
HAL Id: hal-03319869
https://hal.science/hal-03319869

Preprint submitted on 13 Aug 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Node-Diamond approximation of heterogeneous and
anisotropic diffusion systems on arbitrary

two-dimensional grids
El-Houssaine Quenjel, Abdelaziz Beljadid

To cite this version:
El-Houssaine Quenjel, Abdelaziz Beljadid. Node-Diamond approximation of heterogeneous and
anisotropic diffusion systems on arbitrary two-dimensional grids. 2021. �hal-03319869�

https://hal.science/hal-03319869
https://hal.archives-ouvertes.fr


Node-Diamond approximation of heterogeneous and

anisotropic diffusion systems on arbitrary

two-dimensional grids

El Houssaine QUENJEL1,* and Abdelaziz BELJADID2,3
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Abstract

We develop a new nodal numerical scheme for solving diffusion equations. Anisotropic and
heterogeneous diffusion tensors are taken into account in these equations. The method allows
to cover a wide range of general meshes such as non-confirming and distorted ones. The main
idea consists in deriving the scheme from a discrete bilinear form using cellwise approximation
of the diffusion tensor and particular discrete gradients. These gradients are conceived on
diamonds partitioning the cell using local geometrical objects. The degrees of freedom are
placed at the centers and vertices of cells. The cell unknowns can be eliminated without any
fill-in. As a result, the coercivity of the scheme holds true unconditionally by construction.
The convergence theorem of the Node-Diamond scheme is proved under classical assumptions
on the physical parameters of the model equation and the mesh. Numerical results show the
good behavior of the proposed approach on various examples among which we consider strongly
anisotropic and heterogeneous systems. For instance, optimal accuracy consisting of quadratic
rates for L2-errors and linear rates for H1-errors is obtained.

1 Introduction

We develop and analyze a novel numerical scheme approximating second-order elliptic problems
with Dirichlet boundary conditions. In view of its wide practical applications, we focus on the
following model

−∇ · κ(x)∇u = f in Ω, (1.1)

u = g on ∂Ω, (1.2)

where u is the main unknown and Ω is a bounded open connected domain of Rd (d ≥ 1) with
a Lipschitz boundary ∂Ω. The matrix κ accounts for the anisotropic heterogeneous diffusion
tensor. The right-hand side f models the source and sink terms. The boundary condition is
prescribed by a given function g. Equation (1.1) stems from the conservation principle of a steady
problem together with a constitutive law such as Fick’s law if u represents the temperature or
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Darcy’s law if u denotes the hydraulic head. The diffusion term−∇·κ(x)∇u is a cornerstone term
in many practical problems arsing in porous media flows, semiconductor models and systems of
population dynamics.

The main hypotheses on the physical parameters of the model (1.1) are given as follows

κ ∈ L∞(Ω)d×d is a symmetric uniformly coercive tensor i.e.

∃κ, κ > 0 : κ |v|2 ≤ κ(x)v · v ≤ κ |v|2 , ∀ a.e. x ∈ Ω, v ∈ Rd, (1.3a)

f ∈ L2(Ω), g ∈ H1/2(∂Ω). (1.3b)

These assumptions allow to ensure the well-posedness of the problem (1.1)-(1.2) in the weak
sense. Then, u ∈ H1(Ω) is a weak solution if and only if its solves the variational formulation

∫
Ω

κ(x)∇u · ∇ϕdx =

∫
Ω

fϕdx, ∀ϕ ∈ H1
0 (Ω),

γ(u) = g, in H1/2(∂Ω),
(1.4)

where γ is the trace operator defined from H1(Ω) into H1/2(∂Ω). It is well-known that (1.1)-
(1.2) has a unique weak solution in the aforementioned sense using the famous Lax-Milgram
theorem.

The objective of this paper is to develop and validate a new nodal numerical scheme, with
crucial theoretical and computational features, for approximating the weak solution of (1.4). A
“good” numerical scheme should be consistent, convergent, optimally accurate, robust, yields
a small stencil and satisfy the discrete maximum principle on generic meshes and diffusion
tensors. The design of such scheme is very challenging. A large number of previous studies is
conducted for the numerical resolution of (1.4). These studies deal with a single or a couple of
the aforementioned proprieties. In the following, we briefly review some of them.

It is well known that finite elements [11] are suitable for elliptic problems on particular
conforming meshes such as simplices. Advanced schemes of type finite volumes [15, 19, 28],
Hybrid Mimetic Mixed (HMM) methods [13, 18] have greatly contributed in the discretization
of diffusion operators, especially when rough data are prescribed and the mesh is quite general.
More specifically, the TPFA (Two-Point Flux Approximation) scheme is the simplest finite
volume method and possesses an elegant structure yielding a very parse stiffness matrix which
is further an M -matrix. The simplicity is a result of a restrictive orthogonality condition on the
mesh together with assuming a scalar tensor κ. The aim is to evaluate the flux only in the normal
direction to the interface in a consistent way. Its foundation and analysis give deep insights on
the construction and study of multi-point methods. For instance, we mention the MPFA (Multi-
Point Flux Approximation) approach [1, 2, 3, 4] that extends some ideas of the TPFA scheme.
The objective is to consistently approximate the fluxes using several directions mainly linking
cell degrees of freedom (d.o.f) to account for anisotropy, discontinuity of the diffusion tensor and
distortion of the mesh. On the other hand, the coercivity is tensor and mesh dependent and
it may be lost in the case where the anisotropic ratio is important. This can lead to possible
negative eigenvalues of the stiffness matrix entailing spurious oscillation on the solution and loss
of convergence. Among schemes enabling consistency and coercivity, we first cite the DDFV
(Discrete Duality Finite Volume) method [6, 14, 25, 26, 29]. The construction of approximate
fluxes, and also the gradient on diamond subsets, involve cell and vertex unknowns which may
increase the computational cost. A particular treatment is needed when κ is discontinuous
across (primal and dual) interfaces since the gradient are not cellwise constants [7]. Next, the
HMM schemes [10, 16, 20] are derived from a discrete weak formulation using cellwise gradients
together with a stabilization term. They employ cell and edge unknowns and this increases
the complexity of the resulting algorithm. To reduce the number of d.o.f, a small stencil nodal
method referred to as the VAG (Vertex Approximate Gradient) scheme was introduced in [21].
The key idea is to interpolate the interface unknowns using its vertices. It is also possible to get
rid of the stabilization term by considering P1 finite element gradients on a simplicial sub-mesh
[9, 8]. The VAG method is reformulated thanks to some ”generalized” fluxes acting between
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the cell and its surrounding vertices. In each cell, the local cell-vertex flux has to include the
contributions of the other vertices, even if they are not connected, so that the coercivity can be
maintained. An important feature of the VAG discretization consists in the ability to eliminate
the cell unknowns due to a static condensation. A relative weakness is that the P1 gradients
are sometimes computed on a flattened sub-mesh even if the initial mesh presents good shape
qualities. For instance, this is the case of initial triangular meshes with acute angles. Finally,
we indicate that most of the aforementioned methods enter the abstract framework referred to
as the gradient discretization method [17].

In this study, we propose a new nodal discretization that we will call the Node-Diamond
scheme. Its derivation draws some inspirations from the HMM, VAG and DDFV methods. It is
elaborated thanks to two key ingredients. First, as a starting point, we set and take advantage of
the discrete bilinear form and the cellwise approximation of diffusion tensor. Second, we design
local embedded diamonds using the cell, one vertex and the two edges sharing this vertex. The
diamond region offers adequate geometrical objects to approximate the gradient in a consisting
way. More importantly, edge unknowns are not mandatory and they are expressed in terms of
their extreme vertices. We prove that the discrete Poincaré’s inequality is fulfilled. Consequently,
the scheme coercivity and the existence of the numerical solution hold unconditionally. Owing to
ideas from the finite volumes literature, a natural extension to an additional convection term is
highlighted without technical issues. By proving an asymptotic Stokes’ formula, we demonstrate
the convergence of the Node-Diamond scheme. In particular, the sequence of numerical solutions
converges to the unique solution of (1.4) in the sense of H1-norm. As in the context of the VAG
methodology, the cell unknowns, used in the Node-Diamond scheme, can be eliminated without
any fill-in. In other words, only nodal unknowns are involved in the resolution process after
computing a simple Schur complement. Contrary to the VAG scheme, the Node-Diamond cell-
vertex flux takes into account only connected d.o.f to the vertex in question. Moreover, there
is no need to simplicial sub-mesh nor the stabilization. Also, advective fluxes can be computed
in a straightforward way across interfaces of control volumes made of halves of diamond cells.
Finally, we below summarize the central strengths of the Node-Diamond scheme.

• Highly heterogeneous and strongly anisotropic tensors can be taken into account.

• The scheme enables the use of quite general polygonal meshes (non-conforming, non-
structured, distorted, ...).

• Coercivity is guaranteed unconditionally.

• Nodal unknowns are only involved after the elimination of the cell ones without any fill-in.

• A compact stencil of 9 points on quadrangular meshes is generated, which ensures the
sparsity of the stiffness matrix.

• The method is robust and second order accurate.

The rest of the paper is outlined as follows. Section 2 is devoted to the establishment of the
discrete setting. Precisely, local description of the involved d.o.f are specified using the cell-vertex
connectivity. Embedded diamonds are then constructed and they provide appropriate objects
to uniquely design a whole consistent and accurate approximation of the gradient operator. A
discrete counterpart of Poincaré’s inequality is stated and proved. Section 3 focuses on the
derivation and the numerical analysis of the Node-Diamond scheme. Then, the coercivity of the
scheme is proved and the convergence theorem is shown. A particular emphasis is placed on the
identification of the limit, which is not obvious. Finally, Section 4 presents numerical results.
They are preceded by some guidelines on the implementation. Several typical problem-cases of
the literature are tested, where quite general meshes, strongly anisotropic and heterogeneous
tensors are taken into account. They exhibit the robustness and accuracy of the Node-Diamond
scheme and its capability to deal with the heterogeneity of the system and geometries of meshes.
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2 Mesh, discrete spaces and operators

In this section, we define the domain discretization, specify the approximate spaces, where
discrete variables live, and show the construction the approached gradient operator. We will
focus on systems of two dimensions.

2.1 Domain discretization

Let us first introduce the main objects and notations that are mandatory to construct the Node-
Diamond numerical scheme. Let T be a decomposition of Ω into non-overlapping connected
subsets C such that

⋃
C∈T C = Ω, where the topological interior of any cell C ∈ T is not the

empty set. It is also supposed that C is star-shaped with respect to its mass center denoted
by xC . We assume that each edge of the mesh is shared by at most two cells. Let SC be the
set generating the C-cell vertices. The set of the mesh vertices is given by S =

⋃
C∈T SC . The

position of each vertex v ∈ SC is denoted by xv. The family Tv refers to the cells sharing
the vertex v. The set of boundary (Dirichlet) vertices is denoted by SD. We consider dC,v =
dist(C,v), where dist stands for the Euclidean distance on R2. The node v is connected to two
vertices denoted by v′ and v? in the cell C. We set SC,v = {v,v′,v?}. Let us fix

xσvv′ =
1

2
(xv + xv′), xσvv?

=
1

2
(xv + xv?), (2.1)

and consider d′C,v = dist(σvv? , σvv′). The unit normal (resp. tangent) vector to the edge

Figure 1: Configuration of a given cell C of the mesh T . The embed-
ded diamond DC,v is uniquely identified by C and the vertex v.

σCv = [xσvv?
, xσvv′ ] oriented from C to v (resp. σvv? to σvv′) is denoted by nC,v (resp.

tC,v). In a similar way, one defines the unit vectors n′C,v and t′C,v corresponding to the edge
σ′Cv = [xC , xv] using the analogous orientation convention, depicted in Figure 1. The angle
between tC,v and t′C,v is referred to as θC,v.

For each v ∈ SC we assign a sub-volume (triangle) TC,v = Cσvv′σvv? to the cell C. Similarly,
the triangle T ′C,v = σvv′vσvv? is attributed to the vertex v. So, the sub-domain associated to
the cell in question and its area read respectively

TC =
⋃

v∈SC

TC,v, |TC | =
∑
v∈SC

|TC,v| .

Analogously, the vertex volume with its area are respectively given by

Tv =
⋃
C∈Tv

T ′C,v, |Tv| =
∑
C∈Tv

∣∣T ′C,v∣∣ .
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By construction, it can be checked that

Ω =
( ⋃
C∈T

TC

)⋃( ⋃
v∈S

Tv

)
.

Let hC be the diameter of C. The mesh size is given by hT = maxC∈T hC . The analysis of the
Node-Diamond scheme requires a standard regularity assumption on the mesh. In particular,
its role is to prevent the cell degeneracy and to mostly keep the shape of the first element of the
mesh sequence as hT becomes very small. In other words, the number ξM = max(ξT , ξS) where

ξT = max
C∈T

max
v∈SC

 1

|sin(θC,v)|
,
dC,v
d′C,v

,
hC
dC,v

,
dC,v√
|TC,v|

,
dC,v√
|T ′C,v|

,#SC

 , ξS = max
v∈S

#Tv,

needs to be uniformly bounded from above as the mesh size goes to 0.
We denote by RM the space composed of vectors wM including the values of a variable w

at the vertices and centers of cells, and having the form

wM =
(
(wv)v∈S , (wC)C∈T

)
.

To conceive our approach we require an approximate gradient. To this end, consider the local
basis (tC,v, t

′
C,v). Define the diamond region DC,v = Cσvv′vσvv? on which we build a discrete

gradient satisfying the two-point relationships

∇DC,vwM · tC,v =
wv − wC
dC,v

, ∇DC,vwM · t′C,v =
wσvv′ − wσvv?

d′C,v
,

necessitated for consistency reasons. These discrete directional derivatives allow to equivalently
get

∇DC,vwM =
1

sin(θC,v)

(wv − wC
dC,v

nC,v +
wσvv′ − wσvv?

d′C,v
n′C,v

)
.

We would like to avoid storing edge unknowns per each cell, which can be expensive from
the implementation viewpoint. To this purpose, we use the interpolations (2.1) to express
wσvv′ , wσvv?

in terms of the C-cell vertices connected to v. Therefore, this gives rise to a novel
interpolated gradient on the same diamond sub-set DC,v that is now written as

∇DC,vwM =
1

sin(θC,v)

(wv − wC
dC,v

nC,v +
1

2

wv′ − wv?

d′C,v
n′C,v

)
. (2.2)

Notice that |DC,v| = dC,vd
′
C,v sin(θC,v)/2. Accordingly, one has

∇DC,vwM =
1

2 |DC,v|

(
d′C,v (wv − wC)nC,v +

1

2
dC,v (wv′ − wv?)n′C,v

)
.

The proposed numerical scheme will thereby rely on this special gradient formula (2.2).
Motivated by applications such as the modeling of flows through heterogeneous porous media,

the (permeability) tensor κ is approximated piecewisely in each cell using the averaged integral

κC =
1

|C|

∫
C

κ(x) dx. (2.3)

Note that κ(x) is not necessarily continuous within Ω and it could be discontinuous across the
edges of C. To approximate the source term we take advantage of the standard means on the
volumes TC and Tv as follows

fTC =
1

|TC |

∫
TC

f(x) dx, fTv =
1

|Tv|

∫
Tv

f(x) dx.
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For simplicity of the numerical analysis, since our study focuses on the design of the Node-
Diamond scheme and its properties, we assume that g ∈ H1(Ω) to avoid discussions related
to the reconstruction of the boundary data at the discrete level. Using the guidelines of [6],
the results of our methodology are still valid in the general case with g ∈ H1/2(∂Ω). Since
g ∈ H1(Ω), define the discrete boundary data as done for the source term

gTC =
1

|TC |

∫
TC

g(x) dx, gTv =
1

|Tv|

∫
Tv

g(x) dx.

We introduce the discrete spaces

XM,g = {wM ∈ RM : wv = gTv , ∀v ∈ SD}, XM,0 = {wM ∈ RM : wv = 0, ∀v ∈ SD}.

Define the discrete semi-norms on XM,g

‖wM‖0 =

(∑
C∈T
|TC |w2

C +
∑
v∈S
|Tv|w2

v

)1/2

, ‖uM‖1 =

(∑
C∈T

∑
v∈SC

|DC,v|
∣∣∇DC,vwM∣∣2

)1/2

.

The following statement is referred to as the discrete Poincaré’s inequality. More interestingly,
it ensures that ‖·‖1 is indeed a norm on XM,0.

Lemma 2.1. There exists Bp > 0 depending only on the mesh regularity and Ω such that

‖wM‖0 ≤ Bp ‖wM‖1 , ∀wM ∈ XM,0.

Proof. Let wM ∈ XM,0. Following [6, 19], there exists a positive constant B which depends
only on the diameter of Ω such that

‖wM‖20 =
∑
K∈M

|TK | |wK |2 ≤ B
∑
C∈T

∑
v∈SC

dC,vd
′
C,v

|wC − wv|
d′C,v

(
|uC |+ |uv|

)
.

The mesh regularity claims that

dC,vd
′
C,v ≤ B′ |DC,v| , dC,vd

′
C,v ≤ B′ |TC | , dC,vd

′
C,v ≤ B′ |Tv| ,

for some constant B′ > 0. Accordingly, we use the Cauchy-Schwarz inequality and arrange the
terms of each summation to finally obtain

‖wM‖20 ≤ B
′′
∑
C∈T

∑
v∈SC

|DC,v|

∣∣∣∣∣wC − wv

d′C,v

∣∣∣∣∣
2

≤ B′′
∑
C∈T

∑
v∈SC

|DC,v|
∣∣∇DC,vwM · tC,v

∣∣2 ≤ B′′ ‖wM‖21 ,
as required. This concludes the proof.

Let IM be the function reconstruction operator defined from XM,g into L2(Ω) by

IMwM =
∑
K∈M

|TK |wKχK ,

where χK is the characteristic function on K. For shortness, we will adopt the notation wh =
IMwM. Similarly, the discrete gradient is the linear operator ∇h mapping XM,g into L2(Ω)2

and defined as follows
∇hwM :=

∑
C∈T

∑
v∈SC

∇DC,vwMχDC,v .

We will also need the reconstruction of the diffusion tensor that we define in the same manner
on the mesh cells as

κh,T :=
∑
C∈T
|C|κCχC .

These preliminaries and notations are useful to describe the proposed nodal scheme dis-
cretization in the subsequent section.
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3 Node-Diamond numerical scheme

Here, we describe the principle of the proposed discretization method for the elliptic model prob-
lem (1.1)-(1.2). Given the key definition of the discrete gradient operator, the Node-Diamond
scheme is founded on a discrete counterpart of the “variational formulation”, which consists of
finding uM ∈ XM,g that solves the problem

ah(uM, ϕM) :=

∫
Ω

κh,T∇huM · ∇hϕM dx =

∫
Ω

fϕh dx, ∀ϕM ∈ XM,0. (3.1)

The compact formulation (3.1) is quite helpful to carry out the scheme analysis. Some details on
the practical implementation of the Node-Diamond scheme are given in the numerical section.

Notice that the cell equation is obtained by taking ϕM = 1C in (3.1). Here 1C denotes the
C-th vector of the canonical basis of RM. Similarly, the vertex equation is derived by selecting
ϕM = 1v in (3.1). Therefore, we obtain the proposed Node-Diamond scheme on each cell
volume TC and vertex volume Tv∑

v∈SC

|DC,v|κC∇DC,vuM · ∇DC,v1C = |TC | fTC ∀C ∈ T , (3.2)

∑
C∈Tv

∑
ν∈SC,v

|DC,v|κC∇DC,νuM · ∇DC,ν1v = |Tv| fTv ∀v ∈ S \ SD. (3.3)

Due to the Dirichlet boundary condition (1.2), it is imposed that

uv = gv, ∀v ∈ SD. (3.4)

We note that

|DC,v|κC∇DC,vuM · ∇DC,v1C = αCv(uC − uv) + βCv(uv? − uv′),

where

αCv =
1

2 |DC,v|
(d′C,v)2κCnC,v · nC,v, βCv =

1

4 |DC,v|
dC,vd

′
C,vκCnC,v · n′C,v.

The previous relationship claims that the information exchange mainly occurs between the cell
and its vertices. Accordingly, as will be shown in the numerical section, the cell unknowns can
be eliminated without any fill-in at the solver level since they only depend on the surrounding
vertex unknowns. Therefore, the computational cost is strongly linked to the total number of
the mesh nodes. This feature is one of the main assets of our contribution.

Remark 3.1. Given a scalar diffusion tensor κ, the Node-Diamond scheme (3.2)-(3.4) can be
monotone in some circumstances. First, it concisely rewritten under the linear matrix form
AuM = bM where more details on the assembling are given in the numerical section. When
all βCv are zero, meaning that σCv and σ′Cv are perpendicular, the stiffness matrix A has the
M -matrix structure. For instance, this is achieved on meshes composed of squares, equilateral
triangulations and rhombuses with identical edges.

3.1 Case of additional convection

It is quite natural to wonder if the proposed Node-Diamond scheme can be extended to the
context of convection-diffusion problems of the form

−∇ · κ(x)∇u+∇ · uq = f in Ω, (3.5)

u = g on ∂Ω, (3.6)

where q is the velocity vector that should be in C1(Ω,R2) and satisfy ∇·q ≥ 0. The response to
this quest is positive. Indeed, it is suffices to treat the transport term in the same spirit of the
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finite volume methodology by considering that TC and Tv play the role of the control volumes.
Such a strategy is widely used in the literature. For instance, we mention the combination of
the finite elements and the finite volumes [5, 22, 23, 27]. More precisely, the finite element
method is concerned with the discretization of the diffusion and the finite volume approach
yields the approximation of the advection. Also, in [12] the authors showed how to discretize
the convective term in the case of multi-point methods, notably hybrid mimetic mixed methods,
using a couple of finite volume schemes. As the Node-Diamond scheme belongs the family of
multi-point methods, it is possible to adapt the technique of [12] for our case as follows. First,
denote by (σvv′ , σvv?) the line crossing σvv′ and σvv? . Let us define

oC,v = dist
(
C, (σvv′ , σvv?)

)
+ dist

(
v, (σvv′ , σvv?)

)
.

At the interface between the adjacent volumes TC and Tv, we approximate the velocity field by

qC,v =
1

d′C,v

∫
σC,v

q · nC,v ds.

Given a specific function µC , that will be described below, the advective contribution is fully
discretized using the following coefficients

µCv =
d′C,v
oC,v

µC
(
oC,vqC,v

)
, µvC =

d′C,v
oC,v

µC
(
−oC,vqC,v

)
.

Accordingly, the Node-Diamond scheme for steady convection-diffusion problems is written as∑
v∈SC

|DC,v|κC∇DC,vuM · ∇DC,v1C

+
∑
v∈SC

(
µvCuC − µvCuv

)
= |TC | fTC ∀C ∈ T , (3.7)

∑
C∈Tv

∑
ν∈SC,v

|DC,v|κC∇DC,νuM · ∇DC,ν1v

−
∑
C∈Tv

αCv

(
µvCuC − µvCuv

)
= |Tv| fTv ∀v ∈ S \ SD, (3.8)

uv = gv, ∀v ∈ SD. (3.9)

We now indicate two possible choices of the function µC .

(i) Upwind scheme : the upwind scheme amounts to setting µC(a) = max(a, 0). Its sta-
bility is ensured at the price of additional excessive numerical diffusion. It turns out that
the artificial viscosity is not necessary in the diffusive regime can and be automatically
controlled using the Scharfetter–Gummel technique.

(ii) Scharfetter–Gummel scheme : the Scharfetter–Gummel discretization [31] behaves
better than the upwind scheme in regions where diffusion is dominant. For large Péclet
numbers, it is numerically equivalent to the upwind scheme in the sense that they provide
similar convergence rates. Following [12], the convective flux approximation is given by

µC(a) = min(1, λκC )µsg

(
a

min(1, λκC )

)
, µsg(s) =

−s
e−s − 1

− 1, s 6= 0, µsg(0) = 0.

The scalar λκC is nothing more than the smallest eigenvalue of κC . The scaling factor
min(1, λκC ) is required to maintain the stability of the scheme. See also [30] for a differ-
ent Scharfetter–Gummel approach elaborated in the framework of discrete duality finite
volume methods.

We stress that all the theoretical results, of the present paper, are still valid in the presence of
convection. It is handled with no difficult technicalities as already done in the literature [12].
For this reason, we omit to include the advective term in the analysis below.
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3.2 Coercivity and existence of the discrete solution

In this part, we are going to establish the energy estimate on the solution. We also prove the
existence and uniqueness of the numerical solution.

First, the following result shows that any solution of the finite volume scheme is uniformly
bounded with respect to the semi-norm ‖·‖1.

Proposition 3.1. The numerical scheme (3.2)-(3.4) is coercive in the sense that there exists a
positive constant B depending only on g, κ, κ, f , Ω, and the mesh regularity such that

‖uM‖1 ≤ B. (3.10)

Proof. Taking ϕM = uM − gM ∈ XM,0 in the discrete weak formulation (3.1) yields

X1 = X2 +X3,

where

X1 =

∫
Ω

κh,T∇huM · ∇huM dx, X2 =

∫
Ω

κh,T∇huM · ∇hgM dx,

X3 =

∫
Ω

f
(
uh − gh) dx.

The ellipticity of the tensor κ and the definition of the discrete semi-norm ‖·‖1 imply

X1 ≥ κ ‖uM‖21 .

A straightforward adaptation of the interpolation result [6, Lemma 3.5] leads to

‖gM‖1 ≤ B0 ‖g‖H1(Ω) ,

where B0 depends only on the mesh regularity. As a result, we use the Cauchy-Schwarz, and
Young’s inequalities to get

|X2| ≤
κ

4
‖uM‖21 +

κ

κ
‖gM‖21 ≤

κ

4
‖uM‖21 +

κB2
0

κ
‖g‖2H1(Ω) .

We proceed as above and make use of Poincaré’s inequality to find

|X3| ≤ Bp ‖f‖L2(Ω) ‖uM − gM‖1

≤ κ

4
‖uM‖21 +

B2
p

κ
‖f‖2L2(Ω) +BpB0 ‖f‖L2(Ω) ‖g‖H1(Ω) .

Gathering these estimations we deduce ‖uM‖1 ≤ B where

B =
(

2κB2
0 ‖g‖

2
H1(Ω) + 2B2

p ‖f‖
2
L2(Ω) + 2κBpB0 ‖f‖L2(Ω) ‖g‖H1(Ω)

)1/2

.

This finishes the proof.

Next, we prove the existence and uniqueness of the numerical solution.

Proposition 3.2. There exists a unique solution to the Node-Diamond scheme (3.2)-(3.4).

Proof. Let PgM be the orthogonal projection of gM ∈ XM,g on the sub-space XM,0. Set
ĝM = gM − PgM. Perform the change of variables wM = uM − ĝM. Thus, the numerical
scheme (3.2)-(3.4) rewrites

ah(wM,1C) = |TC | fTC − ah(ĝM,1C), ∀C ∈ T ,
ah(wM,1v) = |Tv| fTv − ah(ĝM,1v), ∀v ∈ S \ SD,
wv = 0, ∀v ∈ SD.

(3.11)

9



Let us set M? = M\ SD. Observe that wM? = uM? . The linear system (3.11) can be recast
under the matrix form AuM? = FM? , where the coefficients of the matrix A and those of the
second member FM? are given by{

Aij = ah(1i,1j) for 1 ≤ i, j ≤ #M?,

Fi = |Ti| fTi − ah(ĝM,1i) for 1 ≤ i ≤ #M?.

The right hand side FM? is fully known. The existence and the uniqueness of the numerical
solution to (3.2)-(3.4) is equivalent to showing that the kernel of A is trivial. Let us then
prove that Ker(A) = {0M?}. Let vM? ∈ Ker(A). Thereby, AvM? = 0M? which implies that
AvM? ·vM? = 0. Next, owing to the definition of the matrix A and the expression of the bilinear
form ah defined in (3.1) we infer

0 = AvM? · vM? = ah(vM? , vM?) ≥ κ ‖vM?‖21 .

Recall that ‖·‖1 is a norm on XM,0 thanks to Poincaré’s inequality. Accordingly vM? = 0M?

and this leads to Ker(A) = {0M?}, which establishes that A is invertible. As a consequence,
uM? = A−1F . The proof is concluded.

3.3 Convergence analysis

In this last subsection we focus on the convergence analysis of the Node-Diamond scheme and
the passage to the limit. This is conducted by means of compactness.

Lemma 3.1. Let vM ∈ XM,0. The reconstruction function vh is naturally extended by 0 outside
of Ω. Then, there exists a positive constant B depending only on the mesh regularity such that

||vh(·+ y)− vh||L1(R2) ≤ B |y| ||vM||1, ∀y ∈ R2. (3.12)

Proof. Fix y ∈ R2 and let x ∈ R2. In the same spirit of the proof made in [6, Lemma 3.8],
define the edge identification function

ηC,v(x,y) =

{
1, if [σvv? , σvv′ ] ∩ [x+ y, x] 6= ∅,
0, else.

Then, for all x ∈ R2, there holds

|vh(x+ y)− vh(x)| ≤
∑
C∈T

∑
v∈SC

ηC,v(x,y) |vv − vC | ≤
∑
C∈T

∑
v∈SC

ηC,v(x,y)dC,v
|uv − uC |
dC,v

.

It can be checked that ∫
R2

ηC,v(x,y) dx ≤ d′C,v |y| .

As a consequence of this and the Cauchy-Schwarz inequality, one gets

||vh(·+ y)− vh||L1(R2) ≤ B′ |y|
∑
C∈T

∑
v∈SC

|DC,v|
∣∣∇DC,vw∣∣ ≤ B |y| ‖vM‖1 .

where the constants B′ and B depend only on the mesh regularity. The proof is complete.

In the sequel, we denote Bi a finite series of positive constants depending only on the data
and possibly on the mesh regularity. In the following result, we state and prove the convergence
theorem for the Node-Diamond numerical scheme.
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Theorem 3.1. Let (M`)`∈N be a sequence of meshes such that ξM`
is uniformly bounded and

hM`
goes to 0 as `→ +∞. Then

gh` −−−→
`→+∞

g strongly in H1(Ω), (3.13)

and there exists u ∈ H1(Ω) such that

uh` −−−→
`→+∞

u strongly in L2(Ω),

∇h`uM`
−−−→
`→+∞

∇u weakly in L2(Ω)2,
(3.14)

up to the extraction of a subsequence. In addition, u is the unique weak solution to the variational
formulation (1.4). Therefore, the convergence holds for the whole sequence. Finally, a better
convergence is valid for the gradient of the numerical solution sequence i.e.

∇h`uM`
−−−→
`→+∞

∇u strongly in L2(Ω)2. (3.15)

Proof. First, the strong convergence (3.13) is obtained by mimicking the guidelines of [6, Propo-
sition 3.6, Corollary 3.7]. Set vM`

= uM`
− gM`

. Then vM`
∈ XM`,0. By virtue of Lemma 3.1

and Kolmogorov’s compactness criterion, there exists v ∈ L1(Ω) such that

vh` −−−→
`→+∞

v strongly in L1(Ω),

up to a subsequence. Using the result [17, Lemma B.15], one can check that the sequence
(vh`)`∈N is bounded in Lq(Ω) for some q > 2 independently of the mesh size. An adaptation of
the proof established for [17, Lemma B.19] yields that (vh`)`∈N is relatively compact in L2(Ω).
Therefore, introduce (3.13) to see that the first convergence of (3.14) holds true.

Th estimate (3.10) implies the existence of some G ∈ L2(Ω)2 such that

∇h`vM`
−−−→
`→+∞

G weakly in L2(Ω)2.

Let us now demonstrate the identification of the limit i.e. G = ∇v a.e. in Ω for the Node-
Diamond scheme. Take ψ ∈ C∞c (Ω)2. We denote by A` the integral

A` =

∫
Ω

∇h`vM`
· ψ dx+

∫
Ω

vh`∇ · ψ dx.

Using the weak convergence of
(
∇h`vM`

)
`

and the strong one of (vM`
)` we obtain

A` −−−→
`→+∞

∫
Ω

G · ψ dx+

∫
Ω

v∇ · ψ dx.

Following [6], we define

ψDC,v =
1

|DC,v|

∫
DC,v

ψ(x) dx, ψσC,v =
1

d′C,v

∫
σC,v

ψ(s) ds, ψσ′
C,v

=
1

dC,v

∫
σ′
C,v

ψ(s) ds.

Let us consider the vector ψ̃DC,v of R2 uniquely defined by

ψ̃DC,v · nC,v = ψσC,v · nC,v, ψ̃DC,v · n′C,v = ψσ′
C,v
· n′C,v.

The first integral of A` is split as follows∫
Ω

∇h`vM`
· ψ dx := Y` + Z` =

∑
C∈T`

∑
v∈SC

|DC,v| ∇DC,vvM`
· ψ̃DC,v

+
∑
C∈T`

∑
v∈SC

|DC,v| ∇DC,vvM`
·
(
ψDC,v − ψ̃DC,v

)
.
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Observe that ‖vM`
‖1 ≤ ‖uM`

‖1 + ‖gM`
‖1 < +∞. By the regularity of ψ we deduce

|Z`| ≤ hT` ‖ψ‖∞B1 ‖vM`
‖1 ≤ hT`B2 −−−→

`→+∞
0.

Now, developing the discrete gradient expression in Y` and making use of the discrete integration
by parts lead to

Y` =− 1

2

∑
C∈T`

vC
∑
v∈SC

d′C,vψσC,v · nC,v

− 1

2

∑
v∈S`\SD

vv
∑
C∈Tv

∑
ν∈SC,v

d′C,νψσC,ν · nC,ν

− 1

2

∑
C∈T`

∑
v∈SC

dC,v
(
vσvv′ − vσvv?

)
ψσ′

C,v
· n′C,v,

where we consider

vσvv′ =
1

2
(vv + vv′), vσvv?

=
1

2
(vv + vv?).

Thanks to the divergence theorem we compute∑
C∈T`

vC
∑
v∈SC

d′C,vψσC,v · nC,v +
∑

v∈S`\SD
vv
∑
C∈Tv

∑
ν∈SC,v

d′C,νψσC,ν · nC,ν

=
∑
C∈T`

vC

∫
TC

∇ · ψ dx+
∑

v∈S`\SD
vv

∫
Tv

∇ · ψ dx.

It is useful to first specify some auxiliary notations. To this purpose, we denote by E` the set
of the mesh edges. Each edge eσvv?

is shared by two cells C and C?. The region Tvv? denotes
the subdomain whose vertices are labeled by C,v, C?,v?. Then, similar computations as above
imply

Y` = −1

2

∫
Ω

vh`∇ · ψ dx− 1

2

∑
eσvv?

∈E`

vσvv?

∑
σ′
C,v∈Evv?

dC,vψσ′
C,v
· n′C,v

= −1

2

∫
Ω

vh`∇ · ψ dx− 1

2

∑
eσvv?

∈E`

vσvv?

∫
∂Tvv?

ψ · nds

= −1

2

∫
Ω

vh`∇ · ψ dx− 1

2

∫
Ω

v̂h`∇ · ψ dx,

where v̂h` designates the piecewise constant function which is equal to vσvv?
in Tvv? for each

eσvv?
. It remains to establish that

lim
`→+∞

A` = lim
`→+∞

1

2

∫
Ω

(
vh` − v̂h`

)
∇ · ψ dx = 0.

Indeed, it suffices to develop ‖vh` − v̂h`‖
2
L2(Ω) on the quarters of the diamond |DC,v| and estimate

the result to find

‖vh` − v̂h`‖
2
L2(Ω) ≤ B3h

2
T`

∑
C∈T`

∑
v∈SC

(
|vC − vv|2 + |vC − vv′ |2 + |vC − vv? |2

)
≤ B4h

2
T`

∑
C∈T`

∑
v∈SC

(
d2
C,v|∇DC,vvM`

|2 + d2
C,v′ |∇DC,v′ vM`

|2 + d2
C,v? |∇DC,v? vM`

|2
)

≤ B5h
2
T`

∑
C∈T`

∑
v∈SC

(
|DC,v||∇DC,vvM`

|2 + |DC,v′ ||∇DC,v′ vM`
|2

+ |DC,v? ||∇DC,v? vM`
|2
)

≤ B6h
2
T` −−−→`→+∞

0.
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As a consequence, one ends up with∫
Ω

G · ψ dx = −
∫

Ω

v∇ · ψ dx.

This proves that G = ∇v a.e. in Ω and therefore v ∈ H1
0 (Ω). Accordingly, it follows from

(3.13) that u = v − g ∈ H1(Ω) and γ(u) = γ(g). Next, the solution u should satisfy the weak
formulation of (1.4). To this end, let ϕ ∈ C∞c (Ω) and consider ϕM`

the vector of XM`,0 defined
by

ϕK =
1

|K|

∫
K

ϕ(x) dx, ∀K ∈M` \ SD.

Passing to the limit in the discrete variational formulation (1.4) gives

lim
`→+∞

∫
Ω

κh`,T`∇h`uh` · ∇h`ϕh` dx = lim
`→+∞

∫
Ω

fϕh` dx =

∫
Ω

fϕdx.

Owing to (1.3a) together with (2.3), we have

κh`,T` −−−→
`→+∞

κ a.e. in Ω.

Additionally, the smoothness of ϕ and the Lebesgue dominated convergence theorem ensures
then the strong convergence of κh`,T`∇h`ϕh` towards κ∇ϕ. Whence, it is shown that∫

Ω

κ∇u · ∇ϕdx =

∫
Ω

fϕdx, ∀ϕ ∈ C∞c (Ω).

Using a standard argument of density, this relationship is satisfied for all ϕ ∈ H1
0 (Ω).

Concerning the strong convergence of the approximate gradients, it is identical to the one
elaborated in [20, Theorem 4.1]. We apply the same reasoning on vM`

and thereby derive (3.15)
by virtue of (3.13). This concludes the proof of Theorem 3.1.

4 Numerical results

In this section, we implement and validate the developed numerical scheme (3.2)-(3.4). The
objective is to show that the Node-Diamond method produces accurate results over various
discretizations of the computational domain, and typical anisotropic and heterogeneous tensors.

For all the tests below, we consider the unit square domain Ω = (0, 1)× (0, 1). It is meshed
by 6 different successively refined meshes mostly taken from the FVCA benchmark [24] on the
diffusion problems. They include structured, non-structured, conforming, non-conforming and
distorted meshes. An illustration of them is depicted in Figure 2. For shortness, they will be
referred to as Tri, Quad, Kersh, LocRef, Cart, Diam. This last one is built on a triangular
mesh.

4.1 Implementation and resolution

Here, we survey the practical implementation of the Node-Diamond method and show that the
stiffness matrix has a particular structure simplifying the resolution. This aspect is one of the
main features of our scheme.

Given the mesh data, notably the cells and the vertices, the main connectivity list is a table
Vf of 5 columns and

∑
C∈T

∑
v∈SC #SC lines. Independently of the chosen mesh, each line

contains the information on the diamonds DC,v and it is made of
[
C,v,v′,v?

]
.

All computations are carried out using this structure, in particular for normal vectors and
length of interfaces. To identify the location of a given vertex v ∈ S, we use the local indicator
Idv which is equal to 0 if v is a boundary vertex and to 1 if it is in the domain interior. We set
Idv = 1− Idv.
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Figure 2: From left to right: Cartesian, triangular, random, locally
refined, Kershaw, and diamond meshes.

The resolution of the Node-Diamond scheme (3.2)-(3.4) requires to rewrites its equations
under the form of the linear system

AuM = bM,

where A is a symmetric positive-definite matrix. The assembling of A is performed by adding
the contribution of each diamond following the structure of Vf. First, the cell-vertex (C → v)
and the vertex-vertex (v? → v′) contributions stem from

FC,v = αCv(uC − Idvuv) + βCv(Idv?uv? − Idv′uv′),

Fv?,v′ = α′vC(uv? − Idv′uv′) + βCv(uC − Idvuv), v? ∈ SC \ SD,

where

αCv =
1

2 |DC,v|
(d′C,v)2κCnC,v · nC,v, βCv =

1

4 |DC,v|
dC,vd

′
C,vκCnC,v · n′C,v,

α′Cv =
1

8 |DC,v|
d2
C,vκCn

′
C,v · n′C,v.

Second, observe that the contribution vertex-cell (v → C) is filled owing to the symmetry i.e.
using Fv,C = −FC,v as long as v /∈ SD. A similar fact holds for (v′ → v?). Additionally, the
contribution of the boundary condition is assembled by considering

Fv?,v? = uv? , ∀v? ∈ SD.

Concerning the right hand side bM = (bS ,bT )t, it takes into account the non-homogeneous
Dirichlet boundary condition as follows

bC = |TC | fTC +
∑
v∈SC

(
αCvIdvgv − βCv(Idv?gv? − Idv′gv′)

)
,

bv? = |Tv? | fTv?
+
∑
C∈Tv?

(
α′vCIdv′gv′ + βCvIdvgv

)
, v? ∈ SC \ SD,

bv? = gv? , v? ∈ SD.
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The structure of the final stiffness matrix is composed of four blocks

A =

(
AS AS,T
AT ,S AT

)
.

The size of each block is given by : size(AS ) = #S ×#S, size(AT ,S ) = #T ×#S, size(AS,T )
= #S ×#T , size(AT ) = #T ×#T . The block AT is an invertible diagonal matrix. Then, the
structure of A is more appealing since the Schur complement can be calculated in a straightfor-
ward way. As a consequence, the cell unknowns are eliminated before the resolution process. The
resolution task amounts to solving the reduced linear system involving only vertex unknowns(

AS −AS,TA
−1
T AT ,S

)
uS = bS −AS,TA

−1
T bT .

Finally, this allows to easily compute cell unknowns using the relationship

uT = A−1
C

(
bT −AC,vuS

)
.

We are interested in evaluating the errors between the exact and numerical solutions in the
sense of the L2-norm and H1-norm respectively given by

EL2 :=

(∑
C∈T
|TC | |ue(xC)− uC |2 +

∑
v∈S
|Tv| |ue(xv)− uv|2

)1/2

,

EH1 :=

((
EL2)2 +

∑
C∈T

∑
v∈SC

|DC,v|
∣∣∇ue(xC,v)−∇DC,vuM

∣∣2)1/2

,

where xC,v denotes the mass center of DC,v.

4.2 Test 1 : homogeneous problem

In this first numerical example, we test the Node-Diamond scheme with no impact of the diffusion
tensor. We consider the function

ue(x) = cos(0.5πx1), x = (x1, x2) ∈ Ω,

as an exact solution to Poisson’s equation. The source term and the imposed Dirichlet boundary
condition correspond to this solution. The tensor κ is homogeneous i.e. κ = Id, where Id
refers to the identity matrix. The obtained numerical errors are depicted in Figure 3 using the
log-log scale. A quadratic convergence is observed with respect to the L2-norm while a linear
convergence of first order is noticed in terms of the H1-norm. Therefore, the proposed numerical
scheme yields similar optimal rates as in the literature independently of the selected mesh.

Tri Quad Kersh LocRef Cart Diam

umin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
umax 1.0049 1.0006 1.0000 1.0000 1.0000 1.0024

Table 1: Test 1: DMP on the first element for each category of
meshes.

We also evaluate the discrete maximum principle (DMP) in Table 1 on the coarsest elements
of the considered meshes. For this test-case, the approximate solution has no undershoots, but
small overshoots are noticed on some meshes, namely Tri, Quad and Diam. According to
Remark 3.1 the stiffness matrix enjoys the M -matrix structure in the case of Cartesian meshes
made of squares. As a result, the Node-Diamond scheme is necessary monotone. This fact is
clearly seen Table 1.
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Figure 3: Test 1: numerical errors in the discrete L2-norm (left) and
H1-norm (right) with a homogeneous isotropic diffusion.

4.3 Test 2 : strongly anisotropic example

In this numerical test, we focus on the robustness and accuracy of the proposed scheme in the
case of a strong anisotropic diffusion matrix. The latter is defined by

κ(x) =

(
1 0
0 100

)
.

We consider the following exact solution to the elliptic model (1.1)-(1.2)

ue(x) = 16x1(1− x1)x2(1− x2), x = (x1, x2) ∈ Ω,

where the source term is computed using this solution. Homogeneous Dirichlet boundary con-
ditions are taken into account. The obtained numerical convergence of the scheme is exhibited
in Figure 4. As in the first test, second order accuracy is obtained for the L2-errors and a linear
rate is still maintained for the H1-errors regardless anisotropy.

The discrete maximum principle is summed up in Table 2. The lower bound is well honored
whereas the upper one exceeds the corresponding analytical value on almost all meshes, which is
due to the mesh nature and the anisotropy effect. This is a standard fact in the approximation
of the anisotropic elliptic equations on general meshes [24].

Tri Quad Kersh LocRef Cart Diam

umin 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
umax 1.0906 1.2026 1.0404 1.1220 1.0592 0.9867

Table 2: Test 2: DMP on the first element of each mesh category.

4.4 Test 3 : case of heterogeneous rotating anisotropy

In this section, we perform a numerical test using the proposed scheme in the case of anisotropic
and heterogeneous tensor. In the discrete level, the tensor is considered constant per cell. We
consider the following example used in [17] where the analytical solution is as follows

ue(x) = sin(πx1) sin(πx2), x = (x1, x2) ∈ Ω.

As previously, the boundary condition agrees with the trace function of ue. The source term is
determined from the solution and the following space-dependent tensor

κ(x) =

(
εx̂2

1 + x̂2
2 −(1− ε)x̂1x̂2

−(1− ε)x̂1x̂2 x̂2
1 + εx̂2

2

)
,
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Figure 4: Test 2: numerical errors in the discrete L2-norm (left) and
H1-norm (right) with a weakly homogeneous anisotropic diffusion.

where we set x̂1 = x1 − 0.1 and x̂2 = x2 − 0.1. The parameter ε is equal to 10−4. The accuracy
results are shown in Figure 5. It is noticed that the obtained convergence rates are not influenced
neither by the anisotropy ratio together with the heterogeneity of κ nor the considered mesh,
which confirms the robustness of this novel approach. According to Table 3, undershoots are
reported besides to the overshoots.

Figure 5: Test 3: numerical errors in the discrete L2-norm (left) and
H1-norm (right) with a heterogeneous rotating anisotropic diffusion.

Tri Quad Kersh LocRef Cart Diam

umin -0.0203 0.0000 0.0000 0.0000 0.0000 -0.0390
umax 1.0773 1.1302 1.1173 1.1395 1.0592 0.9988

Table 3: Test 3: DMP on the first element of each mesh category.

4.5 Test 4 : domain with a vertical fault

We look at a relevant test-case of the FVCA5 benchmark refereed to as ”Vertical Fault”. The
meshed domain includes a crossed fault. This gives rise to nonconforming staggered grids. An
illustration of that is given in the left subfigure of Figure 6. The white region is denoted by Ωw
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and the colored part is denoted by Ωc := Ω \Ωw. The cells of each subdomain are rectangular.
We consider a highly anisotropic situation with

κ|Ωw(x) =

(
0.01 0

0 0.001

)
, and κ|Ωc(x) =

(
1000 0

0 100

)
.

The source term is fixed to f = 0. The diffusion process is governed by κ and the Dirichlet
boundary condition

ue(x) = 1− x1, (x1, x2) ∈ ∂Ω.

The produced numerical solution is plotted on the right hand side of Figure 6. The effects of
anisotropy together with the fault impact are well captured by our scheme even though the
mesh is coarse. The solution is similar to the one provided in [24]. Furthermore, the discrete
maximum principle is respected.

Figure 6: Staggered mesh (left), the anisotropy is defined by colored
region, as well as the numerical solution (right).

4.6 Test 5 : oblique flow

In this last example, we explore the behavior of the proposed Node-Diamond scheme using
another challenging test-case taken from the FVCA5 benchmark with the same set up. It is
termed as the oblique flow. The diffusion tensor is defined as follows

κ(x) = R(θ)×
(

1 0
0 0.001

)
×R−1(θ), and R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
,

where the rotation angle is θ = 40 degrees. The source function f is set to 0. The Dirichlet
boundary condition is prescribed by the piecewise continuous function

ue(x) =


1 on (0, 0.2)× {0}

⋃
{0} × (0, 0.2)

0 on (0.8, 1)× {1}
⋃
{1} × (0.8, 1)

0.5 on (0.3, 1)× {0}
⋃
{0} × (0.3, 1)

0.5 on (0, 0.7)× {1}
⋃
{1} × (0, 0.7)

.

We run the scheme algorithm on the first three Cartesian meshes with the aforementioned
inputs. The results are displayed on Figure 7. The solution form is visibly identified on the
coarsest mesh (4× 4) cells and takes a clearer shape as the mesh is refined. Small undershoots
are noted as the color bar shows.

5 Conclusion and perspectives

We proposed a nodal numerical scheme for the approximation of heterogeneous and anisotropic
elliptic equations over quite general polygonal meshes. Our approach consists in designing dis-
crete gradients, over local embedded diamonds per cells, that are injected in a discrete weak
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Figure 7: From left to right : approximate solution of the oblique
flow test-case on three Cartesian meshes (Cart1, Cart2 and Cart3).

formulation to obtain the Node-Diamond scheme. The objective is to unconditionally inherit
at the discrete level some structural properties such as the discrete Poincaré’s inequality and
the coercivity. We surveyed a natural extension to the case of additional advection by means
of classical finite volume techniques. By proving an asymptotic Stokes’ formula, the scheme is
shown to converge under general assumptions on the physical parameters of the model equation
and the mesh. We stress that the cell equation is made of cell-vertex contributions involving
only d.o.f connected to the vertex in question. As a result, the computational cost is improved
by eliminating the cell unknowns thanks to a simple static condensation. A practical implemen-
tation of the Node-Diamond approach can be carried out using only the cell-vertex connectivity.
Numerical results exhibited and validated the excellent behavior of the method.

As a first perspective, we wish to extend these ideas of the Node-Diamond methodology to
three dimensions so that a broad range of realistic and industrial applications can be covered.
Second, it will be interesting to develop and examine a version of the scheme in case of coupled
degenerate nonlinear parabolic equations motivated by applications in systems of population
dynamics and chemotaxis. Third, we intend to investigate its generalization to complex flows
in heterogeneous porous media with more stability quests like the satisfaction of the discrete
maximum principle.
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