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Abstract

Pauli first noticed the hidden SO(4) symmetry for the hydrogen atom in the early stages of quantum mechanics [1].
Starting from that symmetry, one can recover the spectrum of a spinless hydrogen atom and the degeneracy of its
states without explicitly solving Schrödinger’s equation [2], [3]. In this paper, we derive that SO(4) symmetry and
spectrum using a computer algebra system (CAS). While this problem is well known [4], [5], its solution involves
several steps of manipulating expressions with tensorial quantum operators, including simplifying them by taking into
account a combination of commutator rules and Einstein’s sum rule for repeated indices. Therefore, it is an excellent
model to test the current status of CAS concerning this kind of quantum-and-tensor-algebra computations and to
showcase the CAS technique. Generally speaking, when capable, CAS can significantly help with manipulations
that, like non-commutative tensor calculus subject to algebra rules, are tedious, time-consuming and error-prone. The
presentation also shows two alternative patterns of computer algebra steps that can be used for systematically tackling
more complicated symbolic problems of this kind.
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Introduction

In this work we derive, step-by-step, the SO(4) symmetry of the hydrogen atom and its spectrum using a computer
algebra system (CAS). To the best of our knowledge, such a derivation using symbolic computation has not been
shown before. The goal was to see whether this computation can be performed entering only the main definition
formulas, followed by only simplification commands, and without using previous knowledge of the result. The pre-
sentation that follows showcases that approach, illustrating different techniques. The intricacy of this problem is in
the symbolic manipulation and simplification of expressions involving noncommutative quantum tensor operators.
The simplifications need to take into account commutator rules, symmetries under permutation of indices of tensorial
subexpressions, and use Einstein’s sum rule for repeated indices.

We performed the derivation using the Maple 2020 CAS with the Maplesoft Physics Updates v.913. Generally speak-
ing, the default computational domains of CAS don’t include tensors, noncommutative operators and related simplifi-
cations. The main exception is the Maple system, distributed with a Physics package that extends the default domain
to include those objects and related operations. Physics redefines the multiplication and differentiation operators, so
that they work with noncommutative and tensorial objects, including handling a new class, operators, that can have
specific properties (Hermitian, Unitary, differential, etc.). Relevant for our purpose Physics includes a Simplify com-
mand which takes into account custom algebra rules, tensor symmetries, the sum rule for repeated indices, and uses
tensor-simplification algorithms [6] adapted to work on a noncommutative domain.

It is worth mentioning that other CAS have some tensorial and noncommutative capabilities, albeit limited. For
example, Maxima includes the packages itensor (for indicial tensor manipulation) and atensor (to simplify a non-
commutative dot product of tensors). However, to mention but one thing, the algebra rules are not customizable. It
is not presently possible to define noncommutative Hermitian - possibly tensorial - operators, like position and mo-
mentum, and their commutator rules. Mathematica does not include packages like Physics or similar, but it includes
basic noncommutative capabilities and some Tensor constructs. That functionality has been extended to some point
by Mathematica users who developed tensor and quantum packages. However, to our knowledge, the combination of
those capabilities and packages does not cover the requirements for problems like the one discussed here. E.g. it is not
possible to express the starting point, the commutation rules between position, linear and angular momentum, non-
commutative tensor operators, in simple terms as we do in equation (1) in Sec. 2, nor to perform the simplifications
of intermediate expressions performed in the following sections.

A few notes about notation: when working with a CAS, besides the expectation of achieving a correct result for
a complicated symbolic calculation, readability is also an issue. It is desired that one be able to enter the definition
formulas and computational steps to be performed (the input, shown in what follows preceded by a prompt >) in a way
that resembles as closely as possible their paper and pencil representation, and that the results (the output, computed
by the CAS) use easy-to-read, textbook mathematical-physics notation. The Maple Physics package implements
such dedicated typesetting. In what follows, within text and in the output, noncommutative objects are displayed

using a different color, e.g. H, vectors and tensor indices are displayed in the standard way, as in
→

L and Lq, and
commutators are displayed with a minus subscript, e.g. [H, Lq]−. Although the Maple system optionally provides
dedicated typesetting also for the input, we preferred to keep visible the Maple input syntax, allowing for comparison
with paper and pencil notation and to transmit a more accurate picture of what it is like to work on a real problem
using CAS. We collected the names of the handful of commands used together with a one line description for them
in an Appendix at the end. Maple also implements the concept of inert representations of computations, which are
activated only when desired. We use this feature in several places. Inert computations are entered by preceding the
command with % and are displayed in grey. Finally, as is usual in CAS, every output has an equation label, which we
use throughout the presentation to refer to previous intermediate results, both in text and in input lines.

In Sec.1, we present the standard formulation of the problem and the computational goal, which is the derivation of
the formulas representing the SO(4) symmetry and related spectrum.
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In Sec.2, we formulate the problem on a Maple worksheet by setting tensorial non-commutative operators representing
position, linear and angular momentum, respectively Xa, pa and La, their commutation rules used as departure point,
and the form of the quantum Hamiltonian H. That formulation is also used to derive a few related identities used in
the sections that follow.

In Sec.3, we derive the conservation of both angular momentum and the Runge-Lenz quantum operator, respectively
[H, Lq]− and [H,Zk]−. Taking advantage of the differentialoperators feature of the Physics package, we explore two
equivalent approaches: first, using only a symbolic tensor representation p j of the momentum operator; second, using
an explicit differential operator representation for it in configuration space, p j = −i}∂ j. With the first approach,
expressions are simplified only using the departing commutation rules, symmetries under permutations of tensor
indices and Einstein’s sum rule for repeated indices. Using the second approach, p j represents an abstract non-
commutative differentiation operator with respect to the coordinates which acts over expressions that involve a test
function G(X). In the end, p j is given an explicit form in coordinate representation, the differentiation operations are
performed and the test function G(X) is removed, yielding the result. Presenting both approaches is of interest as it
offers two independent methods for performing the same computation, which is helpful to provide confidence in the
results, a relevant issue when using computer algebra and in general.

In Sec.4, we derive [Lm,Zn]− = i}εmnuZu and show that the classical relation between angular momentum and the

Runge-Lenz vectors,
→

L .
→

Z = 0, due to the orbital momentum being perpendicular to the plane of motion in which the
Runge-Lenz vector lies, still holds in quantum mechanics, where the components of these quantum vector operators
do not commute.

In Sec.5, we derive [Za,Zb]− = −
2 i}εabc

me
HLc using the two alternative approaches described in Sec.3.

In Sec.6, we derive the well-known formula for the square of the Runge-Lenz vector, Zk
2 = 2

me
H(}2 + La

2) + κ2.

In Sec.7, we use the SO(4) algebra derived in the previous sections to obtain the spectrum of the hydrogen atom.
Following the literature, this approach is limited to the bound states for which the energy is negative.

Some concluding remarks are presented at the end, and input syntax details are summarized in the Appendix. A
Maple worksheet with the contents of this presentation, used to produce this article by exporting to LaTeX, can be
downloaded from this Mapleprimes post: The-Hidden-SO4-Symmetry-Of-The-Hydrogen-Atom.

1. The hidden SO(4) symmetry of the hydrogen atom

Let’s consider the hydrogen atom and its Hamiltonian

H =
‖
→
p‖

2

2me
− κ

r ,

where
→
p is the electron momentum, me its mass, κ a real positive constant, r = ‖

→
r ‖ ≡

√
Xa

2 the distance of the
electron from the proton located at the origin, and Xa, with components x, y and z, is the tensorial representation of
→
r . We assume that the proton’s mass is infinite. The electron and nucleus spin are not taken into account. Classically,

from the potential − κr , one can derive a central force
→

F = −κ r̂
r2 that drives the electron’s motion. Introducing the

angular momentum

→

L =
→
r ×

→
p,
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Figure 1: Artist’s view of an hydrogen atomic orbital with a section of this article superimposed

one can further define the Runge-Lenz vector
→

Z :

→

Z =
1

me
(
→

L ×
→
p) + κ

→
r
r

It is well known that d
dt

→

Z(t) = 0,
→

Z is a constant of the motion. Switching to Quantum Mechanics, this condition reads

[H,
→

Z]− = 0

where, for hermiticity purpose, the expression of
→

Z must be symmetrized

→

Z =
1

2me
(
→

L ×
→
p −

→
p ×

→

L) + κ

→
r
r

In what follows, departing from the Hamiltonian H, the basic commutation rules between position
→
r , momentum

→
p and angular momentum

→

L in tensor notation, we derive the following commutation rules between the quantum

Hamiltonian, angular momentum and Runge-Lenz vector
→

Z

[H, Ln]− = 0
[H,Zn]− = 0

[Lm,Zn]− = i}εmnoZo

[Zm,Zn]− = −2
i}
me

HεmnoLo

Since H commutes with both
→

L and
→

Z , defining

Mn =

√
−

me

2H
Zn,

these commutation rules can be rewritten as
[Lm, Ln]− = i}εmnoLo

[Lm,Mn]− = i}εmnoMo

[Mm,Mn]− = i}εmnoLo

This set constitutes the Lie algebra of the SO(4) group.
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2. Setting the problem, commutation rules and useful identities

Formulating the problem requires loading the Physics package and its Library and Vectors subpackages, that contain
additional manipulation commands; we set the imaginary unit to be represented by a lowercase Latin i letter instead
of the default uppercase I.
>with(Physics): with(Library): with(Vectors): interface(imaginaryunit = i):

The context for this problem is Cartesian coordinates X = (x, y, z) and a 3D Euclidean space where all of {}, κ,me}

are real objects. We chose lowercase letters to represent tensor indices, the use of automatic simplification (i.e.,
automatically rewrite expressions in more compact ways by collecting variables and taking common factors).
> Setup(coordinates = cartesian, realobjects = {}, κ,me}, automaticsimplification = true, dimension = 3,metric =

Euclidean, spacetimeindices = lowercaselatin, quiet)[
automaticsimplification = true, coordinatesystems = {X} , dimension = 3,metric = {(1, 1) = 1, (2, 2) = 1, (3, 3) = 1} ,

realobjects = {}, κ,me, φ, r, ρ, θ, x, y, z} , spacetimeindices = lowercaselatin
]

(1)

Next, we set the quantum Hermitian operators (not Z, we derive that property for it further below) and related com-
mutators:

– the dimensionless potential V = 1
r is assumed to commute with position, not with momentum - the commutation

rule with pk is derived in Sec.3.2;

– the commutator rules between position Xn on the one hand, and linear pk and angular momentum Lk on the
other hand, are the departure point, entered using the inert form of the Commutator command. Tensors are
indexed using the standard Maple notation for indexation, [].

> Setup(quantumoperators = {Z}, hermitianoperators = {V,H, L, X, p}, algebrarules = {%Commutator(p[k], p[l]) =

0,%Commutator(X[k], p[l]) = i } g [k, l],%Commutator(L[ j], L[k]) = i }LeviCivita[ j, k, n] L[n],
%Commutator(p[ j], L[k]) = i }LeviCivita[ j, k, n] p[n],%Commutator(X[ j], L[k]) = i }LeviCivita[ j, k, n] X[n],
%Commutator(X[k],V(X)) = 0})

(2)
[
algebrarules =

{[
L j, Lk

]
−

= i}ε jknLn,
[
p j, Lk

]
−

= i}ε jkn pn,
[
pk, pl

]
− = 0,

[
X j, Lk

]
−

= i}ε jknXn,
[
Xk, pl

]
− = i}gkl,

[Xk,V(X)]− = 0
}
, hermitianoperators = {H, L,V , p, x, y, z} , quantumoperators = {H, L,V ,Z, p, x, y, z}

]
Define the tensor quantum operators representing the linear momentum, angular momentum and the Runge-Lenz
vectors
>Define(p[k], L[k],Z[k], quiet)

(3){γa, Lk, σa,Zk, ∂a, gab, pk, εabc, Xa}

For readability, avoid redundant display of functionality
>CompactDisplay((V,G)(X))

V(X) will now be displayed as V

(4)G(X) will now be displayed as G

The Hamiltonian for the hydrogen atom is entered as

> H =
p[l]2

2 · me
− κ · V(X)

(5)H =
pl

2

2me
− κV

where pl
2 = ‖

→
p‖

2
.
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2.1. Definition of V(X) and related identities
We use the dimensionless potential V(X)

>V(X) =
1

(X[l]2)
1
2

(6)V =
(
Xl

2)− 1
2

The gradient of V(X) is
> d [n]((6))

(7)∂n(V) = −
(
Xl

2)− 3
2 Xn

where we note that all these commands (including product and power), distribute over equations. So that
> subs((rhs = lhs)((6)3), (7))

(8)∂n(V) = −V3Xn

Equivalently, from (6) one can deduce

> (rhs = lhs)(
V(X)3

(6)2 )

(9)V3Xl
2 = V

which will often be used afterwards.

2.2. The commutation rules between linear and angular momentum and of the potential V(X)
By definition
> L[q] = LeviCivita[q,m, n] · X[m] · p[n]

(10)Lq = εmnqXm pn

so
>Commutator((10),V(X))

(11)
[
Lq,V

]
−

= εmnqXm
[
pn,V

]
−

The commutator on the right-hand side cannot be computed by the CAS until more information is provided. To derive
the value of [pn,V]−we set pn as a differentialoperator and introduce an arbitrary test function G(X)
> Setup(differentialoperators = {[p[k], [x, y, z]]})

(12)
[
differentialoperators =

{[
pk, [X]

]}]
Apply now to G(X) the differential operator pn found in the commutator of the right-hand side of (11)
> (lhs = ApplyProductsOfDifferentialOperators@rhs)((11) ·G(X))

(13)
[
Lq,V

]
−

G = εmnqXm (pn(VG) − V pn(G))

The result of pn(G(X)) is not known to the system at this point. Define then an explicit representation for pn as the
differential operator in configuration space pn = −i}∂n

> p B u → −i } · d [op(procname)](u)

(14)p B u 7→ −i}∂op(procname)(u)

where in the above op(procname) represents the indices with which the differential operator pn is called.With this
definition, the right-hand side of (13) automatically evaluates to
> (13)
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(15)
[
Lq,V

]
−

G = −iεmnq}Xm∂n(V) G

So that using (8) ≡ ∂n(V) = −V3Xn and multiplying by G(X)−1,
> SubstituteTensor((8), (15)) ·G(X)−1

(16)
[
Lq,V

]
−

= iεmnq}XmV3Xn

from where we get the first commutation rule:
> Simplify((16))

(17)
[
Lq,V

]
−

= 0

Likewise, from the inert = active form of [pq,V(X)]−
> (%Commutator = Commutator)(p[q],V(X))

(18)
[
pq,V

]
−

=
[
pq,V

]
−

by applying this equation to the test function G(X) we get
> (lhs = ApplyProductsOfDifferentialOperators@rhs)((18) ·G(X))

(19)
[
pq,V

]
−

G = −i}∂q(V) G

> SubstituteTensor((8), (19)) ·G(X)−1

(20)
[
pq,V

]
−

= i}V3Xq

In the same way, for [pq,V3]
−

we get
> (%Commutator = Commutator)(p[q],V(X)3)

(21)
[
pq,V

3
]
−

=
[
pq,V

3
]
−

> (lhs = ApplyProductsOfDifferentialOperators@rhs)((21) ·G(X))

(22)
[
pq,V

3
]
−

G = −i}
(
∂q(V) V2 + V∂q(V) V + V2∂q(V)

)
G

> SubstituteTensor((8), (22)) ·G(X)−1

(23)
[
pq,V

3
]
−

= i}
(
V3XqV

2 + V4XqV + V5Xq

)
> (lhs = Simplify@rhs)((23))

(24)
[
pq,V

3
]
−

= 3 i}V5Xq

Adding now these new commutation rules to the setup of the problem, they will be taken into account in subsequent
uses of Simplify
> (17), (20), (24)

(25)
[
Lq,V

]
−

= 0,
[
pq,V

]
−

= i}V3Xq,
[
pq,V

3
]
−

= 3 i}V5Xq

> Setup((25))

(26)

[
algebrarules =

{[
L j, Lk

]
−

= i}ε jknLn,
[
Lq,V

]
−

= 0,
[
p j, Lk

]
−

= i}ε jkn pn,
[
pk, pl

]
− = 0,

[
pq,V

]
−

= i}V3Xq,[
pq,V

3
]
−

= 3i}V5Xq,
[
X j, Lk

]
−

= i}ε jknXn,
[
Xk, pl

]
− = i}gkl, [Xk,V]− = 0

}]
Undo differentialoperators to work using two different approaches, with and without them.

7



> Setup(differentialoperators = none)

(27)
[
differentialoperators = none

]
Commutation rules between the Hamiltonian and each of the angular mo-
mentum and Runge-Lenz tensors
Departing from the Hamiltonian (5) ≡ H =

pl
2

2me
− κV and the definition of angular momentum (10) ≡ Lq = εmnqXm pn,

by taking their commutator we get
>Commutator((5), (10))

(28)
[
H, Lq

]
−

=
−iεmnq}

(
−XmV3Xnκme + pl pnglm

)
me

> Simplify((28))

(29)
[
H, Lq

]
−

= 0

2.3. The commutator between the Hamiltonian and Runge-Lenz tensor: algebraic approach
Start from the definition of the quantum Runge-Lenz tensor

> Z[k] =
1

2 me
· LeviCivita[a, b, k] · (L[a] · p[b] − p[a] · L[b]) + κ · V(X) · X[k]

(30)Zk =
εabk (La pb − paLb)

2me
+ κVXk

This tensor is Hermitian
> (30) − Dagger((30))

(31)Zk − Zk
† =

2κVXkme − 2κXkVme + εabk (La pb + Lb pa − paLb − pbLa)
2me

> Simplify((31))

(32)Zk − Zk
† = 0

Since the system knows about the commutation rule between linear and angular momentum,
> (%Commutator = Commutator)(L[a], p[b])

(33)
[
La, pb

]
− = i}εabn pn

the expression (30) for Zk can be simplified
> Simplify((30))

(34)Zk =
i}pk

me
+ κVXk −

εabk paLb

me

and the angular momentum removed from the the right-hand side using (10) ≡ Lq = εmnqXm pn, so that Zk gets
expressed entirely in terms of pk, X and V
> Simplify(SubstituteTensor((10), (34)))

(35)Zk =
−i}pk + κVXkme − Xk pm

2 + Xm pk pm

me

Taking the commutator between (5) ≡ H =
pl

2

2me
− κV , and this expression for Zk we have the starting point towards

showing that [H,Zk]− = 0
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>
2 me

κ}
Simplify(Commutator((5), (35)))

(36)
2me [H,Zk]−

κ}
= }V3Xk + }V5Xa

2Xk + 2 iXa
2 pkV

3 + 2 iVXaXk paV
2 − 2 iXaXk paV

3 − 2 ipkV

In order to use the identities
> (9),V(X)2 · (9)

(37)V3Xl
2 = V ,V5Xl

2 = V3

we sort the products using the ordering shown in the left-hand sides
> SortProducts((36), [V(X)5,V(X)3, X[a]2])

(38)
2me [H,Zk]−

κ}
= }V3Xk − 5}V5Xa

2Xk + 2 iV3Xa
2 pk + 2 iVXaXk paV

2 − 2 iXaXk paV
3 − 2 ipkV

> SubstituteTensor((37), (38))

(39)
2me [H,Zk]−

κ}
= −4}V3Xk + 2 iV pk + 2 iVXaXk paV

2 − 2 iXaXk paV
3 − 2 ipkV

> Simplify((39))

(40)
2me [H,Zk]−

κ}
= −2}

(
V3Xk − V5Xa

2Xk

)
>
κ}

2me
SubstituteTensor((37), (40))

(41)[H,Zk]− = 0

and this is the result we wanted to prove.

2.4. The commutator between the Hamiltonian and Runge-Lenz tensor: alternative derivation using differential
operators

As done in the previous section when deriving the commutators between linear and angular momentum, on the one
hand, and the central potential V on the other hand, the idea here is again to use differential operators taking advantage
of the ability to compute with them as operands of a product, that get applied only when it appears convenient for us
> Setup(differentialoperators = {[p[k], [x, y, z]]})

(42)
[
differentialoperators =

{[
pk, [X]

]}]
So take the starting point (36)
> (36)

(43)
2me [H,Zk]−

κ}
= }V3Xk + }V5Xa

2Xk + 2 iXa
2 pkV

3 + 2 iVXaXk paV
2 − 2 iXaXk paV

3 − 2 ipkV

and to show that the right-hand side is equal to 0, multiply by a generic function G(X) followed by transforming the
products involving pn into the application of this differential operator pn = −i}∂n

> (36) ·G(X)

(44)
2me [H,Zk]−G

κ}
=

(
}V3Xk + }V5Xa

2Xk + 2 iXa
2 pkV

3 + 2 iVXaXk paV
2 − 2 iXaXk paV

3 − 2 ipkV
)
G

>ApplyProductsOfDifferentialOperators((44))
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(45)

2me [H,Zk]−G
κ}

= −2}XaXk

((
∂a(V) V2 + V∂a(V) V + V2∂a(V)

)
G + V3∂a(G)

)
− 2}V∂k(G)

− 2}∂k(V) G + 2}Xa
2
((
∂k(V) V2 + V∂k(V) V + V2∂k(V)

)
G + V3∂k(G)

)
+ 2}VXaXk

(
(∂a(V) V + V∂a(V)) G + V2∂a(G)

)
+ }V3XkG + }V5Xa

2XkG

>
1
}

Simplify((45))

(46)
2me [H,Zk]−G

}2κ
= 2VXa

2∂k(V) GV + 2V2Xa
2∂k(V) G + GV5Xa

2Xk + 2V3Xa
2∂k(G)

− 2V∂k(G) − 2∂k(V) G + GV3Xk + 2Xa
2∂k(V) GV2 − 2XaXk∂a(V) GV2

In addition, consider the application of pl to the test function G(X)
> p[l] G(X)

(47)plG

> (47) = ApplyProductsOfDifferentialOperators((47))

(48)plG = −i}∂l(G)

> isolate((48), ∂l(G(X)))

(49)∂l(G) =
iplG
}

Using this identity (49) together with the derived identity (8), followed by multiplying by G(X)−1 to remove the test
function from the equation, we get
> Simplify(SubstituteTensor((8), (49), (46)) ·G(X)−1)

(50)
2me [H,Zk]−

}2κ
= −3V5Xa

2Xk +
2 iV3Xa

2 pk

}
−

2 iV pk

}
+ 3V3Xk

Applying (37) ≡ V3Xl
2 = V ,V5Xl

2 = V3

>
}2κ

2me
SubstituteTensor((37), (50))

(51)[H,Zk]− = 0

Add to the setup these derived commutation rules between the Hamiltonian, angular momentum and Runge-Lenz
tensors
> (29), (51)

(52)
[
H, Lq

]
−

= 0, [H,Zk]− = 0

> Setup((52))[
algebrarules =

{[
H, Lq

]
−

= 0, [H,Zk]− = 0,
[
L j, Lk

]
−

= i}ε jknLn,
[
Lq,V

]
−

= 0,
[
p j, Lk

]
−

= i}ε jkn pn,
[
pk, pl

]
− = 0,[

pq,V
]
−

= i}V3Xq,
[
pq,V

3
]
−

= 3i}V5Xq,
[
X j, Lk

]
−

= i}ε jknXn,
[
Xk, pl

]
− = i}gkl, [Xk,V]− = 0

}]
(53)

Reset differentialoperators in order to proceed to the next section working without them
> Setup(differentialoperators = none)

(54)
[
differentialoperators = none

]
10



3. Commutation rules between the angular momentum and the Runge-Lenz tensors

Departing from the definition of these tensors, introduced in the previous sections
> (10); (35)

Lq = εmnqXm pn

(55)Zk =
−i}pk + κVXkme − Xk pm

2 + Xm pk pm

me

the left-hand side of the identity to be proved is the left-hand side of the commutator of these two equations
>me Commutator((10), (35))

(56)
me

[
Lq,Zk

]
−

= εmnq}
(
iXm

(
−gknV + V3XnXk

)
κme + }gkm pn − 2 iXk pa pngam − iXm pk pagan + iXm pa

2gkn

+ iXa (gam pk + gkm pa) pn

)
> Simplify((56))

(57)me

[
Lq,Zk

]
−

= −}
(
iVXaκme + }pa − iXa pm

2 + iXm pa pm
)
εakq

By eye, the right-hand side of (57) is similar to the right-hand side of the definition of Zk in (55), so introduce this
definition directly into the right-hand side of (57). For that purpose, isolate Xk pm

2

> isolate((55), X[k] · p[m]2)

(58)Xk pm
2 = −Zkme − i}pk + κVXkme + Xm pk pm

> SubstituteTensor((58), (57))

(59)me

[
Lq,Zk

]
−

= i} (−Zame + Xb pa pb − Xm pa pm) εakq

Simplifying, we get the desired result, and we substitute the active by the inert form of Commutator for later use of
this formula without having the Commutator automatically executed.
> Simplify((59))

(60)me

[
Lq,Zk

]
−

= −i}Zameεakq

>
1

me
subs(Commutator = %Commutator, (60))

(61)
[
Lq,Zk

]
−

= −i}εakqZa

Set now this algebra rule to be available to the system when convenient
> Setup((61))[
algebrarules =

{[
H, Lq

]
−

= 0, [H,Zk]− = 0,
[
L j, Lk

]
−

= i}ε jknLn,
[
Lq,Zk

]
−

=−i}εakqZa,
[
Lq,V

]
−

= 0,
[
p j, Lk

]
−

= i}ε jkn pn,[
pk, pl

]
− = 0,

[
pq,V

]
−

= i}V3Xq,
[
pq,V

3
]
−

= 3i}V5Xq,
[
X j, Lk

]
−

= i}ε jknXn,
[
Xk, pl

]
− = i}gkl, [Xk,V]− = 0

}]
(62)
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3.1. The scalar product between the quantized angular momentum and the Runge-Lenz tensors
Classically, the orbital momentum is perpendicular to the plane of motion, while the Runge-Lenz vector lies in that

plane, so that
→

LClassical·
→

ZClassical = 0. In quantum mechanics, from (61) ≡ [Lq,Zk]
−
6= 0 but

→

L·
→

Z =
→

Z ·
→

L = 0 still
holds. To verify that, take the definition (30) of the quantum Runge-Lenz vector and multiply it by Lk

> (30) . L[k]

(63)LkZk =
εabk (La pbLk − paLbLk)

2me
+ κVXkLk

> Simplify((63))

(64)LkZk = κLaVXa

Using (10) ≡ Lq = εmnqXm pn,
> lhs((64)) = SubstituteTensor((10), rhs((64)))

(65)LkZk = κεamnXm pnVXa

> Simplify((65))

(66)LkZk = 0

and due to (61) ≡ [Lq,Zk]− = −}iZaεakq, reversing the order in the product,
> SortProducts((66), [Z[k], L[k]])

(67)ZkLk = 0

4. Commutation rules between the components of the Runge-Lenz tensor

Here again the starting point is (35), the definition of the quantum Runge-Lenz tensor
> SubstituteTensorIndices(k = q, (35))

(68)Zq =
−i}pq + κVXqme + Xm pq pm − Xq pm

2

me

The commutator [Zk,Zq]−is computed via
>m2

e (lhs = Expand@rhs)(Commutator((35), (68)))

m2
e

[
Zk,Zq

]
−

= }
(
−

(
gak pa pq−gmq pk pm−gkq

(
pa

2− pm
2)) }+ igmqXm pa

2 pk + igamXa pk pm pq + igkqXm pa
2 pm + igmqXa pa pk pm

− igakXm pa pm pq − igamXm pa pk pq − 2 igamXq pa pk pm − 2 igmqXk pa
2 pm + 2 igakXq pm

2 pa − igakXa pm
2 pq

− igkqXa pm
2 pa + 2 igamXk pa pm pq + iV3XkXmXq pmκme + 3}V5Xa

2XkXqκme − 3}V5Xm
2XkXqκme

− 2 iXk pmV3XmXqκme − iXa pqV
3XaXkκme − iV3XaXq paXkκme + 2 iXq paV

3XaXkκme

+ iXm pkV
3XmXqκme + 2 iVXk pmκmegmq − iXm pkVκmegmq − iVXm pmκmegkq − 2 iVXq paκmegak

+ iVXa pqκmegak + iVXa paκmegkq

)
(69)

>
i
}

Simplify((69))

(70)
im2

e

[
Zk,Zq

]
−

}
= −Xa

2Xq pkV
3κme + Xa

2Xk pqV
3κme − 3Xk pqVκme + 3Xq pkVκme

− Xm pa
2 pmgkq + Xa pm

2 pagkq + Xk pa
2 pq − Xq pa

2 pk

In order to use (9) ≡V3Xl
2 = V , sort the products in (70) using the ordering V3Xa

2
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>Normal(SortProducts((70), [V(X)3, X[a]2]))

(71)
im2

e

[
Zk,Zq

]
−

}
= V3Xa

2Xk pqκme − V3Xa
2Xq pkκme − 3Xk pqVκme + 3Xq pkVκme

− Xm pa
2 pmgkq + Xa pm

2 pagkq + Xk pa
2 pq − Xq pa

2 pk

> SubstituteTensor((9), (71))

im2
e

[
Zk,Zq

]
−

}
= VXk pqκme − κmeVXq pk − 3Xk pqVκme + 3Xq pkVκme − Xm pa

2 pmgkq + Xa pm
2 pagkq + Xk pa

2 pq − Xq pa
2 pk

(72)

Regarding the quadratic term in the momentum, from the expression for the Hamiltonian (5) ≡ H =
pl

2

2me
− κV ,

> isolate((5), p[l]2)

(73)pl
2 = 2 (κV + H) me

In order to use this equation (73) to substitute pl
2 into the expression (72) for [Zk,Zq]− and not receive noncommutative

products with H in between the position Xk and momentum pq operators (that would require further using, afterwards,
the commutator between Hand pq), sort first the products in (72) positioning all square of momentums p2 to the right
of occurrences of p
> SortProducts((72), [p[a], p[k], p[m], p[q], p[a]2, p[m]2])

im2
e

[
Zk,Zq

]
−

}
= VXk pqκme − κmeVXq pk − 3Xk pqVκme + 3Xq pkVκme − Xm pm pa

2gkq + Xa pa pm
2gkq + Xk pq pa

2 − Xq pk pa
2

(74)

> SubstituteTensor((73), (74))

(75)
im2

e

[
Zk,Zq

]
−

}
= VXk pqκme − κmeVXq pk − 3Xk pqVκme + 3Xq pkVκme − Xm pm2 (κV + H) megkq

+ Xa pa2 (κV + H) megkq + Xk pq2 (κV + H) me − Xq pk2 (κV + H) me

>
}

i m2
e

Simplify((75))

(76)
[
Zk,Zq

]
−

=
2 i}

(
−Xk pqH + Xq pkH

)
me

Finally, from the definition of the angular momentum (10) ≡ Lq = εmnqXm pn, multiplying by εabc we can construct an
expression for Xa pbH − Xb paH in terms of Lq

> LeviCivita[a, b, q] · (10)
(77)εabqLq = εabqεmnqXm pn

> Simplify((rhs = lhs)((77)))
(78)Xa pb − Xb pa = εabqLq

>Expand((78) · H)

(79)Xa pbH − Xb paH = εabqHLq

> SubstituteTensor((79), (76))

(80)
[
Zk,Zq

]
−

=
−2 i}εckqHLc

me

which is the identity we wanted to prove.
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4.1. Alternative derivation using differential operators
Set again the differentialoperator representation for the momentum operator pk

> Setup(differentialoperators = {[p[k], [x, y, z]]})

(81)
[
differentialoperators =

{[
pk, [X]

]}]
and apply the expression (69) for [Zk,Zq]−to the test function G(X)
>ApplyProductsOfDifferentialOperators((69) ·G(X))

m2
e

[
Zk,Zq

]
−

G = }
(
−κme}Xa

((
∂q(V) V2 + V∂q(V) V + V2∂q(V)

)
XaXkG + gaqV3XkG + gkqV3XaG + V3XaXk∂q(G)

)
− κme}V3XaXq (gakG + Xk∂a(G))

+ 2κme}Xq

((
∂a(V) V2 + V∂a(V) V + V2∂a(V)

)
XaXkG + 4V3XkG + V3XaXk∂a(G)

)
+ κme}Xm

((
∂k(V) V2 + V∂k(V) V + V2∂k(V)

)
XmXqG + gkmV3XqG + gkqV3XmG + V3XmXq∂k(G)

)
+ κme}V3XkXmXq∂m(G)

− 2κme}Xk

((
∂m(V) V2 + V∂m(V) V + V2∂m(V)

)
XmXqG + 4V3XqG + V3XmXq∂m(G)

)
− gkq}3Xm∂m(�(G)) − }3gmqXa∂a(∂k(∂m(G))) + gkq}3Xa∂a(�(G)) − 2}3gamXk∂a

(
∂m

(
∂q(G)

))
+ 2}3gmqXk∂m(�(G)) + }3gakXa∂q(�(G)) + }3gakXm∂a

(
∂m

(
∂q(G)

))
+ }3gamXm∂a

(
∂k

(
∂q(G)

))
− 2}3gakXq∂a(�(G)) − }3gamXa∂k

(
∂m

(
∂q(G)

))
− gmq}3∂k(∂m(G)) + gak}3∂a

(
∂q(G)

)
− }3gmqXm∂k(�(G)) + 2}3gamXq∂a(∂k(∂m(G))) + −3}V5Xm

2XkXqκmeG + 3}V5Xa
2XkXqκmeG

+ κmegak}VXa∂q(G) + κmegkq}VXa∂a(G) + 2κmegmq}VXk∂m(G) − 2κmegak}VXq∂a(G)

− κmegmq}Xm (∂k(V) G + V∂k(G)) − κmegkq}VXm∂m(G)
)

(82)

where in the above � ≡ ∂ j∂
j is the d’Alembert operator.

>
1

3 }2 Simplify((82))

(83)

m2
e

[
Zk,Zq

]
−

G

3}2 =
κmeVXd∂k(V) GVXqXd

3
−
κmeVXd∂q(V) GVXkXd

3
−

2κmeVXk∂d(V) GVXqXd

3

+
2κmeVXq∂d(V) GVXkXd

3
+
κmeV2Xd∂k(V) GXqXd

3
−
κmeV2Xd∂q(V) GXkXd

3

−
2κmeV2Xk∂d(V) GXqXd

3
+

2κmeV2Xq∂d(V) GXkXd

3
+
κmeXd∂k(V) GV2XqXd

3

−
κmeXd∂q(V) GV2XkXd

3
−

2κmeXk∂d(V) GV2XqXd

3
+

2κmeXq∂d(V) GV2XkXd

3

−
κmeV3Xd

2Xk∂q(G)
3

+
κmeV3Xd

2Xq∂k(G)
3

−
κmeGV3XkXq

3
+
}2Xk∂q(�(G))

3

−
}2Xq∂k(�(G))

3
+ me

(
VXk∂q(G) − VXq∂k(G) −

Xq∂k(V) G
3

)
κ

Recalling (8) ≡ ∂n(V) = −V3Xn and (49) ≡ ∂l(G) = i
} plG

> 3 } Simplify(SubstituteTensor((8), (49), (83)))

m2
e

[
Zk,Zq

]
−

G

}
=−iκmeV3Xd

2Xk pqG+ iκmeV3Xd
2Xq pkG+}3Xk∂q(�(G))−}3Xq∂k(�(G))+3 imeκ

(
VXk pqG−VXq pkG

)
(84)

Evaluating the term ∂q(�(G(X)))
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> p[a] p[l]2 ·G(X)

(85)pl
2 paG

> (85) = ApplyProductsOfDifferentialOperators((85))

(86)pl
2 paG = i}3∂a(�(G))

> isolate((86), ∂a(�(G(X))))

(87)∂a(�(G)) =
−ipl

2 paG
}3

Inserting this result into the expression (84) for [Zk,Zq]− and removing the test function multiplying by G(X)−1

> Simplify(SubstituteTensor((87), (84)) ·G(X)−1)

(88)
m2

e

[
Zk,Zq

]
−

}
= iκmeV3Xd

2Xq pk + i
(
3VXk pqκme − 3κmeVXq pk − κmeV3Xd

2Xk pq − Xk pd
2 pq + Xq pd

2 pk

)
This expression can be factored
>Factor((88))

(89)
m2

e

[
Zk,Zq

]
−

}
= −i

(
−3Vκme + pd

2 + κmeV3Xd
2
) (
−Xq pk + Xk pq

)
Using the identity (9) ≡ V3Xl

2 = V for the potential

>
}

m2
e

SubstituteTensor((9), (89))

(90)
[
Zk,Zq

]
−

=
−i}

(
−2Vκme + pd

2) (−Xq pk + Xk pq

)
m2

e

Next using
> (73), (78)

(91)pl
2 = 2 (κV + H) me, Xa pb − Xb pa = εabqLq

> SubstituteTensor((91), (90))

(92)
[
Zk,Zq

]
−

=
−2 i}εckqHLc

me

which is the expected result. Set now differential operators to none.
> Setup(differentialoperators = none)

(93)
[
differentialoperators = none

]
5. The square of the norm of the Runge-Lenz vector

Taking the square of the definition of Zk and simplifying
> (30)2

(94)Zk
2 =

(
εabk (La pb − paLb)

2me
+ κVXk

) (
εcdk (Lc pd − pcLd)

2me
+ κVXk

)
> 2m2

e Simplify((94))
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(95)2m2
eZk

2 = 2κ }2V3Xa
2me − 6κ }2Vme + 2κ2V2Xa

2m2
e − 4εabcXa pbLcVκme − pa pbLbLa + 2pa

2Lb
2 − paLbLa pb

Using the algebraic properties of the potential
> (9),V(X)−1 · (9)

(96)V3Xl
2 = V ,V2Xl

2 = 1

the expression (95) for Zk
2 becomes

> SubstituteTensor((96), (95))

(97)2m2
eZk

2 = −4κ }2Vme + 2κ2m2
e − 4εabcXa pbLcVκme − pa pbLbLa + 2pa

2Lb
2 − paLbLa pb

The term having εabc can be simplified using the expression of the momentum operator
> (rhs = lhs)((10))

(98)εmnqXm pn = Lq

> (98) · L[q] · V(X)

(99)εmnqXm pnLqV = Lq
2V

> SubstituteTensor((99), (97))

(100)2m2
eZk

2 = −4κ }2Vme + 2κ2m2
e − 4Lc

2Vκme − pa pbLbLa + 2pa
2Lb

2 − paLbLa pb

Reordering (100) to have the two terms with four operators sorted as pa pbLaLb

> Simplify(SortProducts((100), [p[a], p[b], L[a], L[b]]))

(101)2m2
eZk

2 = −4κ }2Vme + 2κ2m2
e − 4La

2Vκme − 2pa pbLaLb + 2pa
2Lb

2 + 2}2 pa
2

Considering now the resulting single term pa pbLaLb, it can be shown it is equal to zero using the definition (10)
≡ Lq = εmnqXm pn

> p[a] p[b] L[a] L[b]

(102)pa pbLaLb

> (102) = SubstituteTensor((10), (102))
(103)pa pbLaLb = εamnεbe f pa pbXm pnXe p f

> Simplify((103))

(104)pa pbLaLb = 0

Taking this result into account, we have, for Zk
2

> subs((104), (101))

(105)2m2
eZk

2 = −4κ }2Vme + 2κ2m2
e − 4La

2Vκme + 2pa
2Lb

2 + 2}2 pa
2

Substituting now (73) ≡ pl
2 = 2(κV + H)me

>
1

2m2
e

SubstituteTensor((73), (105))

(106)Zk
2 =

2}2Hme + κ2m2
e − 2La

2Vκme + 2 (κV + H) meLb
2

m2
e

Equalizing the repeated indices, the right-hand side can be factored
> (lhs = Factor@rhs)(EqualizeRepeatedIndices((106)) − κ2) + κ2

(107)Zk
2 =

2H
(
}2 + La

2
)

me
+ κ2

which is the result we wanted to demonstrate.
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6. The atomic hydrogen spectrum

We now have all the algebra to reconstruct the hydrogen spectrum. Following the literature, this approach is limited
to the bound states for which the energy is negative. Assuming an eigenstate of H with negative eigenvalue E, we
replace the Hamiltonian H by E, and look for the possible values of E. Another way to state the same thing is that the

analysis is restricted to the subspace of energy E. The operator Mn =

√
−

me

2E
Zn, is introduced as mentioned in Sec.1.

The operators J and K, to be used soon after, are added to the formulation of the problem
> Setup(hermitianoperators = {M, J,K})

(108)
[
hermitianoperators = {H, J,K, L,M,V , p, x, y, z}

]
>Define(M[n], J[n],K[n], quiet)

(109){γa, Jn,Kn, Lk,Mn, σa,Zk, ∂a, gab, pk, εabc, Xa}

The domain for me and E is set via
>Assume(me > 0, E < 0)

(110){E :: (−∞, 0)} , {me :: (0,∞)}

from where

> M[n] =

√
−

me

2E
Z[n]

(111)Mn =

√
−

2me

E
Zn

2

> simplify(isolate((111),Z[n]))

(112)Zn =
Mn

√
2
√
−E

√
me

Recalling the commutation rules (92) ≡ [Zk,Zq]− = −
2 i}εakqHLa

me
and (112) above with E replacing H

> SubstituteTensor(H = E, (112), (92))

(113)

 Mk

√
2
√
−E

√
me

,
Mq

√
2
√
−E

√
me


−

=
−2 i}εckqELc

me

> Simplify((113))

(114)−
2E

[
Mk,Mq

]
−

me
=
−2 i}εckqELc

me

Isolating the commutator, the expression (92) for [Zk,Zq]−appears rewritten in terms of the Mk as
> isolate((114),Commutator(M[k],M[q]))

(115)
[
Mk,Mq

]
−

= i}εckqLc

Likewise, inserting (112) ≡ Zn = Mn

√
2
√
−E√

me
into the expression (61) ≡ [Lq,Zk]− = −}iεakqZa, we get it rewritten in

terms of Lq,Mk

> Simplify(SubstituteTensor((112), (61)))
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(116)

√
2
√
−E

[
Lq,Mk

]
−

√
me

=
−i}εakqMa

√
2
√
−E

√
me

> isolate((116),Commutator(L[q],M[k]))

(117)
[
Lq,Mk

]
−

= −i}εakqMa

Add these two newly derived commutators to the setup
> Setup((115), (117))[

algebrarules =
{[

H, Lq

]
−

= 0, [H,Zk]− = 0,
[
L j, Lk

]
−

= i}ε jknLn,
[
Lq,Mk

]
−

= −i}εakqMa,
[
Lq,Zk

]
−

= −i}εakqZa,[
Lq,V

]
−

= 0,
[
Mk,Mq

]
−

= i}εckqLc,
[
p j, Lk

]
−

= i}ε jkn pn,
[
pk, pl

]
− = 0,

[
pq,V

]
−

= i}V3Xq,
[
pq,V

3
]
−

= 3i}V5Xq,[
X j, Lk

]
−

= i}ε jknXn,
[
Xk, pl

]
− = i}gkl, [Xk,V]− = 0

}]
(118)

These commutators (117), (115), together with the departing commutator
> (%Commutator = Commutator)(L[m], L[n])

(119)[Lm, Ln]− = i}εamnLa

constitute a closed form, the algebra of the SO(4) group, that is, the rotation group in dimension 4.

We now define the two operators J and K as follows

> J[m] =
1
2
· (L[m] + M[m])

(120)Jm =
Lm

2
+

Mm

2

> K[m] =
1
2
· (L[m] − M[m])

(121)Km =
Lm

2
−

Mm

2

Because M and L both commute with H (since M is proportional to Z up-to a commutative factor), it is straightforward
to see that J and K also commute with H. They are therefore constants of the motion. Additionally, because at this
point (see (118)) the system already knows about the commutators (115) ≡ [Mk,Mq]− and (117) ≡ [Lq,Mk]−, the
commutator between the components of Jm results in
>Commutator((120), SubstituteTensorIndices(m = n, (120)))

(122)[Jm, Jn]− =
i
4

((La + 2Ma) εamn + εcmnLc) }

> Simplify((122))

(123)[Jm, Jn]− =
i
2
εamn} (La + Ma)

> SubstituteTensor((rhs = lhs)((120)), (123))

(124)[Jm, Jn]− = iεamn}Ja

In a similar manner
>Commutator((121), SubstituteTensorIndices(m = n, (121)))

(125)[Km,Kn]− =
i
4

((La − 2Ma) εamn + εcmnLc) }
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> Simplify((125))

(126)[Km,Kn]− =
i
2
εamn} (La − Ma)

> SubstituteTensor((rhs = lhs)((121)), (126))

(127)[Km,Kn]− = iεamn}Ka

Also
>Commutator((120), subs(m = n, (121)))

(128)[Jm,Kn]− =
i
4
} (εamnLa − εcmnLc)

> Simplify((128))

(129)[Jm,Kn]− = 0

Both J and K have the symmetry of a rotation operator in two independent 3 dimension spaces. H then has the
symmetry of the group SO(3) ⊗ SO(3). Furthermore, one knows that the possible eigenvalues for the rotation operators
J and K are j( j + 1)}2 and k(k + 1)}2, with j, k ∈ {0, 1

2 , 1,
3
2 , 2, ...}. Computing now J2

>Expand((120)2)

(130)Jm
2 =

Lm
2

4
+

LmMm

2
+

Mm
2

4

Recalling (66) ≡ LkZk = 0, and considering that M is proportional to Z, we have that LmMm = 0
> subs(L[m] M[m] = 0, (130))

(131)Jm
2 =

Lm
2

4
+

Mm
2

4

Likewise, for K2, from (121) ≡ Km =
Lm
2 −

Mm
2

>Expand((121)2)

(132)Km
2 =

Lm
2

4
−

Lm Mm

2
+

Mm
2

4

> subs(L[m] M[m] = 0, (132))

(133)Km
2 =

Lm
2

4
+

Mm
2

4

So that
> (131) − (133)

(134)Jm
2 − Km

2 = 0

That is, Jm
2 = Km

2, which means they share the same eigenvalues, say j( j + 1)}2 for a given eigenstate of H with

the considered eigenvalue E. Next, inserting (112) ≡ Zn = Mn

√
2
√
−E√

me
into (107) ≡ Zk

2 =
2H(}2+La

2)
me

+ κ2 we get an

expression for Mk
2

> SubstituteTensor(H = E, (112), (107))

(135)−
2EMk

2

me
=

2E
(
}2 + La

2
)

me
+ κ2

> −
me

2 E
(135)
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(136)Mk
2 = −

2}2E + 2ELa
2 + κ2me

2E

Substituting this result into (131) ≡ Jm
2 =

Lm
2

4 +
Mm

2

4 and simplifying we get
> Simplify(SubstituteTensor((136), (131)))

(137)Jm
2 = −

}2

4
−
κ2me

8E

Taking the average value of Jm
2 over an eigenvector, Jm

2 can be replaced by its eigenvalue j( j + 1)}2

> subs(J[m]2 = j ( j + 1) }2, (137))

(138)j ( j + 1) }2 = −
}2

4
−
κ2me

8E

from where the possible values of the energy are
> isolate((138), E)

(139)E = −
κ2me

2}2 (2 j + 1)2

Assuming n = 2 j + 1, a positive integer and j ∈ {0, 1
2 , 1,

3
2 , 2, ...}, the spectrum for a spinless hydrogen atom is thus

> subs({2 j + 1 = n, E = E(n)}, (139))

(140)E(n) = −
κ2me

2}2n2

7. Conclusions

In this presentation, we derived, step-by-step, the SO(4) symmetry of the hydrogen atom and its spectrum using the
computer algebra Maple system. The derivation was performed without departing from the results, entering only
the main definition formulas in eqs. (1), (2) and (5), followed by using a few simplification commands - mainly
Simplify, SortProducts and SubstituteTensor - and a handful of Maple basic commands, subs, lhs, rhs and isolate. The
computational path that was used to get the results of sections 2 to 8 is not unique. Instead of searching for the shortest
path, we prioritized clarity and illustration of the techniques that can be used to work on problems like this one.

This problem is mainly about simplifying expressions using two different techniques. First, expressions with non-
commutative operands in products need reduction with respect to the commutator algebra rules that have been set.
Second, products of tensorial operators require simplification using the sum rule for repeated indices and the sym-
metries of tensorial subexpressions. Those techniques, which are part of the Maple Physics simplifier, together with
the SortProducts and SubstituteTensor commands for sorting the operands in products to apply tensorial identities,
sufficed. The derivations were performed in a reasonably small number of steps.

Two different computational strategies - with and without differential operators - were used in sections 3 and 5,
showing a way to verify results, a relevant issue in general when performing complicated algebraic manipulations.
The Maple Physics’ ability to handle differential operators as noncommutative operands in products (as frequently
done in paper and pencil computations) facilitates readability and ease in entering the computations. The complexity
of those operations is then handled by one Physics:-Library command, ApplyProductsOfDifferentialOperators (see
eqs. (45) and (82)).

It is interesting to note: a) the ability of the system to factor expressions involving products of noncommutative
operands (see eqs. (89) and (107)) and b) the adaptation of the algorithms for simplifying tensorial expressions [6] to
the noncommutativity domain, used throughout this presentation.
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Also worth mentioning, the use of equation labels can reduce the whole computation to entering the main definitions,
followed by applying a few commands to equation labels. That approach helps to reduce the chance of typographical
errors to a very strict minimum. Likewise, the fact that commands and equations distribute over each other allows
cumbersome manipulations to be performed in simple ways, as done, for instance, in eqs. (8), (9) and (13). Addition-
ally, it was helpful to have the display of each intermediate result automatically expressed using standard mathematical
physics notation.

Finally, if this work focused on a well-known case, the employed tools can be used to tackle a wide range of hot topics
research in the quantum mechanics field, and beyond. To give but a few examples, recently (work in progress - see
related Mapleprimes post [7]), we reproduced the calculus performed in [8]. This paper evaluates the constraints of
magnetostatic traps for neutral cold atoms and Bose Einstein condensates. Besides, the overall possibilities includes
the general framework of periodically driven systems, notably requiring Taylor development to approximate commu-
tators [9]. The calculus could be extended to Lie superalgebra in the field of Anderson localization for disordered
media, see [10] and supplemental material. Note that the present calculus is performed using an Euclidean metric.
This feature could however easily be extended to any arbitrary metric, opening-up a wide range of possibilities to
what can now be done with a computer, replacing pencil and paper.
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Appendix

In this presentation, the input lines are preceded by a prompt > and the commands used are of three kinds: some basic
Maple manipulation commands, the main Physics package commands to set the context of a formulation and simplify
expressions, and two commands of the Physics:-Library to perform specialized operations in expressions.

The basic Maple commands used

• interface is used once at the beginning to set the letter used to represent the imaginary unit (default is I but we
used i).

• isolate is used in several places to isolate a variable in an expression, for example isolating x in ax + b = 0
results in x = − b

a .

• lhs and rhs respectively get the left-hand side A and right-hand side B of an equation A = B.

• subs substitutes the left-hand side of an equation by the right-hand side in a given target, for example subs(A =

B, A + C) results in B + C.

• @ is used to compose commands. So (A@B)(x) = (A ◦ B)(x) is the same as A(B(x)). This command is useful to
express an abstract combo of manipulations, for example as in (107) ≡ (lhs = Factor ◦ rhs).

The Physics commands used

• Setup is used to set algebra rules as well as the dimension of space, type of metric, and conventions such as the
kind of letter used to represent indices.
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• Commutator computes the commutator between two objects using the algebra rules set using Setup. If no rules
are known to the system, it outputs a representation for the commutator whose basic mathematical properties
(expansion, differentiation and simplification) are known by the system.

• CompactDisplay is used to avoid redundant display of the functionality of a function.

• The input d [n] represents the ∂n tensorial differential operator.

• Define is used to define tensors, with or without specifying its components.

• Dagger computes the Hermitian transpose of an expression.

• Normal, Expand, Factor respectively normalizes, expands and factorizes expressions that involve products of
noncommutative operands.

• Simplify performs simplification of tensorial expressions involving products of noncommutative factors taking
into account Einstein’s sum rule for repeated indices, symmetries of the indices of tensorial subexpressions and
custom commutator algebra rules.

• SortProducts uses the commutation rules set using Setup to sort the non-commutative operands of a product in
an indicated ordering.

• SubstituteTensor substitutes the left-hand side of a tensorial equation, possibly a sum or a product of tensors,
by its right-hand side, in a target tensorial expression. The substitution is performed taking the indices as
parameters and automatically resolving potential collisions of free or repeated indices.

• SubstituteTensorIndices substitutes tensor indices (represented by letters of some kind) by other tensor indices
in a tensorial expression, taking care of not substituting occurrences of those same letters when they appear in
the expression not as tensor indices.

The Physics:-Library commands used

• Library:-ApplyProductsOfDifferentialOperators applies the differential operators found in a product to the
product operands that appear to its right. For example, applying this command to pV(X)me results in me·p(V(X))

• Library:-EqualizeRepeatedIndices equalizes the repeated indices in the terms of a sum, so for instance applying
this command to La

2 + Lb
2 results in 2 · La

2
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