γ ∈ Γ62.
Given a transition τ = (q,X, a, q′, γ) let `(τ) = a ∈ Σε. We say that τ is an `(τ)-transition and that τ is
a Σ-transition, if `(τ) ∈ Σ. For a finite sequence ρ over ∆, the word `(ρ) ∈ Σ∗ is defined by applying `
homomorphically to every transition. We take the size of P to be |Q|+ |Γ |.1

A stack content is a finite word in ⊥Γ ∗ (i.e. the top of the stack is at the end) and a configuration c =
(q, γ) of P consists of a state q ∈ Q and a stack content γ. The initial configuration is (qI ,⊥).

The set of modes of P is Q×Γ⊥. A mode (q,X) enables all transitions of the form (q,X, a, q′, γ′) for

some a ∈ Σε, q′ ∈ Q, and γ′ ∈ Γ62
⊥ . The mode of a configuration c = (q, γX) is (q,X). A transition τ

1 Note that we prove exponential succinctness gaps, so the exact definition of the size is irrelevant, as long as it
is polynomial in |Q| and |Γ |. Here, we pick the sum for the sake of simplicity.
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is enabled by c if it is enabled by c’s mode. In this case, we write (q, γX)
τ−→ (q′, γγ′), where τ =

(q,X, a, q′, γ′).
A run of P is a finite sequence ρ = c0τ0c1τ1 · · · cn−1τn−1cn of configurations and transitions with c0

being the initial configuration and cn′
τn′−−→ cn′+1 for every n′ < n. The run ρ is a run of P on w ∈ Σ∗, if

w = `(ρ). We say that ρ is accepting if it ends in a configuration whose state is final. The language L(P)
recognized by P contains all w ∈ Σ∗ such that P has an accepting run on w.

Remark 1. Let c0τ0c1τ1 · · · cn−1τn−1cn be a run of P. Then, the sequence c0c1 · · · cn−1cn of configurations
is uniquely determined by the sequence τ0τ1 · · · τn−1 of transitions. Hence, whenever convenient, we treat
a sequence of transitions as a run if it indeed induces one (not every such sequence does induce a run,
e.g. if a transition τn′ is not enabled in cn′).

We say that a PDA P is deterministic (DPDA) if

– every mode (q,X) of P enables at most one a-transition for every a ∈ Σ ∪ {ε}, and
– for every mode (q,X) of P, if it enables some ε-transition, then it does not enable any Σ-transition.

Hence, for every input and for every run prefix on it there is a unique enabled transition to continue the
run. Still, due to the existence of ε-transitions, a DPDA can have more than one run on a given input.
However, these only differ by trailing ε-transitions.

The class of languages recognized by PDA is denoted by CFL, the class of languages recognized by
DPDA by DCFL.

Example 1. The PDA P depicted in Figure 1 recognizes the language {acndna | n > 1} ∪ {bcnd2nb | n >
1}. Note that while P is nondeterministic, L(P) is in DCFL.

q

q1

q2

a,⊥ | ⊥A

b,⊥ | ⊥B
c,X | XN

d,N | ε

d,N | N

d,N | ε d,N | ε

d,N | N

b,B | ε

a,A | ε

Fig. 1. The PDA P from Example 1. Grey states are final, and X is an arbitrary stack symbol.

2.2 Good-for-games Pushdown Automata

Here, we introduce good-for-games pushdown automata on finite words (GFG-PDA for short), nondeter-
ministic pushdown automata whose nondeterminism can be resolved based on the run prefix constructed
so far and on the next input letter to be processed, but independently of the continuation of the input
beyond the next letter.

As an example, consider the PDA P from Example 1. It is nondeterministic, but knowing whether
the first transition of the run processed an a or a b allows the nondeterminism to be resolved in a
configuration of the form (q, γN) when processing a d: in the former case, take the transition to state q1,
in the latter case the transition to state q2. Afterwards, there are no nondeterministic choices to make
and the resulting run is accepting whenever the input is in the language. This automaton is therefore
good-for-games.

Formally, a PDA P = (Q,Σ, Γ, qI , ∆, F ) is good-for-games if there is a (nondeterminism) resolver for
P, a function r : ∆∗ ×Σ → ∆ such that for every w ∈ L(P), there is an accepting run ρ = c0τ0 · · · τncn
on w that has no trailing ε-transitions, i.e.

1. n = 0 if w = ε (which implies that c0 is accepting), and
2. `(τ0 · · · τn−1) is a strict prefix of w, if w 6= ε,
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and τn′ = r(τ0 · · · τn′−1, w(|`(τ0 · · · τn′−1)|)) for all 0 6 n′ < n. If w is nonempty, w(|`(τ0 · · · τn′−1)|) is
defined for all 0 6 n′ < n by the second requirement. Note that ρ is unique if it exists.

Note that the prefix processed so far can be recovered from r’s input, i.e. it is `(ρ). However, the
converse is not true due to the existence of ε-transitions. This is the reason that the run prefix and
not the input prefix is the argument for the resolver. We denote the class of languages recognised by
GFG-PDA by GFG-CFL.

Intuitively, every DPDA should be good-for-games, as there is no nondeterminism to resolve during
a run. However, in order to reach a final state, a run of a DPDA on some input w may traverse trailing
ε-transitions after the last letter of w is processed. On the other hand, the run of a GFG-PDA on w
consistent with any resolver has to end with the transition processing the last letter of w. Hence, not every
DPDA recognises the same language when viewed as a GFG-PDA. Nevertheless, we show, using standard
pushdown automata constructions, that every DPDA can be turned into an equivalent GFG-PDA. As
every GFG-PDA is a PDA by definition, we obtain a hierarchy of languages.

Lemma 1. DCFL ⊆ GFG-CFL ⊆ CFL.

Instead of requiring that GFG-PDA end their run with the last letter processed, one could add an
end-of-word marker that allows traversing trailing ε-transitions after the last letter has been processed. In
Appendix A.1, we show that this alternative definition does not increase expressiveness, which explains
our (arguably simpler) definition.

Finally, let us remark that GFGness of PDA and context-free languages is undecidable. These prob-
lems were shown to be undecidable for ω-GFG-PDA and ω-GFG-CFL by reductions from the inclusion
and universality problem for PDA on finite words [25]. Similar proofs also show that these problems are
undecidable over PDA on finite words.

Theorem 1. The following problems are undecidable:

1. Given a PDA P, is P a GFG-PDA?
2. Given a PDA P, is L(P) ∈ GFG-CFL?

2.3 Games and Universality

One of the motivations for GFG automata is that solving games with winning conditions given by a GFG
automaton is easier than for nondeterministic automata. This makes them appealing for applications
such as the synthesis of reactive systems, which can be modelled as a game between an antagonistic
environment and the system. Solving games is undecidable for PDA in general [12], both over finite and
infinite words, while for ω-GFG-PDA, it is ExpTime-complete [25]. As a corollary, universality is also
decidable for ω-GFG-PDA, while it is undecidable for PDA, both over finite and infinite words [19].

Here, we consider Gale-Stewart games [13], abstract games induced by a language in which two players
alternately pick letters, thereby constructing an infinite word. One player aims to construct a word that
is in the language while the other aims to construct one that is not in the language. Note that these
games are different, but related, to games played on configuration graphs of pushdown automata [40].

Formally, given a language L ⊆ (Σ1 × Σ2)∗ of sequences of letter pairs, the game G(L) is played
between Player 1 and Player 2 in rounds i = 0, 1, . . . as follows: At each round i, Player 1 plays a letter
ai ∈ Σ1 and Player 2 answers with a letter bi ∈ Σ2. A play of G(L) is an infinite word

(
a0
b0

)(
a1
b1

)
· · · and

Player 2 wins such a play if and only if each of its prefixes is in the language L. A strategy for Player 2
is a mapping from Σ+

1 to Σ2 that gives for each prefix played by Player 1 the next letter to play. A play
agrees with a strategy σ if for each i, bi = σ(a0a1 . . . ai). Player 2 wins G(L) if she has a strategy that
only agrees with plays that are winning for Player 2. Observe that Player 2 loses whenever the projection
of L onto its first component is not universal. Finally, universality reduces to solving these games: P is
universal if and only if Player 2 wins G(L) for L = {

(
w

#|w|

)
| w ∈ L(P)}.

We now argue that solving games for GFG-PDA easily reduces to the case of ω-GFG-PDA, which
are just GFG-PDA over infinite words, where acceptance is not determined by final state, since runs are
infinite, but rather by the states or transitions visited infinitely often. Here, we only need safety ω-GFG-
PDA, in which every infinite run is accepting (i.e. rejection is implemented via missing transitions). The
infinite Gale-Stewart game over a language L of infinite words, also denoted by G(L), is as above, except
that victory is determined by whether the infinite word built along the play is in L.
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Lemma 2. Given a GFG-PDA P, there is a safety ω-GFG-PDA P ′ no larger than P such that Player 2
wins G(L(P)) if and only if she wins G(L(P ′)).

Our main results of this section are now direct consequences, as argued above.

Corollary 1. Given a GFG-PDA P, deciding whether L(P) = Σ∗ and whether Player 2 wins G(L(P))
are both in ExpTime.

2.4 Closure properties

Like ω-GFG-PDA, GFG-PDA have poor closure properties.

Theorem 2. GFG-PDA are not closed under union, intersection, complementation, set difference and
homomorphism.

The proofs are similar to those used for ω-GFG-PDA and relegated to the appendix. There, we also
study the closure properties under these operations with regular languages: If L is in GFG-CFL and R
is regular, then L ∪R, L ∩R and L\R are also in GFG-CFL, but R\L is not necessarily in GFG-CFL.

3 Expressiveness

Here we show that GFG-PDA are more expressive than DPDA but less expressive than PDA.

Theorem 3. DCFL ( GFG-CFL ( CFL.

To show that GFG-PDA are more expressive than deterministic ones, we consider the language B2 =
{ai$aj$bk$ | k 6 max(i, j)}. It is recognised by the PDA PB2

depicted in Figure 2, hence B2 ∈ CFL.
The first two states q1 and q2 deterministically push the input onto the stack, until the occurrence of
the second $. When the second $ is processed, there is a nondeterministic choice to move to p1 or p2
and erase along ε-transitions 1 or 0 blocks from the stack, so that the 1st or 2nd block of a’s respectively
remains at the top of the stack. Then, the automaton compares the length of the b-block in the input
with the length of the a-block at the top of the stack and accepts if the b-block is shorter, i.e. the third
$ is processed before the whole a-block is popped off the stack. If the input has not the form ai$aj$bk$,
then it is rejected.

q1 q2 p1 p2 f

a,X | Xa

$, X | X$ $, X | X$

a,X | Xa

$, X | X

$, X | X

ε, a | ε b, a | ε

ε, $ | ε

Fig. 2. A PDA PB2 recognising B2. Grey states are final, and X is an arbitrary stack symbol.

We show that B2 ∈ GFG-CFL by proving that PB2
is good-for-games: the nondeterministic choice

between moving to p1 or to p2 can be made only based on the prefix ai$aj processed so far. This is
straightforward, as a resolver only needs to know which of i and j is larger, which can be determined
from the run prefix constructed thus far. Then, in order to show that B2 is not in DCFL, we prove that
its complement Bc2 is not a context-free language. Since DCFL is closed under complementation, this
implies the desired result.

Finally, to show that PDA are more expressive than GFG-PDA, we consider the language L = {anbn |
n > 0}∪ {anb2n | n > 0}. We note that L ∈ CFL while we show below L /∈ GFG-CFL. All proofs can be
found in Appendix A.3.

Unambiguous context-free languages, i.e. those generated by grammars for which every word in the
language has a unique leftmost derivation, are another class sitting between DCFL and CFL. Thus, it is
natural to ask how unambiguity and GFGness are related: To conclude this section, we show that both
notions are independent.
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Theorem 4. There is an unambiguous context-free language that is not in GFG-CFL and a language
in GFG-CFL that is inherently ambiguous.

An unambiguous grammar for the language {anbn | n > 0} ∪ {anb2n | n > 0} /∈ GFG-CFL is easy
to construct and we show in Appendix A.3 that the language B = {aibjck | i, j, k > 1, k 6 max(i, j)}
is inherently ambiguous. Its inclusion in GFG-CFL is easily established using a similar argument as for
the language B2 = {ai$aj$bk$ | k 6 max(i, j)} above. The dollars add clarity to the GFG-PDA but are
cumbersome in the proof of inherent ambiguity.

4 Succinctness

We show that GFG-PDA are not only more expressive than DPDA, but also more succinct. Similarly,
we show that PDA are more succinct than GFG-PDA.

Theorem 5. GFG-PDA can be exponentially more succinct than DPDA, and PDA can be double-
exponentially more succinct than GFG-PDA.

We first show that GFG-PDA can be exponentially more succinct than DPDA. To this end, we
construct a family (Cn)n∈N of languages such that Cn is recognised by a GFG-DPDA of size O(n), yet
every DPDA regognising Cn has at least exponential size in n.

Let cn ∈ (${0, 1}n)∗ be the word describing an n-bit binary counter counting from 0 to 2n − 1. For
example, c2 = $00$01$10$11. We consider the family of languages Cn =

{
w ∈ {0, 1, $,#}∗|w 6= cn#

}
⊆

{0, 1, $,#}∗ of bad counters.
We show in Appendix A.3 that the language Cn is recognised by a GFG-PDA of size O(n) and that

every DPDA D recognising Cn has exponential size in n. Observe that this result implies that even GFG-
PDA that are equivalent to DPDA are not determinisable by pruning. In contrast, for NFA GFGness
implies determinisability by pruning [6].

We conclude this section by showing that PDA can be double-exponentially more succinct than GFG-
PDA. We show that there exists a family (Ln)n>0 of languages such that Ln is recognised by a PDA of
size O(log n) while every GFG-PDA recognising this language has at least exponential size in n.

Formally, we set Ln = (0 + 1)∗1(0 + 1)n−1, that is, the nth bit from the end is a 1. We count starting
from 1, so that the last bit is the 1st bit from the end. Note that this is the standard example for showing
that NFA can be exponentially more succinct than DFA, and has been used for many other succinctness
results ever since.

In Appendix A.3, we first show that Ln is recognised by a PDA of size O(log n). To conclude, we
prove that every GFG-PDA recognising Ln has at least exponential size in n.

5 Good-for-games Visibly Pushdown Automata

One downside of GFG-PDA is that, like ω-GFG-PDA, they have poor closure properties and checking
GFGness is undecidable. We therefore consider a well-behaved class of GFG-PDA, namely GFG visibly
pushdown automata, GFG-VPA for short, that is closed under union, intersection, and complementation.

Let Σc, Σr and Σint be three disjoint sets of call symbols, return symbols and internal symbols
respectively. Let Σ = Σc ∪ Σr ∪ Σint. A visibly pushdown automaton [2] (VPA) P = (Q,Σ, Γ, qI , ∆, F )
is a restricted PDA that pushes onto the stack only when it reads a call symbol, it pops the stack only
when a return symbol is read, and does not use the stack when there is an internal symbol. Formally,

– a letter a ∈ Σc is only processed by transitions of the form (q,X, a, q′, XY ) with X ∈ Γ⊥, i.e. some
stack symbol Y ∈ Γ is pushed onto the stack.

– A letter a ∈ Σr is only processed by transitions of the form (q,X, a, q′, ε) withX 6= ⊥ or (q,⊥, a, q′,⊥),
i.e. the topmost stack symbol is removed, or if the stack is empty, it is left unchanged.

– A letter a ∈ Σint is only processed by transitions of the form (q,X, a, q′, X) with X ∈ Γ⊥, i.e. the
stack is left unchanged.

– There are no ε-transitions.
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Intuitively, the stack height of the last configuration of a run processing some w ∈ (Σc ∪Σr ∪Σs)∗ only
depends on w.

We denote by GFG-VPA the VPA that are good-for-games. Every VPA (and hence every GFG-VPA)
can be determinised, i.e. all three classes of automata recognise the same class of languages, denoted by
VPL, which is a strict subset of DCFL [2]. However, VPA can be exponentially more succinct than
deterministic VPA (DVPA) [2].

Theorem 6. GFG-VPA can be exponentially more succinct than DVPA and VPA can be exponentially
more succinct than GFG-VPA.

GFGness of VPA is decidable using the one-token game, introduced by Bagnol and Kuperberg [3].
It modifies the game-based characterisation of GFGness of ω-regular automata by Henzinger and Piter-
man [16]. While the one-token game does not characterise the GFGness of Büchi automata, here we show
that it suffices for VPA. The matching lower bound follows from a reduction from the inclusion problem
for VPA, which is ExpTime-hard [2], to GFGness (see [25] for details of the reduction in the context of
ω-GFG-PDA).

Theorem 7. The following problem is ExpTime-complete: Given a VPA P, is P GFG?

Finally, we relate the GFGness problem to the good-enough synthesis problem [1], also known as the
uniformization problem [9], which is similar to the Church synthesis problem, except that the system
is only required to satisfy the specification on inputs in the projection of the specification on the first
component.

Definition 1 (ge-synthesis). Given a language L ⊆ (Σ1×Σ2)∗, is there a function f : Σ∗1 → Σ2 such
that for each w ∈ {w | ∃w′ ∈ Σ∗2 .(w,w′) ∈ L} the word (w, f(w(0))f(w(0)w(1)) . . . ) is in L?

Corollary 2. The ge-synthesis problem for input given as GFG-VPA, and in particular for DVPA, is
ExpTime-complete

In contrast, for LTL specifications, the ge-synthesis problem is 2ExpTime-complete [1].

6 Resolvers

The definition of a resolver does not put any restrictions on its complexity. In this section we study
the complexity of the resolvers that GFG-PDA need. We consider two somewhat orthogonal notions of
complexity: memory and machinery. On one hand, we show that resolvers can always be chosen to be
positional, that is, dependent on the current state and stack configuration only. Note that this is not
the case for ω-regular automata2, let alone ω-GFG-PDA. On the other hand, we show that they are not
always implementable by pushdown transducers.

More formally, a resolver r is positional, if for any two sequences ρ and ρ′ of transitions inducing runs
ending in the same configuration, r(ρ, a) = r(ρ′, a) for all a ∈ Σ.

Lemma 3. Every GFG-PDA has a positional resolver.

Contrary to the case of finite and ω-regular automata, since GFG-PDA have an infinite configuration
space, the existence of positional resolvers does not imply determinisability. On the other hand, if a
GFG-PDA has a resolver which only depends on the mode of the current configuration, then it is
determinisable by pruning, as transitions that are not used by the resolver can be removed to obtain a
deterministic automaton. However, not all GFG-PDA are determinisable by pruning, e.g. the GFG-PDA
for the languages Cn used to prove Theorem 5.

We now turn to how powerful resolvers for GFG-PDA need to be. First, we introduce transducers as
a way to implement a resolver. A transducer is an automaton with outputs instead of acceptance, i.e.,
it computes a function from input sequences to outputs. A pushdown resolver is a pushdown transducer
that implements a resolver.

2 A positional resolver for ω-regular automata implies determinisability by pruning, and we know that this is
not always possible [6]

8



Note that a resolver has to pick enabled transitions in order to induce accepting runs for all inputs in
the language. To do so, it needs access to the mode of the last configuration. However, to keep track of
this information on its own, the pushdown resolver would need to simulate the stack of the GFG-PDA it
controls. This severely limits the ability of the pushdown resolver to implement computations on its own
stack. Thus, we give a pushdown resolver access to the current mode of the GFG-PDA via its output
function, thereby freeing its own stack to implement further functionalities.

Formally, a pushdown transducer (PDT for short) T = (D, λ) consists of a DPDA D augmented
with an output function λ : QD → Θ mapping the states QD of D to an output alphabet Θ. The input
alphabet of T is the input alphabet of D.

Then, given a PDA P = (Q,Σ, Γ, qI , ∆, F ), a pushdown resolver for P consists of a pushdown
transducer T = (D, λ) with input alphabet ∆ and output alphabet Q × Γ⊥ × Σ → ∆ such that the
function rT , defined as follows, is a resolver for P: rT (τ0 . . . τk, a) = λ(qT )(qP , X, a) where

– qT is the state of the last configuration of the longest run of D on τ0 . . . τk (recall that while D is
deterministic, it may have several runs on an input which differ on trailing ε-transitions);

– (qP , X) is the mode of the last configuration of the run of P induced by τ0 . . . τk.

In other words, a transducer implements a resolver by processing the run so far, and then uses the
output of the state reached and the state and top stack symbol of the GFG-PDA to determine the next
transition in the GFG-PDA.

q1 q2 q3

p1 p2 p3 f

a,X | Xa a,X | Xa a,X | Xa

ε, a | ε ε, a | ε b, a | ε

$, X | X$ $, X | X$

$, X | X

$, X | X

$, X | X

ε, $ | ε ε, $ | ε $, X | X$

Fig. 3. The PDA PB3 for B3. Grey states are final, and X is an arbitrary stack symbol.

We now give an example of a GFG-PDA which does not have a pushdown resolver. The language
in question is the language B3 = {ai$aj$ak$bl$ | l 6 max(i, j, k)}. Compare this to the language B2 in
Section 3 which does have a pushdown resolver. Let PB3

be the automaton in Figure 3, which works
analogously to the automaton for B2 in Figure 2.

This automaton recognises B3: for a run to end in the final state, the stack, and therefore the input,
must have had an a-block longer than or equal to the final b-block; conversely, if the b-block is shorter
than or equal to some a-block, the automaton can nondeterministically pop the blocks on top of the
longest a-block off the stack before processing the b-block. Furthermore, this automaton is GFG: the
nondeterminism can be resolved by removing from the stack all blocks until the longest a-block is at the
top of the stack, and this choice can be made once the third $ is processed.

We now argue that this GFG-PDA needs more than a pushdown resolver.

Lemma 4. The GFG-PDA PB3
has no pushdown resolver.

Another restricted class of resolvers are finite-state resolvers, which can be seen as pushdown resolvers
that do not use their stack. Similarly to the case of ω-GFG-PDA [26], the product of a GFG-PDA and
a finite-state resolver yields a DPDA for the same language.

Remark 2. Every GFG-PDA with a finite-state resolver is determinisable.

Note that the converse does not hold. For example, consider the regular, and therefore deterministic
context-free, language L10 of words w# with w ∈ {a, b}∗ with infix a10. A GFG-PDA P10 recognising
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L10 can be constructed as follows: P10 pushes its input onto its stack until processing the first #. Then,
it uses ε-transitions to empty the stack again. While doing so, it can nondeterministically guess whether
the next 10 letters removed from the stack are all a’s. If yes, it accepts; in all other cases (in particular if
the input word does not end with the first # or the infix a10 is not encountered on the stack) it rejects.
This automaton is good-for-games, as a resolver has access to the whole prefix before the first # when
searching for a10 while emptying the stack. This is sufficient to resolve the nondeterminism. On the other
hand, there is no finite-state resolver for P10, as resolving the nondeterminism, intuitively, requires to
keep track of the whole prefix before the first # (recall that a finite-state resolver only has access to the
topmost stack symbol).

In Appendix A.2 we consider another model of pushdown resolver, namely one that does not only
have access to the mode of the GFG-PDA, but can check the full stack for regular properties. We show
that this change does not increase the class of good-for-games context-free languages that are recognised
by a GFG-PDA with a pushdown resolver.

Finally, for GFG-VPA, the situation is again much better. The classical game-based characterisation
of GFGness of ω-regular automata by Henzinger and Piterman [16] can be lifted to VPA and is, crucially,
decidable.

Theorem 8. Every GFG-VPA has a (visibly) pushdown resolver.

7 Conclusion

We have continued the study of good-for-games pushdown automata, focusing on expressiveness and
succinctness. In particular, we have shown that GFG-PDA are not only more expressive than DPDA (as
had already been shown for the case of infinite words), but also more succinct than DPDA: We have
introduced the first techniques for using GFG nondeterminism to succinctly represent languages that
do not depend on the coBüchi condition. Similarly, for the case of VPA, for which deterministic and
nondeterministic automata are equally expressive, we proved a (tight) exponential gap in succinctness.

Solving games and universality are decidable for GFG-PDA, but GFGness is undecidable and GFG-
PDA have limited closure properties. On the other hand, GFGness for VPA is decidable and they inherit
the closure properties of VPA, e.g. union, intersection and complementation, making GFG-VPA an
exciting class of pushdown automata. Finally, we have studied the complexity of resolvers for GFG-PDA,
showing that positional ones always suffice, but that they are not always implementable by pushdown
transducers. Again, GFG-VPA are better-behaved, as they always have a resolver implementable by a
VPA.

Let us conclude by mentioning some open problems raised by our work.

– It is known that the succinctness gap between PDA and DPDA is noncomputable, i.e. there is no
computable function f such that any PDA of size n that has some equivalent DPDA also has an
equivalent DPDA of size f(n). Due to our hierarchy results, at least one of the succinctness gaps
between PDA and GFG-PDA and between GFG-PDA and DPDA has to be uncomputable, possibly
both.

– We have shown that some GFG-PDA do not have pushdown resolvers. It is even open whether every
GFG-PDA has a computable resolver.

– On the level of languages, it is open whether every language in GFG-CFL has a GFG-PDA recognising
it with a resolver implementable by a pushdown transducer.

– We have shown that GFGness is undecidable, both for PDA and for context-free languages. Is it
decidable whether a given GFG-PDA has an equivalent DPDA?

– Equivalence of DPDA is famously decidable [37] while it is undecidable for PDA [19]. Is equivalence
of GFG-PDA decidable?

– Does every GFG-PDA that is equivalent to a DPDA have a finite-state resolver with regular stack
access (see Appendix A.2 for definitions)?

– There is a plethora of fragments of context-free languages one can compare GFG-CFL to, let us
just mention a few interesting ones: Height-deterministic context-free languages [31], context-free
languages with bounded nondeterminism [17] and preorder typeable visibly pushdown languages [21].
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(eds.) AFL 2014. EPTCS, vol. 151, pp. 1–24 (2014)
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A Appendix

A.1 Resolvers with End-of-word Markers

As mentioned in the main part, GFG-PDA are by definition required to end their run with the last letter
of the input word. Instead, one could also consider a model where they are allowed to take some trailing
ε-transitions after the last input letter has been processed. As a resolver has access to the next input
letter, which is undefined in this case, we need resolvers with end-of-word markers to signal the resolver
that the last letter has been processed. In the following, we show that GFG-PDA with end-of-word
resolvers are as expressive as standard GFG-PDA, albeit exponentially more succinct.

Fix some distinguished end-of-word-marker #, which takes the role of the next input letter to be
processed, if there is none after the last letter of the input word is processed. Let P = (Q,Σ, Γ, qI , ∆, F )
be a PDA with # /∈ Σ. An EoW-resolver for P is a function r : ∆∗× (Σ ∪{#})→ ∆ such that for every
w ∈ L(P), there is an accepting run c0τ0 · · · τncn on w such that τn′ = r(τ0 · · · τn′−1, w#(|`(τ0 · · · τn′−1)|))
for all 0 6 n′ < n. Note that the second argument given to the resolver is a letter of w#, which is equal
to # if the run prefix induced by τ0 · · · τn′−1 has already processed the full input w. Again, the run is
unique if it exists and, but may have trailing ε-transitions.

Lemma 5. GFG-PDA with EoW-resolvers are as expressive as GFG-PDA.

Proof. A (standard) resolver can be turned into an EoW-resolver that ignores the EoW-marker. Hence,
every GFG-PDA is a PDA with EoW-resolver recognizing the same language. So, it only remains to
consider the other inclusion.

To this end, let P = (Q,Σ, Γ, qI , ∆, F ) be a PDA with EoW-resolver. The language

Cacc = {γq | q ∈ F and γ ∈ ⊥Γ ∗} ⊆ ⊥Γ ∗Q

encoding final configurations of P is regular. Hence, the language

C = {γq ∈ ⊥Γ ∗Q | there is a run infix (q, γ)τ0 · · · τn−1cn
with `(τ0 · · · τn−1) = ε and cn ∈ Cacc}

can be shown to be regular as well by applying saturation techniques [7]3 to the restriction of P to
ε-transitions. If P reaches a configuration c ∈ C after processing an input w, then w ∈ L, even if c’s
state is not final.

Let A = (QA, Γ⊥ ∪ Q, qAI , δA, FA) be a DFA recognizing C. We extend the stack alphabet of
P to Γ × QA × (QA ∪ {u}), where u is a fresh symbol. Then, we extend the transition relation
such that it keeps track of the unique run of A on the stack content: If P reaches a stack con-
tent ⊥(X1, q1, q

′
1)(X2, q2, q

′
2) · · · (Xs, qs, q

′
s), then we have

qj = δ∗A(qAI ,⊥X1 · · ·Xj)

for every 1 6 j 6 s as well as q′j = qj−1 for every 2 6 j 6 s and q′1 = u. Here, δ∗A is the standard
extension of δA to words. The adapted PDA is still good-for-games, as no new nondeterminism has been
introduced, and keeps track of the state of A reached by processing the stack content as well as the
shifted sequence of states of A, which is useful when popping the top stack symbol: If the topmost stack
symbol (X, q, q′) is popped of the stack then q′ is the state of A reached when processing the remaining
stack.

Now, we double the state space of P, making one copy final, and adapt the transition relation again so
that a final state is reached whenever P would reach a configuration in C. Whether a configuration in C
is reached can be determined from the current state of P being simulated, as well as the top stack symbol
containing information on the run of A on the current stack content. The resulting PDA recognizes L(P)
and has on every word w ∈ L(P) an accepting run without trailing ε-transitions. Furthermore, an EoW-
resolver for P can be turned into a (standard) resolver for P ′, as the tracking of stack contents and the
doubling of the state space does not introduce nondeterminism.

3 Also, see the survey by Carayol and Hague [8] for more details.
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As A has at most exponential size, P is also exponential (both in the size of P). This exponential
blowup incurred by removing the end-of-word marker is in general unavoidable. In Lemma 20, we show
that the language Ln of bitstrings whose nth bit from the end is a 1 requires exponentially-sized GFG-
PDA. On the other hand, it is straightforward to devise a polynomially-sized PDA with EoW-marker
recognizing Ln: the underlying PDA stores the input word on the stack, guesses nondeterministically
that the word has ended, uses n (trailing) ε-transitions to pop of the last n − 1 letters stored on the
stack, and then checks that the topmost stack symbol is an 1. With an EoW-resolver, the end of the
input does not have to be guessed, but is marked by the EoW-marker.

A.2 Pushdown Resolvers with Regular Stack Access

Recall that pushdown transducers implementing a resolver have access to the mode of the GFG-PDA
whose nondeterminism it resolves. Here, we consider a more general model where the transducer can use
information about the whole stack when determining the next transition. More precisely, we consider a
regular abstraction of the possible stack contents by fixing a DFA running over the stack and allowing
the transducer to base its decision on the state reached by the DFA as well.

Then, given a PDA P = (Q,Σ, Γ, qI , ∆, F ), a pushdown resolver with regular stack access T =
(D,A, λ) consists a DPDA P with input alphabet ∆, a DFA A over Γ⊥ with state set QA, and an output
function λ with output alphabet Q × QA × Σ → ∆ such that the function rT defined as follows, is a
resolver for P:

rT (τ0 . . . τk, a) = λ(qT )(qP , qA, a)

where

– qT is the state of the last configuration of the longest run of D on τ0 . . . τk (recall that while D is
deterministic, it may have several runs on an input which differ on trailing ε-transitions).

– Let c be the last configuration of the run of P induced by τ0 . . . τk. Then, qP is the state of c and qA
is the state of A reached when processing the stack content of c.

Every pushdown resolver with only access to the current mode is a special case of a pushdown resolver
with regular stack access. On the other hand, having regular access to the stack is strictly stronger than
having just access to the mode. However, by adapting the underlying GFG-PDA, one can show that the
languages recognised by GFG-PDA with pushdown resolvers doer not increase when allowing regular
stack access.

Lemma 6. Every GFG-PDA with a pushdown resolver with regular stack access can be turned into an
equivalent GFG-PDA with a pushdown resolver.

Proof. Let P = (Q,Σ, Γ, qI , ∆, F ) be a GFG-PDA and let (D,A, λ) be a pushdown resolver with stack
access for P. We keep track of the state A reaches on the current stack as in the proof of Lemma 5: If a
stack content ⊥(X1, q1) · · · (Xs, qs) is reached, then qj is the unique state of P reached when processing
⊥X1 · · ·Xj . Now, it is straightforward to turn (D,A, λ) into a pushdown resolver for P that has only
access to the top stack symbol.

A.3 Proofs Omitted due to Space Restrictions

Proof of Lemma 1 Recall that we need to prove DCFL ⊆ GFG-CFL ⊆ CFL.

Proof. We only consider the first inclusion, as the second one is trivial. So, let L ∈ DCFL, say it is
recognised by the DPDA P = (Q,Σ, Γ, qI , ∆, F ). We say that a mode m of P is a reading mode if it
does not enable an ε-transition. Hence, due to determinism, m can only enable at most one a-transition
for every a ∈ Σ.

Now, consider some nonempty word w(0) · · ·w(n) ∈ L(P) (we take care of the empty word later on),
say with accepting run ρ (treated, for notational convenience, as a sequence of transitions). This run can
be decomposed as

ρ = ρ0 τ0 ρ1 τ1 ρ2 · · · ρn τn ρn+1

where τi processes w(i) and each ρi is a (possibly empty) sequence of ε-transitions. Each run prefix
induced by some ρ0τ0ρ1 · · · ρi ends in a configuration with reading mode.
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Intuitively, we have to eliminate the trailing ε-transitions in ρn+1. To do so, we postpone the processing
of the letter w(i) to the end of ρi+1. Instead, we guess that the next input is w(i) by turning the original
w(i)-transition τi into an ε-transition τ ′i that stores w(i) in the state space of the modified automaton.
Then, ρi+1 is simulated, a dummy transition τdi processing the stored letter w(i) is executed.

Hence, the resulting run of the modified automaton on w has the form

ρ0 τ
′
0 ρ1 τ

d
0 τ
′
1 ρ2 τ

d
1 · · · ρn τdn−1 τ ′n ρn+1 τ

d
n ,

where each τ ′i is now an ε-transition, each ρi is a (possibly empty) sequence of ε-transitions, and each τdi
is a dummy transition processing w(i). Hence, the run ends with the transition processing the last letter
w(n) of the input.

The resulting PDA is good-for-games, as a resolver has access to the next letter to be processed,
which is sufficient to resolve the nondeterminism introduced by the guessing of the next letter.

More formally, let PDA P ′ = (Q′, Σ, Γ, q′I , ∆
′, F ′) where

– Q′ = Q ∪ (Q×Σ),
– q′I = qI ,
– F ′ = F ∪ I where I = {qI} if ε ∈ L(P) and I = ∅, otherwise, and
– ∆′ is the union of the following sets of transitions:
• {τ ∈ ∆ | `(τ) = ε}, which is used to simulate the leading sequence of ε-transitions before the

first letter is processed by P, i.e. the transitions in ρ0 above.
• {(q,X, ε, (q′, a), γ) | (q,X, a, q′, γ) ∈ ∆ and a ∈ Σ}, which are used to guess and store the next

letter to be processed.
• {((q, a), X, ε, (q′, a), γ) | (q,X, ε, q′, γ) ∈ ∆}, which are used to simulate ε-transitions after a

letter has been guessed, but not yet processed (i.e. transitions in some ρi with i > 0).
• {((q, a), X, a, q,X) | (q,X) is a reading mode}, the dummy transitions used to actually process

the guessed and stored letter.

Now, formalising the intuition given above, one can show that P ′ has a resolver witnessing that it
recognises L(P). In particular, the empty word is in L(P ′) if and only if it is in L(P), as the run induced
by the resolver on ε ends in the initial configuration, which is final if and only if ε ∈ L(P).

Proof of Lemma 2 Recall that we need to prove the following statement: Given a GFG-PDA P, there
is a safety ω-GFG-PDA P ′ no larger than P such that Player 2 wins G(L(P)) if and only if she wins
G(L(P ′)).

Proof. Let P ′ be the PDA obtained from P by removing all transitions (q,X, a, q′, γ) of P with a ∈ Σ
and with non-final q′.

With a safety condition, in which every infinite run is accepting, P ′ recognises exactly those infinite
words whose prefixes are all accepted by P. Hence, the games G(L(P)) and G(L(P ′)) have the same
winning player.

Note that the correctness of this construction crucially relies on our definition of GFG-PDA which
requires a run on a finite word to end as soon as the last letter is processed. Hence, the word is accepted
if and only if the state reached by processing this last letter is final.

Finally, since P is GFG, so is P ′. Consider an infinite input in L(P ′). Then, every prefix w has an
accepting run of P induced by its resolver, which implies that the last transition of this run (which
processes the last letter of w) is not one of those that are removed to obtain P ′. Now, an induction shows
that the same resolver works for P ′ as well, relying on the fact that if w and w′ with |w| < |w′| are two
such prefixes, then the resolver-induced run of P on w is a prefix of the resolver-induced run of P on
w′.

Proof of Theorem 2 We need to prove the non-closure of GFG-CFL under union, intersection, com-
plementation, set difference and homomorphism. Some of the proofs refer to results proven later in the
appendix.

Lemma 7. GFG-CFL is not closed under union.
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Proof. Consider the languages L1 = {anbn | n > 0} and L2 = {anb2n | n > 0} respectively. There exist
a DPDA recognising L1 and a DPDA recognising L2. Hence by Lemma 1, there also exist a GFG-PDA
recognising L1 and a GFG-PDA recognising L2. However, by Lemma 14, we have that L1 ∪ L2 cannot
be recognised by a GFG-PDA.

Lemma 8. GFG-CFL is not closed under intersection.

Proof. Consider the languages L1 = {anbncm | m,n > 0} and L2 = {ambncn | m,n > 0}. There exist
DPDA recognising L1 and L2. Hence by Lemma 1 there exist GFG-PDA recognising L1 and L2.

Now let L = L1 ∩ L2 = {anbncn | n > 0}. As L is not a CFL there does not exist any GFG-PDA
recognising L.

Lemma 9. GFG-CFL is not closed under complementation.

Proof. Recall the language

B2 = {ai$aj$bk$ | k 6 max(i, j)}.

We proved with Lemma 12 that B2 ∈ GFG-CFL, yet Lemma 13 shows that its complement Bc2 is not
even a context-free language.

Lemma 10. GFG-CFL is not closed under set difference.

Proof. Closure under set difference implies closure under complementation since for every language L
over alphabet Σ, we have that the complement Lc is equal to Σ∗\L.

Lemma 11. GFG-CFL is not closed under homomorphism.

Proof. The language

L =

{(
a

1

)n(
b

#

)n ∣∣∣∣n > 0

}
∪

{(
a

2

)n(
b

#

)2n
∣∣∣∣∣n > 0

}

is recognised by a DPDA, and hence by a GFG-PDA using Lemma 1, but its projection (which is a
homomorphism)

{anbn | n > 0} ∪ {anb2n | n > 0}

cannot be recognised by a GFG-PDA (see Lemma 14).

Closure Properties with Regular Languages

Theorem 9. If L is in GFG-CFL and R is regular, then L∪R, L∩R and L\R are also in GFG-CFL,
but R\L is not necessarily in GFG-CFL.

Proof. Consider a GFG-PDA P = (Q,Σ, Γ, qI , ∆, F ) recognising L, and a resolver r for P. By definition,
r only has to induce a run on every w ∈ L(P), but does not necessarily induce a run on w /∈ L(P).
First, we turn P into an equivalent GFG-PDA P ′ that has a resolver that induces a run on every input
w ∈ Σ∗. This property allows us then to take the product of P ′ and an DFA for R.

To this end, we add a fresh nonfinal sink state qs with a self-loop (qs, X, a, qs, X) for every input
letter a ∈ Σ and every stack symbol X ∈ Γ⊥. Also, we add transitions so that every configuration has,
for every a ∈ Σ, an enabled a-transition to the sink. The resulting PDA P ′ is equivalent and r is still a
resolver for it. But, we can also turn r into a resolver r′ that induces a run on every possible input as
follows: If `(τ0 · · · τn) is a prefix of a word in L(P), then we define r′(τ0 · · · τn, a) = r(τ0 · · · τn, a) for every
a ∈ Σ. Otherwise, if `(τ0 · · · τn) is not a prefix of a word in L(P), we define r′(τ0 · · · τn, a) = (q,X, a, qs, X),
where (q,X) is the mode of the last configuration of the run induced by τ0 · · · τn. Thus, as soon as the
input can no longer be extended to a word in L(P), then run induced by r′ moves to the sink state and
processes the remaining input.

Now, let A be a DFA recognising R. For L∪R, we construct the product PDA P∪ of P ′ and A that
simulates a run of P ′ and the unique run of A simultaneously on an input word and accepts if either the
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run of P or the run of A is accepting. We note that when an ε-transition is chosen in P ′ by the resolver,
then no move is made in A. As P ′ has a run on every input, the product PDA P∪ has one as well.

For L ∩R, we construct a PDA P∩ which is similar to P∪ with the difference that P∩ accepts when
each of P ′ and A has an accepting run on the input word.

Both P∪ and P∩ are GFG-PDA since only the nondeterminism of P ′ needs to be resolved.
Finally, since L\R = L ∩Rc and the complement Rc is regular, it follows that L\R is recognised by

a GFG-PDA if there is a GFG-PDA recognising L. For R\L, note that Σ∗ is a regular language and
Σ∗\L = Lc which by Lemma 9 implies that R\L may not be in GFG-CFL.

Proof of Theorem 3 We prove DCFL ( GFG-CFL ( CFL in several steps. Recall that we defined
B2 = {ai$aj$bk$ | k 6 max(i, j)}.

Lemma 12. B2 ∈ GFG-CFL.

Proof. Let us summarise the behaviour of the pushdown automaton PB2
recognising B2 (see Figure 2).

First, the automaton copies the two blocks of a’s on the stack. Then, when it processes the second $, it
transitions nondeterministically to either p1 or p2. In p1, it erases the second a-block from the stack, so
that the first block is at the top of the stack, and then transitions to p2. In p2, the automaton compares
the number of b’s in the input with the number of a’s in the topmost block of the stack. If the latter is
larger than or equal to the former, PB2

pops one a for each b in the input, and then transitions to the
final state when it processes the third $.

When processing the second $, knowing whether the first or second block of the prefix contains more
a’s allows the nondeterminism to be resolved: if the first block contains more a’s, take the transition to
the state p1, if the second block contains more a’s, take the transition to the state p2.

To show that B2 is not in DCFL, we prove that its complement is not even context-free. This suffices,
as DCFL is closed under complementation.

Lemma 13. The complement Bc2 of B2 is not in CFL.

Proof. Assume, for the sake of contradiction, that the complement Bc2 of B2 is in CFL. Now consider
the regular language

A = {ai$aj$bk$|i, j, k ∈ N}.

Since the intersection of a context-free language and a regular language is context-free, we have that
Bc2 ∩ A ∈ CFL. Therefore, Bc2 ∩ A satisfies the pumping lemma for context-free languages: there exists
m ∈ N such that the word z = am$am$bm+1$ ∈ Bc2 ∩A can be decomposed as z = uvwxy such that

1. |vx| > 1;
2. uvnwxny ∈ Bc2 ∩A for every n > 0.

Note that Item 2 directly implies that both v and x are in the language {a}∗∪{b}∗, as otherwise uv2wx2y
is not in A. On top of that, Item 1 implies that either v or x is in {a}+ ∪ {b}+. We conclude by proving,
through a case distinction, that Item 2 cannot hold as either uwy or uv2wx2y is in B2.

– Assume that neither v nor x is in {b}+. Then either v or x is in {a}+, hence uv2wx2y = am1$am2$bm+1$
for some m1,m2 > m such that either m1 > m or m2 > m. In both cases, we get uv2wx2y ∈ B2.

– Assume that either v or x is in {b}+. Then pumping v and x down in z reduces the size of at most
one of the a-blocks: we have that uwy = am1$am2$bm3+1$ for m1,m2,m3 6 m such that m3 < m,
and either m1 = m or m2 = m. In both cases, we get uwy ∈ B2.

As every possible case results in a contradiction, our initial hypothesis is false: Bc2 6∈ CFL.

The previous two lemmata and Lemma 1 yield DCFL ( GFG-CFL.
Now, we prove GFG-CFL ( CFL. Recall that we defined L = {anbn | n > 0} ∪ {anb2n | n > 0},

which is clearly in CFL. Hence, the following lemma completes the proof of Theorem 3.

Lemma 14. L /∈ GFG-CFL.
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Proof. We show that there does not exist a GFG-PDA recognising L. In fact, we show that if there
existed a GFG-PDA P recognising L, then we could construct a PDA P̂ recognising the language
L̂ = L ∪ {anbncn | n > 0}. Since L̂ is not in CFL, we would thus reach a contradiction.

The idea behind the construction is to replicate the part of the control unit of P which processes the
suffix bn of an input word anb2n with the difference that in the newly added parts, the transitions caused
by input symbol b are replaced with similar ones for input symbol c. This new part of the control unit
may be entered after P̂ has processed anbn.

We now construct the PDA P̂ from P as follows. Let P = (Q,Σ, Γ, qI , ∆, F ) with Q = {q0, q1, . . . , qn},
and let q0 = qI . Now consider P̂ = (Q ∪ Q̂,Σ, Γ, qI , ∆ ∪ ∆̂, F ∪ F̂ ) with Q̂ = {q̂0, q̂1, . . . , q̂n}, F̂ = {q̂i |
qi ∈ F}, and ∆̂ includes the following additional transitions:

1. {(qf , X, ε, q̂f , X) | qf ∈ F,X ∈ Γ⊥}: switch from the original final states to the new states.
2. {(q̂i, X, c, q̂j , γ) | (qi, X, b, qj , γ) ∈ ∆}: replicate the original b-transitions by c-transitions in the new

states.
3. {(q̂i, X, ε, q̂j , γ) | (qi, X, ε, qj , γ) ∈ ∆}: replicate all ε-transitions.

Now we show that L(P̂) = L̂. First we show that L(P̂) ⊆ L̂. Consider a word w ∈ L(P̂). There may
be two cases:

(i) Assume P̂ has an accepting run on w that does not visit a state in Q̂. In this case, we have that w

is in L(P) = L ⊆ L̂.

(ii) Assume there exists an accepting run of P̂ on w that visits a state in Q̂. Since P recognises L, and by

construction of P̂, a state q̂i ∈ Q̂ can be reached from a state qi ∈ Q only if q̂i ∈ F̂ and qi ∈ F , and
the corresponding transition is an ε-transition, we have that starting from the initial configuration
(qI ,⊥), a state in Q̂ is reached for the first time only after processing an input prefix anbn or anb2n

for some n > 0. If this prefix of w is anb2n, then w = anb2n. This is because if w = anb2ncm for
some m > 0 (recall that after visiting a state q̂i in Q̂, the only non-ε transitions possible are on the

letter c), then by the construction of P̂, we have that P can accept the word anb2nbm which is not

in the language L. On the other hand, let the prefix be anbn when a state q̂i ∈ Q̂ is visited for the
first time. Note that q̂i ∈ F̂ , and let (q̂i, γi) be the corresponding configuration. If a sequence of
transitions τ̂i . . . τ̂j from (q̂i, γi) to (q̂j , γj) is possible such that not all of τ̂i . . . τ̂j are ε-transitions,

that is, the transitions process cm for some m ∈ N, and q̂j ∈ F̂ , then a sequence of transitions
τi . . . τj of the same length processing bm is possible from (qi, γi) to (qj , γj) with qj ∈ F . Since this
leads to an accepting run from (qI ,⊥) to (qj , γj) while visiting only the states in Q on processing

anbnbm with m > 0, we have m = n, and hence w = anbncn ∈ L̂.
If on the other hand, if all the transitions τ̂i . . . τ̂j are ε-transitions, then w = anbn ∈ L̂.

Now we prove the other direction, that is L̂ ⊆ L(P̂). Here, we rely on the fact that the accepting run
of P on anbn induced by r is a prefix of the accepting run of P on anb2n induced by r. This allows to
switch to the copied states Q̂ after processing anbn and then process cn instead of bn.

Consider a word w ∈ L̂ such that w ∈ L. By construction of P̂, we have that w ∈ L(P̂) since P̂
accepts all words that are also accepted by P. Now suppose that w ∈ L̂ but w /∈ L, that is, w is of
the form anbncn for some n > 1. Since by assumption, we have that P is a GFG-PDA recognising the
language L, there exists a resolver r that for every word in L induces an accepting run of the word in
L. Let (qi, γi) be the configuration of P reached after processing the prefix anbn in the run induced by
r on the input anb2n.

Note that qi ∈ F since r also induces an accepting run for the input anbn. Now if for the input
anb2n, the sequence of transitions chosen by r from (qi, γi) after processing anbn is τi, τi+1, · · · , τj with

(qi, γi)
τi−→ (qi+1, γi+1) . . . (qj−1, γj−1)

τj−→ (qj , γj), with qj ∈ F , and the sequence τi, . . . , τj processes

bn, then by the construction of P̂, there exists a sequence of transitions τ̂i, τ̂i+1, . . . , τ̂j with (q̂i, γi)
τ̂i−→

(q̂i+1, γi+1) . . . (q̂j−1, γj−1)
τ̂j−→ (q̂j , γj) and with q̂j ∈ F̂ such that there is an ε-transition from (qi, γi) to

(q̂i, γi) and the sequence τ̂i, τ̂i+1, · · · , τ̂j processes cn, and hence w ∈ L(P̂).

Thus we have that L̂ = L(P̂). Hence we show that if P is a GFG-PDA, then we can construct a

PDA P̂ recognising L̂ which is not a CFL, thus leading to a contradiction to our assumption that L is
in GFG-CFL.
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Proof of Theorem 4 We need to show that B = {aibjck | i, j, k > 1, k 6 max(i, j)} is inherently
ambiguous, i.e. for every grammar generating B there is at least one word that has two different leftmost
derivations.

We use standard definitions and notation for context-free grammars as in [19]. We say that a grammar
is reduced, if every variable is reachable from the start variable, every variable can be reduced to a word
of terminals, and for no variable A, it holds that A

∗
=⇒ A.

Let D(G) = {A ∈ V | A ∗
=⇒ xAy for some x, y with xy 6= ε}. An unambiguous CFG G is called

almost-looping, if

1. G is reduced,
2. all variables, possibly other than the start variable S, belong to D(G), and
3. either S ∈ D(G) or S occurs only once in the leftmost derivation of any word in L(G).

Now we state the following lemma from [29].

Lemma 15. For every unambiguous CFG G, there exists an unambiguous almost-looping CFG G′ such
that L(G) = L(G′).

An important property of the grammar obtained through the translation is that if the initial grammar
is unambiguous, then so is the translated almost-looping grammar.

An example of an almost-looping grammar for language B is the following:

S → S1 | S2

S1 → aS1 | aS1c | aBc
B → bB | b

S2 → aS2 | aD
D → bDc | bD | bc

Fig. 4. An example CFG for language B

Now we prove the following, using techniques inspired by Maurer’s proof that {aibjck | i, j, k > 1, i =
j ∨ j = k} is inherently ambiguous [29].

Lemma 16. The language B is inherently ambiguous.

Proof. Assume, towards a contradiction, thatG is an unambiguous grammar forB, which, from Lemma 15,
we can assume, without loss of generality, to be an almost-looping grammar. Let A be a variable of G.

1. A is of Type 1 if there is a derivation A
∗

=⇒ xAy where xy = anA,1 for some nA,1 > 0.

2. A is of Type 2 if there is a derivation A
∗

=⇒ xAy where xy = bnA,2 for some nA,2 > 0.

3. A is of Type 3 if there is a derivation A
∗

=⇒ xAy where x = a`A,3 and y = crA,3 for some `A,3 >
rA,3 > 0.

4. A is of Type 4 if there is a derivation A
∗

=⇒ xAy where x = b`A,4 and y = crA,4 for some `A,4 >
rA,4 > 0.

5. A is of Type 5 if there is a derivation A
∗

=⇒ xAy where x = a`A,5 and y = brA,5 for some `A,5, rA,5 > 0.

Note that some variables may be of multiple types (e.g. the variable D in Figure 4 has Type 2 and Type 4).
s First, we show that each variable in D(G) has at least one of these five types. So, let A ∈ D(G). Then,

there exists a derivation A
∗

=⇒ xAy with xy 6= ε. Note that both x and y belong to a∗, b∗, or c∗ since
otherwise, due to G being reduced, one could derive words that are not in the language. Next, we note
that the cases where x belongs to c∗, and y belongs to a∗ or b∗ cannot happen. Similarly, the case where
x belongs to b∗, and y belongs to a∗ cannot happen. Also we cannot have xy in c∗, since this will allow
us to have words with arbitrary number of c’s which can be more than the number of a’s and b’s and
such a word is not in the language.

Further, we cannot have x = a` and y = cr with 0 < ` < r. Otherwise, consider a derivation of some
word in B that uses A, i.e.

S
∗

=⇒ αAβ
∗

=⇒ asbucv with v 6 max(s, u).
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Now, towards a contradiction assume we indeed have

A
∗

=⇒ xAy with x = a`, y = cr and ` < r.

Then, pumping q copies of x and y, for some suitable q ∈ N, yields a derivation

S
∗

=⇒ αAβ
∗

=⇒ αxqAyqβ
∗

=⇒ as+`qbucv+rq such that v + rq > max(s+ `q, u),

i.e. we have derived a word that is not in B. Similarly, we cannot have x = b` and y = cr for some
0 < ` < r. Altogether, this implies that A indeed has at least one of the five types stated above.

Moreover, we claim that there is a t ∈ N such that the following three properties are true for every
word w ∈ B:

Property 1 If w has more than t c’s, then the (unique) leftmost derivation of w has the form

S
∗

=⇒ αAβ
∗

=⇒ αxAyβ
∗

=⇒ w such that xy contains a c.

Thus, A has type 3 or type 4.
Property 2 If w has more than t a’s, then the (unique) leftmost derivation of w has the form

S
∗

=⇒ αAβ
∗

=⇒ αxAyβ
∗

=⇒ w such that xy contains an a.

Thus, A has type 1, type 3, or type 5.
Property 3 If w has more than t b’s, then the (unique) leftmost derivation of w has the form

S
∗

=⇒ αAβ
∗

=⇒ αxAyβ
∗

=⇒ w such that xy contains a b.

Thus, A has type 2, type 4, or type 5.

We prove these properties as follows: we denote by d the width of the grammar G which is the
maximum number of symbols appearing on the right side of some production rule of G. Further, we
denote by m the number of variables appearing in G. We argue that t = dm+1 satisfies the three
properties above. We focus on Property 1, the two other proofs are similar. Suppose that w contains
more than dm+1 c’s and consider the derivation tree of that word. The weight ω(v) of a vertex v in the
derivation tree is defined as the number of c’s in the subtree rooted at v. Hence, the root of the derivation
tree has at least weight dm+1. We build a finite path v0, v1, . . . , vk from the root of this tree to one of its
leaves as follows: The initial vertex v0 is the root and at each step, we choose as successor of vi its child
vi+1 with the largest weight. A vertex vi of this path is decreasing if ω(vi) > ω(vi+1). There are are at
least m + 1 decreasing vertices on the path because ω(v0) = dm+1, ω(vk) = 1, and ω(vi+1) > 1

d · ω(vi).
Thus, there are two decreasing vertices on the path that are labeled by the same variable A such that
there is a derivation of the form A

∗
=⇒ xAy with some c in xy.

Let p > t be a positive integer divisible by the least common multiple of the nA,i, `A,i and rA,i for
all A ∈ D(G) and i ∈ {1, . . . , 5}, where we define nA,1 = 1 if A is not of Type 1, and similarly for all
other i > 1. We show that the word w = a2pb2pc2p ∈ B has two leftmost derivations.

First consider the derivation of the word wb = a2pbpc2p ∈ B. As we have more than t c’s in wb
Property 1 shows that the derivation contains a variable of Type 3 or Type 4. Next, we argue that it
cannot contain a variable of Type 4: The occurrence of such a variable would allow us to either produce
a word that is not in a∗b∗c∗ or to inject bpcr for p > r > 0 leading to the derivation of a2pb2pc2p+r, which
is not in the language. Thus, the derivation of wb uses at least one variable of Type 3. Also, since wb has
p > t b’s, Property 3 implies that the (unique) leftmost derivation of wb has the form

S
∗

=⇒ αAβ
∗

=⇒ αxAyβ
∗

=⇒ wb such that xy contains a b.

Thus A is a variable of Type 2 or Type 5 (note that we have already ruled out Type 4 above). More
precisely, we have that x belongs to a+ or b∗ and y = bj for some j ∈ N. Now we show that the case
where x belongs to a+ is not possible. Assume for contradiction that x = ai for some i > 0. Then we
also have the derivation

S
∗

=⇒ αAβ
∗

=⇒ a2p−ibp−jc2p /∈ B.
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Therefore, A is a Type 2 variable that is used in the derivation of wb, which can be used to inject another
bp, yielding a derivation of w. Thus, we have exhibited a derivation of w that uses a variable of Type 3.

Now consider a derivation of the word wa = apb2pc2p. Such a derivation cannot contain a variable of
Type 3 since this allows us either to produce a word that is not in a∗b∗c∗ or to inject apcr for p > r > 0,
leading to the derivation of a2pb2pc2p+r /∈ B. Further, arguing as above, some variable of Type 1 must
appear in the derivation of wa that is used to obtain sufficient number of a’s in the derivation of wa.
Such a variable of Type 1 can be used to inject ap into wa which leads to the derivation of w. Thus, we
have exhibited a derivation of w that does not contain a variable of Type 3.

Altogether, there are two different leftmost derivations of the word w. Thus, G is not unambiguous,
yielding the desired contradiction.

Proof of Theorem 5 Recall that we need to prove that GFG-PDA can be exponentially more succinct
than DPDA, and that PDA can be double-exponentially more succinct than GFG-PDA.

We first consider the gap between DPDA and GFG-PDA. Recall that we defined cn ∈ (${0, 1}n)∗ to
be the word describing an n-bit binary counter counting from 0 to 2n − 1 and

Cn =
{
w ∈ {0, 1, $,#}∗|w 6= cn#

}
.

We prove that Cn is recognised by a PDA of linear size, but every GFG-PDA recognising Cn has
exponential size. The proof is split into two parts.

Lemma 17. The language Cn is recognised by a GFG-PDA of size O(n).

Proof. We define a PDA P = (Q,Σ, Γ, qI , ∆, F ) that recognises Cn. The automaton P operates in three
phases: a push phase, followed by a check phase, and then a final phase. These phases work as follows.
Suppose that P receives an input w ∈ {0, 1, $,#}∗. During the first phase, P pushes the input processed
onto the stack until the sequence 1n appears. If it never appears, the input is accepted. During this
phase, P also checks whether the prefix w′ of w processed up to this point is a sequence of counter values
starting with 0n, i.e. whether w′ is in the language

Lc = {$d0$d1$ . . . $dm | d0 = 0n, di = 1n ⇔ i = m, and di ∈ {0, 1}n for all 1 6 i 6 m}.

If w′ 6∈ Lc, then P immediately accepts. Otherwise, P moves to the second phase. During the check
phase, P pops the stack. At any point, P can nondeterministically guess that the top symbol of the stack
is evidence of bad counting. It then accepts the input if the guess was correct. If P completely pops the
stack without correctly guessing an error in the counter, it moves to the final phase. Since the prefix
w′ processed up to this point ends with the sequence 1n, if P now processes any suffix different from a
single #, then the input is not equal to cn#, and can be accepted.

The stack alphabet of P has constant size 3. The push phase requires 3(n+ 1) states:

– First, P checks whether $0n is a prefix of the input. This can be done with n+ 2 states.
– Then, P checks whether the following {0, 1}∗ segments are n-bits wide, and only the last one is 1n.

This can be done with 2n+1 additional states: repeatedly, P processes n+1 symbols, checks whether
only the first of them is a $, and keeps track of whether at least one of them is 0.

We now show that 6(n+ 1) additional states are enough for the check phase. To this end, we study
the errors that P needs to check. Note that, to increment the counter correctly, we need to change the
value of all the bits starting from the last 0, and leave the previous bits unchanged. Therefore, P can
recognise with 6(n + 1) states whether the top symbol of the stack does not correspond to a correct
counter increment: P pops the top n+ 1 stack symbols while keeping in memory

– the value of the first symbol popped;
– whether we have not yet popped a $ (there is exactly one $ in the top n + 1 stack symbols, as the

stack content is in Lc), or a $ but no 0 afterwards, or a $ and at least one 0 afterwards.

The input is accepted whenever the first symbol popped and the top stack symbol after popping match
yet no 0 has been popped between the $ and the last symbol, or they differ yet at least one 0 has been
popped between the $ and the last symbol.
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Finally, only three states are needed for the final phase: when the bottom of the stack is reached, P
transitions to a new state, and from there it checks whether the suffix is in the language {0, 1, $,#}∗\{#}.

To conclude, note that P is good-for-games: the only nondeterministic choice happens during the
check phase, and the resolver knows which symbols of the stack are evidence of bad counting. Note that
this choice only depends on the current stack content.

Lemma 18. Every DPDA recognising the language Cn has at least exponential size in n.

Proof. It is known that every DPDA can be complemented at the cost of multiplying its number of
states by three [19]. Therefore, to prove the statement, we show that even every PDA recognising the
complement {cn#} of Cn has at least exponential size in n:

Claim. Every PDA P = (Q,Σ, Γ, qI , ∆, F ) recognising {cn#} has a size greater than 2(n−1)/3.

To prove the claim, we transform P into a context-free grammar generating the singleton language
{cn#}, and then we show that such a grammar requires exponentially many variables. This is a direct
consequence of the mk Lemma [10], but proving it directly using similar techniques yields a slightly
better bound.

Before changing P into a grammar, we slightly modify its acceptance condition: we add to P a fresh
final state f in which the stack can be completely popped including the bottom of stack symbol ⊥ (which
normally cannot be touched according to our definition of PDA). Moreover, we allow P to transition
towards f nondeterministically from all of its other final states. This new automaton, which accepts by
empty stack, is easily transformed into a grammar G using the standard transformation [19]:

– The terminals of G are 0, 1, $ and #.
– The variables of G are the triples (p,X, q), for every state p, q ∈ Q ∪ {f} and stack symbol X ∈ Γ⊥.
– The initial variable is (qI ,⊥, f), where qI is the initial state of P and f is the fresh final state.
– Each transition (p,X, a, q, γ) ∈ ∆ yields production rules as follows:

1. If γ = ε, then G has the production rule (p,X, q)→ a;
2. If γ = Y , then G has the production rule (p,X, q1)→ a(q, Y, q1) for all q1 ∈ Q;
3. If γ = Y Z, then G has the production rule (p,X, q2)→ a(q, Y, q1)(q1, Z, q2) for all q1, q2 ∈ Q.

The variables can be interpreted as follows: for every p, q ∈ Q and X ∈ Γ , the variable (p,X, q) can be
derived into any input word w ∈ {0, 1, $}∗ that P can process starting in state p and ending in state
q while consuming the symbol X from the top of the stack. Therefore, in particular, since the initial
variable is (qI ,⊥, f), G generates the same language as P.

We now prove that the grammar G has at least 2n−1 distinct variables, hence (|Q|+1)2(|Γ |+1) > 2n−1,
which implies that the size |Q| + |Γ | of P is at least > 2(n−1)/3. To this end, we study a (directed)
derivation tree T of the word cn#.

Remember that cn = $d0$d1$ . . . $d2n−1 represents an n-bit binary counter counting from 0 to 2n−1.
For each 0 6 i 6 2n − 1, let us consider the vertex vi of T such that the counter value di is an infix of
the derivation of vi, but of none of its children. In other words, di is split between the derivations of the
children of vi. By definition of the grammar G, each vertex of T has at most three children, hence at
most two counter values can be split amongst the children of a given vertex, which implies that vi 6= vi+2

for all 0 6 i 6 2n−3. Therefore, the vertices v0, v2, v4, . . . , v2n−2 are all distinct. Finally, since cn# is the
only word recognised by P and each counter value d ∈ {0, 1}n appears a single time as an infix of cn#,
the 2n−1 variables labelling these vertices need to be distinct.

Now, we consider the gap between GFG-PDA and PDA. Recall that Ln is the language of words over
{0, 1} such that the nth bit from the end is a 1. We need to show that there exists a PDA of size O(log n)
recognising Ln, and that every GFG-PDA recognizing Ln has exponential size. Again, the proof is split
into two parts.

Lemma 19. There exists a PDA of size O(log n) recognising Ln.

Proof. We describe a PDA P that recognises Ln. The PDA P nondeterministically guesses the nth bit
from the end, checks that it is a 1 and switches to a counting gadget that checks that the word ends in
n steps, as follows:
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(i) It pushes the binary representation of n − 2 onto the stack. For example, if n = 8, then 110 is
pushed onto the stack with 0 at the top. Note that log(n− 2) states suffice for pushing the binary
representation of n− 2. If n = 1, then instead of pushing anything onto the stack, the automaton
directly moves to a final state without any enabled transitions.

(ii) Then P moves to a state that attempts to decrement the counter by one for each successive input
letter, as follows: When an input letter is processed, it pops m 0’s until 1 is at the top of the stack,
replaces the 1 with a 0, and finally pushes m 1’s back onto the stack before processing the next
letter. If the stack empties before a 1 is at the top of the stack, then the counter value is 0 and
the automaton moves to a final state with no enabled transitions. Note that O(log n) states again
suffice for this step.

Thus P has O(log n) states. Note that for all n, P uses only three stack symbols that are 0, 1, and ⊥.
Thus the size of P is O(log n), and P recognises Ln.

Lemma 20. Every GFG-PDA recognising Ln has at least exponential size in n.

Towards proving this, we define the following notions. We say that a word w of length n is rotationally
equivalent to a word w′ if w′ is obtained from w by rotating it. For example, the word w = 1101 is
rotationally equivalent to w′ = 1110 since w′ can be obtained from w by rotating it once to the right.
Note that the words that are rotationally equivalent form an equivalence class, and thus rotational
equivalence partitions {0, 1}n. Since the size of each class is at most n, the number of equivalence classes
is at least 2n

n .
Now, we define the stack height of a configuration c = (q, γ) as sh(c) = |γ| − 1, and we define steps

of a run as usual: Consider a run c0τ0c1τ1 · · · cn−1τn−1cn. A position s is a step if for all s′ > s, we have
that sh(cs′) > sh(cs), that is, the stack height is always at least sh(cs) after position s. Any infinite run
of a PDA has infinitely many steps. We have the following observation.

Proposition 1. If two runs of a PDA have steps s0 and s1, respectively, with the same mode, then the
suffix of the run following the step s0 can replace the suffix of the other run following the step s1, and
the resultant run is a valid run of the PDA.

Now, we are ready to prove Lemma 20. Here, we work with infinite inputs for GFG-PDA. The run
induced by a resolver on such an input is the limit of the runs on the prefixes.

Proof. Let P be a GFG-PDA with resolver r that recognises Ln with a set Q of states and a stack
alphabet Γ . We show that |Q| · |Γ | > 2n

n .

Towards a contradiction, assume that |Q|·|Γ | < 2n

n . Then there exist two words w0 and w1 of length n
that are not rotationally equivalent and such that the runs ρ0 and ρ1 of P induced by r on wω0 and wω1
contain steps with the same mode, at positions s0 and s1 in ρ0 and ρ1 respectively, such that at least
n letters are processed before s0 and s1. Now consider in each of these two runs the sequence of input
letters of length n preceding and including the step position. Let these n letter words be w′0 and w′1
respectively. Since w0 and w1 are not rotationally equivalent, w′0 and w′1 differ in at least one position
j 6 n.

W.l.o.g., assume that for w′0, the bit at position j is 0, while it is 1 at position j for w′1. Since the
resolver chooses a run such that for every word where the nth letter from the end is a 1 is accepted, this
implies that ρ0 does not visit a final state after processing j − 1 letters after s0, while ρ1 visits a final
state after processing j − 1 letters after s1.

Now we reach a contradiction as follows. The suffix of ρ0 starting from position s0 +1 can be replaced
with the suffix of ρ1 starting from position s1 + 1. By Proposition 1, this yields a valid run ρ of P.
However, since the state that occurs after j − 1 letters are processed after position s1 in ρ1 is final,
after the replacement, the state that occurs after j − 1 letters are processed after position s0 in ρ is
final as well. However the nth letter from the end of the word processed by this accepting run of P is
a 0, contradicting that P recognises Ln. Thus we have that |Q| · |Γ | is at least equal to the number of
rotationally equivalent classes, that is, |Q| · |Γ | > 2n

n . Thus the size of P is at least ( 2n

n )1/2.

Proof of Theorem 6 Recall that we need to prove that GFG-VPA can be exponentially more succinct
than DVPA and that VPA can be exponentially more succinct than GFG-VPA. We split the proof into
two parts.
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Lemma 21. GFG-VPA can be exponentially more succinct than DVPA.

Proof. We construct a family (C ′n)n∈N of languages such that there is a GFG-VPA of size O(n) recognising
C ′n, yet every DVPA recognising C ′n has at least exponential size in n. This family is obtained by adapting
the family (Cn)n∈N that we used to prove the succinctness of GFG-PDA in Section 4: Once again, we
consider the word cn ∈ (${0, 1}n)∗ describing an n-bit binary counter counting from 0 to 2n − 1. We
consider the languages C ′n ⊆ {0, 1, $,#}∗ of bad counters, where 0, 1 and $ are call symbols and # is a
return symbol:

C ′n =
{
w ∈ {0, 1, $,#}∗|w 6= cn#2n(n+1)

}
The only difference with Cn is that the forbidden word is cn#2n(n+1) instead of cn#. A GFG-VPA of
size O(n) recognising C ′n is obtained by a small modification of the construction presented in the proof
of Lemma 17. We adapt the construction of the automaton P recognising Cn as follows:

– The push phase is identical;
– The check phase is performed by consuming the # symbols instead of having ε-transitions. While

the stack is not empty, P accepts even if it has not found evidence of bad counting yet. Moreover, P
transitions towards a final sink state if a non-# symbol is read. Once the stack is empty, it transitions
towards the final phase;

– In the final phase, since the prefix processed up to this point ends with an empty stack, if the suffix
left to read is non-empty then the input is not equal to cn#2n(n+1), and can be accepted.

Finally, we can prove that every DPDA (and in particular every DVPA) recognising C ′n has at least
exponential size in n in the exact same way as we proved Lemma 18: The functions term and chunk used
to prove the statement ignore the # symbols, hence Cn and C ′n can be treated identically. Note that this
lower bound is independent of the partition of the letters into calls, returns, and internals.

Lemma 22. VPA can be exponentially more succinct than GFG-VPA.

We show that there exists a family (L′n)n∈N of languages such that there exists a VPA of size O(n)
recognising L′n while every GFG-VPA recognising the same language has size at least 2n/6.

Towards this we consider a language L′n of words in (01 + 10)∗ · (ε + 0 + 1) with the nth last letter
being 1. We first note that L′n can be recognised by a VPA with O(n) states, which checks that the input
is in (01 + 10)∗ · (ε+ 0 + 1) and nondeterministically guesses the nth last letter and verifies that it is a 1.

First, we claim that every DFA recognising L′n has exponential size.

Remark 3. Every DFA recognising L′n has at least 2dn/2e states.

Using this, we obtain an exponential lower bound on the size of GFG-VPA recognising L′n, thereby
completing the proof of Lemma 22.

Lemma 23. Every GFG-VPA recognising L′n has at least size 2dn/6e.

Proof. The proof is based on the fact that GFG-NFA can be determinised by pruning [6], that is, they
always contain an equivalent DFA, i.e. the lower bound of Remark 3 is applicable to GFG-NFA as well.

Let P be a GFG-VPA recognising L′n. We consider the following cases:

1. Both 0 and 1 are either a return symbol or an internal symbol : The GFG-VPA P in this case can
essentially be seen as a GFG-NFA with the same set of states, since the stack is not used (it is always
equal to ⊥). Given that GFG-NFA are determinisable by pruning, by Remark 3 such a GFG-NFA
has at least 2dn/2e states.

2. At least one of 0 and 1 is a call symbol while the other one is a call or an internal symbol : Let Q be
the set of states and Γ be the stack alphabet of P. Since the height of the stack is nondecreasing, P
has only access to the top stack symbol. We can thus construct an equivalent GFG-NFA over finite
words with states in Q × Γ . Since GFG-NFA are determinizable by pruning, and using Remark 3
again, we have that |Q| · |Γ | > 2dn/2e. Thus either |Q| > 2n/4 or |Γ | > 2n/4. Hence for this case, we
have that the size of the GFG-VPA is at least 2n/4.

3. One of 0 and 1 is a call symbol while the other one is a return symbol : Note that since a word in
L′n is composed of sequences of 10 and 01, the stack height can always be restricted to 2. Thus the
configuration space of P, restricted to configurations on accepting runs, is finite, and there is an
equivalent GFG-NFA of size at most |Q| · |Γ |2. Thus |Q| · |Γ |2 > 2dn/2e giving either |Q| > 2dn/6e

or |Γ | > 2dn/6e. Again by the determinizability by pruning argument, we have that the size of the
GFG-VPA P is at least 2dn/6e.
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Proof of Theorem 7 We need to prove that GFGness of VPA is decidable in ExpTime.
We use the one-token game, introduced by Bagnol and Kuperberg [3] in the context of regular

languages. Given a VPA P = (Q,Σ, Γ, qI , ∆, F ), the positions of the one-token game consist of pairs of
configurations (ci, c

′
i), starting from initial configuration of P. At each round i:

– Player 1 picks a letter ai ∈ Σ,
– Player 2 picks an ai-transition τi ∈ ∆ enabled in ci, leading to a configuration ci+1,
– Player 1 picks an ai-transition τ ′i ∈ ∆ enabled in c′i, leading to a configuration c′i+1,
– The game proceeds from the configuration (ci+1, c

′
i+1).

A play consists of an infinite word a0a1 . . . ∈ Σω and two sequences of transitions τ0τ1 . . . and τ ′0τ
′
1 . . .

built by Players 2 and 1 respectively. Player 1 wins if for some n, τ ′0 . . . τ
′
n is an accepting run of P

over a0 . . . an and τ0 . . . τn is not. Recall that VPA don’t have ε-transitions, so the two runs proceed in
lockstep.

Observe that this game can be seen as a safety game on a visibly pushdown arena and can there-
fore be encoded as a Gale-Stewart game with a DCFL winning condition. This in turn is solvable in
ExpTime [40]. We now argue that this game characterises whether the VPA P is GFG.

Proof. We now argue that P is GFG if and only if Player 2 wins the one-token game on P. One direction
is immediate: if P is GFG, then the resolver is also a strategy for Player 2 in the one-token game.

For the converse direction, consider the family of copycat strategies for Player 1 that copy the transi-
tion chosen by Player 2 until she plays an a-transition from a configuration c to a configuration c′ such
that there is a word aw that is accepted from c but w is not accepted from c′. We call such transitions
non-residual. If Player 2 plays such a non-residual transition, then the copycat strategies stop copying
and instead play the letters of w and the transitions of an accepting run over aw from c.

If Player 2 wins the one-token game with a strategy s, she wins, in particular, against this family of
copycat strategies for Player 1. Observe that copycat strategies win any play along which Player 2 plays
a non-residual transition. Therefore s must avoid ever playing a non-residual transition. We can now use
s to induce a resolver rs for P: rs maps a sequence of transitions over a word w to the transition chosen
by s in the one-token game where Player 1 played w and a copycat strategy. Then, rs never produces a
non-residual transition. As a result, if a word w is in L(P), then the run induced by rs over every prefix
v of w leads to a configuration that accepts the remainder of w. This is in particular the case for w itself,
for which rs induces an accepting run. This concludes our argument that rs is indeed a resolver, and P
is therefore GFG.

Thus, to decide whether a VPA P is GFG it suffices to solve the one-token game on P, which can be
done in exponential time.

Proof of Corollary 2 We prove that the ge-synthesis problem for GFG-VPA and DVPA is as hard as
the GFGness problem for VPA. Note that this is a more general reduction that we use here only for the
VPA case.

Proof. We first reduce the good-enough synthesis problem to the GFGness problem. Given a GFG-
VPA P = (Q,Σ1 × Σ2, Γ, qI , ∆, F ), with resolver r, let P ′ be P projected onto the first component:
P ′ = (Q,Σ1, Γ, qI , ∆

′, F ) has the same states, stack alphabet and final states as P, but has an a-
transition for some a ∈ Σ1 whenever P has the same transition over (a, b) for some b ∈ Σ2. Let each
transition of P ′ be annotated with the Σ2-letter of the corresponding P-transition. Thus P ′ recognises
the projection of L(P) on the first component.

A resolver for P ′ induces a ge-synthesis function for P by reading off the Σ2-annotation of the
chosen transitions in P ′. Indeed, the resolver produces an accepting run with annotation w′ of P ′ for
every word w in the projection of L(P) on the first component. The same run is an accepting run in P
over (w,w′) which is therefore in L(P). Conversely a ge-synthesis function f for P, combined with r,
induces a resolver r′ for P ′ by using f to choose output letters and r to choose which transition of P
to use; together these uniquely determine a transition in P ′. Then, if w ∈ L(P ′), f guarantees that the
annotation of the run induced by r′ in P ′ is a witness w′ such that (w,w′) ∈ P, and then r guarantees
that the run is accepting, since the corresponding run in P over (w,w′) must be accepting.

We now reduce the GFGness problem of a VPA P = (Q,Σ, Γ, qI , ∆, F ) to the ge-synthesis problem
of a DVPA P ′ = (Q,Σ × ∆,Γ, qI , ∆

′, F ). The deterministic automaton P ′ is as P except that each
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transition τ over a letter a in ∆ is replaced with the same transition over (a, τ) in ∆′. In other words,
P ′ recognises the accepting runs of P and its ge-synthesis problem asks whether there is a function that
constructs on-the-fly an accepting run for every word in L(P), that is, whether P has a resolver.

Proof of Lemma 3 Recall that we need to prove that every GFG-PDA has a positional resolver.

Proof. Let r′ be a (not necessarily positional) resolver for P. We define a resolver r such that for
each configuration and input letter, it makes a choice consistent with r′ for some input leading to this
configuration. In other words, for every reachable configuration c, let ρc be an input to r′ inducing a run
ending in c. Then, we define r(ρ, a) = r(ρc, a), where c is the last configuration of the run induced by ρ.

We claim that r, which is positional by definition, is a resolver. Towards a contradiction, assume that
this is not the case, i.e. there is a word w ∈ L(P) such that the run ρ induced by r is rejecting. Since
this run is finite and w ∈ L(P), there is some last configuration c along the run ρ from which the rest of
the word, say u, is accepted4 (by some other run of P having the same prefix as ρ up to configuration c).
Let τ be the next transition along ρ from c. Since r chose τ , the resolver r′ also chooses τ after some
history leading to c, over some word v. Since u is accepted from c, the word vu is in L(P); since r′ is a
resolver, there is an accepting run over u from c starting with τ , contradicting that c is the last position
on ρ from where the rest of the word could be accepted.

Proof of Lemma 4 We need to prove that the GFG-PDA PB3 defined in Section 6 has no pushdown
resolver.

Proof. Towards a contradiction, assume that there is a pushdown resolver r for PB3
, implemented by a

PDT T = (D, λ).
From T , for each i ∈ {1, 2, 3}, we can construct a PDA Di that recognises the language of words w ∈

a+$a+$a+ such that T chooses from q3 the transition of PB3
going to pi when constructing a run on w$:

this is simply the pushdown automaton D underlying T where inputs (transitions of PB3
) are projected

onto their input letter in {a, b, $} and states q of T such that λ(q)(q3, X, $) = (q3, $, X, pi, X) are made
final, intersected with a DFA checking that the input is in a+$a+$a+.

Since T implements a resolver for P, each Di only accepts words of the form am1$am2$am3 such that
max(m1,m2,m3) = mi. Furthermore, at least for one i ∈ {1, 2, 3}, Di accepts am$am$am for infinitely
many m.

To reach a contradiction, we now argue that this Di recognises a language that is not context-free.
Indeed, if it were, then by applying the pumping lemma for context-free languages, there would be a large
enough m such that the word am$am$am ∈ L(Di) could be decomposed as uvwyz such that |vy| > 1
and uvnwynz is in the language of Di for all n > 0. In this decomposition, v and y must be $-free. Then,
if either v or y occurs in the ith block and is non-empty, by setting n = 0 we obtain a contradiction as
the ith block is no longer the longest. Otherwise, we obtain a similar contradiction by setting n = 2. In
either case, this shows that T is not a pushdown resolver for P.

Proof of Theorem 8 We need to prove that every GFG-VPA has a (visibly) pushdown resolver.

Proof. Fix a VPA P = (Q,Σ, Γ, qI , ∆, F ) and consider the following two-player game G(P), introduced
by Henzinger and Piterman to decide GFGness of ω-automata [16]. In each round, first Player 1 picks
a letter from Σ or ends the play. If he has not ended the play, then Player 2 picks a transition of P.
Hence, once Player 1 has stopped the play, Player 1 has picked an input word w over Σ∗ and Player 2
has indicated a run ρ of P. A finite play with outcome (w, ρ) is winning for Player 2 if either w /∈ L(P)
or ρ induces an accepting run of P on w.

A strategy for Player 2 in this game is a mapping σ : Σ+ → ∆ and an outcome (w(0) · · ·w(k), ρ(0) · · · ρ(k))
is consistent with σ, if ρ(j) = σ(w(0) · · ·w(j)) for every 0 6 j 6 k. We say that σ is winning for Player 2,
if every outcome of a finite play that is consistent with σ is winning for her (note that we disregard
infinite plays).

4 Observe that this is no longer true over infinite words as an infinite run can stay within configurations from
where an accepting run exists without being itself accepting. In fact, the lemma does not even hold for coBüchi
automata [23] as the existence of positional resolvers implies determinisability by pruning.
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Now, Player 2 wins G(P) if and only if P is a GFG-VPA. This follows as every winning strategy for
Player 2 can be turned into a resolver and vice versa.

Now, as the class of languages recognized by VPA, is closed under complementation and union [2],
one can encode G(P) as a Gale-Stewart game with a VPL winning condition. Such games can be solved
effectively [27] and the winner always has a winning strategy implemented by a (visibly) PDT. Thus, if
P is a GFG-VPA, i.e. Player 2 wins G(P), then she has a winning strategy implemented by a (visibly)
PDT, which can easily be turned into a (visibly) pushdown resolver for P.
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