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ON THE JUSTIFICATION OF TOPOLOGICAL DERIVATIVE FOR

WAVE-BASED QUALITATIVE IMAGING OF FINITE-SIZED DEFECTS IN

BOUNDED MEDIA

MARC BONNET

Abstract.
Purpose This work contributes to the general problem of justifying the validity of the heuristic
that underpins medium imaging using topological derivatives (TDs), which involves the sign
and the spatial decay away from the true anomaly of the TD functional. We consider here the
identification of finite-sized (i.e. not necessarily small) anomalies embedded in bounded media
and affecting the leading-order term of the acoustic field equation.

Design/methodology/approach TD-based imaging functionals are reformulated for analy-
sis using a suitable factorization of the acoustic fields, which is facilitated by a volume integral
formulation. The three kinds of TDs (single-measurement, full-measurement and eigenfunction-
based) studied in this work are given expressions whose structure allows to establish results
on their sign and decay properties. The latter are obtained using analytical methods involving
classical identities on Bessel functions and Legendre polynomials, as well as asymptotic approx-
imations predicated on spatial scaling assumptions.

Findings The sign component of the TD imaging heuristic is found to be valid for multistatic
experiments and if the sought anomaly satisfies a bound (on a certain operator norm) involving
its geometry, its contrast and the operating frequency. Moreover, upon processing the excitation
and data by applying suitably-defined bounded linear operatirs to them, the magnitude com-
ponent of the TD imaging heuristic is proved under scaling assumptions where the anomaly is
small relative to the probing region, the latter being itself small relative to the propagation do-
main. We additionally validate both components of the TD imaging heuristic when the probing
excitation is taken as an eigenfunction of the source-to-measurement operator, with a focusing
effect analogous to that achieved in time-reversal based methods taking place. These findings
extend those of earlier studies to the case of finite-sized anomalies embedded in bounded media.

Originality/value The originality of the paper lies in the theoretical justifications of the TD-
based imaging heuristic for finite-sized anomalies embedded in bounded media.

Full abstract The concept of topological derivative (TD) is known to provide, through its
heuristic interpretation involving its sign and its spatial decay away from the true anomaly, a
basis for the qualitative imaging of finite-sized anomalies. The TD imaging heuristic is currently
partially backed by conditional mathematical justifications. Continuing earlier efforts towards
the justification of TD-based identification, this work investigates the acoustic wave-based imag-
ing of finite-sized (i.e. not necessarily small) medium anomalies embedded in bounded domains
and affecting the leading-order term of the acoustic field equation. Both the probing excita-
tion and the measurement are assumed to take place on the domain boundary. We extend to
this setting the analysis approach previously used for unbounded media with either refraction-
index anomalies and far-field measurements (Bellis et al., Inverse Problems 29:075012, 2013) or
mass-density anomalies and meaurements at finite distance (Bonnet, Cakoni, Inverse Problems
35:104007, 2019). Like in the latter work, TD-based imaging functionals are reformulated for
analysis using a suitable factorization of the acoustic fields, facilitated by a volume integral
formulation. Our results, which echo corresponding results of our earlier investigations, con-
ditionally validate the TD imaging heuristic. Moreover, we show on a geometrically simple
configuration that the spatial behavior of the TD associated with standard L2 cost functionals
is degraded by “echoes” of the true anomaly, an aspect specific to the present bounded-domain
framework. This undesirable effect is removed by a combination of (i) post-processing the mea-
surements by application of a suitable integral operator (a treatment introduced by Ammari
et al., 2011, for the analysis of TD-based imaging involving true flaws modelled using small-
anomaly asymptotics), and (ii) expressing the background field as an incoming single-layer
potential defined in the full space (after an idea used in Bonnet, Cakoni, 2019). Finally, we
also show that selecting eigenfunctions of the source-to-measurement operator as excitations
enhances the spatial decay properties of the TD functionals.

Date: August 13, 2021.
Key words and phrases. Helmholtz equation, topological derivative, imaging.
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1. Introduction

Inverse scattering has undergone intense investigation over the last quarter century, in partic-
ular due to the growth and flourishing of qualitative methods which provide robust and compu-
tationally effective alternatives to more traditional approaches based on successive linearizations
or PDE-constrained optimization, see Kirsch and Grinberg (2008), Cakoni and Colton (2014),
Cakoni et al. (2016) for exposition and references. Qualitative anomaly imaging methods typ-
ically involve sampling a spatial region of interest with points z at which an imaging function
W is evaluated. In particular, (generalized) linear sampling methods and factorization methods
work along those lines and are backed by rigorous mathematical justifications.

The concept of topological derivative (TD) provides an alternative basis for qualitative flaw
imaging. The TD of an objective functional J quantifies the leading perturbation to J caused
by a trial anomaly of vanishingly small radius ε appearing at a given location z in the (defect-
free) background propagation medium. On choosing J as a misfit functional of a form usually
employed in PDE-constrained inversion, a sampling apprach may be defined by setting W (z)
to the value T (z) of the TD of J at sampling points z. Since the sought flaws are deemed
to minimize J , an intuitive heuristics for TD-based imaging consists in postulating that the
(possibly multiple) flaw is located where T (z) has a negative sign and largest magnitude.

Topological derivatives, initially introduced and formalized as computational aids for topol-
ogy optimization (Eschenauer et al., 1994; Sokolowski and Zochowski, 1999), have since seen
many extensions and applications, see e.g. Novotny et al. (2019a,b,c) and references therein. In
particular, it has proved effective for revealing hidden flaws in a variety of inverse scattering
situations, see e.g. Bonnet and Guzina (2004), Dominguez et al. (2005), Guzina and Bonnet
(2006), Guzina and Chikichev (2007), Ammari et al. (2012), Laurain et al. (2013), Bellis and
Bonnet (2013), Le Louër and Rapún (2017), Bonnet (2018), Carpio et al. (2019). In particu-
lar, despite the asymptotic nature of the mathematical concept of TD, abundant computational
evidence demonstrates its ability to qualitatively identify spatially-extended objects. The under-
lying objective functional J often quantifies the misfit between the available data and its model
prediction in a least-squares sense, which makes TD-based imaging implementable irrespective
of the available data. Moreover, the practical evaluation of z 7→ T (z) is straightforward and
moderately expensive as it can be expressed as a bilinear function of the incident field and an
adjoint field associated with J (see e.g. Céa et al., 2000).

For given objective functional and physical framework, the formulation of T (z) is a clearly
defined and mathematically rigorous operation. By contrast, the mathematical justification of
the foregoing TD imaging heuristics is still gappy. Theoretical investigations about TD-based
imaging began only about a decade ago. Ammari et al. (2012) studied the imaging of a small
single scatterer in an acoustic medium, and its stability with respect to medium or measure-
ment noises, with follow-up studies by Ammari et al. (2013) and Wahab (2015) extending this
framework to elastodynamics and electromagnetism, respectively. Guzina and Pourahmadian
(2015) addressed the high-frequency limiting behavior of a TD imaging functional. The same
general problem was addressed for spatially extended anomalies in unbounded acoustic media,
considering refraction-index anomalies and far-field measurements (Bellis et al., 2013) and later
mass-density anomalies and finitely remote measurements (Bonnet and Cakoni, 2019).

Bellis et al. (2013) and Bonnet and Cakoni (2019) found, in their respective contexts, the
magnitude component of the TD imaging heuristic to be valid, and the guaranteed correctness
of the sign component subject to an inequality (involving the operating frequency and the
obstacle size and contrast) essentially requiring the flaw to be “moderate”. Following up on those
previous studies, we consider here the TD imaging heuristics for spatially extended anomalies
embedded in a bounded acoustic domain where excitations and measurements take place on the
domain boundary. Our main aim is to establish conditions under which the usual TD imaging
heuristic is valid when the medium being probed is finite. As in our previous studies, TDs are
reformulated for analysis using a suitable factorization of the acoustic fields, facilitated by a
volume integral formulation. Sign properties are found to conform to corresponding previous
results. Our other main contribution consists of an asymptotic study of the decay of |T (z)|
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is studied by applying to the present context the asymptotic approach introduced in Bonnet
and Cakoni (2019) where the sampling region is taken large relative to the obstacle diameter
but small relative to the domain size. We first analytically show, on a geometrically simple
configuration, that the spatial behavior of the TD associated with standard L2 cost functionals
is degraded by “echoes” of the true anomaly. This observation prompts us to propose a modified
TD-based imaging method whereby (i) measurements are post-processed by application of a
suitable integral operator (a treatment introduced by Ammari et al., 2012 for the analysis of
TD-based imaging of flaws modelled using small-anomaly asymptotics), and (ii) expressing the
background field as an incoming single-layer potential defined in the full space (a variation on an
idea used in Bonnet and Cakoni, 2019). The decay properties of the resulting modified TDs are
found to be similar to those previously established for unbounded media. We additionally show
that selecting eigenfunctions of the source-to-measurement operator as excitations enhances the
spatial decay properties of both usual and modified versions of the TD functional.

The article is organized as follows. In Section 2, we formulate the scattering problem by means
of a volume integral equation employing the acoustic Neumann function of the propagation do-
main, allowing a symmetric factorization of the source-to-measurement operator. On that basis,
explicit expressions for TDs involving symmetric factorizations are derived for the usual least-
squares misfit objective functional with three kinds of data configuration (single-measurement,
full-measurement and eigenfunction-based). Then, sign and spatial decay properties of those
TDs are established in Section 3. Modified versions of TDs are introduced in Section 4 and
shown in Section 5 to have preserved sign properties but improved decay properties relative
to their unmodified counterparts of Section 3. Section 6 then offers some general comments
and shows how our analysis framework also applies to situations involving refraction-index,
anisotropic or inhomogeneous anomalies. Finally, some proofs are collected in Section 7.

2. Scattering problem and topological derivative

We begin by specifying some notation conventions used throughout this paper. A tensor
algebra notation style is used for vectors or tensors in the physical space R3; in particular,
expressions such as A·x or B :C, symbols ’·’ and ’ : ’ denote single and double inner products,
e.g. (A ·x)i =

∑
iAijxj and B :C =

∑
i,j BijCij , with component indices always referring to

an orthonormal frame. The (Euclidean) norm
√
x·x of a vector x is denoted by |x|, whereas

‖ · ‖ indicate norms in function spaces or operator norms. Hat symbols over vectors denote
collinear unit vectors, e.g. x̂ := x/|x|. For some domain or surface X ⊂ R3, we denote by
f, g 7→

(
f, g

)
X

:=
∫
X fg the sesquilinear form associated with the L2(X) scalar product of

scalar or tensor complex-valued functions defined in X.

2.1. Direct and scattering problem. We consider a homogeneous and isotropic reference
(e.g. acoustic) propagation medium occupying a bounded domain Ω with boundary Γ := ∂Ω.
Time-harmonic propagating waves satisfy the Helmholtz equation

−∆u− κ2u = 0 in Ω, (2.1)

where κ = ω/c is the wavenumber expressed in terms of the wave velocity c and operating
angular frequency ω, and u is the scalar acoustic pressure. We assume that κ2 is not an Neumann
eigenvalue of the Laplacian in Ω. The medium hosts an unknown anomaly with compact support
B b Ω whose material properties are characterized by a uniform relative scalar contrast β >−1.
Waves propagating in the perturbed medium then satisfy

−(∆+κ2)u = 0 in Ω\B, −
(

(β+1)∆ + κ2
)
u = 0 in B,

u|+ = u|−, ∂nu|+ = β∂nu|− on ∂B
, (2.2)

where ∂n := n·∇ is the normal derivative operator and (·)|+ and (·)|− denote limiting values on
∂B from outside and inside of B, respectively (the case of anisotropic anomalies being concisely
discussed in Sec. 6.2). To probe the medium, waves are generated in Ω by applying a Neumann
data g on the boundary:

∂nu = g on Γ. (2.3)
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For the linear acoustic model, g is proportional to a given normal wall velocity. The background
field u = u[g] then solves problem (2.1,2.3), while the perturbed field uB = uB[g] solves prob-
lem (2.2,2.3), so that the presence of an anomaly B is revealed by the non-vanishing scattered
field vB[g] := uB[g]− u[g]. The identification problem under consideration is to estimate the
anomaly location B given the scattered field vobs[g] measured on Γ. To facilitate theoretical
analysis, we idealize the situation by assuming the data to be noise-free, i.e. vobs[g] = vB[g].
The topological derivative is known to be only mildly sensitive to data noise, as discussed e.g.
in Ammari et al. (2012) and, briefly, in Bonnet and Cakoni (2019, Sec. 6.2).

2.2. Objective functional. We formulate the problem of identifying B as the minimization of
an objective functional. For a trial anomaly of support D, the least-squares functional

J [g](D) :=
1

2

∫
Γ

∣∣vD[g]− vobs[g]
∣∣2 dS, (2.4)

which in this form corresponds to exploiting a single experiment with applied excitation g, is
the most common basis for such optimization-based identification.

We also consider experimental situations which can be thought of as the mathematical ideal-
ization of a multistatic experiment, where measurements for all possible excitation / response
pairs (g, vobs[g]) are available. Letting (Ym)m∈N denote a Hilbert basis of L2(Γ), a suitable
objective functional for this case is then

JΣ(D) :=
∑
m≥0

1

2

∫
Γ

∣∣vD[Ym]− vobs[Ym]
∣∣2 dS.

For example, (Ym)m∈N can be taken as the set of eigenfunctions of the Laplace-Beltrami operator
on Γ (Cogar, 2020), which are none other than the spherical harmonics if Γ is a sphere.

2.3. Asymptotic of the cost functional. The medium is “sampled” by means of trial anom-
alies of support Bε(z) = z+εB and size ε> 0, centered at a given point z ∈Ω and endowed with
specified relative contrast βz. The fixed domain B defines the shape of the trial anomaly, and can
be assumed without loss of generality to verify

∫
B x dVx = 0. We then set D = Bε = Bε(z) in

the functional (2.4). Denoting by uε[g] := uBε [g] and vε[g] := uε[g]−u[g] the total and scattered
fields arising in this situation, we then define the cost function J [g](ε) = J [g](ε; z) in terms of
J [g] by

J [g](ε) = J [g](Bε) =
1

2

∫
Γ

∣∣vε[g]− vobs[g]
∣∣2 dS (2.5)

The topological derivative (TD) T [g](z) of J [g] at z is then defined as the leading coefficient in
the expansion of J(ε)−J(0) in powers of ε:

J [g](ε) = J [g](0) + ε3T [g](z) + o(ε3)

In view of (2.5) and recalling the error-free assumption on the measurement, T [g](z) can be
evaluated by identification from

−Re
{ ∫

Γ
vε[g] vB[g] dS

}
= ε3T [g](z) + o(ε3). (2.6)

Proceeding similarly, the TD TΣ(z) of JΣ(ε) := JΣ(Bε) is found from

−Re
{ ∑
m≥0

∫
Γ
vε[Ym] vB[Ym] dS

}
= ε3TΣ(z) + o(ε3). (2.7)

2.4. Representation of background and scattered fields. To derive the TDs arising from (2.6)
and (2.7) in a form suitable for the analysis of their properties, it is convenient to introduce in-
tegral representations of the background and scattered fields. First, let the single-layer potential
operator S : L2(Γ)→ H1(Ω) be defined by

Sϕ(x) =

∫
Γ
Gκ(y,x)ϕ(y) dy x∈Ω, (2.8)
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where Gκ(y,x) is the Neumann function for a unit point source x embedded in the background
medium. The latter satisfies{

−
(

∆+κ2
)
Gκ(·,x) = δ(y−x) in Ω

∂nGκ(·,x) = 0 on Γ
x∈Ω, (2.9)

(δ being the Dirac distribution) and has the following useful known properties:

Lemma 1. The Neumann function defined by problem (2.9) is real-valued. It verifies the sym-
metry properties

Gκ(x,y) = Gκ(y,x), ∇1Gκ(x,y) = ∇2Gκ(y,x) x,y ∈R3, x 6= y,

where ∇1Gκ, ∇2Gκ are the gradients of Gκ with respect to its first and second arguments.

The background field u[g] solving (2.1,2.3) is then given by

u(x) = Sg(x). (2.10)

Then, let the volume potential operator Wκ : L2(Ω;C3)→ H1(Ω) be defined by

Wκ[g](x) = −
∫

Ω
∇1Gκ(y,x)·g(y) dy (2.11)

for any vector density q ∈ L2(Ω;C3). The scattered field for the true anomaly has the represen-
tation

vB(x; s) = Wκ[h](x) x∈B ∪ (Ω\B), (2.12)

where the density h = βχB∇uB[g] ∈ L2(B;C3), supported in B, solves the singular volume
integral equation (VIE) (

I − β∇Wκ

)
h(x) = β∇u[g](x) x∈B. (2.13)

The singular integral operator I − β∇Wκ : L2(B;C3) → L2(B;C3) is known to be invertible
with bounded inverse (see e.g. Bonnet, 2017 for more details on singular VIE formulations).
Solving equation (2.13), using (2.12) and recalling (2.10), we obtain

vB(x) = −
∫
B
∇1Gκ(y,x)·

[
MB∇Sg

]
(y) dy (2.14)

where the solution operator MB, defined by MBg = h with h solving (I−β∇Wκ)h = βg for
given g ∈L2(B;C3), is easily verified to be given by

MB = (I − qRκ)−12q, with q := β/(β+2), Rκ := I+2∇Wκ (2.15)

where the modified material parameter q ∈ (−1, 1) will prove convenient. The real-valuedness
and symmetry properties of the Neumann function (Lemma 1) imply that

Lemma 2. The solution operator MB : L2(B;C3)→ L2(B;C3) is self-adjoint.

We also observe that the operators ∇S : L2(Γ)→ L2(Ω,C3) and −Wκ : L2(Ω,C3)→ L2(Γ) are
mutual adjoints: for any ϕ∈L2(Γ) and g ∈L2(Ω,C3), we have(

∇Sϕ, g
)

Ω
= −

(
ϕ,Wκg

)
Γ
. (2.16)

When B = Bε, the scattered field for the trial anomaly Bε is given at any x 6= z by the
expansion

vε(s) = −ε3∇1Gκ(z, s)·Mz ·∇Sg(s) + o(ε3), (2.17)

where Mz := M(B, βz) ∈ R3×3
sym is the (real, symmetric) polarization tensor of the normalized

trial anomaly (Ammari et al., 2012; Cedio-Fengya et al., 1998). The expansion (2.14), and in
particular its O(ε3) leading order, is well-known (see e.g. Ammari and Khelifi, 2003; Bendali
et al., 2016; Cedio-Fengya et al., 1998; Hazard and Ramdani, 2004) and the VIE (2.13) provides
a basis, among others, for its derivation and justification, as in Bonnet (2018). The tensor Mz,
which can be understood as the limiting form of the solution operator MB for B = Bε and is
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thus defined from the zero-frequency transmission problem where B is embedded in an infinite
space and excited by a remote uniform gradient, is given by

Mz ·g = 2qz

∫
B

(
I − qzR0

)−1
g dV for any g ∈C3, with qz := βz/(βz +2) (2.18)

where the (real, symmetric) L2(B;R3)→ L2(B;R3) operator R0 is defined by R0 := I+2∇W0,
the volume potential W0 being given by (2.11) with Gκ replaced with the zero-frequency full-
space fundamental solution G0(y,x) = 1/(4π|y−x|). Since qz ∈ (−1, 1) and ‖R0‖ < 1 (Bonnet,
2017), the operator I−qzR0 is real, symmetric positive definite (SPD). The matrix (2qz)

−1Mz

is therefore also SPD, so has a Choleski square root Dz, and we have

Mz = 2qzDz ·D?
z (2.19)

(with Dz =
√

4π/(3−qz)I for a spherical trial anomaly).

2.5. Source-to-measurement operators and their factorization. As done customarily in
inverse scattering studies, we introduce source-to-measurement L2(Γ) → L2(Γ) operators FB
and Fz associated with the true and trial scattered fields, such that

γvB = FBg, γvε = ε3Fzg+o(ε3), (2.20)

where g is a given excitation applied on Γ and γ is the Dirichlet trace operator on Γ. Recalling
that the Neumann function is real-valued, representations (2.14) and (2.17) yield

FB = −H?
BMBHB, Fz = −H?

zMzHz (2.21)

where the operators HB : L2(Γ)→ L2(B;C3) and Hz : L2(Γ)→ C3 are defined by

HBϕ = ∇Sϕ |B, Hzϕ = ∇Sϕ(z) (2.22)

in terms of the single-layer potential operator (2.8) while H?
B : L2(B;C3) → L2(Γ) and H?

z :
C3 → L2(Γ) are their respective adjoints, see (2.16). Lemma 2 implies that both FB and Fz are
self-adjoint L2(Γ)→ L2(Γ) operators.

2.6. Topological derivatives. Taking advantage of the material collected in Sections 2.4
and 2.5, TDs can now be expressed from (2.6) and (2.7) in a form allowing their analysis
as qualitative imaging functionals; this is the object of the following proposition, whose proof is
given in Sec. 7.1.

Proposition 1. The single-measurement and full-measurement TDs arising from (2.6) and (2.7)
are given by

T [g](z) = −2qzRe
{ ∫

B

( [
MBHBg

]
(y)⊗

(
Hz ḡ(z)·Dz

) )
:
[
K(y, z)·Dz

]
dy
}

(2.23)

TΣ(z) = −2qz

∫
B

[
MB

(
K(y, z)·Dz

)]
:
[
K(y, z)·Dz

]
dy (2.24)

where the (two-point, real, tensor-valued) function K is defined by

K(y, z) :=

∫
Γ
∇1Gκ(y, s)⊗∇1Gκ(z, s) ds. (2.25)

Remark 1. For multiple experiments (with applied excitations g1, . . . , gM ), we may simply set

JM (D) :=

M∑
m=1

J [gm](D), TM (z) :=

M∑
m=1

T [gm](z).

An additional single-measurement case of particular interest arises by observing that FB is
compact (since the nonsingular integral operator HB is), and hence has a countable complete
orthonormal system with (real) eigenvalues λ` and eigenfunctions ψ` ∈ L2(Γ). Hence, setting
g = ψ` for some `, so that g = −λ−1

` FBg = λ−1
` H

?
BMBHBg, we have
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Proposition 2. The eigenfunction-based TD is given by

T [ψ`](z) = −2qz
λ`

∣∣∣ ∫
B
D?
z ·K?(y, z)·[MBHBg](y) dy

∣∣∣2 (2.26)

with the two-point tensor function K again defined by (2.25).

Proof. The claimed expression results from setting Hzg = λ−1
` HzH

?
BMBHBg in (7.1) and rear-

ranging terms: we have

T [ψ`](z) = − 1

λ`
Re
{(
MBHBg, HBH

?
zMzHzH

?
BMBHBg

)
B

}
= −2qz

λ`

(
HzH

?
BMBHBg,MzHzH

?
BMBHBg

)
,

and (2.26) results from using the factorization (2.19) of Mz in the above formula and expressing
HzH

?
BMBHBg as an integral over B. �

Remark 2. Formulas (2.23), (2.24) and (2.26) are not suitable for practical TD evaluations (e.g.
for processing real experiments) since they involve the (unknown) anomaly to be identified. They
are useful for analysis: as we will see next, they allow to establish results regarding properties
of the TD functionals such as their sign and spatial behavior. Evaluation formulas suitable
for applications, which express the TDs in terms of measurements and other known or assumed
characteristics (domain, excitation, background medium, trial anomaly) by way of the background
field, an adjoint field and the polarization tensor, are well known.

3. Sign and decay properties of the topological derivatives

We now use the expressions given in Propositions 1 and 2 to study the two components of
the usual heuristic for TD imaging, namely the sign and spatial decay properties of the TD.

3.1. Sign properties. Those expressions first directly lead to the following theorem regarding
the sign properties of the full-measurement and eigenfunction-based TDs:

Theorem 1. Let the relative material parameters q and qz be as in (2.15) and (2.18).

(i) If the true scatterer (B, β) and wave number κ are such that

‖qRκ‖ = |q| ‖Rκ‖ < 1, (3.1)

the full-measurement TD satisfies the sign condition

sign(TΣ(z)) = −sign(qqz).

(ii) Let g = ψ`, where ψ` is an eigenfunction of −FB with (real) eigenvalue λ`. Then, if
qλ` > 0, we have

sign(T [ψ`](z)) = −sign(qqz).

In particular, any eigenvalue of −FB satisfies qλ` > 0 if (3.1) is verified.

Proof. (i) In this case, we have

TΣ(z) = −2qz
(
MBh(·, z), h(·, z)

)
B
,

having set h(y, z) :=
[
M−1

B

(
K(·, z)·Dz

)]
(y). If condition (3.1) is verified, MB is self-adjoint

sign-definite and has the same sign as q, which proves the sign property (3.1).

(ii) The claimed sign property is clear from the expression (2.26) of T [ψ`](z). Moreover, for
g = ψ`, we have

(
− FBg, g

)
Γ

= λ`
(
g, g
)

Γ
=
(
MBHBg,HBg

)
Γ
. If condition (3.1) is verified,

MB is sign-definite (again) and we have qλ` > 0 for any eigenfunction ψ`. �

Condition (3.1) defines a class of “moderate” anomalies for which the validity of the sign heuristic
is guaranteed (the moderate character depending on a combination of the operating frequency
and the anomaly size and material contrast). Condition (3.1) ensures (for example) the con-
vergence of iterated Born approximations. With the present notations, the more-restrictive
standard Born approximation requires ‖qRκ‖� 1.
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Figure 1. Scaling assumptions: the true anomaly B (red) is much smaller than the probing region
(shaded in blue), itself much smaller than the bounded propagation domain. Moreover, the distance
of B to the domain center is commensurate to its size.

3.2. Decay properties. As discussed by Ammari et al. (2012), Bellis et al. (2013), Bonnet and
Cakoni (2019), to be used as a qualitative imaging function for the flaw B, z 7→ T (z) should
decay as z moves away from B in addition to verifying the sign heuristic property. Here, we
consider spatially-finite propagation media. We hence need to understand how T (z) decays for z
“far” from B and still remaining within a “reasonable” distance from Γ. The scaling hypotheses
previously introduced in Bonnet and Cakoni (2019) are again adopted here, as they are well
suited for studying the spatial decay properties of z 7→ T (z) under these conditions. Let ρ be a
characteristic radius of Γ, for example such that |Γ|= 4πρ2. Taking a fixed z outside B, letting
η > 0 be a small parameter and choosing a constant 0<α< 1, we assume that

(a) |y| = O
(

diam(B)
)
,

(b) |y|/ρ = O(η), y ∈B
(c) |y−z|/ρ = O(ηα) and |y|/|y−z| = O(η1−α).

(3.2)

Loosely speaking, assumptions (3.2) mean that (a) the sought anomaly is located at a distance
to the domain center (taken as the coordinate origin) commensurate with its linear size, (b)
the anomaly and probing region are small relative to the characteristic radius of Γ, and (c) the
sampling point z stays “far from” B relative to its size while remaining “close to” B relative to
ρ (Fig. 1). The following result about the spatial decay of topological derivatives, whose proof
is given in Section 7.2, in fact assumes that Γ is a sphere of radius ρ (whereas the decay results
of Sec. 5.2 hold for more general domains).

Theorem 2. Let Γ be the sphere of radius ρ. Let the true anomaly (B, β) and the sampling
points z obey the scaling assumptions (3.2) with the dimensionless parameters α, η such that
0<α< 1 and 0<η� 1. Then:

T [g](z) = O
([

(κdist(z, B))−1 + (κdist(−z, B))−1
])

TΣ(z) = O
([

(κdist(z, B))−1 + (κdist(−z, B))−1
]2 )

T [ψ`](z) = O
([

(κdist(z, B))−1 + (κdist(−z, B))−1
]2 )

3.3. Discussion. The results of Theorems 1 and 2 exhibit many similarities with corresponding
results from earlier studies involving either infinite propagation media or anomalies of small
diameter. Condition (3.1) of Theorem 1 is identical to that appearing in the corresponding
result of Bonnet and Cakoni (2019), except for the fact that Rκ is defined here in terms of
the Neumann function. The spatial decay rates given in Theorem 1 are, likewise, identical to
those found for their respective contexts in previous studies. However, Theorem 2 indicates that
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z 7→ T (z) decays only when z moves away from both B and −B. This evidences a potentially
significant degradation in spatial identification capability compared to earlier results where the
decay is shown to occur as z moves away from B.

To remedy the unsatisfactory spatial behavior of the TD associated with standard L2 cost
functionals, we propose to apply in the present context the idea introduced by Ammari et al.
(2012) whereby measurements are post-processed by application of a suitable integral operator.
In addition, we express the background field as an incoming single-layer potential defined in
the full space (a variation on an idea used in Bonnet and Cakoni, 2019). This results in a
modified objective functional, and a correspondingly modified TD; importantly, thanks for the
second treatment, the relevant source-to-measurement operators are still symmetric, allowing to
preserve the structure of the analysis expressions of the TDs considered in this work.

The modified objective functionals and TDs are set up next in Section 4. Then, the counter-
parts of Theorems 1 and 2 are established in Section 5, where the modified TDs are in particular
shown to have the expected (and desired) spatial behavior.

4. Modified objective functional and topological derivatives

Let G∞κ (y −x) be the fundamental solution for the infinite background medium, i.e. the
outgoing field created by a time-harmonic unit point source located at x∈R3, given by

G∞κ (y−x) :=
1

4π

eiκ|y−x|

|y−x|
.

and satisfying −
(

∆+κ2
)
G∞κ (·−x) = δ(·−x) in R3\{x} together with the outgoing Sommerfeld

radiation condition at infinity. Let S∞ be the single-layer potential for the Helmholtz equation
in R3:

S∞ϕ(x) =

∫
Γ
Gκ(y−x)ϕ(y) dS(y), x∈R3 \Γ,

where ϕ∈L2(Γ). Let the integral operator E and its L2(Γ)-adjoint E? be defined by

Eϕ(x) = 1
2ϕ(x) +

∫
Γ
∂n(y)G

∞
κ (y−x)ϕ(y) dS(y), x∈Γ,

E?ϕ(x) = 1
2ϕ(x) +

∫
Γ
∂n(x)G∞κ (y−x)ϕ(y) dS(y), x∈Γ.

Lemma 3. (i) The fundamental solution G∞κ and the Neumann function Gκ defined by
problem (2.9) are related by the identity[

EGκ(·, z)
]
(x) = G∞κ (x−z), x∈Γ, z ∈Ω.

(ii) The background field u = Sg is equivalently given in Ω by

u(x) = Sg(x) = S∞g∞(x)

where, for given g ∈L2(Γ), the density g∞ ∈L2(Γ) solves the integral equation

E?g∞(x) = g(x) x∈Γ

(iii) We have EH?
B = H∞,?B and EH?

z = H∞,?z , where the operators H∞B : L2(Γ) →
L2(B;C3) and H∞z : L2(Γ)→ C3 are defined by

H∞B ϕ = ∇S∞ϕ |B, H∞z ϕ = ∇S∞ϕ(z).

Now, recalling that the (error-free) measurement γvB is related to the excitation g by γvB = FBg,
with the source-to-measurement operator FB defined by (2.21a), we use Lemma 3 to evaluate
EvB and express g in terms of g∞, to obtain

EvB[E?g∞] = EFBE
?g∞ = F∞B g∞, F∞B := −H∞,?B MBH

∞
B . (4.1)

The same operations performed on vε = ε3Fzg+o(ε
3) for the trial scattered field, with Fz defined

by (2.21b), yield

EFz[g∞] = EFzE
?g∞ = F∞z g∞, F∞z := −H∞,?z MzH

∞
z .
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Remark 3. The modified source-to-measurement operators F∞B , F∞z combine two existing ideas.
First, applying E to FBg =−F∞B g∞ =H?

B(MBHBg) converts the field emitted in Ω by the sec-
ondary source MBHBg associated with the scattering by the true anomaly into that emitted in
an infinite medium by the same secondary source (and similarly for the asymptotic scattering
model Fzg); such ’post-processing’ of the output was introduced in Ammari et al. (2012). Second,
setting g = E?g∞ achieves the conjugation Sg = S∞g∞; a similarly-motivated (but not identi-
cal) operation applied to the output vB was proposed in Bonnet and Cakoni (2019). The latter
treatment helps remedy the lack of symmetry of the standard near-field source-to-measurement
operator, an issue commonly arising with factorization methods in inverse scattering, see e.g. Au-
dibert (2015), Audibert and Haddar (2017), Kirsch and Grinberg (2008). The resulting modified
operators F∞B , F∞z are compact and self-adjoint, like FB and Fz.

With the foregoing definitions, we introduce the modified form

JE [g∞](D) :=
1

2

∫
Γ

∣∣(EvD[E?g∞]− Evobs[E
?g∞]

)∣∣2 ds

of the objective functional (2.4), which corresponds to the imaging functional (3.1) of Ammari
et al. (2012) where in addition the excitation g is converted to g∞ (through g = E?g∞). Similarly,
the modified form of the full-measurement cost functional JΣ(D) is

JE,Σ(D) :=
∑
m≥0

1

2

∫
Γ

∣∣EvD[E?Ym]− Evobs[E
?Ym]

∣∣2 dS. (4.2)

Upon sampling the medium by means of trial anomalies Bε(z) as in Section 2.3, we set JE(ε) :=
JE(Bε) and JE,Σ(ε) := JE,Σ(Bε). The TD of JE at z is then found again by identification:

JE(ε) = −Re
{ ∫

Γ
Evε[g∞]EvB[g∞] dS

}
+ o
(
‖vε‖Γ

)
= ε3TE [g∞](z) + o(ε3),

with TE [g∞](z) = −Re
{(

F∞B g∞ , F
∞
z g∞

)
Γ

}
,

and similarly for JE,Σ. Analysis expressions for the TDs corresponding to the modified single-
measurement objective functional (4.2) and its full-measurement and eigenfunction-based ver-
sions are found as in Section 2.6 with FB, Fz replaced with F∞B and F∞z , and we have:

Proposition 3. The single-measurement, full-measurement and eigenfunction-based modified
TDs are given by

TE [g∞](z) = −2qzRe
{ ∫

B

( [
MBH

∞
B g∞

]
(y)⊗

(
H∞z ḡ(z)·Dz

) )
:
[
K∞(y, z)·Dz

]
dy
}
(4.3)

TE,Σ(z) = −2qz

∫
B

[
MB

(
K∞(y, z)·Dz

)]
:
[
K∞(y, z)·Dz

]
dy

TE [ψ`](z) = −2qz
λ`

∣∣∣ ∫
B
D?
z ·K?

∞(y, z)·[MBH
∞
B g](y) dy

∣∣∣2.
where the (two-point, complex, tensor-valued) function K∞ is defined by

K∞(y, z) :=

∫
Γ
∇G∞κ (y, s)⊗∇G∞κ (z, s) ds.

5. Sign and decay properties of the topological derivatives

We now use the expressions of the modified TDs given in Proposition 3 to study their sign
and decay properties.

5.1. Sign properties. The expressions given in Proposition 3 make it clear that the arguments
underpinning Theorem 1 again apply to the modified TDs, which therefore have the same sign
properties as their original counterparts:

Theorem 3. Let the relative material parameters q and qz be again as in (2.15) and (2.18).
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(i) If the true scatterer (B, β) and wave number κ verify condition (3.1) of Theorem 1, the
full-measurement modified TD satisfies the sign condition

sign(TE,Σ(z)) = −sign(qqz).

(ii) Let g = ψ`, where ψ` is an eigenfunction of −F∞B with (real) eigenvalue λ`. Then, if
qλ` > 0, we have

sign(TE [ψ`](z)) = −sign(qqz).

In particular, any eigenvalue of −F∞B satisfies qλ` > 0 if (3.1) is verified.

5.2. Decay properties. The decay properties of the modified TDs given in Proposition 3 are
now studied. As in Section 3.2 (and by adaptation of the approach of Bonnet and Cakoni, 2019
to the present context), this analysis requires determining the behavior of K∞(y, z) as z moves
away from y. For this, we adopt again the scaling hypotheses (3.2), and rely on the “far field”
approximation of K∞(y, z) previously derived in Bonnet and Cakoni (2019), which retains the
terms of order O(η0) and O(ηα) as η → 0. This approximation is given in the following lemma,
which is a rearranged version of eq. (33) in Bonnet and Cakoni (2019):

Lemma 4. Under the geometrical scaling hypotheses (3.2), the tensor function K∞(y, z) defined
by (2.25) admits the far-field expansion

K∞(z,y) =

∫
Γ

{
eiκc|z−y|A(s)

+ eiκc|z−y|
[
B(s; ẑ) + 1

2 iκ|y−z| (1−c2)C(s)
] |y−z|

ρ

}
ds+ o(ηα) (5.1)

where |y−z|/ρ = O(ηα) (see (3.2)), c := ŝ · ̂(y−z) and with

A(s) =
1 + κ2|s|2

16π2|s|2
ŝ⊗ ŝ, C(s) =

ρ(1 + κ2|s|2)

16π2|s|3
ŝ⊗ ŝ,

B(s; ẑ) = −ρ(1 + κ2|s|2)

16π2|s|3
ẑ ⊗ ŝ− cρ(3+iκ|s|+2κ2|s|2)

16π2|s|3
ŝ⊗ ŝ

The O(η0) terms are those arising in the usual leading-order far-field expansion of ∇G∞κ .

To carry out further the analysis of the behavior of K∞(y, z), we assume the surface Γ to be
smooth and star-shaped with respect to the coordinate origin, so that it can be parametrized
onto the unit sphere Ŝ via a mapping of the form s = ρσ(ŝ), where ρ is a characteristic radius

of Γ and ŝ 7→ σ(ŝ) is a C2(Ŝ;R3) fixed (i.e. scale-independent) function. We further set

ŝ = ŝ(ϕ, c) =
√

1−c2(cosϕex+sinϕey)+ cez with c ∈ [−1, 1], ϕ ∈ [0, 2π] and where (ex, ey, ez)

is a Cartesian orthonormal frame such that ez = ŷ−z. The surface differential ds then takes
the form ds = ρ2J(ŝ) dc dϕ.

We proceed with the evaluation of the approximation (5.1) of K∞(z,y), whose integrand
is a sum of three terms. In the first two terms, the exponential factor is expressed using the
Jacobi-Anger expansion

eiκc|z−y| =
∑
n≥0

(2n+1)i−njn(κ|z−y|)Pn(c) (5.2)

(where Pn is the Legendre polynomial of degree n). In the third term, we instead use the

following expansion of the product (1− c2)eiκc|z−y| (proved in Sec. 7.4), based on the Jacobi-
Anger expansion (5.2) and properties of the Legendre polynomials:

Lemma 5.

(1−c2)eiκc|z−y| =
∑
n≥0

(2n+1)i−n
{ n(n−1)

κ2|z−y|2
jn(κ|z−y|) +

2

κ|z−y|
jn+1(κ|z−y|)

}
Pn(c)
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Performing these substitutions in (5.1), expressing the resulting series as a sum of multiples
of Pn(c) and converting all integrals into integrals over the unit sphere by using the mapping
s = σ(ŝ), we arrive at the following result:

Proposition 4. The asymptotic approximation (5.1) of K∞(y, z) admits the expression

K∞(z,y) =
∑
n≥0

ρ2(2n+1)i−n
{
Anjn(κ|z−y|)

+
[(

Bn(ẑ) + iCn
n(n−1)

2κ|z−y|

)
jn(κ|z−y|) + iCnjn−1(κ|z−y|)

)] |z−y|
ρ

}
+ o(ηα)

where

An :=

∫ 1

−1

{ ∫ 2π

0
A
(
σ(ŝ)

)
J(c, ϕ) dϕ

}
Pn(c) dc

Bn(ẑ) :=

∫ 1

−1

{ ∫ 2π

0

1

|σ(ŝ)|
B
(
σ(ŝ); ẑ

)
J(c, ϕ) dϕ

}
Pn(c) dc

Cn :=
iκ

2

∫ 1

−1

{ ∫ 2π

0

1

|σ(ŝ)|
C
(
σ(ŝ)

)
J(c, ϕ) dϕ

}
(1−c2)Pn(c) dc

For fixed ρ satisfying (3.2b), i.e. large enough with respect to the anomaly B, the behavior
jn(t) = O(|t|−1) for t→∞ of the spherical Bessel functions implies that K∞(z,y) = O

(
(κ|y−

z|)−1
)

for y ∈ B and z far from B while satisfying (3.2c). Since the solution operator MB is
bounded, applying Proposition 4 together with the Cauchy-Schwarz inequality to the modified
TDs of Proposition 3 readily yields the following spatial decay properties:

Theorem 4. Let Γ satisfy the assumptions given after Lemma 4. Let the true anomaly (B, β)
and the sampling points z obey the scaling assumptions (3.2) with the dimensionless parameters
α, η such that 0<α< 1 and 0<η� 1. Then:

TE [g∞](z) = O
(

(κdist(z, B))−1
)

TE,Σ(z) = O
(

(κdist(z, B))−2
)

TE [ψ`](z) = O
(

(κdist(z, B))−2
)

Remark 4. The decay properties of Theorem 4 do not depend on the choice of α ∈ (0, 1) in
the scaling assumption (3.2c), which quantifies the fact that ρ is much larger than the sampling
region. The term of (5.1) which could possibly have affected the α-independent decay of K∞(z,y)
is that in C(s) due to the factor |y−z|. Lemma 5 shows that the latter factor disappears, and
for that reason plays an important role in obtaining the final spatial decay result.

6. Discussion, additional situations

6.1. Discussion. The rates of spatial decay in the present setting (bounded propagation medium,
separation of scales according to (3.2)) are the same as those previously found for unbounded
media and either refraction-index anomalies and far-field measurements (Bellis et al., 2013) or
mass-density anomalies and measurements at finite distance (Bonnet and Cakoni, 2019). Like-
wise, conditions ensuring the validity of the sign heuristic are of the same nature there and
here. The analysis formulas (2.23) and (4.3) do not readily allow to assess the sign of the
single-measurement TDs for arbitrarily chosen excitations.

As in Bellis et al. (2013) for the far-field case, the eigenfunction-based (standard or modified)
TDs T [ψ`] and TE [ψ`] have a spatial decay that is sharper than that of the single-measurement
TDs T [g], TE [g], and identical in rate to that of the full-measurement TDs TΣ and TE,Σ. This
property is reminiscent of the focusing ability of time-reversal methods (Burkard et al., 2013;
Hazard and Ramdani, 2004; Prada and Fink, 1994), which also exploit eigenfunctions of the
source-to-measurement operator. Moreover, the eigenfunction-based TDs have the correct sign
(relative toi the imaging heuristic) provided the sign of the eigenvalue λ` is suitable, a condition
less restrictive than the operator-norm bound (3.1).
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6.2. Anisotropic anomaly. We discuss briefly the case where the sought anomaly has an
anisotropic relative contrast characterized by a real symmetric matrix β ∈ R3×3

sym (β may be

indefinite, with eigenvalues greater than -1). The wave uB then satisfies div (β·∇uB) +κ2uB = 0
inside B and ∂nuB|+ = n·β ·∇uB|− across ∂B, while the governing VIE (2.13) becomes(

I − β ·∇Wκ

)
h(x) = β ·∇u[g](x) x∈B.

Letting q := (β+2I)−1 ·β be the anisotropic counterpart of the modified material parameter q
introduced in (2.15), it is easy to show that the solution operator MB is given in the anisotropic
case by MB = 2(I − q ·Rκ)−1 ·q.

If β (and hence q) is sign-definite, there exists a real matrix d∈R3×3 such that q = σdT ·d,
where σ =±1 according to the sign of q. In this case, MB can be recast in symmetric form as

MB = 2dT ·
(
I − d·Rκ ·dT

)−1 ·d.

Consequently, analysis expressions of TΣ, TE,Σ, T [ψ`] and TE [ψ`] have the same structure as their
isotropic counterparts of Propositions 1, 2 and 3, and the sign heuristic results of Theorems 1
and 3 remain valid with qqz replaced with σqz and the condition (3.1) recast as ‖d·Rκ·dT‖ < 1.
Moreover, the decay properties given in Theorems 2 and 4 for the isotropic case remain valid.
A similar analysis was made in Bonnet and Cakoni (2019) for sources and receivers embedded
in an unbounded propagation medium, with similar results.

6.3. Refraction-index anomaly. Here we consider the alternative, simpler case where anom-
alies are characterized by a refraction-index contrast η, so that the total field uB propagates
according to

−(∆+κ2)u = 0 in Ω\B, −
(

∆ + (η+1)κ2
)
u = 0 in B,

u|+ = u|−, ∂nu|+ = ∂nu|− on ∂B
.

The above problem can be recast as the Lippmann-Schwinger VIE governing the scalar density
h := ηuB ∈ H1(B): (

I − κ2ηVκ
)
h(x) = ηu[g](x) x∈B, (6.1)

where Vκ is the weakly-singular volume potential operator defined by

Vκh(x) =

∫
B
Gκ(y,x)h(y) dy.

The medium is then sampled with trial refraction-index anomalies Bε with specified contrast
ηz. The (symmetric) source-to-measurement operators FB and Fz such that γvB = FBg and
γvε = ε3

[
Fzg + o(1)

]
are then readily found to be given by

FB = H?
BMBHB, Fz = ηz|B|H?

zHz

where the operators HB : L2(Γ)→ H1(B) and Hz : L2(Γ)→ C are defined by HBϕ = Sϕ |B and
Hzϕ = Sϕ(z) in terms of the single-layer potential operator (2.8), and the solution operator
MB is given by MB = (I − κ2ηVκ)−1κ2η (i.e. achieves κ2h = MB(ηu) with h solving (6.1)).
The asymptotic solution operator Mz is here simply the scalar multiplication by ηz|B|. Then,
processing the sources and measurements as in Section 4, we again set the modified source-to-
measurement operators F∞B := H∞,?B MBH

∞
B and Fz := ηz|B|H∞,?z H∞z with H∞B ϕ = S∞ϕ |B

and H∞z ϕ = S∞ϕ(z). The TDs arising from (2.6) and (2.7) are as a result found to be given by

T [g](z) = −2ηz|B|Re
{
Hz ḡ(z)

∫
B

[
MBHBg

]
(y)L(y, z) dy

}
TΣ(z) = −2ηz|B|

∫
B

[
MBL(·, z)

]
(y)L(y, z) dy

T [ψ`](z) = −2ηz|B|
λ`

∣∣∣ ∫
B
L(y, z) [MBHBg](y) dy

∣∣∣2.
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where ψ` is an eigenfunction of FB with eigenvalue λ` and the scalar real function L is defined
by (7.2), while the corresponding modified TDs are given by

TE [g∞](z) = −2ηz|B|Re
{
H∞z ḡ(z)

∫
B

[
MBH

∞
B g

]
(y)L∞(y, z) dy

}
TE,Σ(z) = −2ηz|B|

∫
B

[
MBL∞(·, z)

]
(y)L∞(y, z) dy

TE [ψ`](z) = −2ηz|B|
λ`

∣∣∣ ∫
B
L∞(y, z) [MBH

∞
B g](y) dy

∣∣∣2.
where ψ` is an eigenfunction of F∞B with eigenvalue λ` and the scalar complex function L∞ is
defined by

L∞(y, z) :=

∫
Γ
G∞κ (s,y)G∞κ (s, z) ds

From here on, sign properties analogous to those of Theorems 1 and 3 are obtained, with qqz
replaced with ηηz and the condition (3.1) recast as ‖κ2ηVκ‖ < 1, while the behavior of L(y, z)
and L∞(y, z) produce again the decay properties of Theorems 2 and 4. In particular, the spatial
behavior of the standard TDs is as before found to be degraded by “echoes” of the true anomaly.

6.4. Inhomogeneous anomaly. Consider the case where the anomaly is characterized by a
spatially-varying relative mass density contrast β ∈ L∞(B) such that β ≥ β0 in B for some
β0 >−1. The contrast is moreover assumed to be sign-definite, i.e. β = σ|β|, where the contrast
sign σ = ±1 is constant inB, and we then also have q = σ|q|. The symmetric factorizations (2.21)
and (4.1) of the source-to-measurement operators FB and F∞B are still available by recasting the
solution operator MB as

MB = σ
√

2|q|
(
I−σ

√
|q|Rκ

√
|q|
)−1√

2|q|.

Theorems 1 and 3 on sign properties remain valid with sign(qqz) replaced with sign(σqz) and
condition (3.1) with supx∈B |q(x)| ‖Rκ‖ < 1. Moreover, theorems 2 and 4 on decay properties
still hold.

7. Proofs

7.1. Proof of Proposition 1. First, inserting expressions (2.20) in (2.6) and expanding FB, Fz
by means of (2.21), the single-measurement TD is obtained as

T [g](z) = −Re
{(

FBg , Fzg
)

Γ

}
= −Re

{(
MBHBg, HBH

?
zMzHzg

)
B

}
. (7.1)

We then observe that, from definitions (2.22), we have

HBH
?
zf = K(y, z)·f

for any f ∈C3, with K(y, z) given by (2.25). Using this identity and the factorization (2.19) of
Mz in (7.1) and rearranging terms by means of tensor algebra yields (2.23).

For the full-measurement TD, we have

TΣ(z) = −Re
{ ∫

B

( ∑
m≥0

[
MBHBYm

]
(y)⊗

(
HBY m(z)·Dz

) )
:
[
K(y, z)·Dz

]
dy
}
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by summing appropriate expressions of the form (2.23). Besides, noting that HBYm(y) =∫
Γ ∇1Gκ(y, s)Ym(s) ds =

(
∇1Gκ(y, ·), Ym

)
Γ

and HBY m(z) =
(
∇1Gκ(z, ·), Ym

)
Γ
, we deduce

K(y, z) =

∫
Γ

[ ∑
m≥0

(
∇1Gκ(y, ·), Y m

)
Γ
Y m(s)

]
⊗
[∑
n≥0

(
∇1Gκ(z, ·), Yn

)
Γ
Yn(s)

]
ds

=
∑
m≥0

(
∇1Gκ(y, ·), Ym

)
Γ
⊗
(
∇1Gκ(z, ·), Ym

)
Γ

=
∑
m≥0

HBYm(·)⊗HBY m(z)

since (by assumption) the Ym form a L2(Γ)-orthonormal Hilbert basis of L2(Γ). This allows to
recast TΣ(z) in the sought form (2.24), which is more concise and structure-revealing.

7.2. Proof of Theorem 2. All three estimates claimed in the theorem are found by studying
the behavior of K(y, z) under the scaling assumptions (3.2). We first observe that

K(y, z) = ∇1∇2L(y, z), L(y, z) :=

∫
Γ
Gκ(s,y)Gκ(s, z) ds, (7.2)

then take advantage of the fact that the Neumann function Gκ is known analytically when Γ is
a sphere, by means of classical separation of variable methods:

Gκ(s, z) = κ
∑
n≥0

∑
|m|≤n

Y m
n (ẑ)Y m

n (ŝ)jn(κ|z|)
( y′n(κρ)

j′n(κρ)
jn(κ|s|)− yn(κ|s|)

)
,

where jn and yn are the spherical Bessel functions of the first and second kinds, respectively.
Then, since the spherical harmonics Y m

n are L2(Γ)-orthonormal functions, we have

L(y, z) =
1

(κρ)2

∑
n≥0

∑
|m|≤n

Y m
n (ŷ)Y m

n (ẑ)
jn(κ|y|)
j′n(κρ)

jn(κ|z|)
j′n(κρ)

(7.3)

For reasons given at the end of this proof, the general term of the above series decays rapidly
(more than exponentially fast in n) for n larger than n1 = O

(
1
2eκdiam(B)

)
, the arguments

being kept fixed, so that only the terms for n≤n1 are in practice relevant. For such values of n
and in view of the scaling assumptions (3.2), we have κρ�n so that j′n(κρ) can be approximated
using the well-known large-argument asymptotics of the spherical Bessel functions (available e.g.
in (Olver et al., 2010, Sec. 10.52(ii))):

1(
tj′n(t)

)2 = qn(t) +O(
1

t
), qn(t) :=

1

sin2
(
t− 1

2(n+1)π
) , (7.4)

where in fact we have

q2n(t) = q0(t) =
1

sin2
(
t− π

2

) , q2n+1(t) = q1(t) =
1

cos2
(
t− π

2

)
Using this in (7.3) with t = κ|y−z|, and setting q0 = r0 + r1 and q1 = r0− r1, in L(y, z) we
obtain

L(y, z) =
∑
n≥0

∑
|m|≤n

[
r0(κρ)+(−1)nr1(κρ)

]
Y m
n (ẑ)Y m

n (ŷ)jn(κ|z|)jn(κ|y|) +O(
1

κρ
)

= r0(κρ)j0(κ|z−y|) + r1(κρ)j0(κ|z+y|) +O(
1

κρ
) (7.5)

In view of (7.5), the same method of proof can be applied, with suitable alterations, toK(y, z) as
the spherical Bessel functions and their derivatives obey similar large-argument and large-order
asymptotics.

We finish with a qualitative explanation of why using (7.4) is valid. The spherical Bessel
functions in (7.3) involve three arguments, which are such that κ|y| � κ|z| � κρ under the
scaling assumptions (3.2). Accordingly, with n1 as above and setting n2 =O(κ|z|) =O(ηα−1n1)
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and n3 = O(κρ) = O(η−1n1) (so that in particular we have n1 � n2 � n3), the general
term in the series (7.3) can be shown to decay (i) like

(
eκdiam(B)/2n

)n
for n ≥ n1, (ii) like(

e2κ2|z|diam(B)/4n2
)n

for n ≥ n2, and (iii) like
(√
|z|diam(B)/κρ

)2n
/n2 for n ≥ n3, by in-

voking the large-order asymptotics of jn(κ|y|), jn(κ|z|) and κρj′n(κρ), respectively (Olver et al.,
2010, Sec. 10.19)). Hence, the sum (7.3) can in practice be truncated at n = n1. Hence (7.4)
is used with t = κρ � n, so that the underlying large-argument asymptotics is valid. This
(abbreviated and informal) argument could be made rigorous, at the cost of a rather longer and
more-technical proof.

7.3. Proof of Lemma 3. (i) The complementary Neumann function Gc
κ(y, z) := Gκ(y −

z)−G∞κ (y, z) is non-singular in Ω; it verifies the Helmholtz equation in Ω and ∂nG
c
κ(·, z) +

∂nG
c
κ(·, z) = 0 on Γ. It therefore satisfies the interior boundary integral equation (BIE)[

EGc
κ(·, z)

]
(x) +

[
S∞∂nG

∞
κ (·, z)

]
(x) = 0 x∈Γ

where S∞ := γS∞ is the single-layer integral operator. Moreover, G∞κ (y, z) is a radiating
solution of the Helmholtz equation in R3 \Ω, so satisfies the exterior BIE

−G∞κ (x, z) +
[
EG∞κ (·, z)

]
(x)−

[
S∞∂nG

∞
κ (·, z)

]
(x) = 0 x∈Γ

The claimed integral identity results from adding the two BIEs.

(ii) We seek g∞ ∈ L2(Γ) such that Sg = S∞g∞ in Ω for given g ∈ L2(Γ). Taking the interior
Neumann trace of this equality, we obtain the sought BIE

g = E?g∞ on Γ,

by virtue of the definition of the Neumann function and the classical trace properties of layer
potentials. This BIE is well-posed since by assumption κ is not a Neumann eigenvalue of −∆
in Ω.

(iii) Differentiating identity (i) with respect to y ∈Ω and invoking Lemma 1, we find

∇G∞κ (y−x) =
[
E∇2Gκ(·,y)

]
(x) =

[
E∇1Gκ(y, ·)

]
(x).

Then, right-multiplying by h(y) and integrating over y ∈ B yields H∞,?B h = EH?
Bh for any

h(y)∈L2(B,C3). The proof of EH?
z = H∞,?z is similar.

7.4. Proof of Lemma (5). The lemma relies on the following identity expressing (1−c2)Pn(c)
as a linear combination of Legendre polynomials:

Lemma 6. For any c∈ [−1, 1] and n∈N, we have

(2n+1)(1−c2)Pn(c) = an
[
Pn(c)− Pn−2(c)

]
− an+2

[
Pn+2(c)− Pn(c)

]
where

an =
n(n−1)

2n−1

Proof. The identity follows from two consecutive applications to c2Pn(c) of the classical recur-
rence relation

(2m+1)cPm(c) = (m+1)Pm+1(c) +mPm−1(c) m= 0, 1, 2 . . .

verified by the Legendre polynomials, and subsequent rearrangement. �

We then evaluate (1− c2)eict for arbitrary t ∈ R using the Jacobi-Anger expansion (5.2) and
Lemma 6, which yields

(1−c2)eict =
∑
n≥0

(2n+1)i−njn(t)(1−c2)Pn(c)

=
∑
n≥0

i−njn(t)
{
an
[
Pn(c)− Pn−2(c)

]
− an+2

[
Pn+2(c)− Pn(c)

]}
,
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and rearrange the above sum as a sum of multiples of Pn(c), to obtain

(1−c2)eict =
∑
n≥0

i−nPn(c)
{
anjn−2(t) + (an+an+2)jn(t) + an+2jn+2(t)

}
(7.6)

(since a0 = a1 = 0, the terms involving j−2(t) and j−1(t) vanish, as they must, in the above
sum). We then apply the classical identity (jm−1 + jm+1)(t) = (2m+ 1)jm(t)/t (see e.g. Olver
et al., 2010, Sec. 10.51.1) to recast the bracketed factors of the above sum as

anjn−2(t) + (an+an+2)jn(t) + an+2jn+2(t)

= (2n−1)an
jn−1(t)

t
+ (2n+3)an+2

jn+1(t)

t

= (2n−1)(2n+1)an
jn(t)

t2
+
[
(2n+3)an+2 − (2n−1)an

]jn+1(t)

t

= (2n+1)
{
n(n−1)

jn(t)

t2
+ 2

jn+1(t)

t

}
Substitution of the above formula into (7.6) therefores provides

(1−c2)eict =
∑
n≥0

(2n+1)i−n
{
n(n−1)

jn(t)

t2
+ 2

jn+1(t)

t

}
Pn(c),

whereupon Lemma 5 follows from the above sum with t = κ|y−z|.
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