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A Bit of Nondeterminism Makes Pushdown Automata Expressive and Succinct

We study the expressiveness and succinctness of good-for-games pushdown automata (GFG-PDA) over finite words, that is, pushdown automata whose nondeterminism can be resolved based on the run constructed so far, but independently of the remainder of the input word. We prove that GFG-PDA recognise more languages than deterministic PDA (DPDA) but not all context-free languages (CFL). This class is orthogonal to unambiguous CFL. We further show that GFG-PDA can be exponentially more succinct than DPDA, while PDA can be double-exponentially more succinct than GFG-PDA. We also study GFGness in visibly pushdown automata (VPA), which enjoy better closure properties than PDA, and for which we show GFGness to be ExpTimecomplete. GFG-VPA can be exponentially more succinct than deterministic VPA, while VPA can be exponentially more succinct than GFG-VPA. Both of these lower bounds are tight. Finally, we study the complexity of resolving nondeterminism in GFG-PDA. Every GFG-PDA has a positional resolver, a function that resolves nondeterminism and that is only dependant on the current configuration. Pushdown transducers are sufficient to implement the resolvers of GFG-VPA, but not those of GFG-PDA. GFG-PDA with finite-state resolvers are determinisable.

Introduction

Nondeterminism adds both expressiveness and succinctness to deterministic pushdown automata. Indeed, the class of context-free languages (CFL), recognised by nondeterministic pushdown automata (PDA), is strictly larger than the class of deterministic context-free languages (DCFL), recognised by deterministic pushdown automata (DPDA), both over finite and infinite words. Even when restricted to languages in DCFL, there is no computable bound on the relative succinctness of PDA [START_REF] Hartmanis | On the succinctness of different representations of languages[END_REF][START_REF] Valiant | A note on the succinctness of descriptions of deterministic languages[END_REF]. In other words, nondeterminism is remarkably powerful, even for representing deterministic languages. The cost of such succinct representations is algorithmic: problems such as universality and solving games with a CFL winning condition are undecidable for PDA [START_REF] Finkel | Topological properties of omega context-free languages[END_REF][START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF], while they are decidable for DPDA [START_REF] Walukiewicz | Pushdown processes: Games and model-checking[END_REF]. Intermediate forms of automata that lie between deterministic and nondeterministic models have the potential to mitigate some of the disadvantages of fully nondeterministic automata while retaining some of the benefits of the deterministic ones.

Unambiguity and bounded ambiguity, for example, restrict nondeterminism by requiring words to have at most one or at most k, for some fixed k, accepting runs. Holzer and Kutrib survey the noncomputable succinctness gaps between unambiguous PDA and both PDA and DPDA [START_REF] Holzer | Descriptional complexity of (un)ambiguous finite state machines and pushdown automata[END_REF], while Okhotin and Salomaa show that unambiguous visibly pushdown automata are exponentially more succinct that DPDA [START_REF] Okhotin | Descriptional complexity of unambiguous input-driven pushdown automata[END_REF]. Universality of unambiguous PDA is decidable, as it is decidable for unambiguous context-free grammars [START_REF] Salomaa | Automata-Theoretic Aspects of Formal Power Series[END_REF], which are effectively equivalent [START_REF] Herzog | Pushdown automata with bounded nondeterminism and bounded ambiguity[END_REF]. However, to the best of our knowledge, unambiguity is not known to reduce the algorithmic complexity of solving games with a context-free winning condition.

Another important type of restricted nondeterminism that is known to reduce the complexity of universality and solving games has been studied under the names of good-for-games (GFG) nondeterminism [START_REF] Henzinger | Solving games without determinization[END_REF] and history-determinism [START_REF] Colcombet | The theory of stabilisation monoids and regular cost functions[END_REF]. Intuitively, a nondeterministic automaton is GFG if its nondeterminism can be resolved on-the-fly, i.e. without knowledge of the remainder of the input word to be processed.

All proofs omitted due to space restrictions can be found in the appendix.

Related work

The notion of GFG nondeterminism has emerged independently several times, at least as Colcombet's history-determinism [START_REF] Colcombet | The theory of stabilisation monoids and regular cost functions[END_REF], in Piterman and Henzinger's GFG automata [START_REF] Henzinger | Solving games without determinization[END_REF], and as Kupferman, Safra, and Vardi's nondeterminism for recognising derived languages, that is, the language of trees of which all branches are in a regular language [START_REF] Kupferman | Relating word and tree automata[END_REF]. Related notions have also emerged in the context of XML document parsing. Indeed, preorder typed visibly pushdown languages and 1-pass preorder typeable tree languages, considered by Kumar, Madhusudan, and Viswanathan [START_REF] Kumar | Visibly pushdown automata for streaming XML[END_REF] and Martens, Neven, Schwentick, and Bex [START_REF] Martens | Expressiveness and complexity of XML schema[END_REF] respectively, also consider nondeterminism which can be resolved on-the-fly. However, the restrictions there are stronger than simple GFG nondeterminism, as they also require the typing to be unique, roughly corresponding to unambiguity in automata models and grammars. This motivates the further study of unambiguous GFG automata, although this remains out of scope for the present paper. The XML extension AXML has also inspired Active Context Free Games [START_REF] Muscholl | Active context-free games[END_REF], in which one player, aiming to produce a word within a target regular language, chooses positions on a word and the other player chooses a rewriting rule from a context-free grammar. Restricting the strategies of the first player to moving from left to right makes finding the winner decidable [START_REF] Muscholl | Active context-free games[END_REF][START_REF] Björklund | On optimum left-to-right strategies for active context-free games[END_REF]; however, since the player still knows the future of the word, this restriction is not directly comparable to GFG nondeterminism.

Unambiguity, or bounded ambiguity, is an orthogonal way of restricting nondeterminism by limiting the number of permitted accepting runs per word. For regular languages, it leads to polynomial equivalence and containment algorithms [START_REF] Stearns | On the equivalence and containment problems for unambiguous regular expressions, regular grammars and finite automata[END_REF]. Minimization remains NP-complete for both unambiguous automata [START_REF] Jiang | Minimal NFA problems are hard[END_REF][START_REF] Björklund | The tractability frontier for NFA minimization[END_REF] and GFG automata [START_REF] Schewe | Minimising Good-For-Games Automata Is NP-Complete[END_REF] (at least when acceptance is defined on states, see [START_REF] Radi | Minimizing GFG Transition-Based Automata[END_REF]). On pushdown automata, increasing the permitted degree of ambiguity leads to both greater expressiveness and unbounded succinctness [START_REF] Herzog | Pushdown automata with bounded nondeterminism and bounded ambiguity[END_REF]. Finally, let us mention two more ways of measuring-and restrictingnondeterminism in PDA: bounded nondeterminism, as studied by Herzog [START_REF] Herzog | Pushdown automata with bounded nondeterminism and bounded ambiguity[END_REF] counts the branching in the run-tree of a word, while the minmax measure [START_REF] Salomaa | Limited nondeterminism for pushdown automata[END_REF][START_REF] Goldstine | Measuring nondeterminism in pushdown automata[END_REF] counts the number of nondeterministic guesses required to accepts a word. The natural generalisation of GFGness as the width of an automaton [START_REF] Kuperberg | Computing the width of non-deterministic automata[END_REF] has not yet, to the best of our knowledge, been studied for PDA.

Preliminaries

An alphabet Σ is a finite nonempty set of letters. The set of (finite) words over Σ is denoted by Σ * , the set of nonempty (finite) words over Σ by Σ + . The empty word is denoted by ε, the length of a word w is denoted by |w|, and the n th letter of w is denoted by w(n) (starting with n = 0). A language over Σ is a subset of Σ * .

For alphabets Σ 1 , Σ 2 , we extend functions f : Σ 1 → Σ * 2 homomorphically to words over Σ 1 via f (w) = f (w(0))f (w(1))f (w(2)) • • • .

Pushdown automata

A pushdown automaton (PDA for short) P = (Q, Σ, Γ, q I , ∆, F ) consists of a finite set Q of states with the initial state q I ∈ Q, an input alphabet Σ, a stack alphabet Γ , a transition relation ∆ to be specified, and a set F of final states. For notational convenience, we define Σ ε = Σ ∪ {ε} and Γ ⊥ = Γ ∪ {⊥}, where ⊥ / ∈ Γ is a designated stack bottom symbol. Then, the transition relation ∆ is a subset of

Q × Γ ⊥ × Σ ε × Q × Γ 2 ⊥
that we require to neither write nor delete the stack bottom symbol from the stack: If (q, ⊥, a, q , γ) ∈ ∆, then γ ∈ ⊥ • (Γ ∪ {ε}), and if (q, X, a, q , γ) ∈ ∆ for X ∈ Γ , then γ ∈ Γ 2 . Given a transition τ = (q, X, a, q , γ) let (τ ) = a ∈ Σ ε . We say that τ is an (τ )-transition and that τ is a Σ-transition, if (τ ) ∈ Σ. For a finite sequence ρ over ∆, the word (ρ) ∈ Σ * is defined by applying homomorphically to every transition. We take the size of P to be |Q| + |Γ |. 1A stack content is a finite word in ⊥Γ * (i.e. the top of the stack is at the end) and a configuration c = (q, γ) of P consists of a state q ∈ Q and a stack content γ. The initial configuration is (q I , ⊥).

The set of modes of P is Q × Γ ⊥ . A mode (q, X) enables all transitions of the form (q, X, a, q , γ ) for some a ∈ Σ ε , q ∈ Q, and γ ∈ Γ 2 ⊥ . The mode of a configuration c = (q, γX) is (q, X). A transition τ is enabled by c if it is enabled by c's mode. In this case, we write (q, γX) τ -→ (q , γγ ), where τ = (q, X, a, q , γ ).

A run of P is a finite sequence ρ = c 0 τ 0 c 1 τ 1 • • • c n-1 τ n-1 c n of configurations and transitions with c 0 being the initial configuration and c n τ n --→ c n +1 for every n < n. The run ρ is a run of P on w ∈ Σ * , if w = (ρ). We say that ρ is accepting if it ends in a configuration whose state is final. The language L(P) recognized by P contains all w ∈ Σ * such that P has an accepting run on w.

Remark 1. Let c 0 τ 0 c 1 τ 1 • • • c n-1 τ n-1 c n be a run of P. Then, the sequence c 0 c 1 • • • c n-1 c n of
configurations is uniquely determined by the sequence τ 0 τ 1 • • • τ n-1 of transitions. Hence, whenever convenient, we treat a sequence of transitions as a run if it indeed induces one (not every such sequence does induce a run, e.g. if a transition τ n is not enabled in c n ).

We say that a PDA P is deterministic (DPDA) if every mode (q, X) of P enables at most one a-transition for every a ∈ Σ ∪ {ε}, and for every mode (q, X) of P, if it enables some ε-transition, then it does not enable any Σ-transition.

Hence, for every input and for every run prefix on it there is a unique enabled transition to continue the run. Still, due to the existence of ε-transitions, a DPDA can have more than one run on a given input. However, these only differ by trailing ε-transitions.

The class of languages recognized by PDA is denoted by CFL, the class of languages recognized by DPDA by DCFL.

Example 1. The PDA P depicted in Figure 1 recognizes the language 

{ac n d n a | n 1} ∪ {bc n d 2n b | n 1}. Note that while P is nondeterministic, L(P) is in DCFL. q q1 q2 a, ⊥ | ⊥A b, ⊥ | ⊥B c, X | XN d, N | ε d, N | N d, N | ε d, N | ε d, N | N b, B | ε a, A | ε

Good-for-games Pushdown Automata

Here, we introduce good-for-games pushdown automata on finite words (GFG-PDA for short), nondeterministic pushdown automata whose nondeterminism can be resolved based on the run prefix constructed so far and on the next input letter to be processed, but independently of the continuation of the input beyond the next letter.

As an example, consider the PDA P from Example 1. It is nondeterministic, but knowing whether the first transition of the run processed an a or a b allows the nondeterminism to be resolved in a configuration of the form (q, γN ) when processing a d: in the former case, take the transition to state q 1 , in the latter case the transition to state q 2 . Afterwards, there are no nondeterministic choices to make and the resulting run is accepting whenever the input is in the language. This automaton is therefore good-for-games.

Formally, a PDA P = (Q, Σ, Γ, q I , ∆, F ) is good-for-games if there is a (nondeterminism) resolver for P, a function r : ∆ * × Σ → ∆ such that for every w ∈ L(P), there is an accepting run ρ = c 0 τ 0 • • • τ n c n on w that has no trailing ε-transitions, i.e.

1. n = 0 if w = ε (which implies that c 0 is accepting), and 2. (τ

0 • • • τ n-1 ) is a strict prefix of w, if w = ε, and τ n = r(τ 0 • • • τ n -1 , w(| (τ 0 • • • τ n -1 )|)) for all 0 n < n. If w is nonempty, w(| (τ 0 • • • τ n -1 )|)
is defined for all 0 n < n by the second requirement. Note that ρ is unique if it exists.

Note that the prefix processed so far can be recovered from r's input, i.e. it is (ρ). However, the converse is not true due to the existence of ε-transitions. This is the reason that the run prefix and not the input prefix is the argument for the resolver. We denote the class of languages recognised by GFG-PDA by GFG-CFL.

Intuitively, every DPDA should be good-for-games, as there is no nondeterminism to resolve during a run. However, in order to reach a final state, a run of a DPDA on some input w may traverse trailing ε-transitions after the last letter of w is processed. On the other hand, the run of a GFG-PDA on w consistent with any resolver has to end with the transition processing the last letter of w. Hence, not every DPDA recognises the same language when viewed as a GFG-PDA. Nevertheless, we show, using standard pushdown automata constructions, that every DPDA can be turned into an equivalent GFG-PDA. As every GFG-PDA is a PDA by definition, we obtain a hierarchy of languages.

Lemma 1. DCFL ⊆ GFG-CFL ⊆ CFL.
Instead of requiring that GFG-PDA end their run with the last letter processed, one could add an end-of-word marker that allows traversing trailing ε-transitions after the last letter has been processed. In Appendix A.1, we show that this alternative definition does not increase expressiveness, which explains our (arguably simpler) definition.

Finally, let us remark that GFGness of PDA and context-free languages is undecidable. These problems were shown to be undecidable for ω-GFG-PDA and ω-GFG-CFL by reductions from the inclusion and universality problem for PDA on finite words [START_REF] Lehtinen | Good-for-games ω-pushdown automata[END_REF]. Similar proofs also show that these problems are undecidable over PDA on finite words.

Theorem 1. The following problems are undecidable:

1. Given a PDA P, is P a GFG-PDA? 2. Given a PDA P, is L(P) ∈ GFG-CFL?

Games and Universality

One of the motivations for GFG automata is that solving games with winning conditions given by a GFG automaton is easier than for nondeterministic automata. This makes them appealing for applications such as the synthesis of reactive systems, which can be modelled as a game between an antagonistic environment and the system. Solving games is undecidable for PDA in general [START_REF] Finkel | Topological properties of omega context-free languages[END_REF], both over finite and infinite words, while for ω-GFG-PDA, it is ExpTime-complete [START_REF] Lehtinen | Good-for-games ω-pushdown automata[END_REF]. As a corollary, universality is also decidable for ω-GFG-PDA, while it is undecidable for PDA, both over finite and infinite words [START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF].

Here, we consider Gale-Stewart games [START_REF] Gale | Infinite games with perfect information[END_REF], abstract games induced by a language in which two players alternately pick letters, thereby constructing an infinite word. One player aims to construct a word that is in the language while the other aims to construct one that is not in the language. Note that these games are different, but related, to games played on configuration graphs of pushdown automata [START_REF] Walukiewicz | Pushdown processes: Games and model-checking[END_REF].

Formally, given a language L ⊆ (Σ 1 × Σ 2 ) * of sequences of letter pairs, the game G(L) is played between Player 1 and Player 2 in rounds i = 0, 1, . . . as follows: At each round i, Player 1 plays a letter a i ∈ Σ 1 and Player 2 answers with a letter b i ∈ Σ 2 . A play of G(L) is an infinite word a0 b0 a1 b1 • • • and Player 2 wins such a play if and only if each of its prefixes is in the language L. A strategy for Player 2 is a mapping from Σ + 1 to Σ 2 that gives for each prefix played by Player 1 the next letter to play. A play agrees with a strategy σ if for each i, b i = σ(a 0 a 1 . . . a i ). Player 2 wins G(L) if she has a strategy that only agrees with plays that are winning for Player 2. Observe that Player 2 loses whenever the projection of L onto its first component is not universal. Finally, universality reduces to solving these games: P is universal if and only if Player 2 wins G(L) for L = { w # |w| | w ∈ L(P)}. We now argue that solving games for GFG-PDA easily reduces to the case of ω-GFG-PDA, which are just GFG-PDA over infinite words, where acceptance is not determined by final state, since runs are infinite, but rather by the states or transitions visited infinitely often. Here, we only need safety ω-GFG-PDA, in which every infinite run is accepting (i.e. rejection is implemented via missing transitions). The infinite Gale-Stewart game over a language L of infinite words, also denoted by G(L), is as above, except that victory is determined by whether the infinite word built along the play is in L.

Lemma 2. Given a GFG-PDA P, there is a safety ω-GFG-PDA P no larger than P such that Player 2 wins G(L(P)) if and only if she wins G(L(P )).

Our main results of this section are now direct consequences, as argued above.

Corollary 1. Given a GFG-PDA P, deciding whether L(P) = Σ * and whether Player 2 wins G(L(P)) are both in ExpTime.

Closure properties

Like ω-GFG-PDA, GFG-PDA have poor closure properties.

Theorem 2. GFG-PDA are not closed under union, intersection, complementation, set difference and homomorphism.

The proofs are similar to those used for ω-GFG-PDA and relegated to the appendix. There, we also study the closure properties under these operations with regular languages: If L is in GFG-CFL and R is regular, then L ∪ R, L ∩ R and L\R are also in GFG-CFL, but R\L is not necessarily in GFG-CFL.

Expressiveness

Here we show that GFG-PDA are more expressive than DPDA but less expressive than PDA.

Theorem 3. DCFL GFG-CFL CFL.

To show that GFG-PDA are more expressive than deterministic ones, we consider the language

B 2 = {a i $a j $b k $ | k max(i, j)}.
It is recognised by the PDA P B2 depicted in Figure 2, hence B 2 ∈ CFL. The first two states q 1 and q 2 deterministically push the input onto the stack, until the occurrence of the second $. When the second $ is processed, there is a nondeterministic choice to move to p 1 or p 2 and erase along ε-transitions 1 or 0 blocks from the stack, so that the 1 st or 2 nd block of a's respectively remains at the top of the stack. Then, the automaton compares the length of the b-block in the input with the length of the a-block at the top of the stack and accepts if the b-block is shorter, i.e. the third $ is processed before the whole a-block is popped off the stack. If the input has not the form a i $a j $b k $, then it is rejected.

q1 q2 p1 p2 f a, X | Xa $, X | X$ $, X | X$ a, X | Xa $, X | X $, X | X ε, a | ε b, a | ε ε, $ | ε Fig. 2.
A PDA PB 2 recognising B2. Grey states are final, and X is an arbitrary stack symbol.

We show that B 2 ∈ GFG-CFL by proving that P B2 is good-for-games: the nondeterministic choice between moving to p 1 or to p 2 can be made only based on the prefix a i $a j processed so far. This is straightforward, as a resolver only needs to know which of i and j is larger, which can be determined from the run prefix constructed thus far. Then, in order to show that B 2 is not in DCF L, we prove that its complement B c 2 is not a context-free language. Since DCF L is closed under complementation, this implies the desired result.

Finally, to show that PDA are more expressive than GFG-PDA, we consider the language L = {a n b n | n 0} ∪ {a n b 2n | n 0}. We note that L ∈ CFL while we show below L / ∈ GFG-CFL. All proofs can be found in Appendix A. [START_REF] Bagnol | Büchi Good-for-Games Automata Are Efficiently Recognizable[END_REF].

Unambiguous context-free languages, i.e. those generated by grammars for which every word in the language has a unique leftmost derivation, are another class sitting between DCFL and CFL. Thus, it is natural to ask how unambiguity and GFGness are related: To conclude this section, we show that both notions are independent. Theorem 4. There is an unambiguous context-free language that is not in GFG-CFL and a language in GFG-CFL that is inherently ambiguous.

An unambiguous grammar for the language {a

n b n | n 0} ∪ {a n b 2n | n 0} /
∈ GFG-CFL is easy to construct and we show in Appendix A.3 that the language B = {a i b j c k | i, j, k 1, k max(i, j)} is inherently ambiguous. Its inclusion in GFG-CFL is easily established using a similar argument as for the language B 2 = {a i $a j $b k $ | k max(i, j)} above. The dollars add clarity to the GFG-PDA but are cumbersome in the proof of inherent ambiguity.

Succinctness

We show that GFG-PDA are not only more expressive than DPDA, but also more succinct. Similarly, we show that PDA are more succinct than GFG-PDA.

Theorem 5. GFG-PDA can be exponentially more succinct than DPDA, and PDA can be doubleexponentially more succinct than GFG-PDA.

We first show that GFG-PDA can be exponentially more succinct than DPDA. To this end, we construct a family (C n ) n∈N of languages such that C n is recognised by a GFG-DPDA of size O(n), yet every DPDA regognising C n has at least exponential size in n.

Let c n ∈ (${0, 1} n ) * be the word describing an n-bit binary counter counting from 0 to 2 n -1. For example, c 2 = $00$01$10$11. We consider the family of languages

C n = w ∈ {0, 1, $, #} * |w = c n # ⊆ {0, 1, $, #} * of bad counters.
We show in Appendix A.3 that the language C n is recognised by a GFG-PDA of size O(n) and that every DPDA D recognising C n has exponential size in n. Observe that this result implies that even GFG-PDA that are equivalent to DPDA are not determinisable by pruning. In contrast, for NFA GFGness implies determinisability by pruning [START_REF] Boker | How deterministic are good-for-games automata?[END_REF].

We conclude this section by showing that PDA can be double-exponentially more succinct than GFG-PDA. We show that there exists a family (L n ) n>0 of languages such that L n is recognised by a PDA of size O(log n) while every GFG-PDA recognising this language has at least exponential size in n.

Formally, we set L n = (0 + 1) * 1(0 + 1) n-1 , that is, the n th bit from the end is a 1. We count starting from 1, so that the last bit is the 1 st bit from the end. Note that this is the standard example for showing that NFA can be exponentially more succinct than DFA, and has been used for many other succinctness results ever since.

In Appendix A.3, we first show that L n is recognised by a PDA of size O(log n). To conclude, we prove that every GFG-PDA recognising L n has at least exponential size in n.

Good-for-games Visibly Pushdown Automata

One downside of GFG-PDA is that, like ω-GFG-PDA, they have poor closure properties and checking GFGness is undecidable. We therefore consider a well-behaved class of GFG-PDA, namely GFG visibly pushdown automata, GFG-VPA for short, that is closed under union, intersection, and complementation.

Let Σ c , Σ r and Σ int be three disjoint sets of call symbols, return symbols and internal symbols respectively. Let Σ = Σ c ∪ Σ r ∪ Σ int . A visibly pushdown automaton [2] (VPA) P = (Q, Σ, Γ, q I , ∆, F ) is a restricted PDA that pushes onto the stack only when it reads a call symbol, it pops the stack only when a return symbol is read, and does not use the stack when there is an internal symbol. Formally, a letter a ∈ Σ c is only processed by transitions of the form (q, X, a, q , XY ) with X ∈ Γ ⊥ , i.e. some stack symbol Y ∈ Γ is pushed onto the stack. -A letter a ∈ Σ r is only processed by transitions of the form (q, X, a, q , ε) with X = ⊥ or (q, ⊥, a, q , ⊥), i.e. the topmost stack symbol is removed, or if the stack is empty, it is left unchanged. -A letter a ∈ Σ int is only processed by transitions of the form (q, X, a, q , X) with X ∈ Γ ⊥ , i.e. the stack is left unchanged. -There are no ε-transitions.

Intuitively, the stack height of the last configuration of a run processing some w ∈ (Σ c ∪ Σ r ∪ Σ s ) * only depends on w.

We denote by GFG-VPA the VPA that are good-for-games. Every VPA (and hence every GFG-VPA) can be determinised, i.e. all three classes of automata recognise the same class of languages, denoted by VPL, which is a strict subset of DCFL [2]. However, VPA can be exponentially more succinct than deterministic VPA (DVPA) [2]. Theorem 6. GFG-VPA can be exponentially more succinct than DVPA and VPA can be exponentially more succinct than GFG-VPA.

GFGness of VPA is decidable using the one-token game, introduced by Bagnol and Kuperberg [START_REF] Bagnol | Büchi Good-for-Games Automata Are Efficiently Recognizable[END_REF]. It modifies the game-based characterisation of GFGness of ω-regular automata by Henzinger and Piterman [START_REF] Henzinger | Solving games without determinization[END_REF]. While the one-token game does not characterise the GFGness of Büchi automata, here we show that it suffices for VPA. The matching lower bound follows from a reduction from the inclusion problem for VPA, which is ExpTime-hard [2], to GFGness (see [START_REF] Lehtinen | Good-for-games ω-pushdown automata[END_REF] for details of the reduction in the context of ω-GFG-PDA).

Theorem 7. The following problem is ExpTime-complete: Given a VPA P, is P GFG?

Finally, we relate the GFGness problem to the good-enough synthesis problem [START_REF] Almagor | Good-enough synthesis[END_REF], also known as the uniformization problem [START_REF] Carayol | Uniformization in automata theory[END_REF], which is similar to the Church synthesis problem, except that the system is only required to satisfy the specification on inputs in the projection of the specification on the first component.

Definition 1 (ge-synthesis). Given a language

L ⊆ (Σ 1 × Σ 2 ) * , is there a function f : Σ * 1 → Σ 2 such that for each w ∈ {w | ∃w ∈ Σ * 2 .(w, w ) ∈ L} the word (w, f (w(0))f (w(0)w(1)) . . . ) is in L?
Corollary 2. The ge-synthesis problem for input given as GFG-VPA, and in particular for DVPA, is ExpTime-complete

In contrast, for LTL specifications, the ge-synthesis problem is 2ExpTime-complete [START_REF] Almagor | Good-enough synthesis[END_REF].

Resolvers

The definition of a resolver does not put any restrictions on its complexity. In this section we study the complexity of the resolvers that GFG-PDA need. We consider two somewhat orthogonal notions of complexity: memory and machinery. On one hand, we show that resolvers can always be chosen to be positional, that is, dependent on the current state and stack configuration only. Note that this is not the case for ω-regular automata2 , let alone ω-GFG-PDA. On the other hand, we show that they are not always implementable by pushdown transducers. More formally, a resolver r is positional, if for any two sequences ρ and ρ of transitions inducing runs ending in the same configuration, r(ρ, a) = r(ρ , a) for all a ∈ Σ. Lemma 3. Every GFG-PDA has a positional resolver.

Contrary to the case of finite and ω-regular automata, since GFG-PDA have an infinite configuration space, the existence of positional resolvers does not imply determinisability. On the other hand, if a GFG-PDA has a resolver which only depends on the mode of the current configuration, then it is determinisable by pruning, as transitions that are not used by the resolver can be removed to obtain a deterministic automaton. However, not all GFG-PDA are determinisable by pruning, e.g. the GFG-PDA for the languages C n used to prove Theorem 5.

We now turn to how powerful resolvers for GFG-PDA need to be. First, we introduce transducers as a way to implement a resolver. A transducer is an automaton with outputs instead of acceptance, i.e., it computes a function from input sequences to outputs. A pushdown resolver is a pushdown transducer that implements a resolver.

Note that a resolver has to pick enabled transitions in order to induce accepting runs for all inputs in the language. To do so, it needs access to the mode of the last configuration. However, to keep track of this information on its own, the pushdown resolver would need to simulate the stack of the GFG-PDA it controls. This severely limits the ability of the pushdown resolver to implement computations on its own stack. Thus, we give a pushdown resolver access to the current mode of the GFG-PDA via its output function, thereby freeing its own stack to implement further functionalities.

Formally, a pushdown transducer (PDT for short) T = (D, λ) consists of a DPDA D augmented with an output function λ : Q D → Θ mapping the states Q D of D to an output alphabet Θ. The input alphabet of T is the input alphabet of D.

Then, given a PDA P = (Q, Σ, Γ, q I , ∆, F ), a pushdown resolver for P consists of a pushdown transducer T = (D, λ) with input alphabet ∆ and output alphabet Q × Γ ⊥ × Σ → ∆ such that the function r T , defined as follows, is a resolver for P: r T (τ 0 . . . τ k , a) = λ(q T )(q P , X, a) where q T is the state of the last configuration of the longest run of D on τ 0 . . . τ k (recall that while D is deterministic, it may have several runs on an input which differ on trailing ε-transitions); -(q P , X) is the mode of the last configuration of the run of P induced by τ 0 . . . τ k .

In other words, a transducer implements a resolver by processing the run so far, and then uses the output of the state reached and the state and top stack symbol of the GFG-PDA to determine the next transition in the GFG-PDA. We now give an example of a GFG-PDA which does not have a pushdown resolver. The language in question is the language B 3 = {a i $a j $a k $b l $ | l max(i, j, k)}. Compare this to the language B 2 in Section 3 which does have a pushdown resolver. Let P B3 be the automaton in Figure 3, which works analogously to the automaton for B 2 in Figure 2.

q1 q2 q3 p1 p2 p3 f a, X | Xa a, X | Xa a, X | Xa ε, a | ε ε, a | ε b, a | ε $, X | X$ $, X | X$ $, X | X $, X | X $, X | X ε, $ | ε ε, $ | ε $, X | X$
This automaton recognises B 3 : for a run to end in the final state, the stack, and therefore the input, must have had an a-block longer than or equal to the final b-block; conversely, if the b-block is shorter than or equal to some a-block, the automaton can nondeterministically pop the blocks on top of the longest a-block off the stack before processing the b-block. Furthermore, this automaton is GFG: the nondeterminism can be resolved by removing from the stack all blocks until the longest a-block is at the top of the stack, and this choice can be made once the third $ is processed.

We now argue that this GFG-PDA needs more than a pushdown resolver.

Lemma 4. The GFG-PDA P B3 has no pushdown resolver.

Another restricted class of resolvers are finite-state resolvers, which can be seen as pushdown resolvers that do not use their stack. Similarly to the case of ω-GFG-PDA [START_REF] Lehtinen | Good-for-games ω-pushdown automata[END_REF], the product of a GFG-PDA and a finite-state resolver yields a DPDA for the same language.

Remark 2. Every GFG-PDA with a finite-state resolver is determinisable.

Note that the converse does not hold. For example, consider the regular, and therefore deterministic context-free, language L 10 of words w# with w ∈ {a, b} * with infix a 10 . A GFG-PDA P 10 recognising L 10 can be constructed as follows: P 10 pushes its input onto its stack until processing the first #. Then, it uses ε-transitions to empty the stack again. While doing so, it can nondeterministically guess whether the next 10 letters removed from the stack are all a's. If yes, it accepts; in all other cases (in particular if the input word does not end with the first # or the infix a 10 is not encountered on the stack) it rejects. This automaton is good-for-games, as a resolver has access to the whole prefix before the first # when searching for a 10 while emptying the stack. This is sufficient to resolve the nondeterminism. On the other hand, there is no finite-state resolver for P 10 , as resolving the nondeterminism, intuitively, requires to keep track of the whole prefix before the first # (recall that a finite-state resolver only has access to the topmost stack symbol).

In Appendix A.2 we consider another model of pushdown resolver, namely one that does not only have access to the mode of the GFG-PDA, but can check the full stack for regular properties. We show that this change does not increase the class of good-for-games context-free languages that are recognised by a GFG-PDA with a pushdown resolver.

Finally, for GFG-VPA, the situation is again much better. The classical game-based characterisation of GFGness of ω-regular automata by Henzinger and Piterman [START_REF] Henzinger | Solving games without determinization[END_REF] can be lifted to VPA and is, crucially, decidable.

Theorem 8. Every GFG-VPA has a (visibly) pushdown resolver.

Conclusion

We have continued the study of good-for-games pushdown automata, focusing on expressiveness and succinctness. In particular, we have shown that GFG-PDA are not only more expressive than DPDA (as had already been shown for the case of infinite words), but also more succinct than DPDA: We have introduced the first techniques for using GFG nondeterminism to succinctly represent languages that do not depend on the coBüchi condition. Similarly, for the case of VPA, for which deterministic and nondeterministic automata are equally expressive, we proved a (tight) exponential gap in succinctness.

Solving games and universality are decidable for GFG-PDA, but GFGness is undecidable and GFG-PDA have limited closure properties. On the other hand, GFGness for VPA is decidable and they inherit the closure properties of VPA, e.g. union, intersection and complementation, making GFG-VPA an exciting class of pushdown automata. Finally, we have studied the complexity of resolvers for GFG-PDA, showing that positional ones always suffice, but that they are not always implementable by pushdown transducers. Again, GFG-VPA are better-behaved, as they always have a resolver implementable by a VPA.

Let us conclude by mentioning some open problems raised by our work.

-It is known that the succinctness gap between PDA and DPDA is noncomputable, i.e. there is no computable function f such that any PDA of size n that has some equivalent DPDA also has an equivalent DPDA of size f (n). Due to our hierarchy results, at least one of the succinctness gaps between PDA and GFG-PDA and between GFG-PDA and DPDA has to be uncomputable, possibly both.

-We have shown that some GFG-PDA do not have pushdown resolvers. It is even open whether every GFG-PDA has a computable resolver. -On the level of languages, it is open whether every language in GFG-CFL has a GFG-PDA recognising it with a resolver implementable by a pushdown transducer. -We have shown that GFGness is undecidable, both for PDA and for context-free languages. Is it decidable whether a given GFG-PDA has an equivalent DPDA? -Equivalence of DPDA is famously decidable [START_REF] Sénizergues | L(A)=L(B)? decidability results from complete formal systems[END_REF] while it is undecidable for PDA [START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF]. Is equivalence of GFG-PDA decidable? -Does every GFG-PDA that is equivalent to a DPDA have a finite-state resolver with regular stack access (see Appendix A.2 for definitions)? -There is a plethora of fragments of context-free languages one can compare GFG-CFL to, let us just mention a few interesting ones: Height-deterministic context-free languages [START_REF] Nowotka | Height-deterministic pushdown automata[END_REF], context-free languages with bounded nondeterminism [START_REF] Herzog | Pushdown automata with bounded nondeterminism and bounded ambiguity[END_REF] and preorder typeable visibly pushdown languages [START_REF] Kumar | Visibly pushdown automata for streaming XML[END_REF].

A Appendix

A.1 Resolvers with End-of-word Markers

As mentioned in the main part, GFG-PDA are by definition required to end their run with the last letter of the input word. Instead, one could also consider a model where they are allowed to take some trailing ε-transitions after the last input letter has been processed. As a resolver has access to the next input letter, which is undefined in this case, we need resolvers with end-of-word markers to signal the resolver that the last letter has been processed. In the following, we show that GFG-PDA with end-of-word resolvers are as expressive as standard GFG-PDA, albeit exponentially more succinct. Fix some distinguished end-of-word-marker #, which takes the role of the next input letter to be processed, if there is none after the last letter of the input word is processed. Let P = (Q, Σ, Γ, q I , ∆, F ) be a PDA with # / ∈ Σ. An EoW-resolver for P is a function r : ∆ * × (Σ ∪ {#}) → ∆ such that for every w ∈ L(P), there is an accepting run

c 0 τ 0 • • • τ n c n on w such that τ n = r(τ 0 • • • τ n -1 , w#(| (τ 0 • • • τ n -1 )|))
for all 0 n < n. Note that the second argument given to the resolver is a letter of w#, which is equal to # if the run prefix induced by τ 0 • • • τ n -1 has already processed the full input w. Again, the run is unique if it exists and, but may have trailing ε-transitions.

Lemma 5. GFG-PDA with EoW-resolvers are as expressive as GFG-PDA.

Proof. A (standard) resolver can be turned into an EoW-resolver that ignores the EoW-marker. Hence, every GFG-PDA is a PDA with EoW-resolver recognizing the same language. So, it only remains to consider the other inclusion.

To this end, let P = (Q, Σ, Γ, q I , ∆, F ) be a PDA with EoW-resolver. The language

C acc = {γq | q ∈ F and γ ∈ ⊥Γ * } ⊆ ⊥Γ * Q
encoding final configurations of P is regular. Hence, the language

C = {γq ∈ ⊥Γ * Q | there is a run infix (q, γ)τ 0 • • • τ n-1 c n with (τ 0 • • • τ n-1 ) = ε and c n ∈ C acc }
can be shown to be regular as well by applying saturation techniques [START_REF] Büchi | Regular canonical systems[END_REF] 3 to the restriction of P to ε-transitions. If P reaches a configuration c ∈ C after processing an input w, then w ∈ L, even if c's state is not final. Let A = (Q A , Γ ⊥ ∪ Q, q A I , δ A , F A ) be a DFA recognizing C. We extend the stack alphabet of

P to Γ × Q A × (Q A ∪ {u})
, where u is a fresh symbol. Then, we extend the transition relation such that it keeps track of the unique run of A on the stack content: If P reaches a stack content ⊥(X 1 , q 1 , q 1 )(X 2 , q 2 , q 2 ) • • • (X s , q s , q s ), then we have

q j = δ * A (q A I , ⊥X 1 • • • X j )
for every 1 j s as well as q j = q j-1 for every 2 j s and q 1 = u. Here, δ * A is the standard extension of δ A to words. The adapted PDA is still good-for-games, as no new nondeterminism has been introduced, and keeps track of the state of A reached by processing the stack content as well as the shifted sequence of states of A, which is useful when popping the top stack symbol: If the topmost stack symbol (X, q, q ) is popped of the stack then q is the state of A reached when processing the remaining stack. Now, we double the state space of P, making one copy final, and adapt the transition relation again so that a final state is reached whenever P would reach a configuration in C. Whether a configuration in C is reached can be determined from the current state of P being simulated, as well as the top stack symbol containing information on the run of A on the current stack content. The resulting PDA recognizes L(P) and has on every word w ∈ L(P) an accepting run without trailing ε-transitions. Furthermore, an EoWresolver for P can be turned into a (standard) resolver for P , as the tracking of stack contents and the doubling of the state space does not introduce nondeterminism.

As A has at most exponential size, P is also exponential (both in the size of P). This exponential blowup incurred by removing the end-of-word marker is in general unavoidable. In Lemma 20, we show that the language L n of bitstrings whose n th bit from the end is a 1 requires exponentially-sized GFG-PDA. On the other hand, it is straightforward to devise a polynomially-sized PDA with EoW-marker recognizing L n : the underlying PDA stores the input word on the stack, guesses nondeterministically that the word has ended, uses n (trailing) ε-transitions to pop of the last n -1 letters stored on the stack, and then checks that the topmost stack symbol is an 1. With an EoW-resolver, the end of the input does not have to be guessed, but is marked by the EoW-marker.

A.2 Pushdown Resolvers with Regular Stack Access

Recall that pushdown transducers implementing a resolver have access to the mode of the GFG-PDA whose nondeterminism it resolves. Here, we consider a more general model where the transducer can use information about the whole stack when determining the next transition. More precisely, we consider a regular abstraction of the possible stack contents by fixing a DFA running over the stack and allowing the transducer to base its decision on the state reached by the DFA as well.

Then, given a PDA P = (Q, Σ, Γ, q I , ∆, F ), a pushdown resolver with regular stack access T = (D, A, λ) consists a DPDA P with input alphabet ∆, a DFA A over Γ ⊥ with state set Q A , and an output function λ with output alphabet Q × Q A × Σ → ∆ such that the function r T defined as follows, is a resolver for P:

r T (τ 0 . . . τ k , a) = λ(q T )(q P , q A , a)

where q T is the state of the last configuration of the longest run of D on τ 0 . . . τ k (recall that while D is deterministic, it may have several runs on an input which differ on trailing ε-transitions). -Let c be the last configuration of the run of P induced by τ 0 . . . τ k . Then, q P is the state of c and q A is the state of A reached when processing the stack content of c.

Every pushdown resolver with only access to the current mode is a special case of a pushdown resolver with regular stack access. On the other hand, having regular access to the stack is strictly stronger than having just access to the mode. However, by adapting the underlying GFG-PDA, one can show that the languages recognised by GFG-PDA with pushdown resolvers doer not increase when allowing regular stack access. Lemma 6. Every GFG-PDA with a pushdown resolver with regular stack access can be turned into an equivalent GFG-PDA with a pushdown resolver.

Proof. Let P = (Q, Σ, Γ, q I , ∆, F ) be a GFG-PDA and let (D, A, λ) be a pushdown resolver with stack access for P. We keep track of the state A reaches on the current stack as in the proof of Lemma 5: If a stack content ⊥(X 1 , q 1 ) • • • (X s , q s ) is reached, then q j is the unique state of P reached when processing ⊥X 1 • • • X j . Now, it is straightforward to turn (D, A, λ) into a pushdown resolver for P that has only access to the top stack symbol.

A.3 Proofs Omitted due to Space Restrictions

Proof of Lemma 1 Recall that we need to prove DCFL ⊆ GFG-CFL ⊆ CFL.

Proof. We only consider the first inclusion, as the second one is trivial. So, let L ∈ DCFL, say it is recognised by the DPDA P = (Q, Σ, Γ, q I , ∆, F ). We say that a mode m of P is a reading mode if it does not enable an ε-transition. Hence, due to determinism, m can only enable at most one a-transition for every a ∈ Σ. Now, consider some nonempty word w(0) • • • w(n) ∈ L(P) (we take care of the empty word later on), say with accepting run ρ (treated, for notational convenience, as a sequence of transitions). This run can be decomposed as

ρ = ρ 0 τ 0 ρ 1 τ 1 ρ 2 • • • ρ n τ n ρ n+1
where τ i processes w(i) and each ρ i is a (possibly empty) sequence of ε-transitions. Each run prefix induced by some ρ 0 τ 0 ρ 1 • • • ρ i ends in a configuration with reading mode.

Intuitively, we have to eliminate the trailing ε-transitions in ρ n+1 . To do so, we postpone the processing of the letter w(i) to the end of ρ i+1 . Instead, we guess that the next input is w(i) by turning the original w(i)-transition τ i into an ε-transition τ i that stores w(i) in the state space of the modified automaton. Then, ρ i+1 is simulated, a dummy transition τ d i processing the stored letter w(i) is executed. Hence, the resulting run of the modified automaton on w has the form

ρ 0 τ 0 ρ 1 τ d 0 τ 1 ρ 2 τ d 1 • • • ρ n τ d n-1 τ n ρ n+1 τ d n ,
where each τ i is now an ε-transition, each ρ i is a (possibly empty) sequence of ε-transitions, and each τ d i is a dummy transition processing w(i). Hence, the run ends with the transition processing the last letter w(n) of the input. The resulting PDA is good-for-games, as a resolver has access to the next letter to be processed, which is sufficient to resolve the nondeterminism introduced by the guessing of the next letter.

More formally, let PDA P = (Q , Σ, Γ, q I , ∆ , F ) where

-Q = Q ∪ (Q × Σ), -q I = q I , -F = F ∪ I where I = {q I } if ε ∈ L(P)
and I = ∅, otherwise, and -∆ is the union of the following sets of transitions:

• {τ ∈ ∆ | (τ ) = ε}, which is used to simulate the leading sequence of ε-transitions before the first letter is processed by P, i.e. the transitions in ρ 0 above. • {(q, X, ε, (q , a), γ) | (q, X, a, q , γ) ∈ ∆ and a ∈ Σ}, which are used to guess and store the next letter to be processed. • {((q, a), X, ε, (q , a), γ) | (q, X, ε, q , γ) ∈ ∆}, which are used to simulate ε-transitions after a letter has been guessed, but not yet processed (i.e. transitions in some ρ i with i > 0). • {((q, a), X, a, q, X) | (q, X) is a reading mode}, the dummy transitions used to actually process the guessed and stored letter. Now, formalising the intuition given above, one can show that P has a resolver witnessing that it recognises L(P). In particular, the empty word is in L(P ) if and only if it is in L(P), as the run induced by the resolver on ε ends in the initial configuration, which is final if and only if ε ∈ L(P).

Proof of Lemma 2 Recall that we need to prove the following statement: Given a GFG-PDA P, there is a safety ω-GFG-PDA P no larger than P such that Player 2 wins G(L(P)) if and only if she wins G(L(P )).

Proof. Let P be the PDA obtained from P by removing all transitions (q, X, a, q , γ) of P with a ∈ Σ and with non-final q .

With a safety condition, in which every infinite run is accepting, P recognises exactly those infinite words whose prefixes are all accepted by P. Hence, the games G(L(P)) and G(L(P )) have the same winning player.

Note that the correctness of this construction crucially relies on our definition of GFG-PDA which requires a run on a finite word to end as soon as the last letter is processed. Hence, the word is accepted if and only if the state reached by processing this last letter is final.

Finally, since P is GFG, so is P . Consider an infinite input in L(P ). Then, every prefix w has an accepting run of P induced by its resolver, which implies that the last transition of this run (which processes the last letter of w) is not one of those that are removed to obtain P . Now, an induction shows that the same resolver works for P as well, relying on the fact that if w and w with |w| < |w | are two such prefixes, then the resolver-induced run of P on w is a prefix of the resolver-induced run of P on w .

Proof of Theorem 2

We need to prove the non-closure of GFG-CFL under union, intersection, complementation, set difference and homomorphism. Some of the proofs refer to results proven later in the appendix.

Lemma 7. GFG-CFL is not closed under union. run of P or the run of A is accepting. We note that when an ε-transition is chosen in P by the resolver, then no move is made in A. As P has a run on every input, the product PDA P ∪ has one as well.

For L ∩ R, we construct a PDA P ∩ which is similar to P ∪ with the difference that P ∩ accepts when each of P and A has an accepting run on the input word.

Both P ∪ and P ∩ are GFG-PDA since only the nondeterminism of P needs to be resolved. Finally, since L\R = L ∩ R c and the complement R c is regular, it follows that L\R is recognised by a GFG-PDA if there is a GFG-PDA recognising L. For R\L, note that Σ * is a regular language and Σ * \L = L c which by Lemma 9 implies that R\L may not be in GFG-CFL.

Proof of Theorem 3 We prove DCFL

GFG-CFL CFL in several steps. Recall that we defined

B 2 = {a i $a j $b k $ | k max(i, j)}. Lemma 12. B 2 ∈ GFG-CFL.
Proof. Let us summarise the behaviour of the pushdown automaton P B2 recognising B 2 (see Figure 2). First, the automaton copies the two blocks of a's on the stack. Then, when it processes the second $, it transitions nondeterministically to either p 1 or p 2 . In p 1 , it erases the second a-block from the stack, so that the first block is at the top of the stack, and then transitions to p 2 . In p 2 , the automaton compares the number of b's in the input with the number of a's in the topmost block of the stack. If the latter is larger than or equal to the former, P B2 pops one a for each b in the input, and then transitions to the final state when it processes the third $.

When processing the second $, knowing whether the first or second block of the prefix contains more a's allows the nondeterminism to be resolved: if the first block contains more a's, take the transition to the state p 1 , if the second block contains more a's, take the transition to the state p 2 .

To show that B 2 is not in DCF L, we prove that its complement is not even context-free. This suffices, as DCF L is closed under complementation.

Lemma 13. The complement B c 2 of B 2 is not in CF L.
Proof. Assume, for the sake of contradiction, that the complement B c 2 of B 2 is in CF L. Now consider the regular language

A = {a i $a j $b k $|i, j, k ∈ N}.
Since the intersection of a context-free language and a regular language is context-free, we have that B c 2 ∩ A ∈ CF L. Therefore, B c 2 ∩ A satisfies the pumping lemma for context-free languages: there exists m ∈ N such that the word z = a m $a m $b m+1 $ ∈ B c 2 ∩ A can be decomposed as z = uvwxy such that 1. |vx| 1; 2. uv n wx n y ∈ B c 2 ∩ A for every n 0.

Note that Item 2 directly implies that both v and x are in the language {a} * ∪{b} * , as otherwise uv 2 wx 2 y is not in A. On top of that, Item 1 implies that either v or x is in {a} + ∪ {b} + . We conclude by proving, through a case distinction, that Item 2 cannot hold as either uwy or uv 2 wx 2 y is in B 2 .

-Assume that neither v nor x is in {b} + . Then either v or x is in {a} + , hence uv 2 wx 2 y = a m1 $a m2 $b m+1 $ for some m 1 , m 2 m such that either m 1 > m or m 2 > m. In both cases, we get uv 2 wx 2 y ∈ B 2 . -Assume that either v or x is in {b} + . Then pumping v and x down in z reduces the size of at most one of the a-blocks: we have that uwy = a m1 $a m2 $b m3+1 $ for m 1 , m 2 , m 3 m such that m 3 < m, and either m 1 = m or m 2 = m. In both cases, we get uwy ∈ B 2 .

As every possible case results in a contradiction, our initial hypothesis is false:

B c 2 ∈ CFL.
The previous two lemmata and Lemma 1 yield DCFL GFG-CFL. Now, we prove GFG-CFL CFL. Recall that we defined L = {a n b n | n 0} ∪ {a n b 2n | n 0}, which is clearly in CFL. Hence, the following lemma completes the proof of Theorem 3.

Lemma 14. L /

∈ GFG-CFL.

Proof. We show that there does not exist a GFG-PDA recognising L. In fact, we show that if there existed a GFG-PDA P recognising L, then we could construct a PDA P recognising the language L = L ∪ {a n b n c n | n 0}. Since L is not in CFL, we would thus reach a contradiction. The idea behind the construction is to replicate the part of the control unit of P which processes the suffix b n of an input word a n b 2n with the difference that in the newly added parts, the transitions caused by input symbol b are replaced with similar ones for input symbol c. This new part of the control unit may be entered after P has processed a n b n .

We now construct the PDA P from P as follows. Let P = (Q, Σ, Γ, q I , ∆, F ) with Q = {q 0 , q 1 , . . . , q n }, and let q 0 = q I . Now consider P = (Q ∪ Q, Σ, Γ, q I , ∆ ∪ ∆, F ∪ F ) with Q = { q 0 , q 1 , . . . , q n }, F = { q i | q i ∈ F }, and ∆ includes the following additional transitions:

1. {(q f , X, ε, q f , X) | q f ∈ F, X ∈ Γ ⊥ }: switch from the original final states to the new states. 2. {( q i , X, c, q j , γ) | (q i , X, b, q j , γ) ∈ ∆}: replicate the original b-transitions by c-transitions in the new states. 3. {( q i , X, ε, q j , γ) | (q i , X, ε, q j , γ) ∈ ∆}: replicate all ε-transitions. Now we show that L( P) = L. First we show that L( P) ⊆ L. Consider a word w ∈ L( P). There may be two cases:

(i) Assume P has an accepting run on w that does not visit a state in Q. In this case, we have that w is in L(P) = L ⊆ L. (ii) Assume there exists an accepting run of P on w that visits a state in Q. Since P recognises L, and by construction of P, a state q i ∈ Q can be reached from a state q i ∈ Q only if q i ∈ F and q i ∈ F , and the corresponding transition is an ε-transition, we have that starting from the initial configuration (q I , ⊥), a state in Q is reached for the first time only after processing an input prefix a n b n or a n b 2n for some n 0. If this prefix of w is a n b 2n , then w = a n b 2n . This is because if w = a n b 2n c m for some m > 0 (recall that after visiting a state q i in Q, the only non-ε transitions possible are on the letter c), then by the construction of P, we have that P can accept the word a n b 2n b m which is not in the language L. On the other hand, let the prefix be a n b n when a state q i ∈ Q is visited for the first time. Note that q i ∈ F , and let ( q i , γ i ) be the corresponding configuration. If a sequence of transitions τ i . . . τ j from ( q i , γ i ) to ( q j , γ j ) is possible such that not all of τ i . . . τ j are ε-transitions, that is, the transitions process c m for some m ∈ N, and q j ∈ F , then a sequence of transitions τ i . . . τ j of the same length processing b m is possible from (q i , γ i ) to (q j , γ j ) with q j ∈ F . Since this leads to an accepting run from (q I , ⊥) to (q j , γ j ) while visiting only the states in Q on processing a n b n b m with m > 0, we have m = n, and hence w = a n b n c n ∈ L.

If on the other hand, if all the transitions τ i . . . τ j are ε-transitions, then w = a n b n ∈ L.

Now we prove the other direction, that is L ⊆ L( P). Here, we rely on the fact that the accepting run of P on a n b n induced by r is a prefix of the accepting run of P on a n b 2n induced by r. This allows to switch to the copied states Q after processing a n b n and then process c n instead of b n .

Consider a word w ∈ L such that w ∈ L. By construction of P, we have that w ∈ L( P) since P accepts all words that are also accepted by P. Now suppose that w ∈ L but w / ∈ L, that is, w is of the form a n b n c n for some n 1. Since by assumption, we have that P is a GFG-PDA recognising the language L, there exists a resolver r that for every word in L induces an accepting run of the word in L. Let (q i , γ i ) be the configuration of P reached after processing the prefix a n b n in the run induced by r on the input a n b 2n .

Note that q i ∈ F since r also induces an accepting run for the input a n b n . Now if for the input a n b 2n , the sequence of transitions chosen by r from (q i , γ i ) after processing a n b n is τ i , τ i+1 , • • • , τ j with (q i , γ i ) τi -→ (q i+1 , γ i+1 ) . . . (q j-1 , γ j-1 ) τj -→ (q j , γ j ), with q j ∈ F , and the sequence τ i , . . . , τ j processes b n , then by the construction of P, there exists a sequence of transitions τ i , τ i+1 , . . . , τ j with ( q i , γ i ) τi -→ ( q i+1 , γ i+1 ) . . . ( q j-1 , γ j-1 ) τj -→ ( q j , γ j ) and with q j ∈ F such that there is an ε-transition from (q i , γ i ) to ( q i , γ i ) and the sequence τ i , τ i+1 , • • • , τ j processes c n , and hence w ∈ L( P).

Thus we have that L = L( P). Hence we show that if P is a GFG-PDA, then we can construct a PDA P recognising L which is not a CFL, thus leading to a contradiction to our assumption that L is in GFG-CFL.

Proof of Theorem 4

We need to show that B = {a i b j c k | i, j, k 1, k max(i, j)} is inherently ambiguous, i.e. for every grammar generating B there is at least one word that has two different leftmost derivations.

We use standard definitions and notation for context-free grammars as in [START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF]. We say that a grammar is reduced, if every variable is reachable from the start variable, every variable can be reduced to a word of terminals, and for no variable A, it holds that A * An important property of the grammar obtained through the translation is that if the initial grammar is unambiguous, then so is the translated almost-looping grammar.

An example of an almost-looping grammar for language B is the following: Now we prove the following, using techniques inspired by Maurer's proof that {a i b j c k | i, j, k 1, i = j ∨ j = k} is inherently ambiguous [START_REF] Maurer | A direct proof of the inherent ambiguity of a simple context-free language[END_REF].

S → S1 | S2 S1 → aS1 | aS1c | aBc B → bB | b S2 → aS2 | aD D → bDc | bD | bc
Lemma 16. The language B is inherently ambiguous.

Proof. Assume, towards a contradiction, that G is an unambiguous grammar for B, which, from Lemma 15, we can assume, without loss of generality, to be an almost-looping grammar. Let A be a variable of G.

1.

A is of Type 1 if there is a derivation A * =⇒ xAy where xy = a n A,1 for some n A,1 > 0. 2. A is of Type 2 if there is a derivation A * =⇒ xAy where xy = b n A,2 for some n A,2 > 0. 3. A is of Type 3 if there is a derivation A * =⇒ xAy where x = a A,3 and y = c r A,3 for some A,3 r A,3 > 0. 4. A is of Type 4 if there is a derivation A * =⇒ xAy where x = b A,4 and y = c r A,4 for some A,4 r A,4 > 0. 5. A is of Type 5 if there is a derivation A * =⇒ xAy where x = a A,5 and y = b r A,5 for some A,5 , r A,5 > 0.

Note that some variables may be of multiple types (e.g. the variable D in Figure 4 has Type 2 and Type 4). s First, we show that each variable in D(G) has at least one of these five types. So, let A ∈ D(G). Then, there exists a derivation A * =⇒ xAy with xy = ε. Note that both x and y belong to a * , b * , or c * since otherwise, due to G being reduced, one could derive words that are not in the language. Next, we note that the cases where x belongs to c * , and y belongs to a * or b * cannot happen. Similarly, the case where x belongs to b * , and y belongs to a * cannot happen. Also we cannot have xy in c * , since this will allow us to have words with arbitrary number of c's which can be more than the number of a's and b's and such a word is not in the language.

Further, we cannot have x = a and y = c r with 0 < < r. Otherwise, consider a derivation of some word in B that uses A, i.e.

S * =⇒ αAβ * =⇒ a s b u c v with v max(s, u).

Now, towards a contradiction assume we indeed have

A * =⇒ xAy with x = a , y = c r and < r.

Then, pumping q copies of x and y, for some suitable q ∈ N, yields a derivation S * =⇒ αAβ * =⇒ αx q Ay q β * =⇒ a s+ q b u c v+rq such that v + rq > max(s + q, u), i.e. we have derived a word that is not in B. Similarly, we cannot have x = b and y = c r for some 0 < < r. Altogether, this implies that A indeed has at least one of the five types stated above.

Moreover, we claim that there is a t ∈ N such that the following three properties are true for every word w ∈ B: Thus, A has type 2, type 4, or type 5.

We prove these properties as follows: we denote by d the width of the grammar G which is the maximum number of symbols appearing on the right side of some production rule of G. Further, we denote by m the number of variables appearing in G. We argue that t = d m+1 satisfies the three properties above. We focus on Property 1, the two other proofs are similar. Suppose that w contains more than d m+1 c's and consider the derivation tree of that word. The weight ω(v) of a vertex v in the derivation tree is defined as the number of c's in the subtree rooted at v. Hence, the root of the derivation tree has at least weight d m+1 . We build a finite path v 0 , v 1 , . . . , v k from the root of this tree to one of its leaves as follows: The initial vertex v 0 is the root and at each step, we choose as successor of v i its child v i+1 with the largest weight. A vertex v i of this path is decreasing if ω(v i ) > ω(v i+1 ). There are are at least m + 1 decreasing vertices on the path because ω(v 0 ) = d m+1 , ω(v k ) = 1, and ω(v i+1 )

1 d • ω(v i ).
Thus, there are two decreasing vertices on the path that are labeled by the same variable A such that there is a derivation of the form A * =⇒ xAy with some c in xy. Let p > t be a positive integer divisible by the least common multiple of the n A,i , A,i and r A,i for all A ∈ D(G) and i ∈ {1, . . . , 5}, where we define n A,1 = 1 if A is not of Type 1, and similarly for all other i > 1. We show that the word w = a 2p b 2p c 2p ∈ B has two leftmost derivations.

First consider the derivation of the word w b = a 2p b p c 2p ∈ B. As we have more than t c's in w b Property 1 shows that the derivation contains a variable of Type 3 or Type 4. Next, we argue that it cannot contain a variable of Type 4: The occurrence of such a variable would allow us to either produce a word that is not in a * b * c * or to inject b p c r for p r > 0 leading to the derivation of a 2p b 2p c 2p+r , which is not in the language. Thus, the derivation of w b uses at least one variable of Type 3. Also, since w b has p > t b's, Property 3 implies that the (unique) leftmost derivation of w b has the form

S * =⇒ αAβ * =⇒ αxAyβ * =⇒ w b such that xy contains a b.
Thus A is a variable of Type 2 or Type 5 (note that we have already ruled out Type 4 above). More precisely, we have that x belongs to a + or b * and y = b j for some j ∈ N. Now we show that the case where x belongs to a + is not possible. Assume for contradiction that x = a i for some i > 0. Then we also have the derivation

S * =⇒ αAβ * =⇒ a 2p-i b p-j c 2p / ∈ B.
Finally, only three states are needed for the final phase: when the bottom of the stack is reached, P transitions to a new state, and from there it checks whether the suffix is in the language {0, 1, $, #} * \{#}.

To conclude, note that P is good-for-games: the only nondeterministic choice happens during the check phase, and the resolver knows which symbols of the stack are evidence of bad counting. Note that this choice only depends on the current stack content. Lemma 18. Every DPDA recognising the language C n has at least exponential size in n.

Proof. It is known that every DPDA can be complemented at the cost of multiplying its number of states by three [START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF]. Therefore, to prove the statement, we show that even every PDA recognising the complement {c n #} of C n has at least exponential size in n:

Claim. Every PDA P = (Q, Σ, Γ, q I , ∆, F ) recognising {c n #} has a size greater than 2 (n-1)/3 .

To prove the claim, we transform P into a context-free grammar generating the singleton language {c n #}, and then we show that such a grammar requires exponentially many variables. This is a direct consequence of the mk Lemma [START_REF] Charikar | The smallest grammar problem[END_REF], but proving it directly using similar techniques yields a slightly better bound.

Before changing P into a grammar, we slightly modify its acceptance condition: we add to P a fresh final state f in which the stack can be completely popped including the bottom of stack symbol ⊥ (which normally cannot be touched according to our definition of PDA). Moreover, we allow P to transition towards f nondeterministically from all of its other final states. This new automaton, which accepts by empty stack, is easily transformed into a grammar G using the standard transformation [START_REF] Hopcroft | Introduction to Automata Theory, Languages and Computation[END_REF]:

-The terminals of G are 0, 1, $ and #.

-The variables of G are the triples (p, X, q), for every state p, q ∈ Q ∪ {f } and stack symbol X ∈ Γ ⊥ .

-The initial variable is (q I , ⊥, f ), where q I is the initial state of P and f is the fresh final state.

-Each transition (p, X, a, q, γ) ∈ ∆ yields production rules as follows:

1. If γ = ε, then G has the production rule (p, X, q) → a; 2. If γ = Y , then G has the production rule (p, X, q 1 ) → a(q, Y, q 1 ) for all q 1 ∈ Q; 3. If γ = Y Z, then G has the production rule (p, X, q 2 ) → a(q, Y, q 1 )(q 1 , Z, q 2 ) for all q 1 , q 2 ∈ Q.

The variables can be interpreted as follows: for every p, q ∈ Q and X ∈ Γ , the variable (p, X, q) can be derived into any input word w ∈ {0, 1, $} * that P can process starting in state p and ending in state q while consuming the symbol X from the top of the stack. Therefore, in particular, since the initial variable is (q I , ⊥, f ), G generates the same language as P.

We now prove that the grammar G has at least 2 n-1 distinct variables, hence (|Q|+1) 2 (|Γ |+1) 2 n-1 , which implies that the size |Q| + |Γ | of P is at least 2 (n-1)/3 . To this end, we study a (directed) derivation tree T of the word c n #.

Remember that c n = $d 0 $d 1 $ . . . $d 2 n -1 represents an n-bit binary counter counting from 0 to 2 n -1. For each 0 i 2 n -1, let us consider the vertex v i of T such that the counter value d i is an infix of the derivation of v i , but of none of its children. In other words, d i is split between the derivations of the children of v i . By definition of the grammar G, each vertex of T has at most three children, hence at most two counter values can be split amongst the children of a given vertex, which implies that v i = v i+2 for all 0 i 2 n-3 . Therefore, the vertices v 0 , v 2 , v 4 , . . . , v 2 n -2 are all distinct. Finally, since c n # is the only word recognised by P and each counter value d ∈ {0, 1} n appears a single time as an infix of c n #, the 2 n-1 variables labelling these vertices need to be distinct. Now, we consider the gap between GFG-PDA and PDA. Recall that L n is the language of words over {0, 1} such that the n th bit from the end is a 1. We need to show that there exists a PDA of size O(log n) recognising L n , and that every GFG-PDA recognizing L n has exponential size. Again, the proof is split into two parts. Proof. We describe a PDA P that recognises L n . The PDA P nondeterministically guesses the n th bit from the end, checks that it is a 1 and switches to a counting gadget that checks that the word ends in n steps, as follows:

(i) It pushes the binary representation of n -2 onto the stack. For example, if n = 8, then 110 is pushed onto the stack with 0 at the top. Note that log(n -2) states suffice for pushing the binary representation of n -2. If n = 1, then instead of pushing anything onto the stack, the automaton directly moves to a final state without any enabled transitions. (ii) Then P moves to a state that attempts to decrement the counter by one for each successive input letter, as follows: When an input letter is processed, it pops m 0's until 1 is at the top of the stack, replaces the 1 with a 0, and finally pushes m 1's back onto the stack before processing the next letter. If the stack empties before a 1 is at the top of the stack, then the counter value is 0 and the automaton moves to a final state with no enabled transitions. Note that O(log n) states again suffice for this step.

Thus P has O(log n) states. Note that for all n, P uses only three stack symbols that are 0, 1, and ⊥.

Thus the size of P is O(log n), and P recognises L n .

Lemma 20. Every GFG-PDA recognising L n has at least exponential size in n.

Towards proving this, we define the following notions. We say that a word w of length n is rotationally equivalent to a word w if w is obtained from w by rotating it. For example, the word w = 1101 is rotationally equivalent to w = 1110 since w can be obtained from w by rotating it once to the right. Note that the words that are rotationally equivalent form an equivalence class, and thus rotational equivalence partitions {0, 1} n . Since the size of each class is at most n, the number of equivalence classes is at least 2 n n . Now, we define the stack height of a configuration c = (q, γ) as sh(c) = |γ| -1, and we define steps of a run as usual: Consider a run c 0 τ 0 c 1 τ 1 • • • c n-1 τ n-1 c n . A position s is a step if for all s s, we have that sh(c s ) sh(c s ), that is, the stack height is always at least sh(c s ) after position s. Any infinite run of a PDA has infinitely many steps. We have the following observation.

Proposition 1. If two runs of a PDA have steps s 0 and s 1 , respectively, with the same mode, then the suffix of the run following the step s 0 can replace the suffix of the other run following the step s 1 , and the resultant run is a valid run of the PDA. Now, we are ready to prove Lemma 20. Here, we work with infinite inputs for GFG-PDA. The run induced by a resolver on such an input is the limit of the runs on the prefixes.

Proof. Let P be a GFG-PDA with resolver r that recognises L n with a set Q of states and a stack alphabet Γ . We show that |Q| • |Γ | 2 n n . Towards a contradiction, assume that |Q|•|Γ | < 2 n n . Then there exist two words w 0 and w 1 of length n that are not rotationally equivalent and such that the runs ρ 0 and ρ 1 of P induced by r on w ω 0 and w ω 1 contain steps with the same mode, at positions s 0 and s 1 in ρ 0 and ρ 1 respectively, such that at least n letters are processed before s 0 and s 1 . Now consider in each of these two runs the sequence of input letters of length n preceding and including the step position. Let these n letter words be w 0 and w 1 respectively. Since w 0 and w 1 are not rotationally equivalent, w 0 and w 1 differ in at least one position j n. W.l.o.g., assume that for w 0 , the bit at position j is 0, while it is 1 at position j for w 1 . Since the resolver chooses a run such that for every word where the n th letter from the end is a 1 is accepted, this implies that ρ 0 does not visit a final state after processing j -1 letters after s 0 , while ρ 1 visits a final state after processing j -1 letters after s 1 .

Now we reach a contradiction as follows. The suffix of ρ 0 starting from position s 0 + 1 can be replaced with the suffix of ρ 1 starting from position s 1 + 1. By Proposition 1, this yields a valid run ρ of P. However, since the state that occurs after j -1 letters are processed after position s 1 in ρ 1 is final, after the replacement, the state that occurs after j -1 letters are processed after position s 0 in ρ is final as well. However the n th letter from the end of the word processed by this accepting run of P is a 0, contradicting that P recognises L n . Thus we have that |Q| • |Γ | is at least equal to the number of rotationally equivalent classes, that is, |Q| • |Γ | 2 n n . Thus the size of P is at least (

2 n n ) 1/2 .
Proof of Theorem 6 Recall that we need to prove that GFG-VPA can be exponentially more succinct than DVPA and that VPA can be exponentially more succinct than GFG-VPA. We split the proof into two parts.

Lemma 21. GFG-VPA can be exponentially more succinct than DVPA.

Proof. We construct a family (C n ) n∈N of languages such that there is a GFG-VPA of size O(n) recognising C n , yet every DVPA recognising C n has at least exponential size in n. This family is obtained by adapting the family (C n ) n∈N that we used to prove the succinctness of GFG-PDA in Section 4: Once again, we consider the word c n ∈ (${0, 1} n ) * describing an n-bit binary counter counting from 0 to 2 n -1. We consider the languages C n ⊆ {0, 1, $, #} * of bad counters, where 0, 1 and $ are call symbols and # is a return symbol:

C n = w ∈ {0, 1, $, #} * |w = c n # 2 n (n+1)
The only difference with C n is that the forbidden word is c n # 2 n (n+1) instead of c n #. A GFG-VPA of size O(n) recognising C n is obtained by a small modification of the construction presented in the proof of Lemma 17. We adapt the construction of the automaton P recognising C n as follows:

-The push phase is identical; -The check phase is performed by consuming the # symbols instead of having ε-transitions. While the stack is not empty, P accepts even if it has not found evidence of bad counting yet. Moreover, P transitions towards a final sink state if a non-# symbol is read. Once the stack is empty, it transitions towards the final phase; -In the final phase, since the prefix processed up to this point ends with an empty stack, if the suffix left to read is non-empty then the input is not equal to c n # 2 n (n+1) , and can be accepted.

Finally, we can prove that every DPDA (and in particular every DVPA) recognising C n has at least exponential size in n in the exact same way as we proved Lemma 18: The functions term and chunk used to prove the statement ignore the # symbols, hence C n and C n can be treated identically. Note that this lower bound is independent of the partition of the letters into calls, returns, and internals. Lemma 22. VPA can be exponentially more succinct than GFG-VPA.

We show that there exists a family (L n ) n∈N of languages such that there exists a VPA of size O(n) recognising L n while every GFG-VPA recognising the same language has size at least 2 n/6 . Towards this we consider a language L n of words in (01 + 10) * • (ε + 0 + 1) with the n th last letter being 1. We first note that L n can be recognised by a VPA with O(n) states, which checks that the input is in (01 + 10) * • (ε + 0 + 1) and nondeterministically guesses the n th last letter and verifies that it is a 1.

First, we claim that every DFA recognising L n has exponential size.

Remark 3. Every DFA recognising L n has at least 2 n/2 states.

Using this, we obtain an exponential lower bound on the size of GFG-VPA recognising L n , thereby completing the proof of Lemma 22.

Lemma 23. Every GFG-VPA recognising L n has at least size 2 n/6 . Proof. The proof is based on the fact that GFG-NFA can be determinised by pruning [START_REF] Boker | How deterministic are good-for-games automata?[END_REF], that is, they always contain an equivalent DFA, i.e. the lower bound of Remark 3 is applicable to GFG-NFA as well.

Let P be a GFG-VPA recognising L n . We consider the following cases:

1. Both 0 and 1 are either a return symbol or an internal symbol : The GFG-VPA P in this case can essentially be seen as a GFG-NFA with the same set of states, since the stack is not used (it is always equal to ⊥). Given that GFG-NFA are determinisable by pruning, by Remark 3 such a GFG-NFA has at least 2 n/2 states. 2. At least one of 0 and 1 is a call symbol while the other one is a call or an internal symbol : Let Q be the set of states and Γ be the stack alphabet of P. Since the height of the stack is nondecreasing, P has only access to the top stack symbol. We can thus construct an equivalent GFG-NFA over finite words with states in Q × Γ . Since GFG-NFA are determinizable by pruning, and using Remark 3 again, we have that . Again by the determinizability by pruning argument, we have that the size of the GFG-VPA P is at least 2 n/6 .

Proof of Theorem 7

We need to prove that GFGness of VPA is decidable in ExpTime.

We use the one-token game, introduced by Bagnol and Kuperberg [START_REF] Bagnol | Büchi Good-for-Games Automata Are Efficiently Recognizable[END_REF] in the context of regular languages. Given a VPA P = (Q, Σ, Γ, q I , ∆, F ), the positions of the one-token game consist of pairs of configurations (c i , c i ), starting from initial configuration of P. At each round i:

-Player 1 picks a letter a i ∈ Σ, -Player 2 picks an a i -transition τ i ∈ ∆ enabled in c i , leading to a configuration c i+1 , -Player 1 picks an a i -transition τ i ∈ ∆ enabled in c i , leading to a configuration c i+1 , -The game proceeds from the configuration (c i+1 , c i+1 ).

A play consists of an infinite word a 0 a 1 . . . ∈ Σ ω and two sequences of transitions τ 0 τ 1 . . . and τ 0 τ 1 . . . built by Players 2 and 1 respectively. Player 1 wins if for some n, τ 0 . . . τ n is an accepting run of P over a 0 . . . a n and τ 0 . . . τ n is not. Recall that VPA don't have ε-transitions, so the two runs proceed in lockstep.

Observe that this game can be seen as a safety game on a visibly pushdown arena and can therefore be encoded as a Gale-Stewart game with a DCFL winning condition. This in turn is solvable in ExpTime [START_REF] Walukiewicz | Pushdown processes: Games and model-checking[END_REF]. We now argue that this game characterises whether the VPA P is GFG.

Proof. We now argue that P is GFG if and only if Player 2 wins the one-token game on P. One direction is immediate: if P is GFG, then the resolver is also a strategy for Player 2 in the one-token game.

For the converse direction, consider the family of copycat strategies for Player 1 that copy the transition chosen by Player 2 until she plays an a-transition from a configuration c to a configuration c such that there is a word aw that is accepted from c but w is not accepted from c . We call such transitions non-residual. If Player 2 plays such a non-residual transition, then the copycat strategies stop copying and instead play the letters of w and the transitions of an accepting run over aw from c.

If Player 2 wins the one-token game with a strategy s, she wins, in particular, against this family of copycat strategies for Player 1. Observe that copycat strategies win any play along which Player 2 plays a non-residual transition. Therefore s must avoid ever playing a non-residual transition. We can now use s to induce a resolver r s for P: r s maps a sequence of transitions over a word w to the transition chosen by s in the one-token game where Player 1 played w and a copycat strategy. Then, r s never produces a non-residual transition. As a result, if a word w is in L(P), then the run induced by r s over every prefix v of w leads to a configuration that accepts the remainder of w. This is in particular the case for w itself, for which r s induces an accepting run. This concludes our argument that r s is indeed a resolver, and P is therefore GFG.

Thus, to decide whether a VPA P is GFG it suffices to solve the one-token game on P, which can be done in exponential time.

Proof of Corollary 2

We prove that the ge-synthesis problem for GFG-VPA and DVPA is as hard as the GFGness problem for VPA. Note that this is a more general reduction that we use here only for the VPA case.

Proof. We first reduce the good-enough synthesis problem to the GFGness problem. Given a GFG-VPA P = (Q, Σ 1 × Σ 2 , Γ, q I , ∆, F ), with resolver r, let P be P projected onto the first component: P = (Q, Σ 1 , Γ, q I , ∆ , F ) has the same states, stack alphabet and final states as P, but has an atransition for some a ∈ Σ 1 whenever P has the same transition over (a, b) for some b ∈ Σ 2 . Let each transition of P be annotated with the Σ 2 -letter of the corresponding P-transition. Thus P recognises the projection of L(P) on the first component.

A resolver for P induces a ge-synthesis function for P by reading off the Σ 2 -annotation of the chosen transitions in P . Indeed, the resolver produces an accepting run with annotation w of P for every word w in the projection of L(P) on the first component. The same run is an accepting run in P over (w, w ) which is therefore in L(P). Conversely a ge-synthesis function f for P, combined with r, induces a resolver r for P by using f to choose output letters and r to choose which transition of P to use; together these uniquely determine a transition in P . Then, if w ∈ L(P ), f guarantees that the annotation of the run induced by r in P is a witness w such that (w, w ) ∈ P, and then r guarantees that the run is accepting, since the corresponding run in P over (w, w ) must be accepting.

We now reduce the GFGness problem of a VPA P = (Q, Σ, Γ, q I , ∆, F ) to the ge-synthesis problem of a DVPA P = (Q, Σ × ∆, Γ, q I , ∆ , F ). The deterministic automaton P is as P except that each transition τ over a letter a in ∆ is replaced with the same transition over (a, τ ) in ∆ . In other words, P recognises the accepting runs of P and its ge-synthesis problem asks whether there is a function that constructs on-the-fly an accepting run for every word in L(P), that is, whether P has a resolver.

Proof of Lemma 3 Recall that we need to prove that every GFG-PDA has a positional resolver.

Proof. Let r be a (not necessarily positional) resolver for P. We define a resolver r such that for each configuration and input letter, it makes a choice consistent with r for some input leading to this configuration. In other words, for every reachable configuration c, let ρ c be an input to r inducing a run ending in c. Then, we define r(ρ, a) = r(ρ c , a), where c is the last configuration of the run induced by ρ.

We claim that r, which is positional by definition, is a resolver. Towards a contradiction, assume that this is not the case, i.e. there is a word w ∈ L(P) such that the run ρ induced by r is rejecting. Since this run is finite and w ∈ L(P), there is some last configuration c along the run ρ from which the rest of the word, say u, is accepted4 (by some other run of P having the same prefix as ρ up to configuration c). Let τ be the next transition along ρ from c. Since r chose τ , the resolver r also chooses τ after some history leading to c, over some word v. Since u is accepted from c, the word vu is in L(P); since r is a resolver, there is an accepting run over u from c starting with τ , contradicting that c is the last position on ρ from where the rest of the word could be accepted.

Proof of Lemma 4

We need to prove that the GFG-PDA P B3 defined in Section 6 has no pushdown resolver.

Proof. Towards a contradiction, assume that there is a pushdown resolver r for P B3 , implemented by a PDT T = (D, λ).

From T , for each i ∈ {1, 2, 3}, we can construct a PDA D i that recognises the language of words w ∈ a + $a + $a + such that T chooses from q 3 the transition of P B3 going to p i when constructing a run on w$: this is simply the pushdown automaton D underlying T where inputs (transitions of P B3 ) are projected onto their input letter in {a, b, $} and states q of T such that λ(q)(q 3 , X, $) = (q 3 , $, X, p i , X) are made final, intersected with a DFA checking that the input is in a + $a + $a + .

Since T implements a resolver for P, each D i only accepts words of the form a m1 $a m2 $a m3 such that max(m 1 , m 2 , m 3 ) = m i . Furthermore, at least for one i ∈ {1, 2, 3}, D i accepts a m $a m $a m for infinitely many m.

To reach a contradiction, we now argue that this D i recognises a language that is not context-free. Indeed, if it were, then by applying the pumping lemma for context-free languages, there would be a large enough m such that the word a m $a m $a m ∈ L(D i ) could be decomposed as uvwyz such that |vy| 1 and uv n wy n z is in the language of D i for all n 0. In this decomposition, v and y must be $-free. Then, if either v or y occurs in the ith block and is non-empty, by setting n = 0 we obtain a contradiction as the ith block is no longer the longest. Otherwise, we obtain a similar contradiction by setting n = 2. In either case, this shows that T is not a pushdown resolver for P.

Proof of Theorem 8

We need to prove that every GFG-VPA has a (visibly) pushdown resolver.

Proof. Fix a VPA P = (Q, Σ, Γ, q I , ∆, F ) and consider the following two-player game G(P), introduced by Henzinger and Piterman to decide GFGness of ω-automata [START_REF] Henzinger | Solving games without determinization[END_REF]. In each round, first Player 1 picks a letter from Σ or ends the play. If he has not ended the play, then Player 2 picks a transition of P. Hence, once Player 1 has stopped the play, Player 1 has picked an input word w over Σ * and Player 2 has indicated a run ρ of P. A finite play with outcome (w, ρ) is winning for Player 2 if either w / ∈ L(P) or ρ induces an accepting run of P on w.

A strategy for Player 2 in this game is a mapping σ : Σ + → ∆ and an outcome (w(0) • • • w(k), ρ(0) • • • ρ(k)) is consistent with σ, if ρ(j) = σ(w(0) • • • w(j)) for every 0 j k. We say that σ is winning for Player 2, if every outcome of a finite play that is consistent with σ is winning for her (note that we disregard infinite plays).

Fig. 1 .

 1 Fig. 1. The PDA P from Example 1. Grey states are final, and X is an arbitrary stack symbol.

Fig. 3 .

 3 Fig. 3. The PDA PB 3 for B3. Grey states are final, and X is an arbitrary stack symbol.

  =⇒ A. Let D(G) = {A ∈ V | A * =⇒ xAy for some x, y with xy = ε}. An unambiguous CFG G is called almost-looping, if 1. G is reduced, 2. all variables, possibly other than the start variable S, belong to D(G), and 3. either S ∈ D(G) or S occurs only once in the leftmost derivation of any word in L(G). Now we state the following lemma from [29]. Lemma 15. For every unambiguous CFG G, there exists an unambiguous almost-looping CFG G such that L(G) = L(G ).

Fig. 4 .

 4 Fig. 4. An example CFG for language B

Property 1

 1 If w has more than t c's, then the (unique) leftmost derivation of w has the form S * =⇒ αAβ * =⇒ αxAyβ * =⇒ w such that xy contains a c. Thus, A has type 3 or type 4. Property 2 If w has more than t a's, then the (unique) leftmost derivation of w has the form S * =⇒ αAβ * =⇒ αxAyβ * =⇒ w such that xy contains an a. Thus, A has type 1, type 3, or type 5. Property 3 If w has more than t b's, then the (unique) leftmost derivation of w has the form S * =⇒ αAβ * =⇒ αxAyβ * =⇒ w such that xy contains a b.

Lemma 19 .

 19 There exists a PDA of size O(log n) recognising L n .

  |Q| • |Γ | 2 n/2 . Thus either |Q| 2 n/4 or |Γ | 2 n/4 . Hence for this case, we have that the size of the GFG-VPA is at least 2 n/4 . 3. One of 0 and 1 is a call symbol while the other one is a return symbol : Note that since a word in L n is composed of sequences of 10 and 01, the stack height can always be restricted to 2. Thus the configuration space of P, restricted to configurations on accepting runs, is finite, and there is an equivalent GFG-NFA of size at most |Q| • |Γ | 2 . Thus |Q| • |Γ | 2 2 n/2 giving either |Q| 2 n/6 or |Γ | 2 n/6

Note that we prove exponential succinctness gaps, so the exact definition of the size is irrelevant, as long as it is polynomial in |Q| and |Γ |. Here, we pick the sum for the sake of simplicity.

A positional resolver for ω-regular automata implies determinisability by pruning, and we know that this is not always possible[START_REF] Boker | How deterministic are good-for-games automata?[END_REF] 

Also, see the survey by Carayol and Hague[START_REF] Carayol | Saturation algorithms for model-checking pushdown systems[END_REF] for more details.

Observe that this is no longer true over infinite words as an infinite run can stay within configurations from where an accepting run exists without being itself accepting. In fact, the lemma does not even hold for coBüchi automata[START_REF] Kuperberg | On determinisation of good-for-games automata[END_REF] as the existence of positional resolvers implies determinisability by pruning.
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Proof. Consider the languages L 1 = {a n b n | n 0} and L 2 = {a n b 2n | n 0} respectively. There exist a DPDA recognising L 1 and a DPDA recognising L 2 . Hence by Lemma 1, there also exist a GFG-PDA recognising L 1 and a GFG-PDA recognising L 2 . However, by Lemma 14, we have that L 1 ∪ L 2 cannot be recognised by a GFG-PDA. Proof. Recall the language

We proved with Lemma 12 that B 2 ∈ GFG-CFL, yet Lemma 13 shows that its complement B c 2 is not even a context-free language.

Lemma 10. GFG-CFL is not closed under set difference.

Proof. Closure under set difference implies closure under complementation since for every language L over alphabet Σ, we have that the complement L c is equal to Σ * \L.

Lemma 11. GFG-CFL is not closed under homomorphism.

Proof. The language

is recognised by a DPDA, and hence by a GFG-PDA using Lemma 1, but its projection (which is a homomorphism)

cannot be recognised by a GFG-PDA (see Lemma 14).

Closure Properties with Regular Languages Theorem 9. If L is in GFG-CFL and R is regular, then L ∪ R, L ∩ R and L\R are also in GFG-CFL, but R\L is not necessarily in GFG-CFL.

Proof. Consider a GFG-PDA P = (Q, Σ, Γ, q I , ∆, F ) recognising L, and a resolver r for P. By definition, r only has to induce a run on every w ∈ L(P), but does not necessarily induce a run on w / ∈ L(P). First, we turn P into an equivalent GFG-PDA P that has a resolver that induces a run on every input w ∈ Σ * . This property allows us then to take the product of P and an DFA for R.

To this end, we add a fresh nonfinal sink state q s with a self-loop (q s , X, a, q s , X) for every input letter a ∈ Σ and every stack symbol X ∈ Γ ⊥ . Also, we add transitions so that every configuration has, for every a ∈ Σ, an enabled a-transition to the sink. The resulting PDA P is equivalent and r is still a resolver for it. But, we can also turn r into a resolver r that induces a run on every possible input as follows:

, a, q s , X), where (q, X) is the mode of the last configuration of the run induced by τ 0 • • • τ n . Thus, as soon as the input can no longer be extended to a word in L(P), then run induced by r moves to the sink state and processes the remaining input. Now, let A be a DFA recognising R. For L ∪ R, we construct the product PDA P ∪ of P and A that simulates a run of P and the unique run of A simultaneously on an input word and accepts if either the Therefore, A is a Type 2 variable that is used in the derivation of w b , which can be used to inject another b p , yielding a derivation of w. Thus, we have exhibited a derivation of w that uses a variable of Type 3. Now consider a derivation of the word w a = a p b 2p c 2p . Such a derivation cannot contain a variable of Type 3 since this allows us either to produce a word that is not in a * b * c * or to inject a p c r for p r > 0, leading to the derivation of a 2p b 2p c 2p+r / ∈ B. Further, arguing as above, some variable of Type 1 must appear in the derivation of w a that is used to obtain sufficient number of a's in the derivation of w a . Such a variable of Type 1 can be used to inject a p into w a which leads to the derivation of w. Thus, we have exhibited a derivation of w that does not contain a variable of Type 3.

Altogether, there are two different leftmost derivations of the word w. Thus, G is not unambiguous, yielding the desired contradiction.

Proof of Theorem 5 Recall that we need to prove that GFG-PDA can be exponentially more succinct than DPDA, and that PDA can be double-exponentially more succinct than GFG-PDA.

We first consider the gap between DPDA and GFG-PDA. Recall that we defined c n ∈ (${0, 1} n ) * to be the word describing an n-bit binary counter counting from 0 to 2 n -1 and

We prove that C n is recognised by a PDA of linear size, but every GFG-PDA recognising C n has exponential size. The proof is split into two parts.

Lemma 17. The language C n is recognised by a GFG-PDA of size O(n).

Proof. We define a PDA P = (Q, Σ, Γ, q I , ∆, F ) that recognises C n . The automaton P operates in three phases: a push phase, followed by a check phase, and then a final phase. These phases work as follows. Suppose that P receives an input w ∈ {0, 1, $, #} * . During the first phase, P pushes the input processed onto the stack until the sequence 1 n appears. If it never appears, the input is accepted. During this phase, P also checks whether the prefix w of w processed up to this point is a sequence of counter values starting with 0 n , i.e. whether w is in the language

and d i ∈ {0, 1} n for all 1 i m}.

If w ∈ L c , then P immediately accepts. Otherwise, P moves to the second phase. During the check phase, P pops the stack. At any point, P can nondeterministically guess that the top symbol of the stack is evidence of bad counting. It then accepts the input if the guess was correct. If P completely pops the stack without correctly guessing an error in the counter, it moves to the final phase. Since the prefix w processed up to this point ends with the sequence 1 n , if P now processes any suffix different from a single #, then the input is not equal to c n #, and can be accepted.

The stack alphabet of P has constant size 3. The push phase requires 3(n + 1) states:

-First, P checks whether $0 n is a prefix of the input. This can be done with n + 2 states.

-Then, P checks whether the following {0, 1} * segments are n-bits wide, and only the last one is 1 n . This can be done with 2n+1 additional states: repeatedly, P processes n+1 symbols, checks whether only the first of them is a $, and keeps track of whether at least one of them is 0.

We now show that 6(n + 1) additional states are enough for the check phase. To this end, we study the errors that P needs to check. Note that, to increment the counter correctly, we need to change the value of all the bits starting from the last 0, and leave the previous bits unchanged. Therefore, P can recognise with 6(n + 1) states whether the top symbol of the stack does not correspond to a correct counter increment: P pops the top n + 1 stack symbols while keeping in memory the value of the first symbol popped; whether we have not yet popped a $ (there is exactly one $ in the top n + 1 stack symbols, as the stack content is in L c ), or a $ but no 0 afterwards, or a $ and at least one 0 afterwards.

The input is accepted whenever the first symbol popped and the top stack symbol after popping match yet no 0 has been popped between the $ and the last symbol, or they differ yet at least one 0 has been popped between the $ and the last symbol.