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Fredholm transformation on Laplacian and rapid stabilization for

the heat equations

Ludovick Gagnon∗, Amaury Hayat†, Shengquan Xiang‡, Christophe Zhang§

August 13, 2021

Abstract

We revisit the rapid stabilization of the heat equation on the 1-dimensional torus using
the backstepping method with a Fredholm transformation. We prove that, under some
assumption on the control operator, two scalar controls are necessary and sufficient to get
controllability and rapid stabilization. This classical framework allows us to present the
backstepping method with the Fredholm transformation upon Laplace operators in a sharp
functional setting, which is the major objective of this work, from the Riesz basis properties
and the operator equality to the stabilizing spaces. Finally, we prove that the same Fred-
holm transformation also leads to the local rapid stability of the viscous Burgers equation.
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1 Introduction

We consider the following heat equation with two internal control{
∂tu−∆u = v1(t)φ1 + v1(t)φ2, (t, x) ∈ (0, T )× T,
u|t=0 = u0(x), x ∈ T, (1.1)

with T denoting the one-dimensional torus R/2πZ, (v1, v2) ∈ L2((0, T );R) are real-valued scalar
controls to be defined and (φ1, φ2) ∈ Hσ(T;R) with σ ∈ R are real-valued potentials. Our goal
is to design a suitable feedback law to stabilize the system (1.1) exponentially quickly with a
decay rate arbitrary large. A first natural question could be to wonder why not considering the
simpler system with only one scalar control{

∂tu−∆u = v(t)φ, (t, x) ∈ (0, T )× T,
u|t=0 = u0(x), x ∈ T, (1.2)

with v ∈ L2((0, T );R) a real-valued control to be defined and φ ∈ Hσ(T;R). As it turns out, as
simple as it is, this system is not controllable, due to the degeneracy of the eigenvalues of the
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Laplacian operator defined on Hs(T;R) (see Section 2). In this paper we show that at least two
internal controls are required and that, in fact, two controls are enough provided that φ1 and
φ2 satisfy some good conditions. In order to obtain the rapid stabilization result we propose a
double backstepping method, detailed in Section 4.

1.1 Main result

Our goal is to show the following result:

THEOREM 1.1. Let m ∈ R+ and φ1, φ2 ∈ Hm−1/2−, such that

φ1 =
∑
n∈N∗

a1n sin(nx), φ2 =
∑
n∈N

a2n cos(nx) (1.3)

with,
a20 6= 0 and cn−m < |akn| < Cn−m, for k ∈ {1, 2} and n ∈ N∗.

For any λ > 0, there exist K1 and K2 bounded feedback functionals on Hm+1/2+ such that for
any y0 ∈ Hm+r with r ∈ (−1/2, 1/2), the equation{

∂ty −∆y = φ1K1(y) + φ2K2(y), (t, x) ∈ (0, T )× T,
y(0, ·) = y0, x ∈ T,

(1.4)

has a unique solution y that is satisfied in L2
loc(0,+∞;Hm+r−1) sense, and

y ∈ C0([0,+∞);Hm+r(T)) ∩ L2
loc((0,+∞);Hm+r+1(T)) ∩H1

loc((0,+∞);Hm+r−1(T)). (1.5)

Moreover, we have the following exponential stability estimate

‖y(t, ·)‖Hm+r ≤ Ce−λt‖y0‖Hm+r ,∀t ∈ [0,+∞), (1.6)

where C = Cr(λ,m) is a constant independent of y0.

REMARK 1.2. We can make an interesting remark: the preceding feedback law given by K1

and K2 actually stabilizes the system in Hm+r space with r ∈ (−1/2, 1/2), while the feedback
law and the transformation does not depend on r ∈ (−1/2, 1/2).

REMARK 1.3. The assumption on a20 6= 0 is necessary, as it is related to the eigenfunction 1
of 0 eigenvalue. Otherwise, one can easily check that the “mass”,

∫
T y(t, x)dx, is conserved. In

this case, instead of converging to the zero state, the solution of the cloed-loop system converge
exponentially to the final equilibrium state ỹ(x) :=

∫
T y0(x)dx.

The same feedback also stabilizes several related nonlinear systems such as the viscous
Burgers equation and the nonlinear heat equations. More precisely, simply as an example, we
have the following theorem which corresponds to the case that m = 0 and r = 0.

THEOREM 1.4. Let φ1, φ2 ∈ H−1/2−, such that

φ1 =
∑
n∈N∗

a1n sin(nx), φ2 =
∑
n∈N

a2n cos(nx) (1.7)

with
a20 6= 0 and cn−m < |akn| < Cn−m, for k ∈ {1, 2} and n ∈ N∗.
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For any λ > 0, there exists K1 and K2 bounded feedback functionals on H1/2+ and δ > 0 such
that, for any y0 ∈ L2, the equation{

∂ty −∆y + ∂x(y2/2) = φ1K1(y) + φ2K2(y),

y(0) = y0,
(1.8)

has a unique solution y that is satisfied in L2
loc(0,+∞;H−1(T)) sense, and

y ∈ C0([0,+∞);L2(T)) ∩ L2
loc((0,+∞);H1(T)) ∩H1

loc((0,+∞);H−1(T)). (1.9)

Moreover, for any ‖y0‖L2 < δ, we have the following exponential stability estimate

‖y(t, ·)‖L2 ≤ Ce−λt‖y0‖L2 ,∀t ∈ [0,+∞), (1.10)

where C = C(λ)) is a constant independent of y0.

1.2 Related results

There exists various way to design feedback laws for infinite dimensional systems: Riccati
equations (see for instance [28, 35] and reference therein), Gramian approach [25, 36], through
Lyapunov functionals (see for instance [3, 19, 23, 24, 38]) or with pole-shifting techniques
[30, 31], and among others. The backstepping method is also among these methods, and one
traces back its origin for infinite dimensional systems to Russell [32] and to Balogh and Krstic [2]
(we refer to [9, 26, 33] for an introduction to the finite dimensional backstepping method). Seen
as a limit of a finite dimensional system, the backstepping method relied at first on a Volterra
transformation of the second kind mapping the solution to stabilize to the solution of a stable
target system. The Volterra transformation having the advantage of always being invertible,
only the existence is needed to be proven, which is equivalent to solving a PDE of the kernel
on a triangular domain. These PDEs usually do not enter in the classical Cauchy problem
framework, but different techniques are now known to solve the kernel equation: successive
approximations [27], explicit representations [27] or method of characteristics [17]. There exists
now a vast literature on the backstepping with the Volterra transformation, from which only
cite a few for the heat/parabolic equation [2, 7, 18], hyperbolic systems [4] and the viscous
Burgers equation [15]. We refer to [27] to a general overview of the backstepping method with
the Volterra transformation.

As of late, the Fredholm transformation was introduced for the backstepping method as
an alternative for certain limitations of the Volterra transformation. The idea to prove the
exponential stability remains the same, but the existence and invertibility of the transformation
is different and oftentimes more involved. We distinguish two main procedure to prove the
existence of the transformation, either by direct methods [16, 17] or, more commonly, by proving
the existence of a Riesz basis. For the latter, we again distinguish two cases: either the Riesz
basis is deduced directly by an isomorphism applied on an eigenbasis [12, 41, 40] or the existence
of a Riesz basis follows by controllability assumptions and sufficient growth of the eigenvalues
of the spatial operator allowing in particular to prove that the family is quadratically close to
the eigenfunctions [11, 13, 14, 22] (see Section 2.2 and Section 5 for a definition).

1.3 Contribution of this paper

We believe that one of the major contribution of this paper is on the thorough study of the
Fredholm transformation on Laplace operator, that is for given operator (A,B) and controlled
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systems
ẋ = Ax+Bu, (1.11)

to find suitable invertible operator T and K such that{
TA+BK = AT − λT,
TB = B.

(1.12)

The preceding equality is called the operator equality. Actually, exponential stabilization is a
direct consequence of this equality. At least formally, suppose that

ẋ1 = Ax1 +Bu1, (1.13)

by defining x2 := Tx1 and u1 := Kx1, and by adapting T on the preceding equation we get

T ẋ1 = TAx1 + TBKx1 = TAx1 +BKx1 = (AT − λT )x1. (1.14)

Therefore
ẋ2 = (A− λ)x2, (1.15)

which implies that x2 decays exponentially with rate λ and, since T is an invertible operator,
so does x1.

A central problem on the study of the operator equality, therefore on the rapid stabilization
via backstepping using Fredholm transformation, is on the existence of a unique solution (T,K):

Open Problem 1. Let given A ∈ Rn×n, B ∈ Rn×l. What is the necessary and sufficient
condition on (A,B) to guarantee the existence and the uniqueness of the solution (T,K) ∈
GLn(R)× Rl×n to the operator equality (1.12)?
What about the infinite dimensional cases that are related to partial differential equations, say
A and B are (unbounded) operators?

This problem was proved in the finite dimensional case and when the degree of B is 1
(namely l = 1) in [10], where the condition is given by (A,B) verifying Kalman condition for
the exact controllability. Then, somewhat it indicates that controllability is a sufficient condi-
tion, which has been further verified to several important PDE models, as transport equation
[41], KdV equation [13], the linearized Schrödinger equation [11], the linearized Saint-Venant
equation [12], etc. We emphasize that one common credit of these results is that the dimen-
sion of the operator B is one, or more essentially the eigenvalues of the operator A are simple
and isolated. We also notice that in [8] concerning KdV-KdV equation the authors used back-
stepping of degree two as dealing with coupled systems, which somehow indicates dim B = 2
but the eigenvalues are still simple and isolated. For more broadly kinds of PDE models, for
example when eigenvalues with higher multiplicity appear, this problem is still widely open. In
this paper, for the first time, we treat the case that dim B = 2 while only one control is not
able to stabilize the system. This phenomenon appears quite often when we study on compact
Riemannian manifolds, for example Schrödinger equations on torus.

Another important contribution of our paper is to present a sharp functional setting, with
respect to the state space and control space, for the application of the backstepping method
with a Fredholm transform in the case of the Laplacian with periodic boundary conditions. In
particular, we deduce the sharp spaces Hs(T) for which the Riesz basis exists, which is crucial
for the application of the backstepping method with a Fredholm transformation. We hope
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this precise framework could extend our knowledge on backstepping method using Fredholm
type transformation, for example on the use of nonlinear systems, and on other important
models. For instance, Proposition 4.1 Corollary 4.2 and Lemma 5.1 can be similarly proved for
Schrödinger equations on T, which somehow extends the analysis of [11]. It is interesting to
further investigate whether these new observation could be applied to the bi-linear Schrödinger
equations. This analysis could also be applied to evolution equations with fractional Laplacian
(−∆)α, at least for α strictly larger than 3/4, where similar results (at least partially, depending
on the value of α) to Lemma 5.1 can be proved.
Indeed, it seems that the critical growth of the eigenvalues for the existence of a quadratically
close Riesz basis is |λn| ' n3/2+ε (i.e. α > 3/4 is the case of the fractional Laplacian), meaning
that for a growth of order |λn| ' ns, 1 ≤ s ≤ 3/2 does not seem enough to prove that the
family is quadratically close to the eigenbasis. An interesting open problem is therefore to
apply the backstepping method with a Fredholm type transformation for spatial operator with
eigenvalues with growth |λn| ' ns, 1 < s ≤ 3/2, the first-order equation being excluded due to
the positive answer [12, 41] and its link to other transformation such as the Hilbert transform.
However the case 1 < s ≤ 3/2 remains and this analysis may give some inspiration on the study
of fractional Laplacian with the value of α lower than this threshold.

Moreover, we also highlight that the framework investigated here is closely related to the
one found for the linear Schrödinger equation in [11]. A major distinction between [11] and the
present article is that the well-posedness for the closed-loop system here relies on the dissipa-
tion properties of the heat equation. Hence, there is no need to satisfy the operator equality
T (A+BK) = (A− λI)T for functions in D(A+BK) (see Remark 4.3).

Finally, as we can see from Theorem 1.1 (more precisely, from Section 7), it is totally a
new observation that the same feedback law stabilizes the system in Hr sense with some cost
Cr(λ,m) depending on r ∈ (−1/2, 1/2) and λ /∈ N . It is an important but challenging problem
to get any quantitative description of this constant Cr(λ,m), as it is linked with the cost of
the stabilization procedure from the application point of interest, moreover, it also may linked
with finite time stabilization problems, namely CeCλ

β
type estimates. So far such estimates has

been achieved via different methods, rely on direct energy estimates [18], on the use of Bessel
functions [20], with the help of induction on successive iteration [37], and benefiting spectral
inequality [38, 39]. However, so far such important property has not yet been discovered for
Fredholm type backstepping methods. Armed with the precise description introduced in this
paper, we believe that we are more close to an answer.

1.4 Organization of the paper

This paper is organized as follows: in Section 1.2 we discuss some related results and previous
work, in Section 2 we define the functional setting, in Section 3 we show that the system (1.2)
with a single control is not controllable, in Section 4 we present the double backstepping ap-
proach, in Section 5 and 6 we prove the main propositions and lemma and finally in Section 7
we prove Theorem 1.1–1.4.
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2 Functional setting

2.1 Function spaces

We start by recalling some results on the eigenvectors and eigenvalues of the Laplacian on
the torus. Observe that the classical Fourier series {einx}n∈Z in T are eigenfunctions of the
Laplacian operator ∆ associated to the eigenvalues λn := −n2, and form an orthonormal basis
of L2(T). Note that thanks to the fact that we are working on T without boundary, the Sobolev
space Hs coincide with the span of {nseinx}. Note also that

λn = λ−n = −n2,

and therefore the eigenvalues are degenerated. Except in Section 3 where using the Fourier series
{einx}k∈Z is convenient, we will use in the following basis of eigenfunctions of the Laplacian

f1n := sinnx, f2n := cosnx, associated to λn := −n2, ∀n ∈ N∗,
f20 := 1 associated to λ0 := 0.

(2.1)

We further define

L2
1 := span{sinnx}n∈N∗ , describing the odd functions, (2.2)

L2
2 := span{cosnx}n∈N, describing the even functions, (2.3)

L2
i is a subspace of L2 that is endowed with the same norm, (2.4)

L2(T) = L2
1 ⊕ L2

2. (2.5)

Similarly, concerning Sobolev space s in T, recall that one has

Hm(T)={f =
∑
n∈N∗

a1nf
1
n +

∑
n∈N

a2nf
2
n|
∑
n∈N∗

n2m
(
(a1n)2 + (a2n)2

)
< +∞}, (2.6)

with the (inhomogeneous) Sobolev norm

‖f‖2Hm := (a20)
2 +

∑
n∈N∗

n2m
(
(a1n)2 + (a2n)2

)
. (2.7)

In this paper we say that the function y belongs to Hm−, and that the functional L :
Hm+ → R is bounded, when

y ∈ Hm−ε for all ε > 0, (2.8)

L : Hm+ε → R is bounded for all ε > 0. (2.9)

We also define the sub-spaces Hm
i , i ∈ {1, 2} as follows, for m ∈ R

Hm
1 := {a ∈ Hm(T) | a =

∑
n∈N∗

anf
1
n}, (2.10)

Hm
2 := {a ∈ Hm(T) | a =

∑
n∈N

anf
2
n}, (2.11)

Hm(T) = Hm
1 ⊕Hm

2 . (2.12)
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Notice that
∆ : Hm

k → Hm−2
k . (2.13)

We remark here that for f ∈ Hm+1
1 , g ∈ Hm−1

1 , the inner product 〈·, ·〉Hm
1

is well-defined and is
given by

〈f, g〉Hm
1

=
∑
n∈N∗

(nmfn)(nmgn) =
∑
n∈N∗

(nm+1fn)(nm−1gn),

which, inspired by the last term of the preceding formula, can be also denoted as 〈·, ·〉Hm+1
1 ,Hm−1

1
.

In order to describe the precise definition domain of the operator T , we recall that for the
Schwartz type space S(T) satisfying fast decay at high frequency, one has

S(T) = {f =
∑
n∈N∗

a1nf
1
n +

∑
n∈N

a2nf
2
n|∀m ∈ N, ∀ε > 0, ∃M such that (2.14)

n2m
(
(a1n)2 + (a2n)2

)
< ε,∀n > M}. (2.15)

We also define the decomposition of in odd and even function as follows

S1 := {a ∈ S|〈a, f2n〉 = 0, ∀n ∈ N}, (2.16)

S2 := {a ∈ S|〈a, f1n〉 = 0, ∀n ∈ N∗}. (2.17)

While, by denoting the space S ′ as the dual of S, we also define

S ′1 := {a ∈ S ′|〈a, f2n〉 = 0, ∀n ∈ N}, (2.18)

S ′2 := {a ∈ S ′|〈a, f1n〉 = 0, ∀n ∈ N∗} (2.19)

which strictly speaking is not the dual of Sk, but as the quotient space S ′/Sk+1. We easy
observe that

S ⊂ Hs ⊂ S ′, ∀s ∈ R, (2.20)

Sk ⊂ Hs
k ⊂ S ′k, ∀s ∈ R, ∀k ∈ {1, 2}. (2.21)

2.2 Riesz basis

Finally we recall here the definition of a Riesz basis, see for instance a monograph on the
moment theory [1] (or related papers [11]).

DEFINITION 2.1 (Vector family). Let X be a Hilbert space. A family of vectors {ξn}n∈I ,
where I = Z, N, or N∗ is said to be

(1) Minimal in X, if for every k ∈ I, ξk /∈ span{ξi; i ∈ I − {k}}.

(2) Dense in X, if span{ξi; i ∈ I} = X.

(3) ω-independent in X, if∑
k∈I

ckξk = 0 in X with {cn}n∈I ∈ l2(I) =⇒ cn = 0, ∀n ∈ I. (2.22)
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(4) Quadratically close to a family of vector {en}n∈I , if∑
k∈I
‖ξk − ek‖2X < +∞. (2.23)

(5) Riesz basis of X, if it is the image of an isomorphism (on X) of some orthonormal
basis.

(5)’ Riesz basis of X (an equivalent definition of (5)), if it is dense in X and if there exist
C1, C2 > 0 such that for any {an}n∈I ∈ l2(I) we have

C1

∑
k∈I
|ak|2 ≤ ‖

∑
k∈I

akξk‖2X ≤ C2

∑
k∈I
|ak|2. (2.24)

These definitions allow us to give the following criteria for a Riesz basis which will be used
later on in Section 5.2.

LEMMA 2.2. Let {ξn}n∈I be quadratically close to an orthonormal basis {en}n∈I . Suppose
that {ξn}n∈I is either dense in X or ω-independent in X, then {ξn}n∈I is a Riesz basis of X.

It is noteworthy that under the assumption that {ξn}n∈I is quadratically close to some
orthonormal basis {en}n∈I , if for some coefficients {cn}n∈I ∈ RI (or CI) the following series
converge in the Cauchy sense ∑

k∈I
ckξk converges in X, (2.25)

which in particular contains the case that it converges to 0, then automatically we know that
the coefficients {cn}n∈I belong to l2(I). Indeed, we know from the fact that the series converges
in X that, for every N , ∑

k>|N |,k∈I

ckξk converges in X, (2.26)

which means that the X norm of the preceding series is finite:

‖
∑

k>|N |,k∈I

ckξk‖X < +∞. (2.27)

Since {ξn}n∈I is quadratically close to {en}n∈I , for some N sufficiently large we have∑
k>|N |,k∈I

‖(ξk − ek)‖2X <
1

4
, (2.28)

which, to be combined with the fact that {en}n∈I is an orthonormal basis of X, yield

‖
∑

k>|N |,k∈I

ckξk‖X = ‖
∑

k>|N |,k∈I

ckek +
∑

k>|N |,k∈I

ck(ξk − ek)‖X ,

≥ ‖
∑

k>|N |,k∈I

ckek‖X − ‖
∑

k>|N |,k∈I

ck(ξk − ek)‖X

≥

 ∑
k>|N |,k∈I

(ck)
2

1/2

−

1

4

∑
|k>N |,k∈I

(ck)
2

1/2
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=
1

2

 ∑
k>|N |,k∈I

(ck)
2

1/2

.

Therefore, {cn}n∈I ∈ l2(I).
We also have the following Lemma that will be useful in the Section 5.2.

LEMMA 2.3. Let X, Y be Hilbert spaces. Let T : X → Y be an isomorphism. Suppose that
{ξn}n∈I is a Riesz basis of X, then with ζn := Tξn, the family {ζn}n∈I is a Riesz basis of Y .

Proof. If X = Y we can directly use Definition 2.1 (5) to show that it is a Riesz basis as the
image of an orthonormal basis by an isomorphism on X. Otherwise, a quite straightforward
proof is given according to Definition 2.1 (5)’.

We first show the inequality (2.24). Thanks to the fact that T is an isomorphism and that
{ξn}Z is a Riesz basis of X, there exist constants C, C1 and C2 such that

‖
∑
k∈I

akζk‖2Y = ‖T
∑
k∈I

akξk‖2Y ≤ C‖
∑
k∈I

akξk‖2X ≤ CC2

∑
k∈I
|ak|2,

and
‖
∑
k∈I

akζk‖2Y = ‖T
∑
k∈I

akξk‖2Y ≥ C−1‖
∑
k∈I

akξk‖2X ≥ C−1C1

∑
k∈I
|ak|2.

Next, we show that {ζn}I is dense in Y . For any ζ ∈ Y , since T−1ζ =: ξ ∈ X, for any ε > 0
there exist a finite combination such that

‖
∑
|k|≤N

akξk − ξ‖X < ε. (2.29)

Thus

‖ζ −
∑
|k|≤N

akζk‖Y = ‖Tξ − T
∑
|k|≤N

akξk‖Y

≤ C‖ζ −
∑
|k|≤N

akξk‖X

≤ Cε,

which concludes the proof of the lemma.

LEMMA 2.4 (Proposition 19 of [6]). Let X be a Hilbert space. Suppose that {ξn}n∈I is a
Riesz basis of X, then its bi-orthogonal sequance {ξ′n}n∈I is also a Riesz basis of X, where
bi-orthogonal means,

〈ξn, ξ′m〉X = δn,m, ∀n,m ∈ I. (2.30)

For any f ∈ X, there exists a unique sequence {ak}k∈I ∈ l2(I) such that

f =
∑
k∈I

akξk in X, (2.31)

where the series converges in X under Cauchy sequence sense. Moreover,

ak := 〈f, ξ′k〉X , (2.32)

C1

∑
k∈I
|ak|2 ≤ ‖f‖2X ≤ C2

∑
k∈I
|ak|2. (2.33)
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3 Non-Stabilizability and non-controllability with a single in-
ternal control

3.1 Non-controllable with one scalar control

In this section we show that the system (1.2) is not controllable. Let T > 0. Recall that
{einx}n∈Z is a basis of eigenfunctions of A associated to the eigenvalue λn = −n2. For ease of
the presentation and for symmetry considerations, in this section we choose to work with the
orthonormal basis {einx}n∈Z instead of {sinnx, cosnx}. Therefore, either

〈φ, einx〉 6= 0, ∀ n ∈ Z, (3.1)

or the system is non-controllable as there exists n0 such that 〈φ, ein0x〉 = 0 and therefore the
control has no effect on the associated one dimensional vector space: e−n

2
0t+in0x is a solution

of (1.2) with initial condition ein0x, whatever the control is. Assume now that (3.1) holds.
Motivated by the moment method (see for instance [21]) and the fact that λn = λ−n we have
for a solution u to (1.2) with u(0) = 0,

〈u(T, ·), einx〉

〈φ, einx〉
=
〈u(T, ·), e−inx〉

〈φ, e−inx〉
, (3.2)

thus let us denote

dn :=
〈φ, einx〉
〈φ, e−inx〉

, (3.3)

one has
〈u(T, ·), einx〉 = dn〈u(T, ·), e−inx〉. (3.4)

Hence the states u(T, ·) that are reachable at time T satisfy the following

u(T, x) = d0 +
∑
n≥1

kn
(
dne

inx + e−inx
)
, (3.5)

which means that the projection of the reachable space on the two dimensional space Span{einx, e−inx}
is always of one dimension, hence the system is not controllable.

This non-controllability prevents any stabilization result. For instance, we can simply
consider the space Span{sinnx, cosnx}, as we are only allowed to change the direction of(
ane

inx + e−inx
)
, the projection of the solution on its co-direction

(
einx − ane−inx

)
does not

change, thus the solution is not asymptotically stable whatever the feedback control.
This is different from the paper by [29] for controllability and [38] for finite time stabiliza-

tion (the special case for T, as these papers deal with general compact Riemannian manifolds),
where the controllability and the stabilizability is obtained under the assumption that the con-
trolled domain is ω ⊂ T, for which the control has infinite dimension of degree and not a one
dimensional scalar control.

3.2 Controllable with two scalar controls

According to the preceding section, two controls are required for the controllability of the heat
equation on T: φ1v1(t) + φ2v2(t), which corresponds to the system 1.1. In fact, two controls
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are eventually sufficient. In the following we prove the controllability in L2(T) space, while the
other spaces can be treated similarly.

Due to the smoothing effect of the heat equation we only consider the so called null con-
trollability, i.e. for any u0 ∈ L2(T) there exist v1, v2 ∈ L2(0, T ) (this space is the natural space
according to Lions’ Hilbert Uniqueness Method, though this is not the optimal candidate) such
that the final state becomes 0. In order to simplify the presentation, we always assume the pro-
jections of φ1, φ2, u0 on the direction corresponding to the eigenfunction ei0x to be 0. Assuming
that

u0 =
∑
n∈N∗

b1ne
inx + b2ne

−inx ∈ L2(T),

Direct calculation yields,

u(T ) =

∫ T

0
eA(T−s)(φ1v1(t) + φ2v2(t))ds+

∫ T

0
eA(T−s)u0ds

=
∑
n∈N∗

(∫ T

0
eλn(T−s)

(
〈φ1, einx〉v1(s) + 〈φ2, einx〉v2(s)

)
ds

)
einx

+
∑
n∈N∗

(∫ T

0
eλn(T−s)

(
〈φ1, e−inx〉v1(s) + 〈φ2, e−inx〉v2(s)

)
ds

)
e−inx,

+
∑
n∈N∗

(
b1n
en2T

einx +
b2n
en2T

e−inx
)
.

The preceding formula indicates that the null controllability requires that(∫
eλn(T−s)v1(s),

∫
eλn(T−s)v2(s)

)(
〈φ1, einx〉 〈φ1, e−inx〉
〈φ2, einx〉 〈φ2, e−inx〉

)
= −

(
b1n
en2T

,
b2n
en2T

)
.

Consequencely, for any n ∈ N∗ provided that the following matrix is invertible, we can control
the two dimensional space Span{einx, e−inx} = Span{cosnx, sinnx},(

〈φ1, einx〉 〈φ1, e−inx〉
〈φ2, einx〉 〈φ2, e−inx〉

)
, ∀n ∈ N∗.

It is a quite general assumption to achieve, a simple example can be

φ1(x) =
∑
n∈N∗

c1ne
inx, φ2(x) =

∑
n∈N

c2ne
−inx,

with c1nc
2
n 6= 0 for any n ∈ N∗. Note that, as mentioned earlier, we excluded the direction

1 = ei0x corresponding to the case n = 0 to simplify the presentation but it could be included
as well. Heuristically, this case already provides the exact controllability in projections on
finite dimensional subspaces, for example, span{einx : −N < n < N}. Moreover, if further
c1n, c

2
n verify some suitable growth assumption, the system is even exact null controllable in

L2(T).

PROPOSITION 3.1. If there exist −∞ < α ≤ β < 1/2 and c, C > 0 such that

cnα ≤ |c1n|, |c2n| ≤ Cnβ,∀n ∈ N∗ (3.6)

then the system (1.1) is L2(T) exact null controllable.
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REMARK 3.2. The assumption on β < 1/2 is here to guarantee that the functions φi ∈ H−1.
Thus for any given v(t) ∈ L2(0, T ) the inhomogeneous term v(t)φi(x) belongs to L2(0, T ;H−1),
which indicates that the open-loop system is well-posed in C0([0, T ];L2)∩L2(0, T ;H1). On the
other hand, the assumption −∞ < α is used for the null controllability property that will be
proved in the following. The lower bound on cin proposed here is not the sharp condition. As
we can see from the following proof, to get the null controllability in L2(T) space, it suffices to
to find some 0 < T0 < T and C > 0 such that

Ce−T0n
2 ≤ |c1n|, |c2n|,∀n ∈ N∗, (3.7)

which is of course weaker than the condition proposed in Proposition 3.1.

Proof of Proposition 3.1. In order to solve the controllability problem, it suffices to treat the
following moment problem: show that for any {b1n}N∗ , {b2n}N∗ ∈ l2N∗ , there exist v1(t), v2(t) ∈
L2(0, T ) such that ∫ T

0
e−n

2(T−s)v1(s)ds =
b1n

en2T c1n
, ∀n ∈ N∗, (3.8)∫ T

0
e−n

2(T−s)v2(s)ds =
b2n

en2T c2n
, ∀n ∈ N∗. (3.9)

Solving this problem is, in fact, a direct consequence of the following moment theory.

LEMMA 3.3 ([21], Section 3, Equation (3.25)). For any T > 0. The sequence {e−n2(T−s)|s∈(0,T )}n∈N∗
is minimal in L2(0, T ), thus admits a bi-orthogonal sequence {Ψn}n∈N∗ satisfying∫ T

0
e−n

2(T−s)Ψm(s)ds = δn,m, ∀n,m ∈ N∗. (3.10)

Moreover, there exists C > 0 such that

‖Ψn‖L2(0,T ) ≤ CeCn. (3.11)

By adapting Lemma 3.3, and assuming (3.6), we know that the moment problem (3.8) can
be solved by setting

v1(s) :=
∑
n∈N∗

b1n
en2T c1n

Ψn, (3.12)

satisfying, from (3.6),

‖v1‖L2(0,T ) ≤
∑
n∈N∗

Cb1nn
−αeCn−Tn

2 ≤ C2

∑
n∈N∗

b1ne
−Tn2/2 < +∞, (3.13)

where C2 > 0 is a constant independent of n. Then a similar procedure leads to v2(t) as the
solution of the moment problem (3.9).
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4 Double backstepping: strategy and outline

Inspired by the fact that (sin(nx), cos(nx)) form an orthonormal basis of the two-dimensional
eigenspaces corresponding to the eigenvalue λn, we directly consider the special form of φk:

φ1 :=
∑
n∈N∗

a1n sinnx ∈ L2
1, (4.1)

φ2 :=
∑
n∈N

a2n cosnx ∈ L2
2. (4.2)

We can similarly separate the function y(t) in

y(t) =: y1(t) + y2(t) with yk ∈ L2
k. (4.3)

Therefore,
∂tyk − ∂2xyk = φkuk(t), ∀k ∈ {1, 2}. (4.4)

The logic behind is to deal with the odd functions using the first control and with the even
functions using the other one. What we are going to show is that each of the systems (4.4) can
be rapidly stabilized for k ∈ {1, 2}.

To do so, we would like to show that for any k ∈ {1, 2} and for any λ > 0, under some
conditions on φk, there exists an isomorphism Tk(λ) : L2

k → L2
k as well as a feedback uk(t) :=

Kk(λ)yk(t, x) such that the solution of{
∂tyk − ∂2xyk = φkKkyk,

yk(0) ∈ L2
k

satisfies that, zk := Tk(λ)yk verifies the following equation

∂tzk − ∂2xzk − λzk = 0, zk ∈ L2
k. (4.5)

With this property, the stabilization result would follow simply by a decomposition of y in
odd and even parts provided that the system is well-posed.

This existence of an isomorphism Tk and a feedback law Kk is given by the following key
proposition.

PROPOSITION 4.1. Let the countable set

N := {i2 − j2 : i, j ∈ N}, (4.6)

let m ∈ R and k ∈ {1, 2}. Assume that the sequence {akn}n satisfies

cn−m < |akn| < Cn−m, for k ∈ {1, 2}, for n ∈ N∗, (4.7)

a20 6= 0. (4.8)

Then for any λ /∈ N , there exists a sequence {Kk
n}n satisfying

K2
0 6= 0, (4.9)

cnm < |Kk
n| < Cnm, for k ∈ {1, 2}, for n ∈ N∗, (4.10)
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{(λ+ aknK
k
n)nr}n ∈ l2, ∀r ∈ [0, 1/2), (4.11)

Kk is a bounded functional on H
m+1/2+
k , (4.12)

such that the linear operator Tk defined as follows

Tk :S → S ′k, (4.13)

fkn 7→ −Kk
n

∑
p

apf
k
p

p2 + λ− n2
, (4.14)

f3−kn 7→ 0, (4.15)

can be linearly extended on Hm−3/2+ satisfying

Tk is an isomorphism on Hm+s
k for any s ∈ (−3/2, 3/2), (4.16)

Tkφk = φk in H
m−1/2−
k , (4.17)

and moreover, for any r ∈ (−1/2, 1/2), for any ϕ ∈ Hm+r+1
k we have that

(TkA+ TkφkKk)ϕ = (ATk − λTk)ϕ in Hm+r−1
k . (4.18)

This proposition gives exactly what we want. Indeed, if we denote by

B = (φ1, φ2), K = (K1,K2)
T

and the linear operator T by

Tf := T1f + T2f, ∀f ∈ S, (4.19)

then immediately we get the following.

COROLLARY 4.2. Under the assumption of Proposition 4.1, the transformation T can be
linearly extended on Hm−3/2+, moreover we have that

T is an isomorphism on Hm+s for any s ∈ (−3/2, 3/2),

and that for any r ∈ (−1/2, 1/2), for any ϕ ∈ Hm+r+1,

(TA+ TBK)ϕ = (AT − λT )ϕ in Hm+r−1, (4.20)

TB = B in Hm−1/2−. (4.21)

The proof of Proposition 4.1 will be shown in Section 5. What remains to be done is to
ensure that the system is well-posed. This is the object of the next subsection.

REMARK 4.3. The functional setting of (4.20) is optimal without assuming additional com-
patibility conditions. Indeed, as shown in [11], the operator equality (4.20) is satisfied for r = 1
if φ ∈ Hm+r+1 satisfies additional compatibility conditions, for ϕ satisfying some regularity
requirement, namely D(A + BK). In [11], this can be seen from the fact that r ≥ 1/2 is the
precise space for which the trace of φ make sense and for which the compatibility conditions can
be ensured.
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4.1 On the well-posedness of the closed-loop systems

In this section we show that the closed-loop systems provided in Theorem 1.1 and Theorem 1.4
are actually well-posed.

We mainly focus on the well-posedness of the heat equation, while similar proof yields the
well-posedness of the viscous Burgers equation.

It suffices to consider the case of m = 0, while the other cases can be proved similarly. Fur-
thermore, for the ease of notations, here we only prove the following special case corresponding
to r = 0, while the other cases where r ∈ (−1/2, 1/2) can be proved similarly. Inspired by the
decomposition (4.4) and the fact that Hm = Hm

1 ⊕Hm
2 it suffices to consider the well-posedness

in Hm
1 and Hm

2 separately. The well-posedness of the even and odd part which is given by the
following lemma, whose proof is shown in Section 6.

LEMMA 4.4 (Well-posedness of the odd and even part: m = 0, r = 0). Let k ∈ {1, 2}. Let

y0 ∈ L2
k. Let φ ∈ H−1k . Let Kk : H

3/4
k → R be bounded. The equation{
∂ty −∆y = φkKk(y),

y(0) = y0,
(4.22)

has a unique solution that is satisfied in L2(0, T ;H−1k ) sense, and

y(t) ∈ C0([0,+∞);L2
k) ∩ L2

loc(0,+∞;H1
k) ∩H1

loc(0,+∞;H−1k ). (4.23)

COROLLARY 4.5 (Case m = 0, r ∈ (−1/2, 1/2)). Let k ∈ {1, 2}. Let r ∈ (−1/2, 1/2). Let

y0 ∈ Hr
k . Let φ ∈ H−1/2−k . Let Kk : H

1/2+
k → R be bounded. The equation (4.22) has a unique

solution in the L2(0, T ;Hr−1
k ) sense, and

y(t) ∈ C0([0,+∞);Hr
k) ∩ L2

loc(0,+∞;Hr+1
k ) ∩H1

loc(0,+∞;Hr−1
k ). (4.24)

REMARK 4.6 (Cases m 6= 0, r ∈ (−1/2, 1/2)). Let k ∈ {1, 2}. For the other cases where

m 6= 0, we are dealing with y0 ∈ Hm+r
k , φk ∈ H

m−1/2−
k ,Kk : H

m+1/2+
k → R. Either we can

perform the same proof with respect to the pivot space Hm
k but, this time, or we can consider

the isomorphism Dm : Hm
k → L2

k:

Dm : n−mfkn 7→ fkn , (4.25)

with convention that Dm(f20 ) = f20 , where we recall that fkn is an eigenfunction of A given by
(2.1). Observe that Dm commute with Laplacian, thus the equation (4.22) is equivalent to{

∂tw −∆w = (Dmφk)KkD
−m(w),

w(0) = D−my0 ∈ Hr
k ,

(4.26)

with y = Dmw, which goes basck to the case of Corollary 4.5.

By combining Lemma 4.4, Corollary 4.5, Remark 4.6 and the fact that Hm = Hm
1 ⊕Hm

2 ,
we immediately get the well-posedness of the equation (1.4).

COROLLARY 4.7 (Well-posedness of the heat equation (1.4)). Let m ∈ R. Let r ∈
(−1/2, 1/2). Let y0 ∈ Hm+r. Let φk ∈ H

m−1/2−
k for every k ∈ {1, 2}. Let Kk : Hm+1/2+ → R

be bounded satisfying Kk : H
m+1/2+
3−k → 0 for every k ∈ {1, 2}. The equation (1.4) has a unique

solution in the L2(0, T ;Hm+r−1) sense, and

y(t) ∈ C0([0,+∞);Hm+r) ∩ L2
loc(0,+∞;Hm+r+1) ∩H1

loc(0,+∞;Hm+r−1). (4.27)
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Moreover, similar to Lemma 4.4 we also get the following well-posedness of the closed-loop
viscous Burgers system (1.8).

LEMMA 4.8 (Well-posedness of the viscous Burgers equation (1.8)). Let y0 ∈ L2. Let φ1, φ2 ∈
H−1. Let K1,K2 : H3/4 → R be bounded. The equation{

∂ty −∆y + ∂x(y2/2) = φ1K1(y) + φ2K2(y),

y(0) = y0,
(4.28)

has a unique solution that is satisfied in L2(0, T ;H−1) sense, and

y(t) ∈ C0([0,+∞);L2) ∩ L2
loc(0,+∞;H1) ∩H1

loc(0,+∞;H−1). (4.29)

Moreover,
‖y(t, ·)‖L2 ≤ eCt‖y0‖L2 , ∀ t ∈ [0,+∞). (4.30)

5 Proof of Proposition 4.1

In this section we only work on the odd functions which correspond to the Hm
1 spaces. We

assume k = 1 in the following. Similar results hold for even functions which correspond to
the Hm

2 spaces. To simplify the notations, in this section we ignore the index k and we also
denote T := Tk,K := Kk and φ := φk. This Section will be divided in several parts: first we
reformulate the problem by projecting the equation on the eigenfunctions of A and we define a
candidate T to satifies the operator equality (4.18); second we prove some Riesz basis properties;
then we construct a candidate K that satisfies the condition Tφ = φ weakly; and finally we
show that this candidate allows T to be an isomorphism that satisfies the operator equality
(4.18).

5.1 Setting up for the backstepping transformation

We want to map the solution of

yt − yxx = φKy, y ∈ L2
1, (5.1)

via transformation T , to the solution of

zt − zxx − λz = 0, z ∈ L2
1. (5.2)

To achieve this aim we would like T to satisfies formally the backstepping conditions

TA+ φK = AT − λT (5.3)

Tφ = φ (5.4)

for a suitable feedback law K:

K : fn 7→ 〈fn,K〉 =: Kn ∈ R. (5.5)
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Projected on the eigenvectors fn := sinnx with eigenvalues λn = −n2, the formal relation (5.3)
becomes

T (∆fn) + 〈fn,K〉φ = ∆(Tfn)− λ(Tfn), (5.6)

〈Tφ, fn〉 = 〈φ, fn〉. (5.7)

Defining
hn := Tfn, (5.8)

the first condition becomes
λnhn + 〈fn,K〉φ = ∆hn − λhn. (5.9)

Projecting the preceding equation now on fp, defining

ap := 〈φ, fp〉

and using the fact that ∆ is self-adjoint we get

λn〈hn, fp〉+ 〈fn,K〉ap = (λp − λ)〈hn, fp〉, (5.10)

Hence, for any n, p ∈ N∗,
〈hn, fp〉 =

−Knap
λn − λp + λ

(5.11)

Therefore

qn := − hn
Kn

=
∑
p∈N∗

apfp
λn − λp + λ

, ∀n ∈ N∗. (5.12)

Inspired by the preceding formula, the number λ should be selected in such a way that

λn − λp + λ 6= 0,∀p, n ∈ N∗, (5.13)

which is rather easy to achieve, for example to choose from N∗+ 1/2. More precisely, it suffices
to choose

λ /∈ N := {i2 − j2 : i, j ∈ N}. (5.14)

5.2 Riesz basis properties

Recall that for any n ∈ N∗,

fn = sinnx, λn = −n2, (5.15)

A := ∆, φ =
∑
n∈N∗

anfn, (5.16)

hn := Tfn, −Knqn := hn, (5.17)

qn =
∑
p∈N∗

apfp
λn − λp + λ

, (5.18)

gn :=
∑
p∈N∗

fp
λn − λp + λ

∈ H3/2−. (5.19)
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This last claim on the regularity of the gn comes from the growth of the eigenvalues λp, i.e.,
for any n ∈ N∗ we have

‖gn‖2Hs =
∑
p∈N∗

p2s

(p2 − n2 + λ)2
< +∞,∀s ∈ (−∞, 3/2), (5.20)

‖gn‖2Hs =
∑
p∈N∗

p2s

(p2 − n2 + λ)2
= +∞, for s = 3/2. (5.21)

Notice that {an}n∈N∗ is uniquely determined by the value of the function φ, while the se-
quences {gn}n∈N∗ and {qn}n∈N∗ are independent of the choice of {Kn}n∈N∗ . Hence any sequence
{Kn}n∈N∗ determines the value of {hn}n∈N∗ , thus the operator T , and such operator T (at least
formally) satisfies the equation (5.3).
The following lemma is devoted to the properties of {gn}n∈N∗ , to the properties of {qn}n∈N∗
provided some suitable assumption on {an}n∈N∗ , and to the properties of the transformation T
provided some assumption on both {an}n∈N∗ and {Kn}n∈N∗ .

LEMMA 5.1. Let m ≥ 0. Let an 6= 0 behaves like cn−m < |an| < Cn−m. Let λ /∈ N .
Successively we are able to prove the following properties. Moreover, all the choices of s and r
in the following are sharp.

(1) {gn}n∈N∗ is a Riesz basis of L2
1.

(2) Let s ∈ (−3/2, 3/2). {n−sgn}n∈N∗ is a Riesz basis of Hs
1 .

(3) Let s ∈ (−3/2, 3/2). {n−sqn}n∈N∗ is a Riesz basis of Hm+s
1 .

(4) Let m ≥ 0. Let s ∈ (−3/2, 3/2). If Kn := 〈fn,K〉 is chosen in such a way that
|Kn| < Cnm, then the transformation T is bounded from Hm+s

1 to itself.
Moreover, if cnm < |Kn| < Cnm, then the transformation T is an isomorphism from
Hm+s

1 to itself.

(5) Let r ∈ [0, 1/2). There is the following smoothing effect,∑
n∈N∗

‖qn − anfn/λ‖2Hm+r
1

< +∞. (5.22)

(6) Let r ∈ [0, 1/2). Similar smoothing effect also holds in the space H−1+m,∑
n∈N∗

‖n(qn − anfn/λ)‖2
H−1+m+r

1
< +∞. (5.23)

(7) Let m = 0. Let r ∈ [0, 1/2). ∑
n∈N∗

(qn −
anfn
λ

) ∈ Hr
1 . (5.24)
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Proof of Lemma 5.1. For ease of notations, in this paper we fix

λ = N = 4M + 2,

which guarantees the fact that p2 + λ − n2 6= 0. However, all the results hold with similar
calculation for any λ outside the special subset N .

(1) {gn}n∈N∗ is a Riesz basis of L2
1. We proceed in two steps. We start by showing that

{gn}n∈N∗ is quadratically close to a Riesz basis in L2
1. Then we show that it is ω-independent

or dense in L2
1, which, together with the quadratically close behavior, ensures that it is a Riesz

basis of L2
1.

{
∑
p∈N∗

fp
λn − λp + λ

}n∈N∗ is quadratically close to {fp
λ
}n∈N∗ in L2

1. (5.25)

It suffices to show that ∑
n∈N∗

∑
p 6=n

(
1

p2 + λ− n2

)2

< +∞. (5.26)

Thus it further suffices to prove

∑
n>N

(
∑
p>n

+
∑
p<n

)

(
1

p2 + λ− n2

)2

< +∞. (5.27)

as well as

I :=
∑
n≤N

(
∑
p>n

+
∑
p<n

)

(
1

p2 + λ− n2

)2

< +∞ : (5.28)

We can express I in the following fashion,

I =
∑

j=p2+λ−n2, n<N

1

j2
, counting multiplicity of j, (5.29)

for any possible j the multiplicity count at most as N, thus

I < N
∑ 1

j2
< +∞. (5.30)

For the first part of (5.27) as p > n, we have

∑
n>N

∑
p>n

(
1

p2 + λ− n2

)2

≤
∑
n=N

∑
k=1

(
1

k2 + 2kn

)2

,

≤
∑
n=1

∑
k=1

(
1

kn

)2

< +∞.

For the second part as p < n, there exists j ∈ {1, ..., n − 1} such that p = (n − j) and we
know that for any such j

n2 − (n− j)2 − λ ≥ (n2 − (n− j)2)/2. (5.31)
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Indeed, using that λ = N .

n2 − (n− j)2 − λ− (n2 − (n− j)2)/2 = n2/2− (n− j)2/2−N,
≥ jn− j2/2−N,

(5.32)

and the right-hand side is a second order polynomial whose minimum is achieved either for
j = 1 or for j = n− 1. As n ≥ N + 1,

n2 − (n− j)2 − λ− (n2 − (n− j)2)/2 ≥ 1/2

≥ 0.
(5.33)

REMARK 5.2. For the general case that λ /∈ N , there exists C(λ) > 0 such that

|p2 + λ− n2| ≥ C(λ)|p2 − n2|, ∀p, n ∈ N∗. (5.34)

Indeed, as for p ≥ n we always have |p2 + λ − n2| ≥ |p2 − n2|, it suffices to consider the case
that p ≤ n− 1. Thus, it is equivalent to show that for p ≤ n− 1,

|p2 + λ− n2|
n2 − p2

> C(λ). (5.35)

For n ≥ λ+ 1 and p ≤ n− 1, we know that

|p2 + λ− n2|
n2 − p2

=
n2 − p2 − λ
n2 − p2

>
n2 − p2 − n
n2 − p2

>
1

2
. (5.36)

For n ≤ λ and p ≤ n−1 containing finitely many pairs, thanks to the definition of λ, it is clear
that such C(λ) exists.

Thus

∑
n>N

∑
p<n

(
1

p2 + λ− n2

)2

=
∑
n>N

n−1∑
k=1

(
1

k2 + λ− n2

)2

,

≤ 4
∑
n>N

n−1∑
k=1

(
1

n2 − k2

)2

,

≤ 4
∑
n>N

n−1∑
k=1

(
1

n(n− k)

)2

,

≤ 4
∑
n>N

n−1∑
j=1

(
1

nj

)2

< +∞.

Let us denote

gn :=
∑
p∈N∗

fp
λn − λp + λ

=
∑
p∈N∗

fp
−n2 + p2 + λ

∈ H3/2−
1 . (5.37)

Then

(−∆ + λ− n2)gn =
∑
p∈N∗

fp =
1

2
cot

x

2
=: h, in H−11 . (5.38)
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The following proof to show that gn is either ω-independent or dense in L2
1 is inspired by

[13], though even the transformation type that is adapted here is slightly different from the one
given in [13].

Recalling that A := −A = −∆ and defining kn := (n2 − λ)−1, from (5.38) we notice that

A−1gn = kngn − knA−1h. (5.39)

If {gn}n∈N∗ is ω-independent then we conclude the proof. Suppose that {gn}n∈N∗ is not
ω-independent, thus by the definition there exists a nontrivial sequence {cn}n∈N∗ belongs to
l2(N∗) such that ∑

n∈N∗
cngn = 0, in L2

1. (5.40)

The preceding formula is well-defined, in fact, thanks to (5.25) that we just proved,∑
n∈N∗

cngn =
∑
n∈N∗

cn
fn
λ

+
∑
n∈N∗

cn(gn −
fn
λ

) (5.41)

converges in L2
1 sense.

Next, by applying A−1 to this equality we conclude∑
n∈N∗

cnkngn =
∑
n∈N∗

cnknA−1h, in L2
1, (5.42)

where we have used the fact
∑

n cnkn converges.
Then, by applying again A−1 to this equality we get that in L2

1 space,∑
n∈N∗

cnk
2
ngn =

∑
n∈N∗

cnk
2
nA−1h+ cnknA−2h, (5.43)

and applying it again we have still in L2
1 space,∑

n∈N∗
cnk

3
ngn =

∑
n∈N∗

cnk
3
nA−1h+ cnk

2
nA−2h+ cnknA−3h. (5.44)

By induction we easily arrive at, for any m ∈ N∗,

∑
n∈N∗

cnk
m
n gn =

m∑
i=1

(∑
n∈N∗

cnk
m+1−i
n A−ih

)
=

m∑
i=1

Cm+1−iA−ih, (5.45)

where
Cl :=

∑
n∈N∗

cnk
l
n < +∞. (5.46)

Let us now proceed by cases:
- First case: C1 6= 0. Then we conclude from the proceding equation that for all m ∈ N∗

we have that A−mh ∈ span{gn}n∈N∗ . Suppose that span{gn}n∈N∗ is not dense in L2
1, then we

can find d =
∑
dnfn ∈ L2

1 (thus {dn}n∈N∗ ∈ l2(N∗)) such that d 6= 0 and

〈g, d〉L2
1

= 0, ∀g ∈ span{gn}n∈N∗ , (5.47)

which in particular yields,
〈A−mh, d〉L2

1
= 0,∀m ∈ N∗. (5.48)

22



Recalling that h =
∑
fn ∈ H−11 , we get that∑

n

dn
1

n2m
= 0,∀m ∈ N∗. (5.49)

By defining the complex function

G(z) :=
∑
n∈N∗

dnn
−2en

−2z,∀z ∈ C. (5.50)

By checking that the series expansion of the right-hand side is absolutely convergent, we deduce
that this function is holomorphic. For example, for any z ∈ C, the following series is absolutely
convergent,∑

n∈N∗
dnn

−2en
−2z =

∑
n∈N∗

dnn
−2
∑
j≥0

n−2j

j!
zj =

∑
j≥0

1

j!

∑
n∈N∗

(dnn
−2)(n−2jzj).

Similar calculation yields the absolute convergence of G(m)(z), for any m ∈ N.
From (5.49) we know that G(m)(0) = 0,m ∈ N. Thus G = 0, and further dn = 0, which

leads to a contradiction. Therefore

span{gn}n∈N∗ is dense in L2
1. (5.51)

- Second case: there exists m > 1 such that Cm 6= 0, without loss of generality we
can assume that m is the first integer such that Cm 6= 0. We can also conclude that A−mh ∈
span{gn}n∈N∗ . The same reasoning as above proves again (5.51).

- Third case: for all l ∈ N∗ we have Cl = 0. Then we set complex function

G̃(z) :=
∑
n∈N∗

cnkne
knz. (5.52)

This function is holomorphic and satisfies that G̃(m)(0) = 0 for any m ∈ N, thus as previously
G̃ = 0 and therefore cn = 0 for all n ∈ N∗, which is in contradiction with the choice of {cn}n∈N∗ .

Consequently,
{gn} is either ω independent in L2

1 or dense in L2
1. (5.53)

Properties (5.25) and (5.53), together with Lemma 2.2 (which is also [11, Theorem 3.2 and
Theorem 3.3]), lead to the proof of Lemma 5.1 (1).

(2) {n−sgn}n∈N∗ is a Riesz basis of Hs
1 .

As in (1), we first show that {n−sgn}n∈N∗ is quadratically close to {n
−sfn
λ }n∈N∗ in Hs

1 , and
then prove that {n−sgn}n∈N∗ is ω-independent in Hs

1 or dense in Hs
1 to conclude the proof.

? Quadratically close.
We notice that s = 0 is exactly the case of (1).
i) If s = −1 then

∑
n

∥∥∥∥ngn − nfn
λ

∥∥∥∥2
H−1

=
∑
n

∥∥∥∥∥∥
∑
p6=n

nfp
p2 + λ− n2

∥∥∥∥∥∥
2

H−1

,
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=
∑
n

∑
p 6=n

n2

p2(p2 + λ− n2)2
,

=
∑
n

(∑
p<n

+
∑
p>n

)
n2

p2(p2 + λ− n2)2
,

≤ C +
∑
n

∑
p<n

n2

p2(p2 + λ− n2)2
,

≤ C +
∑
n≥N

∑
p<n

n2

p2(n2 − p2 − λ)2
,

≤ C + 4
∑
n≥N

∑
p<n

n2

p2(n2 − p2)2
,

≤ C + C
∑
n≥N

∑
p<n

n2

p2n2(n− p)2
,

≤ C + C
∑
n≥N

∑
p<n

1

n2

(
1

p
+

1

n− p

)2

,

≤ C + C
∑
n≥N

∑
p<n

1

n2

(
1

p2
+

1

(n− p)2

)
,

≤ C + C
∑
n≥N

∑
p<n

1

p2n2
< +∞,

where C is a constant that can change between lines and where used (5.26), (5.31), the fact
that λ = N , and

1

(n− p)2p2
=

(
1

n
(

1

n− p
+

1

p
)

)2

≤ 2

n2

(
1

(n− p)2
+

1

p2

)
. (5.54)

ii) From the preceding proof we easily conclude the case s ∈ (−1, 0) by using that (n/p)−s ≤
(n/p) for 0 < p < n.

iii) If s ∈ (−3/2,−1), it suffices to show that

∑
n≥N

∑
p<n

1

(n− p)2n2
n−2s

p−2s
< +∞.

since the case p > n follows directly from (5.26) and (n/p)−2s ≤ 1. For p < n/2, we have

∑
n≥N

∑
p<n/2

1

(n− p)2n2
n−2s

p−2s
≤ C

∑
n≥N

∑
p<n/2

1

n4
n−2s

p−2s

≤ C
∑
n≥N

1

n4+2s

∑
p<n/2

1

p−2s

≤ C

∑
n≥N

1

n4+2s

∑
p∈N∗

1

p−2s
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< +∞.

For n/2 ≤ p < n, we have

∑
n≥N

∑
n/2≤p<n

1

(n− p)2n2
n−2s

p−2s
≤ C

∑
n≥N

1

n2

∑
n/2≤p<n

1

(n− p)2
< +∞. (5.55)

iii) If s = 3
2 − ε with ε ∈ (0, 32), then

∑
n

∥∥∥∥n−sgn − n−sfn
λ

∥∥∥∥2
Hs

=
∑
n

∥∥∥∥∥∥
∑
p 6=n

n−sfp
p2 + λ− n2

∥∥∥∥∥∥
2

Hs

,

=
∑
n

∑
p 6=n

n−2sp2s

(p2 + λ− n2)2
,

=
∑
n

∑
p<n

+
∑

n<p<2n

+
∑
p≥2n

 1

(p2 + λ− n2)2
p2s

n2s
,

≤ C +
∑
n

∑
p≥2n

1

(p2 + λ− n2)2
p2s

n2s
,

≤ C +
∑
n

∑
p≥2n

1

(p2 − n2)2
p2s

n2s
,

≤ C + C
∑
n

∑
p≥2n

1

(p2)2
p2s

n2s
,

≤ C + C
∑
n

1

n2s

∑
p≥2n

1

p4−2s
.

Because s ∈ (0, 3/2), we know that ∑
p≥2n

1

p4−2s
≤ C 1

n3−2s

and therefore
(

1
n2s

∑
p≥2n

1
p4−2s

)
n∈N∗

is absolutely convergent.

This concludes the proof of the quadratically close behavior.

? Let s ∈ (−3/2, 3/2). {n−sgn}n∈N∗ is ω-independent in Hs
1 or dense in Hs

1 .
Similar to the case that s = 0. Suppose that there exists {cn}n∈N∗ ∈ l2(N∗) such that∑

n∈N∗

cn
ns
gn = 0, in Hs

1 , (5.56)

which is well defined as∑
n∈N∗

cnn
−sgn =

∑
n∈N∗

cnn
−s fn

λ
+
∑
n∈N∗

cnn
−s(gn −

fn
λ

) (5.57)
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converges in Hs
1 space thanks to the fact that s ∈ (−3/2, 3/2), and the quadratically close result

in Hs
1 that we just proved. By the same reasoning as the case s = 1, we get∑

n∈N∗

cn
ns
kngn =

∑
n∈N∗

cn
ns
knA−1h, in Hs

1 , (5.58)

where we have used the fact
∑

n
cn
nskn converges for s > −3/2.

Then, we can further consider

Cm :=
∑
n∈N∗

cn
ns
kmn < +∞. (5.59)

Exactly the same as in the case s = 0, it suffices to consider two cases, C1 6= 0, or Cm = 0 for
all m ∈ N∗.

In the first case, we find thatA−mh ∈ span{n−sgn}n∈N∗ inHs
1 . Suppose that span{n−sgn}n∈N∗

is not dense in Hs
1 , then we can find d =

∑
n
dn
ns fn ∈ H

s
1 (thus {dn}n∈N∗ ∈ l2(N∗)) such that

〈A−mh, d〉Hs
1

= 0, ∀m ∈ N∗, (5.60)

which is well-defined as h ∈ H−1/2−1 and A−1h ∈ H3/2−
1 ⊂ Hs

1 . Recalling the exact definition

of h =
∑

n fn ∈ H
−1/2−
1 , we get that∑

n

dn
ns

n2m
= 0,∀m ∈ N∗, (5.61)

which further implies that dn = 0 using the holomorphic function technique.
In the second case where Cm = 0 for all m ∈ N∗, we can also prove that cn = 0, similarly

as in the case s = 0, which is in contradiction with the choice of {cn}n∈N∗ .

(3) {n−sqn}n∈N∗ is a Riesz basis of Hm+s
1 .

Let s ∈ (−3/2, 3/2). We introduce τ : Hs
1 → Hm+s

1 defined by,

τ : n−sfn 7→ n−sanfn, (5.62)

which is an isomorphism thanks to the fact that cn−m < |an| < Cn−m. We immediately notice
that

τ : n−sgn = n−s
∑
p∈N∗

fp
λn − λp + λ

7→ n−s
∑
p∈N∗

apfp
λn − λp + λ

= n−sqn. (5.63)

Consequently, thanks to the fact that {n−sgn}n∈N∗ is a Riesz basis of Hs
1 , from Lemma 2.3 we

know that {n−sqn}n∈N∗ is a Riesz basis of Hm+s
1 .

(4) Boundedness of the transformation T and isomorphism
If Kn 6= 0 is chosen in such a way that cnm < |Kn| < nm, then from the definition of T we

know that

T :
n−sfn
nm

7→ −Kn

nm
(n−sqn). (5.64)

Since {n−sfn}n∈N∗ is an orthonormal basis of Hs, we know that {n
−sfn
nm }n∈N∗ is an orthonor-

mal basis of Hm+s
1 . Moreover, because {n−sqn}n∈N∗ is a Riesz basis of Hm+s

1 , from Lemma 2.3
we know that {−Knnm (n−sqn)}n∈N∗ is also a Riesz basis of Hm+s

1 .
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Therefore, the transformation T is an isomorphism from Hm+s
1 to Hm+s

1 . When m = 2, we
remark, however, here that T is not a isomorphism from L2

1 to itself.

Moreover, if we only assume that |Kn| ≤ Cnm, then T is a bounded operator from Hm+s
1

to Hm+s
1 . However, in this case T might not be an isomorphism.

(5) Smoothing effect in Hm+r
1 , for r ∈ [0, 1/2)

∑
n

‖qn − anfn/λ‖2Hm+r
1

=
∑
n

∥∥∥∥∥∥
∑
p 6=n

apfp
p2 + λ− n2

∥∥∥∥∥∥
2

Hm+r
1

,

≤ C
∑
n

∑
p 6=n

p2r

(p2 + λ− n2)2
,

= C
∑
p

p2r
∑
n6=p

1

(p2 + λ− n2)2
,

≤ C + C
∑
p≥N

p2r
∑
n6=p

1

(p2 + λ− n2)2
,

where C is a constant that can change between lines. Moreover,∑
p≥N

p2r
∑
n<p

1

(p2 + λ− n2)2
≤
∑
p≥N

p2r−2
∑
n<p

1

(p− n)2
< +∞,

and, using (5.31),∑
p≥N

p2r
∑
p<n

1

(p2 + λ− n2)2
≤
∑
p≥N

p2r
∑
p<n

4

(n2 − p2)2

≤
∑
p≥N

p2r−2
∑
p<n

4

(p− n)2
< +∞.

From the above proof we find that the condition r < 1/2 is sharp.

(6) Smoothing effect in H−1+m+r
1 for r ∈ [0, 1/2)

∑
n

‖n(qn − anfn/λ)‖2
H−1+m+r

1
=
∑
n

∥∥∥∥∥∥
∑
p 6=n

napfp
p2 + λ− n2

∥∥∥∥∥∥
2

H−1+m+r
1

,

≤ C
∑
n

∑
p6=n

p2r−2n2

(p2 + λ− n2)2
,

= C
∑
p

p2r−2
∑
n6=p

n2

(p2 + λ− n2)2
,

≤ C + C
∑
p≥N

p2r−2
∑
n 6=p

n2

(p2 + λ− n2)2
.
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Moreover, ∑
p≥N

p2r−2
∑
n<p

n2

(p2 + λ− n2)2
≤
∑
p≥N

p2r−2
∑
n<p

1

(p− n)2
< +∞,

and, still using (5.31),

∑
p≥N

p2r−2
∑
p<n

n2

(p2 + λ− n2)2
≤
∑
p≥N

p2r−2
∑
p<n

16

(p− n)2
< +∞.

(7) The quantity
∑

n∈N∗(qn −
anfn
λ ) belongs to Hr

1 for r ∈ [0, 1/2).
At first we point out that since {nqn}n∈N∗ is a Riesz basis of H−11 , and {nfn}n∈N∗ is an

orthonormal basis of H−11 , the candidate
∑

n∈N∗(qn −
anfn
λ ) belongs to H−11 . We need to show

that it actually belongs to more regular spaces Hr
1 for r ∈ [0, 1/2). Moreover, both

∑
n∈N∗ qn

and
∑

n∈N∗
anfn
λ belong to H−1/2− but not to H−1/2.

In the following, we mainly focus on the case r = 0. Since m = 0 we notice that the lemma
is equivalent to ∥∥∥∥∥∥

∑
n

∑
p 6=n

apfp
p2 + λ− n2

∥∥∥∥∥∥
2

L2

< +∞. (5.65)

Note that this cannot be directly deduced from the quadratically close inequality that we
proved in Lemma 5.1 (3) (case m = s = 0),

∑
n

∥∥∥∥∥∥
∑
p 6=n

apfp
p2 + λ− n2

∥∥∥∥∥∥
2

L2

< +∞. (5.66)

Indeed, we need more delicate estimates. We know from the fact that
∑

n∈N∗(qn −
anfn
λ )

belongs to H−11 that∑
n∈N∗

(qn −
anfn
λ

) =
∑
n

∑
p 6=n

apfp
p2 + λ− n2

=
∑
p

∑
n6=p

apfp
p2 + λ− n2

in H−11 , (5.67)

the last equality can be obtained from the “distribution sense”: we observe that the inner
product of both quantities with fk are equivalent, which implies that those two quantities are
equivalent. Or, alternatively, since∑

n

∑
p6=n

∥∥∥∥ apfp
p2 + λ− n2

∥∥∥∥
H−1

1

≤ C
∑
n

∑
p 6=n

1

p|p2 − n2|

≤ C
∑
n

∑
p<n

+
∑

n<p<2n

+
∑
p>2n

 1

p|p2 − n2|

≤ C
∑
n

∑
p<n

1

n2
(
1

p
+

1

n− p
) +

∑
n<p<2n

1

n2
1

p− n
+
∑
p>2n

1

p3
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≤ C
∑
n

1 + log n

n2
< +∞,

then thanks to Fubini we have that∑
n

∑
p 6=n

apfp
p2 + λ− n2

=
∑
p

∑
n6=p

apfp
p2 + λ− n2

in H−11 .

Hence, it suffices to show the last quantity in equation (5.67) belongs to L2
1, which is

equivalent to ∥∥∥∥∥∥
∑
p

apfp
∑
n6=p

1

p2 + λ− n2

∥∥∥∥∥∥
2

L2
1

=
∑
p

a2p

∑
n6=p

1

p2 + λ− n2

2

< +∞, (5.68)

which, to be combined with the growth condition an ∼ 1, is equivalent to

∑
p

∑
n6=p

1

p2 + λ− n2

2

< +∞. (5.69)

It further suffices to prove that

∑
p

∑
n 6=p

∣∣∣∣ 1

p2 + λ− n2

∣∣∣∣
2

< +∞, (5.70)

which further reduces to showing that

∑
p≥N

∑
n<p

+
∑

p+1<n<2p

+
∑
n≥2p

∣∣∣∣ 1

p2 + λ− n2

∣∣∣∣
2

=:
∑
p≥N

(S1
p + S2

p + S3
p)2 < +∞. (5.71)

Next we estimate the Sip one by one.
i) Estimation of S1

p :

S1
p =

∑
n≤p−1

1

p2 + λ− n2
,

≤
∑
n≤p−1

1

p2 − n2
,

≤ 1

p

∑
n≤p−1

1

p− n
,

≤ C 1 + log p

p
,

where C is a constant independent of p.
ii) Estimation of S2

p : by the choice of p ≥ N and the fact that λ = N , we know that

S2
p =

∑
p<n<2p

1

n2 − p2 − λ
,
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≤
∑

p<n<2p

2

n2 − p2
,

≤ 1

p

∑
p<n<2p

1

n− p
,

≤ C 1 + log p

p
.

iii) Estimation of S3
p : the last part can be estimated by

S3
p =

∑
2p≤n

1

n2 − p2 − λ
,

≤
∑
2p≤n

2

n2 − p2
,

≤
∑
2p≤n

4

n2
,

≤ 3

p
.

Consequently, ∑
p≥N

(S1
p + S2

p + S3
p)2 ≤

∑
p≥N

C

(
1 + log p

p

)2

< +∞ (5.72)

Finally, for the case r ∈ [0, 1/2), by slightly modifying (5.68) it suffices to show that

∑
p≥N

p2r(S1
p + S2

p + S3
p)2 ≤ C

∑
p≥N

p2r
(

1 + log p

p

)2

< +∞, (5.73)

where r < 1/2 is sharp. This ends the proof of Lemma 5.1.

In the following, in order to simplify the calculation, we only consider the special
case m = 0, thus

c < |an| < C,

the other cases can be treated exactly similarly.

5.3 On the choice of the backstepping candidate

According to Section 5.1 we know that every sequence {Kn}n∈N∗ determines a unique transfor-
mation T , and at least formally, it satisfies

TA+ φK = AT − λT. (5.74)

Thanks to Section 5.2 we know that when {Kn}N∗ verifies

|Kn| < C, ∀n ∈ N∗, (5.75)

this unique transformation T is bounded on Hs with s ∈ (−3/2, 3/2).
Moreover, if {Kn}n∈N∗ further satisfies

c < |Kn| < C, ∀n ∈ N∗, (5.76)
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then T is an isomorphism on Hs with s ∈ (−3/2, 3/2).
However, until now we have not yet treated the second condition:

Tφ = φ. (5.77)

This condition is called in the literature the “TB = B condition” (here the function φ repre-
sent what is usually formally denoted B), which is now becoming a standard requirement for
Fredholm type backstepping transformations, [11, 12, 13, 14, 22, 41]. The aim of this section is
to determine a precise candidate of {Kn}n∈N∗ such that

(i) The “TB=B condition” (5.77) holds, in a suitable space to be found.

(ii) The boundedness condition (5.75) holds.

(iii) The operator equality (5.74) holds, in a suitable space to be found.

The proofs of (i) and (ii) are provided by Sections 5.3.1–5.3.3. Then Section 5.3.4 is devoted to
the proof of (iii).

We also remark here that, in this section, we only prove the condition (5.75) instead of
the stronger (5.76), as it is sufficient to conclude about the conditions (5.77) and (5.74). The
proof of (5.76), needed for T to be an isomorphism and not only a bounded operator, is left to
Sections 5.4–5.5.

5.3.1 Tφ = φ condition does not hold in L2
1 space

For any given φ satisfying

φ =
∑
n∈N∗

anfn, with c < |an| < C, (5.78)

we want to find K such that

K =
∑
n∈N∗

Knfn, with c < |Kn| < C, (5.79)

Tφ = φ, in a suitable sense. (5.80)

Since the solutions of the closed-loop system are expected to live in C0([0, τ ];L2
1) space, it is

natural to start by considering that Tφ = φ holds in L2
1 sense. For any given {an}n∈N∗ verifying

(5.78) we have that Lemma 5.1 (2) holds. Meanwhile the strong Tφ = φ condition for (5.80)
reads as ∑

p

apfp = φ = Tφ =
∑
n

anhn =
∑
n

−anKnqn, (5.81)

which is equivalent to

φ = −
∑
n

anKnqn. (5.82)

However, we can not use Lemma 5.1 (3) with s = 0 directly: because φ ∈ H−
1
2
−

1 instead of L2
1.

Otherwise, formally the preceding equation admits a solution.
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5.3.2 On the uniqueness and existence of {Kn}n∈N∗ such that Tφ = φ in weaker

space: H
−1/2−
1

In this subsection, we show that the condition (5.77) holds in H−1/2−. We notice that∑
n

anKnqn =
∑
n

anKn

n
(nqn). (5.83)

As {nqn}n∈N∗ is a Riesz basis of H−11 , and as φ also belongs to H−11 , Equation (5.82) can be
solved in H−11 sense. Indeed, since the span of {nqn}n∈N∗ is dense in H−11 , and since φ also
belongs to H−11 , we can decompose φ in the form given (5.82) with a unique {anKn/n}n∈N∗ ∈
l2(N∗).

As a consequence there exists Kn satisfying{
anKn

n

}
n∈N∗

∈ l2(N∗)

such that (5.82) holds in H−11 . A priori, for an ∼ 1 and Kn ∼ 1 the above conditions hold.
Next, it suffices to find the exact value of Kn to guarantee the growth conditions.

Moreover, let ε > 0, because {n1/2+εqn} is a Riesz basis of H
−1/2−ε
1 , and that φ ∈ H−1/2−ε1 ,

we know that the equation can be also solved in the H
−1/2−ε
1 sense, and that the unique solution

{Kn}N∗ satisfies {
anKn

n1/2+ε

}
n∈N∗

∈ l2(N∗). (5.84)

Therefore, we have found {Kn}n∈N∗ such that Tφ = φ is held in H−1/2− sense, thus (5.77).
We remark here that (5.84) is not enough to conclude that {Kn}n∈N∗ are uniformly bounded,
though, conversely, for any uniformly bounded sequence {Kn}n∈N∗ the condition (5.84) holds.
Indeed, let bn := log n, we can easily observe that{

bn

n1/2+ε

}
n∈N∗

∈ l2(N∗), ∀ε > 0. (5.85)

In the next section, we will prove that the sequence {Kn}n∈N∗ that we have found in this
section is actually uniformly bounded.

REMARK 5.3. We also remark here that even if a sequence {bn}n∈N∗ satisfies{
bn
nε

}
n∈N∗

∈ l2(N∗), ∀ε > 0, (5.86)

we are not able to conclude that the sequence {bn}n∈N∗ is uniformly bounded. For example, by
defining

M(n) = [en] + 1,∀n ∈ N∗, (5.87)

bm := n, if m = M(n), (5.88)

bm := 0, if m /∈ {M(n) : n ∈ N∗}, (5.89)

we know that for any ε > 0,∑
m∈N∗

(
bm
mε

)2

=
∑

m∈{M(n):n∈N∗}

(
bm
mε

)2

≤
∑
n∈N∗

( n

eεn

)2
< +∞. (5.90)

Clearly, such {bn}n∈N∗ verifying (5.86) is not uniformly bounded.
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5.3.3 On the uniform boundedness of the solution {Kn}n∈N∗: boundedness of the
transformation T on Hs

1 with s ∈ (−3/2, 3/2)

In order to prove the condition (5.75), namely the uniform boundedness of the candidate
{Kn}n∈N∗ , we come back to the Tφ = φ equation∑

n

−anKnqn =
∑
n

anfn. (5.91)

Thanks to the preceding Section, we have found a unique {Kn}n∈N∗ verifying (5.84) such that
equation (5.91) is held in H−1/2− sense (in particular, in H−1 sense).

Motivated by Lemma 5.1 (7), we define cn as

− anKn =: λ+ cn. (5.92)

Then the Tφ = φ condition in H−11 sense is equivalent to∑
n

(λ+ cn)qn =
∑
n

anfn in H−11 . (5.93)

As {nqn}n∈N∗ is a Riesz basis of H−11 , we know that∑
n

λqn = λ
∑
n

1

n
(nqn) ∈ H−11 . (5.94)

Thus, Tφ = φ condition in H−11 sense is equivalent to∑
n

cnqn =
∑
n

(anfn − λqn) in H−11 . (5.95)

Thanks to Lemma 5.1 (7) in the case r = 0, we know that the right hand side of (5.95) lives
in L2

1, thus ∑
n

cnqn =
∑
n

(anfn − λqn) ∈ L2
1. (5.96)

Considering the fact that {qn} is a Riesz basis of L2
1 (Lemma 5.1 (3) for the case m = 0, s = 0),

there exist a unique sequence {cn}n∈N∗ such that the preceding equation holds in L2
1 space

(i.e. the left hand side series converges in L2
1 to the right hand side under the Cauchy sense),

moreover,
{cn}n∈N∗ ∈ l2(N∗). (5.97)

Conversely, for such {cn}n∈N∗ belonging to l2(N∗), recall that the precise value of Kn is
given by

Kn = −λ+ cn
an

. (5.98)

We also know from the definition of {cn}n∈N∗ that equation (5.96) holds in L2
1, thus it auto-

matically holds in H−11 . Thanks to (5.92), we have

−
∑
n

anKnqn =
∑
n

anfn in H−11 . (5.99)

Furthermore, since {cn}n∈N∗ ∈ l2(N∗) ⊂ l∞(N∗), we know that Kn is uniformly bounded.
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Now, from Lemma 5.1 (4) in the case m = 0, this allows us to deduce that T is bounded on
Hs

1 for s ∈ (−3/2, 3/2). Thus

φ =
∑
n∈N∗

anfn in H−11 , (5.100)

Tφ = T

(∑
n∈N∗

anfn

)
=
∑
n∈N∗

T (anfn) =
∑
n∈N∗

−anKnqn in H−11 , (5.101)

which, together with (5.99), imply

Tφ = φ in H−11 . (5.102)

Moreover, even for any r ∈ [0, 1/2), thanks to Lemma 5.1 (7), we know that∑
n

(cnn
r)(n−rqn) =

∑
n

cnqn =
∑
n

(anfn − λqn) ∈ Hr
1 . (5.103)

By Lemma 5.1 (3) in the case m = 0 and s = r, we know that {n−rqn} is a Riesz basis of Hr
1 ,

thus the same reasoning as the case r = 0 implies that

{cnnr}n∈N∗ ∈ l2(N∗), ∀r ∈ [0, 1/2), (5.104)

and that
Tφ = φ in Hr−1

1 . (5.105)

Finally, by applying Lemma 5.1 (4) in the case m = 0, combined with the fact that {Kn}n∈N∗
is uniformly bounded, we deduce that T is a bounded operator from L2

1 to itself. Moreover, T
is also a bounded operator from Hs

1 to itself with s ∈ (−3/2, 3/2).

REMARK 5.4. We notice that the equation (5.91) is equivalent to∑
n∈N∗

(anKn)
1

p2 + λ− n2
= −1, ∀p ∈ N∗. (5.106)

Hence the value of {−anKn}n∈N∗ = {λ + cn}n∈N∗ is independent of the choice of {an}n∈N∗
satisfying

c ≤ |an| ≤ C.

5.3.4 On the operator equality

In the previous subsection we proved the following lemma

LEMMA 5.5. By the choice of {an}n∈N∗ and {Kn}n∈N∗ from Section 5.3.3, we have

Tφ = φ in H
−1/2−ε
1 , ∀ε > 0, (5.107)

in particular it holds in H−11 sense. However, it does not hold in L2
1 sense.

Now, we show the operator equality and the spaces in which this equality holds
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LEMMA 5.6. Let r ∈ (−1/2, 1/2). By the choice of {an}n∈N∗ and {Kn}n∈N∗ from Section
5.3.3, for any ϕ ∈ Hr+1

1 we have

(TA+ TφK)ϕ = (AT − λT )ϕ in Hr−1
1 . (5.108)

In particular we can consider r = 0 then the equality holds in H−11 sense. Moreover, the range
r ∈ (−1/2, 1/2) is sharp.

Proof. Recalling that, thanks to Section 5.3.3, T is a bounded operator from Hs to itself with
s ∈ (−3/2, 3/2). Though so far we do not know whether T is an isomorphim on Hs –this will
be proved in the next section– this is now sufficient to conclude the required operator equality.

At first we consider each candidate of the operator equality (5.108) separately.

i) TAϕ: we know that Aϕ ∈ Hr−1
1 . Notice that r − 1 ∈ (−3/2,−1/2), which, combined

with Lemma 5.1 (4) in the case m = 0 and s := r − 1, implies that TAϕ ∈ Hr−1
1 .

Moreover, as A : Hr+1
1 → Hr−1

1 and T : Hr−1
1 → Hr−1

1 are bounded, the linear operator
TA : Hr+1

1 → Hr−1
1 is bounded.

Concerning the sharpness of r ∈ (−1/2, 1/2), as we can see above, if r is chosen such that
r ≤ −1/2 then the operator T is no longer bounded on Hr−1

1 , thus the linear operator
TA : Hr+1

1 → Hr−1
1 is not bounded.

ii) TφKϕ: given that ϕ ∈ Hr+1
1 with r > −1/2, and that K : Hr+1

1 → R is a bounded
operator, we know that |Kϕ| < +∞ is well-defined. Then, thanks to Lemma 5.5, TφKϕ ∈
H
−1/2−
1 ⊂ Hr−1

1 . Moreover, as and Tφ : R → Hr−1
1 and K are bounded, the linear

operator TφK : Hr+1
1 → Hr−1

1 is bounded.

iii) Tϕ: thanks to Lemma 5.1 (4) in the case m = 0 and s = r + 1 ∈ (1/2, 3/2), and the fact
that ϕ ∈ Hr+1

1 , we know that Tϕ ∈ Hr+1
1 ⊂ Hr−1

1 . Clearly, T : Hr+1
1 → Hr−1

1 is bounded
(in fact T is even bounded from Hr+1

1 in itself).

iv) ATϕ: because Tϕ ∈ Hr+1
1 , we have that ATϕ ∈ Hr−1

1 . As T : Hr+1
1 → Hr+1

1 and
A : Hr+1

1 → Hr−1
1 are bounded, the linear operator AT : Hr+1

1 → Hr−1
1 is bounded.

Concerning the sharpness of r ∈ (−1/2, 1/2), as we can see above, if r is chosen such
that r ≥ 1/2 then the operator T is no longer bounded on Hr+1

1 , thus the linear operator
AT : Hr+1

1 → Hr−1
1 is not bounded.

By adapting i)–iv) we know that

TA, TφK, AT, λT : Hr+1
1 → Hr−1

1 ,

are bounded linear operators. We also know from the choice of Kn that (TA + TφK − AT +
λT )fn = 0. Indeed, according to the definition of qn given in Section 5.1, we have in the Hr−1

space

(TA+ TφK −AT + λT )fn = (−A− n2 + λ)Tfn + φKn,

= Kn

(
φ− (−A− n2 + λ)qn

)
,

= 0.

Since the finite linear combinations of {fn}n∈N∗ are dense in Hr+1
1 , then for any ϕ ∈ Hr+1

1

we have that,
(TA+ TφK −AT + λT )ϕ = 0 in Hr−1

1 .
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Indeed, for any ε we can find a finite linear combination of {fn}n∈N∗ , f̃ , such that

‖ϕ− f̃‖Hr+1
1
≤ ε. (5.109)

Then
(TA+ TφK −AT + λT )ϕ = (TA+ TφK −AT + λT )(ϕ− f̃) in Hr−1

1 ,

thus by the boundedness of TA+ TφK −AT + λT from Hr+1
1 to Hr−1

1 we know that

‖(TA+ TφK −AT + λT )ϕ‖Hr−1
1
≤ Cε. (5.110)

5.4 Invertibility of the transformation T on the space H−11 .

So far we know, thanks to Lemma 5.1, that T is a bounded operator on Hs
1 . But we do not

know yet that it is an isomorphism. To prove this we will first prove in this section that T is
invertible on H−11 and then, we will show in Section 5.5 that it implies that it is invertible also
on Hs for s ∈ (−3/2, 3/2).

We start by the following lemma.

LEMMA 5.7. Let r ∈ [0, 1/2). The operator

T̃ := T − Id : L2
1 → Hr

1 ,

(resp. T̃ := T − Id : H−11 → H−1+r1 ),

is a continuous operator. Hence T̃ is a compact operator from L2
1 to itself (resp. from H−11 to

itself), and T is a Fredholm operator on L2
1 (resp. on H−11 ).

For that purpose we need the following lemma.

LEMMA 5.8. Let r ∈ [0, 1/2). There exists a constant C > 0 such that∥∥∥∥∥∑
n

bn(qn −
anfn
λ

)

∥∥∥∥∥
2

Hr
1

≤ C
∑
n

b2n. (5.111)

Proof of Lemma 5.8. In fact, we have from the definition of {qn}n∈N∗ , the Riesz basis property
of {fp}p∈N∗ and the uniform boundedness of {ap}p∈N∗ by assumption.

∥∥∥∥∥∑
n

bn(qn −
anfn
λ

)

∥∥∥∥∥
2

Hr
1

=

∥∥∥∥∥∥
∑
p

apfp
∑
n6=p

bn
p2 + λ− n2

∥∥∥∥∥∥
2

Hr

,

≤ C
∑
p

p2r

∑
n 6=p

bn
p2 + λ− n2

2

,

≤ C
∑
p

p2r

∑
n6=p

b2n

∑
n6=p

1

(p2 + λ− n2)2

 ,
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≤ C

(∑
n

b2n

)∑
p

p2r

∑
n6=p

1

(p2 + λ− n2)2

 ,

≤ C
∑
n

b2n,

where in the last step we have used Lemma 5.1 (5) (the case m = 0 and an = 1).

Proof of Lemma 5.7. i) We first prove the results on L2
1. We notice that

T̃ fn = −Knqn − fn =
λ+ cn
an

qn − fn =

(
λ

an
qn − fn

)
+
cn
an
qn.

Therefore, for any f =
∑

n bnfn ∈ L2
1 satisfying {bn}n∈N∗ ∈ l2n∈N∗ , we have that∥∥∥∥∥T̃∑

n

bnfn

∥∥∥∥∥
2

Hr
1

=

∥∥∥∥∥∑
n

bn
an

(λqn − anfn) +
bn
an
cnqn

∥∥∥∥∥
2

Hr
1

.

On the one hand, according to Lemma 5.1 (5) the case that m = 0, we know that∥∥∥∥∥∑
n

bn
an

(λqn − anfn)

∥∥∥∥∥
2

Hr
1

≤ C

(∑
n

b2n

)(∑
n

‖λqn − fn‖2Hr
1

)
≤ C

∑
n

b2n.

On the other hand, according to Lemma 5.1 (3) the case that m = 0 and s = r, we know that
{n−rqn} is a Riesz basis of Hr

1 . Thus∥∥∥∥∥∑
n

bn
an
cnqn

∥∥∥∥∥
2

Hr
1

=

∥∥∥∥∥∑
n

(bna
−1
n cnn

r)(n−rqn)

∥∥∥∥∥
2

Hr
1

,

≤ C
∑
n

(bna
−1
n cnn

r)2,

≤ C
∑
n

(bn)2(cnn
r)2,

≤ C
∑
n

b2n,

where we have used the fact that {cnnr}n∈N∗ ∈ l2(N∗) ⊂ l∞(N∗) which is proved in Section
5.3.3, equation (5.104). Hence, the operator T̃ : L2

1 → Hr
1 is continuous, which further turned

out to be a compact operator on L2
1.

ii) Next we provide the proof on H−11 space. Therefore, for any

f =
∑
n

bnfn =
∑
n

(bn/n)(nfn) ∈ H−11 .

we know that {bn/n}n∈N∗ ∈ l2n∈N∗ , thus∥∥∥∥∥T̃∑
n

bnfn

∥∥∥∥∥
2

H−1+r
1

=

∥∥∥∥∥∑
n

bn
an

(λqn − anfn) +
bn
an
cnqn

∥∥∥∥∥
2

H−1+r
1

.
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On the one hand, according to Lemma 5.1 (6) the case that m = 0, we know that∥∥∥∑
n

bn
nan

(n(λqn − anfn)
∥∥∥2
H−1+r

1

≤ C

(∑
n

(
bn
n

)2
)(∑

n

‖n(λqn − anfn)‖2
H−1+r

1

)

≤ C
∑
n

(
bn
n

)2

≤ C‖f‖2
H−1

1
.

On the other hand, according to Lemma 5.1 (3) the case that m = 0 and s = −1 + r, we know
that {n1−rqn} is a Riesz basis of H−1+r1 . Thus∥∥∥∥∥∑

n

bna
−1
n cnqn

∥∥∥∥∥
2

H−1+r
1

=

∥∥∥∥∥∑
n

(bna
−1
n cnn

r−1)(n1−rqn)

∥∥∥∥∥
2

H−1+r
1

,

≤ C
∑
n

(
bn
n
a−1n cnn

r

)2

,

≤ C
∑
n

(
bn
n

)2

≤ C‖f‖2
H−1

1
,

where, again, we have used the fact that {cnnr}n∈N∗ ∈ l2(N∗) ⊂ l∞(N∗).
Therefore, T is a continuous operator from H−11 to H−1+r1 with r ∈ (0, 1/2). Since the

inclusion H−1+r1 → H−11 is compact, we conclude the proof of Lemma 5.7.

We now prove the following invertibility result on H−11 .

LEMMA 5.9. T is invertible from H−11 into itself.

Proof of Lemma 5.9. Since T : H−11 → H−11 is a Fredholm operator of index 0 (i.e. can be
written as the sum of the identity and a compact operator), thanks to Lemma 5.7, it suffices to
show that Ker T ∗ = {0} to conclude the invertibility. By the definition of Fredholm operator,
we know that both Ker T and Coker T have finite dimension. Moreover, since the dual of
a Fredholm operator is still a Fredholm operator (coming from the fact that the dual of a
compact operator is still compact, namely Schauder’s theorem), Ker T ∗ is of finite dimension.
More precisely, we have

dim Ker T = dim Coker T = dim Ker T ∗ = dim Coker T ∗ < +∞.

In the following we mimic the method of [11] to show that for the operator T : H−11 → H−11

we have that Ker T ∗ = {0}. The proof is divided by three steps

1) There exists ρ ∈ C such that

A+ φ1K + λId+ ρId : H1
1 → H−11 is invertible,

A+ ρId : H1
1 → H−11 is invertible.
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2) For such a complex number ρ, Ker T ∗ is stable under (A + ρId)−1, thus there exists an
eigenfunction to (A+ρId)−1, i.e. there exists (h, µ) with µ 6= 0 such that (A+ρId)−1h =
µh. Hence h = fk for some k ∈ N∗.

3) By adapting the Tφ1 = φ1 condition, we show that h = fk is not in Ker T ∗.

1) As the spectrum of A+ρId is clear and discrete, in the following we mainly focus on the
study of the spectrum of A + φK + λId + ρId. By denoting z := λ + ρ, we try to investigate
the invertibility of Id+A−1φK + zA−1 in the H1

1 space, with some z ∈ C, which further gives
some ρ = z − λ such that the investigated two operators are invertible. For such a purpose we
consider two cases.

i) If K(A−1φ) 6= −1, then we know that the bounded operator Id + A−1φK is invertible.
In fact, for any f ∈ H1

1 , we can check that

ϕ := f − A−1φ(Kf)

1 +K(A−1φ)
∈ H1

1 , (5.112)

solves
(Id+A−1φK)ϕ = f. (5.113)

Since Id+A−1φK is invertible, and since A−1 is also a bounded operator (indeed even compact)
on H1

1 , according to the openness of invertible operator, there exists a small ball Bε(0) around
0, such that

(Id+A−1φK) + zA−1 is invertible in H1
1 , ∀z ∈ Bε(0). (5.114)

ii) If K(A−1φ) = −1, then we can easily verify that 0 is en eigenvalue of Id+A−1φK with
multiplicity 1 and the eigenspace is generated by A−1φ.

According to the perturbation theory, see for example [34], there exist small open neighbor-
hoods Ω and Ω̃ of 0 ∈ C satisfying

(Id+A−1φK + zA−1)y(z) = λ(z)y(z),

y(z) : z ∈ Ω 7→ y(z) ∈ H1
1 is holomorphic,

λ(z) : z ∈ Ω 7→ λ(z) ∈ Ω̃ ⊂ C is holomorphic,

λ(0) = 0, y0 := y(0) = A−1φ,

in such a way that for any z ∈ Ω, λ(z) is the unique eigenvalue inside Ω̃. Recall that λ(0) = 0
and that the zero points of any non-trivial (not identically zero) holomorphic fucntion are
isolated.

If further there exists a small neighborhood ω of 0 ∈ C such that λ(z) = 0 for any z ∈ ω,
then we are able to decompose y(z) ∈ H1

1 is power series as

y(z) = y0 +
+∞∑
k=1

zkyk, yk ∈ H1
1 . (5.115)

By matching the coefficients of the power series, we get

(Id+ y0K)yk +A−1yk−1 = 0, ∀k ≥ 1. (5.116)

By adapting A−1 and K to the preceding equation we conclude that

K(A−1yk) = 0, ∀k ≥ 0. (5.117)
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Then by successively adapting A−1 and K to the same equation we arrive at

K(A−nyk) = 0, ∀k ≥ 0,∀n ≥ 1, (5.118)

which in particular yields
K(A−ny0) = 0, ∀n ≥ 1. (5.119)

The preceding equality implies ∑
n

anKn

n2l
= 0,∀l ≥ 2. (5.120)

Again using the holomorphic function technique, we conclude that anKn = 0, which is a
contradiction.

Therefore, there exists a sequence of {zk} converging to 0 such that λ(zk) 6= 0. Indeed,
thanks to the fact that λ is holomorphic with 0 being a zero point, in this case we even have that
λ(z) 6= 0 in ω1\{0} with ω1 being a small neighborhood of 0. Then, since λ(zk) 6= 0 and λ(zk) is
the unique eigenvalue inside Ω̃, for zk sufficiently close to 0 we know that Id+A−1φK+ zkA

−1

is invertible. Thus Id + A−1φK + λA−1 + (zk − λ)A−1 is invertible. As the spectrum of
A+ ρId is discrete, we can find a ρ (more precisely, some zk − λ), such that both A+ ρId and
A+ φK + λId+ ρId are invertible.

2) Because
T (A+ φK + λId+ ρId) = AT + ρT : H1

1 → H−11 , (5.121)

we have
(A+ ρId)−1T = T (A+ φK + λId+ ρId)−1 : H−11 → H1

1 . (5.122)

Suppose that h ∈ Ker T ∗, then for any ϕ ∈ H−11 we deduce from the above operator equality
that

0 = 〈(A+ ρId)−1Tϕ− T (A+ φK + λId+ ρId)−1ϕ, h〉H−1
1
,

= 〈ϕ, T ∗(A+ ρId)−1h〉H−1
1
− 〈(A+ φK + λId+ ρId)−1ϕ, T ∗h〉H−1

1
,

= 〈ϕ, T ∗(A+ ρId)−1h〉H−1
1
.

Since ϕ ∈ H−11 is chosen arbitrary, we know that (A+ ρId)−1h ∈ Ker T ∗, thus

(A+ ρId)−1 : Ker T ∗ → Ker T ∗. (5.123)

Suppose that Ker T ∗ is not reduced to {0}. Therefore, because the space Ker T ∗ is of finite
dimension and not reduced to {0} we can find an eigenfunction (h, µ), h 6= 0 and µ 6= 0, such
that

(A+ ρId)−1h = µh and h ∈ Ker T ∗. (5.124)

We immediately deduce that h is an eigenfunction of A = ∆ in H−11 , thus there exists k ∈ N∗
and C 6= 0 such that h = Cfk. Indeed, we know from the definition of h that h = µ(A+ ρId)h,
hence Ah = (1−ρ)/µh, and h is a eigenfunction of A. We notice that the subspaces of H1

1 that
are also eigenspaces of ∆ have dimension 1 (the eigenvalues are not degenerate in H1

1 ). In partic-
ular the dimension of the eigenspace of (1−ρ)/µ is one, and therefore h = Cfk for some k ∈ N∗.
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3) By the definition of h = fk ∈ Ker T ∗, we know that

〈Tϕ, fk〉H−1
1

= 0, ∀ϕ ∈ H−11 . (5.125)

Thanks to the fact that Tφ = φ in H−11 sense, we can take ϕ := φ to achieve

0 = 〈Tφ, fk〉H−1
1

= 〈φ, fk〉H−1
1

=
ak
k2
, (5.126)

which is in contradiction with the fact that an 6= 0.

5.5 The non-zeroness of the solution {Kn}n∈N∗: invertibility of the transfor-
mation T on Hs

1 for any s ∈ (−3/2, 3/2)

In the previous part we have proved the invertibility of the transformation T on H−1. We will
now show that this implies

Kn 6= 0, ∀n ∈ N∗,

which will in turn imply the isomorphism property in Hs
1 for any s ∈ (−3/2, 3/2) thanks to

Lemma 5.1.
Recall that

T : nfn 7→ −Kn(nqn), (5.127)

is a bounded operator form H−11 to itself. Suppose by contradiction that for some n0 we have
that Kn0 = 0. As T is an isomorphism from H−11 in itself there exists h ∈ H−11 such that
Th = n0qn0 . Thus there exists {dn}n∈N∗ ∈ l2(N∗) such that

h =
∑
n

dn(nfn) ∈ H−11 . (5.128)

Then
Th =

∑
n

−dnKn(nqn) (5.129)

which converges absolutely as {nqn}n∈N∗ is a Riesz basis of H−11 . From assumption Th = n0qn0 ,
hence dn0Kn0 = 1, which gives a contradiction. Consequently, for every n ∈ N∗ we know that
Kn 6= 0, thus −anKn 6= 0.

We also know that

− anKn = λ+ cn with {cn}n∈N∗ ∈ l2(N∗), (5.130)

which implies that at high frequency {|anKn|}n≥M is uniformly away from 0 and also uniformly
bounded. Therefore, {|anKn|}n∈N∗ is uniformly away from 0 and also uniformly bounded.
Hence

c < |Kn| < C, ∀n ∈ N∗. (5.131)

By applying Lemma 5.1 (4) in the case m = 0 and s ∈ (−3/2, 3/2), we get that T is an
isomorphism from Hs

1 to itself for any s ∈ (−3/2, 3/2). The special case s = 0 corresponds to
the invertibility on the space L2

1.
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5.6 Proof of Proposition 4.1

Proof. The proof of Proposition 4.1 is a consequence of the above subsections: we choose Kn

as in Section 5.3.3. We know from Section 5.3.3 that K is a bounded functional on H
1/2+
1 and

from Section 5.5 we know that there exists c > 0 and C > 0 such that

c < |Kn| < C, ∀n ∈ N∗.

Consequently, from Lemma 5.1 that T is an isomorphism on Hs
1 for any s ∈ (−3/2, 3/2).

Moreover from Lemma 5.6 we know that for any r ∈ (−1/2, 1/2), and ϕ ∈ Hr+1
1 we have

(TA+ TBK)ϕ = (AT − λT )ϕ in Hr−1
1 ,

and from Lemma 5.5
Tφ1 = φ1 in H

−1/2−
1 . (5.132)

Finally from (5.104) and the definition of {cn}n∈N∗ given in (5.92), for any r ∈ [0, 1/2) we have
that

{(λ+ anKn)nr}n∈N∗ ∈ l2(N∗).

Hence the operator K and T satisfies the properties announced in Proposition 4.1 for m = 0.
Thanks to Lemma 5.1 the same can be done identically in the case m 6= 0. This ends the proof
of Proposition 4.1.

6 Proof of Lemma 4.4, Lemma 4.8 and Corollary 4.5

In this section we prove Lemma 4.4, Lemma 4.8 and Corollary 4.5 dealing with the well-
posedness of the closed-loop systems. We focus on the first one.

Proof of Lemma 4.4. By denoting S(t) the free heat flow evolution: y := S(t)y0 as the solution
of {

∂ty −∆y = 0 in T,
y(0) = y0,

(6.1)

we know from integration by parts that

‖S(t)y0‖C0([0,T ];L2
1)
≤ ‖y0‖L2

1
, (6.2)

‖S(t)y0‖L2([0,T ];H1
1 )
≤ ‖y0‖L2

1
. (6.3)

We also know from integration by parts that the solution g of the inhomogeneous heat equation,{
∂tg −∆g = f in T,
g(0) = 0,

(6.4)

verifies

‖g(t)‖C0([0,T ];L2
1)
≤ ‖f‖L2(0,T ;H−1

1 ), (6.5)

‖g(t)‖L2([0,T ];H1
1 )
≤ ‖f‖L2(0,T ;H−1

1 ). (6.6)
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For any given T > 0. Let us define

BT := {y ∈ C0([0, T ];L2
1) ∩ L2([0, T ];H1

1 )}, (6.7)

with its norm given by

‖y‖BT := ‖y‖C0([0,T ];L2
1)

+ ‖y‖L2([0,T ];H1
1 )
. (6.8)

For M > 0, we also define BT (M) as

BT (M) := {y ∈ BT | ‖y‖BT ≤M}. (6.9)

Suppose that ‖y0‖L2
1

= R. Then, we consider the map

L : z ∈ BT (3R) 7→ y ∈ BT (6.10)

that is defined as {
∂ty −∆y = φK(z) in T,
y(0) = y0.

(6.11)

We immediately knows that y ∈ BT . However, in order to show that L is a contraction on
BT (3R) we need more delicate estimates. Indeed, we benefit from the fact that K is a func-

tional on H
3/4
1 instead of on H1

1 .

We know that the solution y = Lz verifies

‖y‖BT ≤ 2R+ 2‖φ(Kz)‖L2(0,T ;H−1
1 ),

≤ 2R+ C‖Kz‖L2(0,T ),

≤ 2R+ C‖z‖
L2(0,T ;H

3
4
1 )
,

≤ 2R+ CT
1
8 ‖z‖

L
8
3 (0,T ;H

3
4
1 )
,

≤ 2R+ CT
1
8 ‖z‖BT ,

≤ 2R+ 3CRT
1
8 , (6.12)

where we have used the following technical lemma.

LEMMA 6.1.

‖z‖
L

8
3 (0,T ;H

3
4
1 )
≤ ‖z‖

1
4

L∞(0,T ;L2
1)
‖z‖

3
4

L2(0,T ;H1
1 )
≤ ‖z‖BT . (6.13)

Proof. As we know from Sobolev interpolation that

‖f‖
H

3/4
1

≤ ‖f‖
1
4

L2
1
‖f‖

3
4

H1
1
, (6.14)

then further thanks Hölder inequality,

‖z‖
L

8
3 (0,T ;H

3
4
1 )
≤ ‖‖z‖

1
4

L2
1
‖z‖

3
4

H1
1
‖
L

8
3 (0,T )

,
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≤ ‖‖z‖
1
4

L2
1
‖L∞(0,T )‖‖z‖

3
4

H1
1
‖
L

8
3 (0,T )

,

≤ ‖z‖
1
4

L∞(0,T ;L2
1)
‖z‖

3
4

L2(0,T ;H1
1 )
,

≤ ‖z‖BT .

Therefore, for T > 0 sufficiently small we know that

L : BT (3R)→ BT (3R). (6.15)

Next, we show that, by choosing T even small if necessary, the map L is actually a contrac-
tion map. For any z1, z2 ∈ BT (3R), suppose that y1 := Lz1, y2 := Lz2, thus{

∂ty1 −∆y1 = φK(z1) in T,
y1(0) = y0,

(6.16)

and {
∂ty2 −∆y2 = φK(z2) in T,
y2(0) = y0.

(6.17)

This implies that w := y1 − y2 = L(z1 − z2) verifies{
∂tw −∆w = φK(z1 − z2) in T,
w(0) = 0,

(6.18)

which further yields

‖L(z1 − z2)‖BT = ‖w‖BT ≤ 2‖φK(z1 − z2)‖L2(0,T ;H−1
1 ) ≤ CT

1
8 ‖z1 − z2‖BT . (6.19)

Therefore, L is actually a contraction on BT (3R) for T sufficiently small. Banach fixed point
theorem gives the existence and uniqueness of the solution in a small time interval.

Finally, it is standard to extend the solution to a large time domain. It actually suffices to
show the existence on [0, 1], thus it does not blow up in this domain. Concerning the solution
y(t) of the system (4.22), integration by parts, which together with Sobolev interpolation and
Young’s inequality, yield,

d

dt
‖y(t)‖2L2

1
≤ −2‖y(t)‖2H1

1
+ C‖y(t)‖H1

1
|Ky(t)|,

≤ −2‖y(t)‖2H1
1

+ C‖y(t)‖H1
1
‖y(t)‖

H
3/4
1

,

≤ −2‖y(t)‖2H1
1

+ C‖y(t)‖
7
4

H1
1
‖y(t)‖

1
4

L2
1
,

≤ −2‖y(t)‖2H1
1

+ C

(
7ε

8
‖y(t)‖2H1

1
+

1

8ε7
‖y(t)‖2L2

1

)
,

≤ −‖y(t)‖2H1
1

+ C‖y(t)‖2L2
1
.

The preceding a priori estimate, to be combined with standard arguments, indicate the exis-
tence of solution on [0, 1] and further on [0,+∞).
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Proof of Corollary 4.5. Concerning Corollary 4.5, again, we only prove the case that k = 1
as the other case that k = 2 is similar. Observe that r − 1 < −1/2, meaning φ1 ∈ Hr−1

1 .
Meanwhile, the choice of r also tells us that K is bounded on Hr+1

1 .
At first we investigate the related open-loop system, i.e. we replace K1(y) by u(t) ∈

L2
loc(0,+∞). The equation {

∂ty −∆y = φ1u(t),

y(0) = y0 ∈ Hr
1 ,

(6.20)

has a unique solution in the space (4.24), satisfying

‖y(t)‖2C0([0,T ];Hr
1 )
≤ ‖y0‖2Hr

1
+ ‖φ1u(t)‖2

L2(0,T ;Hr−1
1 )

, (6.21)

‖y(t)‖2
L2(0,T ;Hr+1

1 )
≤ ‖y0‖2Hr

1
+ ‖φ1u(t)‖2

L2(0,T ;Hr−1
1 )

. (6.22)

Indeed,

1

2

d

dt
‖y(t)‖2Hr

1
= 〈y(t), ẏ(t)〉Hr

1

= −‖y(t)‖2
Hr+1

1
+ 〈y(t), u(t)φ1〉Hr

1

≤ −‖y(t)‖2
Hr+1

1
+ ‖y(t)‖Hr+1

1
‖u(t)φ1‖Hr−1

1

≤ −‖y(t)‖2
Hr+1

1
+

1

2
‖y(t)‖1

Hr+1
1

+
1

2
‖u(t)φ1‖2Hr−1

1

≤ −1

2
‖y(t)‖2

Hr+1
1

+
1

2
|u(t)|2‖φ1‖2Hr−1

1
,

≤ −1

2
‖y(t)‖2

Hr+1
1

+ C|u(t)|2,

where we have used the fact that for h, g ∈ S1 (thus extends to related Sobolev spaces)

h :=
∑
n∈N∗

hn sinnx, g :=
∑
n∈N∗

gn sinnx,

〈h, g〉Hr
1

=
∑
n∈N∗

(nrhn)(nrgn) =
∑
n∈N∗

(nr+1hn)(nr−1gn) ≤ ||h||Hr+1
1
||g||Hr−1

1
,

as well as that

〈h,∆h〉Hr
1

= −
∑
n∈N∗

(nrhn)(nr+2hn) = −
∑
n∈N∗

(nr+1hn)(nr+1hn) = −||h||2
Hr+1

1
.

Next, for the closed-loop system (4.22), by the choice of r there exists some s0, s1 satisfying
r < 1/2 < s0 < r+1 such thatHr+1

1 ⊂ Hs0
1 ⊂ Hr

1 , and thatK is bounded onHs0
1 . Consequently,

the same proof of Lemma 4.4 adapts here. For instance, in Lemma 4.4 the value of s0 is chosen
as 3/4 (see Lemma 6.1 in Section 6). Indeed,

LEMMA 6.2. For p := 2
s0−r > 2, we know that

‖z‖Lp(0,T ;Hs0
1 ) ≤ ‖z‖

r+1−s0
L∞(0,T ;Hr

1 )
‖z‖s0−r

L2(0,T ;Hr+1
1 )

. (6.23)
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Proof. Since
‖z‖Hs0

1
≤ ‖z‖r+1−s0

Hr
1

‖z‖s0−r
Hr+1

1

, (6.24)

we know that

‖z‖Lp(0,T ;Hs0
1 ) ≤ ‖‖z‖

r+1−s0
Hr

1
‖z‖s0−r

Hr+1
1

‖Lp(0,T ),

≤ ‖‖z‖r+1−s0
Hr

1
‖L∞(0,T )‖‖z‖s0−rHr+1

1

‖Lp(0,T ),

= ‖z‖r+1−s0
L∞(0,T ;Hr

1 )
‖z‖s0−r

Lp(s0−r)(0,T ;Hr+1
1 )

.

For any given T > 0. Let us define

BrT := {y ∈ C0([0, T ];Hr
1) ∩ L2([0, T ];Hr+1

1 )}, (6.25)

with its norm given by

‖y‖BrT := ‖y‖C0([0,T ];Hr
1 )

+ ‖y‖L2([0,T ];Hr+1
1 ), (6.26)

and
BrT (M) := {y ∈ BrT | ‖y‖BrT ≤M}. (6.27)

Let ‖y0‖Hr
1

= R. For any T > 0, we further consider the map Lr : z ∈ BrT (3R) 7→ y ∈ BrT
defined as {

∂ty −∆y = φK(z) in T,
y(0) = y0.

(6.28)

When T is sufficiently small, by adapting

‖φ(Kz)‖L2(0,T ;Hr−1
1 ) ≤ C‖Kz‖L2(0,T ) ≤ C‖z‖L2(0,T ;H

s0
1 ) ≤ CT

1
2
− 1
p ‖z‖Lp(0,T ;Hs0

1 ),

and the fixed point argument, there is a unique solution in the space (4.24) in a small interval
of time [0, T ], more precisely as the unique fixed point of Lr in BrT (3R).

Next, the a priori estimate further implies the existence of a unique solution in large interval
of time.

REMARK 6.3. For the case that k = 2 instead of 1, similar approach leads to the same
well-posedness result. The only place that needs to be (slightly) modified is that the inequalites
(6.21)–(6.22) should be replaced by,

‖y(t)‖2C0([0,T ];Hr
2 )
≤ e2T

(
‖y0‖2Hr

2
+ ‖φ1u(t)‖2

L2(0,T ;Hr−1
2 )

)
,

‖y(t)‖2
L2(0,T ;Hr+1

2 )
≤ e2T

(
‖y0‖2Hr

2
+ ‖φ1u(t)‖2

L2(0,T ;Hr−1
2 )

)
.

That is because

〈y(t),∆y(t)〉Hr
2 ,H

r
2

= −‖y(t)‖2
Hr+1

2
+ (〈y, f20 〉)2 ≤ −‖y(t)‖2

Hr+1
2

+ ‖y(t)‖2Hr
2
,

which leads to

1

2

d

dt
‖y(t)‖2Hr

2
≤ −‖y(t)‖2

Hr+1
2

+ ‖y(t)‖2Hr
2

+ 〈y(t), u(t)φ1〉Hr
2
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≤ ‖y(t)‖2Hr
2
− 1

2
‖y(t)‖2

Hr+1
2

+
1

2
‖u(t)φ1‖2Hr−1

2
.

Thus
‖y(t)‖2Hr

2
+ ‖y‖2

L2(0,t;Hr+1
2 )
≤ e2t‖y(0)‖2Hr

2
+ e2t‖u(t)φ‖2

L2(0,t;Hr−1
2 )

.

Proof of Lemma 4.8. Finally, we simply comment on the proof of Lemma 4.5 whose proof is
essentially the same as the proof of Lemma 4.4.

Indeed, concerning the existence of the solution in a small interval of time, it suffices to
treat the nonlinear term as a perturbation using Gagliardo–Nirenberg interpolation inequality,
which is standard.

‖∂x(y2)‖2L2(0,T ;H−1) ≤ ‖yy‖
2
L2(0,T ;L2),

≤
∫ T

0
‖y(t, ·)‖2L2‖y(t, ·)‖2L∞dt,

≤ C
∫ T

0
‖y(t, ·)‖2L2‖y(t, ·)‖2

H1/2dt,

≤ C
∫ T

0
‖y(t, ·)‖3L2‖y(t, ·)‖H1dt,

≤ CT
1
2 ‖y‖3C0([0,T ];L2)‖y‖L2(0,T ;H1).

Next, classical energy estimates, benefiting from the fact that

〈y, ∂x(y2)〉 = 0, (6.29)

lead to the existence of solution in large interval of time,

1

2

d

dt
‖y(t)‖2L2 = 〈y(t),∆y(t) + φ1K1(y(t)) + φ2K2(y(t))〉H1,H−1

≤ −‖y(t)‖2H1 + ‖y(t)‖2L2 + C‖y(t)‖H1 (|K1y(t)|+ |K2y(t)|) ,

≤ −1

2
‖y(t)‖2H1 + C‖y(t)‖2L2 ,

where, slightly different from the calculation on L2
1 and H1

1 , for H1 norm (just as for H1
2 norm)

we have

〈y(t),∆y(t)〉H1,H−1 = −‖y(t)‖2H1 + (〈y, f20 〉)2 ≤ −‖y(t)‖2H1 + ‖y(t)‖2L2 .

7 Proof of Theorems 1.1–1.4

7.1 The heat equation: on the well-posedness of the transformed system
and its stability

In order to show Theorem 1.1, we need to show the well-posedness of the closed-loop system
and its exponential stability. Also, to simplify the notation we assume that m = 0 even though
the exact same can be done with m 6= 0. Let y0 ∈ L2

1. Under the assumption of Theorem 1.1
we can define

B = (φ1, φ2), K = (K1,K2)
T , T = T1 + T2
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given by Proposition 4.1 and Corollary 4.2.
Let τ > 0. Considering the fact that for k ∈ {1, 2} φk ∈ H−1k and that K1 : H1

k → R, for any
ϕ(t) ∈ L2(0, τ ;H1) we have that BKϕ(t) ∈ L2(0, τ ;H−1). Then, concerning the closed-loop
system

yt −∆y = BK(y), y(0) = y0, (7.1)

from Corollary 4.7, we get a unique solution of the closed-loop system

y(t) ∈ C0([0, τ ];L2(T1)) ∩ L2(0, τ ;H1(T1)) ∩H1(0, τ ;H−1(T1)), (7.2)

which indicates that the equation (7.1) (thus each item of it) is held in the L2(0, τ ;H−1(T1))
sense.

Since the operator T is bounded in H l(T1) space with l = −1, 0, 1 (from Proposition 4.1
and Corollary 4.2), we know that

z(t) := Ty(t) ∈ C0([0, τ ];L2(T)) ∩ L2(0, τ ;H1(T)) ∩H1(0, τ ;H−1(T)). (7.3)

Moreover, by applying T to (7.1) we know that

Tyt − TAy = TBK(y) in L2(0, τ ;H−1(T1)). (7.4)

By applying Proposition 4.1 and Corollary 4.2 with s = 0, together with the fact that y(t) ∈
L2(0, τ ;H1

1 (T1)), we arrive at

Tyt = ATy − λTy, in L2(0, τ ;H−1(T)). (7.5)

Hence,
zt −∆z + λz = 0 in L2(0, τ ;H−1(T)). (7.6)

Consequently,
1

2

d

dt
‖z(t)‖2L2(T) = 〈z(t), ż(t)〉H1,H−1 ≤ −λ‖z(t)‖2L2(T) (7.7)

holds in the L1(0, T ) sense, which further implies the required decay property of the solution

‖z(t)‖L2 ≤ e−λt‖z(0)‖L2 , ∀t ∈ [0, τ ]. (7.8)

Finally, as T is an isomorphism on L2 from Proposition 4.1 and Corollary 4.2, we conclude
that

‖y(t)‖L2 ≤ C(λ)e−λt‖y0‖L2 , ∀t ∈ [0, τ ], (7.9)

Given that this is true for any τ > 0 and that C(λ) does not depend on τ , it implies that
y ∈ C0([0,+∞);L2(T)) and

‖y(t)‖L2 ≤ C(λ)e−λt‖y0‖L2 , ∀t ∈ [0,+∞). (7.10)

This nearly ends the proof of Theorem 1.1, the only thing left is to check that we have also a
stabilization in Hr for any r ∈ (−1/2, 1/2).

REMARK 7.1. Let r ∈ (−1/2, 1/2). The same feedback law K(y) also stabilizes the system
(7.1) in Hr−space.
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Indeed, let r ∈ (−1/2, 1/2) and let y0 ∈ Hr. As φk ∈ Hr−1
k and Kk : Hr+1

k → R, for
any ϕ(t) ∈ L2(0, τ ;Hr+1) we have that BKϕ(t) ∈ L2(0, τ ;Hr−1). Then equation (7.1) has a
solution

y(t) ∈ C0([0, τ ];Hr(T)) ∩ L2(0, τ ;Hr+1(T)) ∩H1(0, τ ;Hr−1(T)), (7.11)

and is held in the L2(0, τ ;Hr−1(T)) sense.
Because T is bounded in H l with l = r− 1, r, r+ 1 (Lemma 5.1 part (4) and Section 5.3.3),

we know that z(t) := Ty(t) lives in the same space of y(t) in (7.11).
By adapting T to the equation (7.1) we know that (7.4) holds in the L2(0, τ ;Hr−1(T)) sense.

Then by adapting Lemma 5.6 to the case that s = r, we get

Tyt = ATy − λTy, in L2(0, τ ;Hr−1(T)). (7.12)

Hence,
zt −∆z + λz = 0 in L2(0, τ ;Hr−1(T)), (7.13)

which leads to the required exponential decay of z in Hr,

1

2

d

dt
‖z(t)‖2Hr = 〈z(t), ż(t)〉Hr ≤ −λ‖z(t)‖2Hr . (7.14)

Consequently, using again that T is an isomorphism in Hr,

‖y(t)‖Hr ≤ Cr(λ)e−λt‖y(0)‖Hr , (7.15)

with C and Cr(λ) depending on r ∈ (−1/2, 1/2) and λ /∈ N . This ends the proof of Theorem
1.1.

7.2 The viscous Burgers equation: on the well-posedness of the target sys-
tem and the stability of the closed-loop system (1.8)

The proof of Theorem 1.4 dealing with the viscous Burgers equation is very similar to the proof
of Theorem 1.1 dealing with the heat equation with m = 0, r = 0. Let τ > 0 and y0 ∈ L2

1 such
that ‖y0‖L2 < δ, where δ is a constant to be chosen. Lemma 4.8 implies that the closed-loop
system (1.8) has a unique solution y(t), provided that δ is sufficiently small (depending on τ),
and

y(t) ∈ C0([0, τ ];L2(T)) ∩ L2(0, τ ;H1(T)) ∩H1(0, τ ;H−1(T)), (7.16)

which is held in the L2(0, τ ;H−1(T)) sense. Next, again, thanks to the fact that the operator
T is bounded in H l

1(T) space with l = −1, 0, 1,

z(t) := Ty(t) ∈ C0([0, τ ];L2(T)) ∩ L2(0, τ ;H1(T)) ∩H1(0, τ ;H−1(T)). (7.17)

Next, by applying T to (1.8) we know that in the L2(0, τ ;H−1(T)) sense,

Tyt − TAy + T∂x(y2/2) = TBK(y), (7.18)

where we used the fact that T∂x(y2/2) ∈ L2(0, T ;H−1).
By applying Lemma 5.6 for the case s = 0, combined with the fact that y(t) ∈ L2(0, τ ;H1(T1)),

we get that
Tyt = ATy − λTy − T∂x(y2)/2, in L2(0, τ ;H−1(T)). (7.19)

Hence,
zt −∆z + λz + T∂x(T−1z)2/2 = 0 in L2(0, τ ;H−11 (T)). (7.20)
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Therefore, the system is locally stable in L2(T) space, provided that ‖z‖L2 is small enough,
indeed

1

2

d

dt
‖z(t)‖2L2(T) = 〈z(t), ż(t)〉H1,H−1

= 〈z(t),∆z − λz − T∂x(T−1z)2/2〉H1,H−1 ,

≤ −‖z‖2H1 + ‖z‖2L2 − λ‖z‖2L2 + C‖z‖H1‖T∂x(T−1z)2‖H−1

≤ −‖z‖2H1 − (λ− 1)‖z‖2L2 + C‖z‖H1‖(T−1z)2‖L2

≤ −‖z‖2H1 − (λ− 1)‖z‖2L2 + C‖z‖H1‖T−1z‖L2‖T−1z‖H1

≤ −‖z‖2H1 − (λ− 1)‖z‖2L2 + C‖z‖2H1‖z‖L2 .

Hence, provided that sup[0,τ ](‖z‖L2) is small enough (depending on λ ∈ (1,+∞)) one has

‖z(t)‖L2 ≤ e−(λ−1)t‖z(0)‖L2 , ∀t ∈ [0, τ ], (7.21)

which also implies, using T−1, that

‖y(t)‖L2 ≤ C(λ)e−(λ−1)t‖y(0)‖L2 , ∀t ∈ [0, τ ], (7.22)

provided that sup[0,τ ](‖z‖L2) small, or equivalently that sup[0,τ ](‖y‖L2) small, from the isomor-
phism property of T . Finally, from Lemma 4.8 and (4.30) it suffices to have ‖y0‖L2 small. This
means that there exists δ1(τ, λ) such that for any δ ∈ (0, δ1(τ, λ)) the solution y satisfies (7.16)
and the exponential stability estimate (7.22) holds.

So far the constant δ depends on τ but, leveraging the exponential stability estimate (7.22), it
can be made independent of τ using a very classical argument: let τ1 > 0 such that e−(λ−1)τ1/2 <
(C(λ))−1 , and select δ = δ1(τ1, λ), then y exists and (7.22) holds on [0, τ1], therefore

‖y(τ1, ·)‖L2 ≤ e−(λ−1)τ1/2‖y0‖L2 . (7.23)

As the system (1.8) is autonomous, studying it on [τ1, 2τ1] is the same as studying it on [0, τ1]
with initial condition y(τ1, ·). And from (7.23), ‖y(τ1, ·)‖L2≤ ‖y0‖L2 ≤ δ1(τ1, λ), hence the
solution exists on [τ1, 2τ1] and

‖y(t)‖L2 ≤ C(λ)e−(λ−1)(t−τ1)‖y(τ1)‖L2 , ∀t ∈ [τ1, 2τ1], (7.24)

which together with (7.22) gives

‖y(t)‖L2 ≤ C(λ)e−
(λ−1)

2
t‖y(0)‖L2 , ∀t ∈ [0, 2τ1], (7.25)

Hence, iterating this procedure, for any n ∈ N∗ y exists on [0, nτ1]

‖y(t)‖L2 ≤ C(λ)e−
(λ−1)

2
t‖y(0)‖L2 , ∀t ∈ [0, nτ1], (7.26)

hence y exists on [0,+∞) and

‖y(t)‖L2 ≤ C(λ)e−
(λ−1)

2
t‖y(0)‖L2 , ∀t ∈ [0,+∞). (7.27)

This ends the proof of Theorem 1.4.
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8 Conclusion

8.1 Quantitative studies on Cr(λ,m)

Thanks to the precise analysis introduced in this paper. The next step could also be on the
quantitative study of the stabilization cost, namely on the value of the constant Cr(λ,m) in
Theorem 1.1. For example, let m = 0. For any fixed λ /∈ N , even if we do not have enough
information on the exact value of Cr(λ), it can be conjectured that the optimal value of Cr(λ)
(at least obeying our feedback law) tends to +∞ as |r| tends to 1/2−.

The appearance of the critical set N also indicates that, for any r ∈ (−1/2, 1/2) fixed, as λ
tends to N the value of Cr(λ) tends to +∞. Therefore, it seems that by adapting this feedback

we are not able to achieve eC
√
λ type estimates, at least not uniformly on λ ∈ R+. However, we

believe that with the precise functional settings treated in this paper, we are much more closed

to such quantitative results. Indeed, it is still possible and reasonable to expect eC
√
λ estimate

on {λ = 4N + 2;N ∈ N∗}.

8.2 General parabolic equations

It is natural to ask whether our framework also adapts general parabolic equations, namely{
∂ty −∆y + a1(x)∂xy + a2(x)y = φ1K1(y) + φ2K2(y),

y(0) = y0,
(8.1)

with ai(x) satisfying suitable regularity assumption.
By regarding the lower order operators a1(x)∂x+a2(x) as source, the same feedback law and

transformation yields the operator equality. However, on the next step, when applying T to the
evolution equation, the source a1(x)∂xy+a2(x)y turned out to be T

(
a1(x)∂x(T−1z) + a2(x)(T−1z)

)
which may become even stronger than the −λz damping produced by backstepping.

Therefore, it seems that we need to perform backstepping directly on the elliptic operator
−∆+a1(x)∂x+a2(x). In the case that a1(x) = 0, the analysis is probably simpler as the operator
is remained to be self-adjoint. However, losing those explicit formulation of eigenvalues and
eigenfunctions make it more challenging to conclude Lemma 5.1. While the other case that
a1(x) 6= 0 is of course more delicate, maybe the perturbation theory of resolvent estimates
should be applied, a good news is that due to the spectral gaps between different eigenvalues
are increasing, it is possible that no smallness of a1(x)∂x+a2(x) should be assumed. Technically
speaking, due to the appearance of eigenvalues admitting double multiplicity the bifurcation
phenomenon when splitting those eigenvalues should appear, the resolvent analysis involved
would be more interesting and more delicate to some related works such as [5, 12].

8.3 Stabilization with one scalar control

It is proved in this work that two scalar controls are necessary and sufficient for the rapid
stabilization of the heat equation provided some decay information, because of those double
eigenvalues. But if we work on more general parabolic equations, for which it is possible
that every eigenvalues are simple and isolated, then probably one scalar control, of course
always admitting suitable decay properties, is sufficient to conclude controllability and rapid
stabilization.

According to the “return philosophy” introduced by Coron [9], it is still possible to stabilize
nonlinear system even if the linearized system is not stabilizable. Therefore, it is also of interest
to consider the rapid stabilization of the viscous Burgers equation with one scalar control.
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[2] A. Balogh and M. Krstić. Infinite dimensional backstepping-style feedback transformations
for a heat equation with an arbitrary level of instability. Eur. J. Control, 8(3):165–175,
2002.

[3] G. Bastin and J.-M. Coron. Stability and boundary stabilization of 1-d hyperbolic systems,
volume 88. Springer, 2016.
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