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Multistability of saxophone oscillation regimes and its influence on sound production

The lowest fingerings of the saxophone can lead to 2 several different regimes, depending on the musician's 3 control and the characteristics of the instrument. This 4 is explored in this paper through a physical model 5 of saxophone. The Harmonic Balance Method shows 6 that for many combinations of musician control pa-7 rameters, several regimes are stable. Time-domain 8 synthesis is used to show how different regimes can 9 be selected through initial conditions and the initial 10 evolution (rising time) of the blowing pressure, which 11 is explained by studying the attraction basin of each 12 stable regime. These considerations are then applied 13 to study how the produced regimes are affected by 14 properties of the resonator. The inharmonicity be-15 tween the first two resonances is varied in order to find 16 the value leading to the best suppression of unwanted 17 overblowing. Overlooking multistability in this de-18 scription can lead to biased conclusions. Results for 19 all the lowest fingerings show that a slightly positive 20 inharmonicity, close to that measured on a saxophone, 21 leads to first register oscillations for the greatest range 22 of control parameters. A perfect harmonicity (inte-23 ger ratio between the first two resonances) decreases 24 first register production, which adds nuance to one 25 of Benade's guidelines for understanding sound pro-26 duction . Thus, this study provides some a posteriori 27 insight into empirical design choices relative to the 28 saxophone. 29 tions of the system for a given range of blowing pres-235 sures. In this work, simulations were carried out us-236 ing the MANLAB software (http://manlab.lma.cnrs-237 mrs.fr/). This yields the value of the Fourier coef-238 ficients of the oscillating solutions along several val-239 ues of a control parameter. The Fourier coefficients 240 can then be used to reconstruct the time-domain solu-241 tions. This evolution can be summarized by a bifurca-242 tion diagram, which represents the variation of some 243 descriptor, for instance the amplitude, of the solu-244 tions of the system with respect to the chosen control 245 parameter. In addition, the stability of the solutions 246 is determined using Floquet theory (for more details 247 refer to [41, 5, 32]).

248 3 Multistability 249 This section presents the blowing pressure ranges 250 where the model can produce each regime by study-251 ing their stability with the harmonic balance method. 252 This result is summarized in the bifurcation dia-253 gram on which multistability zones appear as inter-254 vals where several regimes are stable. Signals are

 [START_REF] Mcginnis | The mode of vibration of a clarinet reed[END_REF][START_REF] Backus | Vibrations of the reed and the air 1000 column in the clarinet[END_REF][START_REF] Wilson | Operating 1268 modes of the clarinet[END_REF]20]or the bassoon [START_REF] Gokhshtein | Self-vibration of finite 1118 amplitude in a tube with a reed[END_REF]) in order to bet-35 ter describe and understand the physical phenomena 36 at play during sound production. Later on, artificial 37 mouths have been robotized to provide a complete 38 mapping of the instrument's behavior, aiming at un-39 derstanding how the instrument must be acted on to [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF] produce different sounds [START_REF] Helie | Open-loop control of a robotized artificial mouth for brass instruments[END_REF][START_REF] Lopes | Control of an artificial mouth playing a trombone and analysis of sound descriptors on experimental data[END_REF] or describing the 41 influence of an acoustical parameter of the resonator on sound production [START_REF] Doc | Oscillation regimes 1092 produced by an alto saxophone: Influence of the 1093 control parameters and the bore inharmonicity[END_REF]. The objective of this last study is shared by other works using a rather different approach to systematic description of the instrument's behavior: using a physical model. Based on oscillation thresholds for instance [START_REF] Gilbert | From the bifurcation diagrams to the ease of 1113 playing of reed musical instruments. a theoretical 1114 illustration of the bouasse-benade prescription?[END_REF], some conclusions can be drawn as to the acoustical characteristics facilitating the production of sound. Numerical resolution of the model's equations also constitute a repeatable way to map the produced sound to the characteristics of the instruments, which has direct applications in instrument making [START_REF] Tournemenne | Brass instruments design using physics-based 1259 sound simulation models and surrogate-assisted 1260 derivative-free optimization[END_REF][START_REF] Fréour | Numerical analysis and comparison of brass 1103 instruments by continuation[END_REF]. However, from a mathematical perspective, as nonlinear dynamical systems, wind instruments models often admit multiple solutions for a given set of parameters. The question of the stability of each of these solutions holds great importance when aiming to describe or predict the playability of an instrument based on its physical model. But some important questions remain unanswered, even for ideal cases where the stability or instability of each regime would be known. For instance, which regime is produced if two regimes are stable for the same control parameters combination?

In the case of such coexistence of stable solutions, denominated multistability hereafter, the convergence towards one or the other solution depends on the initial conditions. Indeed, each solution is associated with a region of attraction or attraction basin, defined as the region of the phase space where all initial conditions converge towards this solution [START_REF] Seydel | Practical bifurcation and stability 1230 analysis[END_REF][START_REF] Rasband | Chaotic dynamics of nonlinear 1224 systems[END_REF]. For instance, attraction basins are studied in walking models [START_REF] Schwab | Basin of attraction 1226 of the simplest walking model[END_REF][START_REF] Manchester | Regions of attraction for hybrid limit cycles of walking robots[END_REF], where the 'walking' (periodic) regime almost always coexists with a stable equilibrium, corresponding to falling. In this case, describing attraction basins informs control strategies in robotics [START_REF] Wisse | Passive dynamic walking model with 1272 upper body[END_REF][START_REF] Wisse | How to 1275 keep from falling forward: Elementary swing leg 1276 action for passive dynamic walkers[END_REF]. Attraction basins are also studied for classic dynamical oscillators, such as Chua's circuit [START_REF] Matsumoto | A chaotic attractor from chua's circuit[END_REF], with experimental explorations of the attraction basins [START_REF] Pegna | Experimental definition of the basin of attraction for chua's circuit[END_REF] as well as numerical investigations [START_REF] Stankevich | Scenario of the birth 1243 of hidden attractors in the chua circuit[END_REF]. As strongly nonlinear self-oscillating systems capable of multiple oscillating regimes, wind instrument models are among the systems for which studying attraction basins can shed light on their rich behavior and help understand control strategies used by musicians. However, to our knowledge, no study on the attraction basins of musical instruments has been produced, although several studies explore their multistability. Experimental work on the clarinet [START_REF] Idogawa | Nonlinear vibrations in the air column of a clarinet artificially blown[END_REF] and a numerical study of several idealized woodwind resonators [START_REF] Takahashi | Numerical study on 1248 multi-stable oscillations of woodwind single-reed 1249 instruments[END_REF] illustrate in particular the hysteresis between regimes, which is a consequence of multistability. On the flute, continuation and synthesis have been used to investigate the hysteresis between regimes, notably depending on inharmonicity [START_REF] Terrien | Flute-like musical instruments: a toy model 1253 investigated through numerical continuation[END_REF].

Describing the attraction basins and comparing their sizes is expected to give information on which regime is most likely produced, assuming some probabilistic repartition of the initial conditions in the phase space [START_REF] Brezetskyi | Rare and hidden attractors in van der pol-duffing oscillators[END_REF]. However, an exhaustive description is almost impossible for a complete model of instrument, where the phase space is of very large dimension. In such cases, attraction basins may be partially explored, based on a reduction of the phase space to one or two dimensions. For instance, the infinitedimensional phase space of a delayed system can be partially described along two dimensions [START_REF] Wang | Multistability 1263 and new attraction basins of almost-periodic 1264 solutions of delayed neural networks[END_REF]. In the case of musical instruments, a reduction of the phase space is proposed in this paper, based on knowledge of typical musical scenarios. Throughout this work, the case of a model of saxophone is considered, and two scenarios are studied: transition from another established limit-cycle (scenario number 1), and first attack transient of a note, where the blowing pressure parameter goes from 0 to a certain final value (scenario number 2). Section 2 presents the physical saxophone model and the two numerical methods used to solve its equations: the Harmonic Balance Method and timedomain synthesis. Next, multistability is introduced by computing the bifurcation diagram with the harmonic balance method and continuation (Asymptotic Numerical Method) and exhibiting hysteresis cycles using time-domain synthesis in Section 3 (control scenario number 1). Then, in Section 4, a simple testcase of scenario number two is presented to study sound production, where the blowing pressure increases from 0 to its final value over different durations. We show how this duration can influence the final regime in multistability regions, and explain these results by presenting the attraction basin of each regime. Section 5 demonstrates how the awareness of multistability can lead to a better description of the behavior of the model. Depending on the inharmonicity of the resonator, the size of the control parameter regions where each regime appears in synthesis is described, taking into account multistability. This provides an interpretation to the inharmonicity value measured on the saxophone by showing that it corresponds to an optimum in periodic regime production. [START_REF] Petersen | The effect of the cutoff frequency on the sound production of a clarinet-like instrument[END_REF] of clarinets, 152 as well as their radiated power with a comparison to 153 measurements [START_REF] Guilloteau | The effect of the size of the opening on the acoustic power radiated by a reed woodwind instrument[END_REF]. The Harmonic Balance Method 154 (Section 2.3) can also be applied to this model to 155 study its dynamic behavior, for instance to quantify 156 the effect of neglecting reed contact [START_REF] Colinot | Influence of the "ghost reed" simplification[END_REF].

157 Dimensionless [START_REF] Gokhshtein | Self-vibration of finite 1118 amplitude in a tube with a reed[END_REF][START_REF] Hirschberg | Elementary considerations on reed-instrument oscillations[END_REF] acoustical Kirchhoff variables (p, u) are used in this work:

p = p p M , u = Z c û p M , (1) 
where the hat notation indicates the variable in physical unit, p M is the static pressure necessary to close the reed channel completely and Z c is the characteristic input impedance of the resonator for plane waves.

Similarly, the reed displacement from equilibrium is given in dimensionless form

x = x H ( 2 
)
where H is the distance between the reed and the mouthpiece lay at rest. With this formalism, the reed channel is closed when x ≤ -1. In this work, the only time-varying control parameter [START_REF] Wilson | Operating 1268 modes of the clarinet[END_REF] is the dimensionless blowing pressure γ:

γ(t) = p m (t) p M , (3) 
where p m is the physical value of the pressure in the 158 mouth of the musician. We leave all other control pa-159 rameters constant in order to limit the dimensionality 160 of the study. The values and names of the parameters 161 are summarized in Table 1 and detailed below through 162 the model description. Their values are drawn from 163 [START_REF] Muñoz Arancón | Estimation of saxophone reed parameters during playing[END_REF] for the reed parameters q r and ω r , from [START_REF] Chatziioannou | Estimation of clarinet reed parameters by inverse modelling[END_REF] for 164 the order of magnitude of the contact stiffness K c . Following [START_REF] Chatziioannou | Estimation of clarinet reed parameters by inverse modelling[END_REF], the reed is modeled by a single degree of freedom oscillator including a nonlinear contact force accounting for the mouthpiece lay where the two parameters of the reed are its angular eigenfrequency ω r and its damping coefficient q r , and the contact force is a function of the dimensionless reed opening x + 1 and is taken from [START_REF] Bilbao | Numerical modeling of collisions in musical instruments[END_REF],

ẍ ω 2 r + q r ω r ẋ + x = p -γ + F c (x + 1), (4) 
F c (x + 1) = K c min(x + 1, 0) 2 , (5) 
where K c = 100. Since x + 1 is the distance between the reed and the mouthpiece lay, F c can be interpreted as a quadratic stiffness activated whenever the reed touches the lay. The ramp function min(x + 1, 0) is regularized using a parameter η = 10 -3 to avoid nondifferentiability at x = -1 (reed closure)

min(x + 1, 0) x + 1 -(x + 1) 2 + η 2 . ( 6 
)
The regularization controlled by parameter η is nec- The flow at the input of the resonator is deduced from Bernoulli's law [START_REF]Small-vibration theory of the clarinet[END_REF][START_REF] Hirschberg | A quasi-stationary model of air flow in the reed channel of single-reed woodwind instruments[END_REF] applied to the reed channel and turbulent mixing into the mouthpiece

u = ζmax(x + 1, 0)sign(γ -p) |γ -p| ( 7 
)
where ζ is the dimensionless control parameter accounting for reed opening at rest

ζ = Z c wH 2 ρ , (8) 
w being the effective width of the reed channel and ρ the density of the medium. We choose to ignore the flow due to the speed of the reed [19,[START_REF] Dalmont | Nonlinear characteristics of single-reed 1083 instruments: Quasistatic volume flow and reed 1084 opening measurements[END_REF] in the present model, as it only has a small effect on the playing frequency, which is not discussed here. The absolute value and ramp function in Eq. ( 7) are regularized with the same parameter η as in Eq. ( 6)

|γ -p| (γ -p) 2 + η, (9) max 
(x + 1, 0) x + 1 + (x + 1) 2 + η 2 . ( 10 
)

The resonator

The input impedance is used to represent the resonator's acoustical response. The dimensionless input impedance Z(ω) of a Buffet-Crampon Senzo alto saxophone is measured with the CTTM impedance sensor [START_REF] Dalmont | A new 1088 impedance sensor for wind instruments[END_REF].

The saxophone is measured without its mouthpiece, placing the reference plane of the impedance measurement at the input cross-section of the crook. A cylindrical tube is added by Transfer Matrix Method [START_REF] Chaigne | Acoustique des instruments de musique (Acoustics of musical instruments)[END_REF] in post-processing to represent the mouthpiece, before using it in synthesis. The length of the cylinder is 60 mm and the radius is the same as the input radius of the crook, 6 mm. The total volume of the added cylinder approximately fits that of the missing cone apex, as per a classical academic approximation [START_REF] Kergomard | Idealized digital models for conical reed instruments, with focus on the internal pressure waveform[END_REF]. In order to use this input impedance for the two numerical synthesis methods presented above, it is decomposed into modes [19] so that

Z(ω) = Nm n=1 C n jω -s n + C * n jω -s * n , (11) 
where C n and s n are the estimated complex modal residues and poles [START_REF] Silva | Moreesc: a 1237 framework for the simulation and analysis of 1238 sound production in reed and brass instruments[END_REF] and N m is the number of modes retained in the simulation. In this paper N m = 8 modes are used. This translates into the time domain by describing the pressure as a sum of complex modal components p n , whose evolution depends on the modal coefficients, such that

ṗn (t) -s n p n (t) = C n u(t), ∀n ∈ [1, N m ], (12) 
p(t) = 2 Nm n=1 Re(p n (t)). ( 13 
)
The flow u in ( 12) is given by [START_REF] Beyn | chapter Numerical Continuation, and Computation of Normal Forms[END_REF]. Figure 1 displays the measured impedance and the associated modal reconstruction according to Eq. ( 11) for the D fingering used throughout the rest of this article. The corresponding modal coefficients C n and poles s n are summarized in Table 2.

Note that the choice of a modal formalism over a direct resolution of partial differential equations in the resonator is made here because of its lower computational cost and number of variables, which facilitates large-scale numerical studies such as those presented in Section 5. Additionally, the modal formalism involves a limited number of parameters, which are directly tied to the acoustics 

Time-domain synthesis

Equations ( 4), ( 7) and ( 12) are discretized using finite-difference approximations for the time-domain derivatives, following a discretization scheme first applied to simple waveguides [START_REF] Guillemain | Real-time synthesis of clarinet-like 1122 instruments using digital impedance models[END_REF] and then adapted to a modal formalism [19]. The reader can find a detailed description of this discretization scheme in a recent document [START_REF] Colinot | Numerical simulation of woodwind dynamics: investigating nonlinear sound production behavior in saxophone-like instruments[END_REF]. The sampling rate used in the simulation is F s = 176400 Hz, four times higher than the standard audio sampling rate. Such a high sampling rate is required, given the chosen finite difference scheme, to give precise results that match those obtained with the harmonic balance method.

As an illustrative result, Figure 2 shows an example of the synthesized pressure signal and its spectrogram. Note that the signal shown is a portion of the signal used in Figure 4 The harmonic balance method is an analysis method particularly adapted to the study of musical instrument models [START_REF] Gilbert | Calculation of the steady-state oscillations of a 1108 clarinet using the harmonic balance technique[END_REF], since it focuses on periodic solutions, which correspond to the produced notes. Assuming periodicity of the solution allows expanding all variables in Fourier series [START_REF] Krylov | Introduction to non-linear mechanics[END_REF][START_REF] Nakhla | A piecewise harmonic balance technique for determination of periodic response of nonlinear systems[END_REF] up to order H, such that the i-th variable X i expands to

X i (t) H h=-H X i,h exp(jhω 0 t), (14) 
where there are 2H + 1 complex Fourier coefficients X i,h per variable, and ω 0 is the fundamental angular frequency of the signal. In this work, the number of harmonics retained is H = 20. Applying the method to a differential system transforms it into an algebraic system of which the unknowns are the Fourier coefficients of the variables and the solution's fundamental frequency, of the form

R({X i,h }, ω 0 ) = 0. (15) 
A numerical continuation method such as the Asymp- of γ, and therefore progressively maps out the solu-also synthesized with time-domain synthesis to exhibit how multistability leads to hysteresis. The correspondance between the two methods (the harmonic balance method and time-domain synthesis) is also checked.

Overlapping stability zones on the bifurcation diagram

The bifurcation diagram is computed for the (written) low D fingering of an alto saxophone. The written D produces the heard note F 3 at 185 Hz as its first register regime. This intermediate fingering of the first register is chosen as test case because it exhibits both first and second register regimes, but no stable third register regime and few double two-step phenomena [START_REF] Colinot | Multiple two-step oscillation regimes produced by the alto saxophone[END_REF]. Figure 3 shows the L 2 -norm of the pressure signal

||p|| 2 = 1 T T 0 p(t) 2 dt, ( 16 
)
where T is the period of the signal, and identifies which regime each branch corresponds to. The blowing pressure parameter γ spans the interval between 0 and 2. This bifurcation diagram contains branches corresponding to the so-called equilibrium, where no sound is produced, for the lowest and highest γ values. The equilibrium at low γ corresponds to the musician not blowing hard enough into the instrument to obtain a sound, while at high γ equilibrium means that the reed channel remains closed due to the large pressure difference between mouth and mouthpiece.

For intermediate γ values, the first and second register both appear. The first register is the fundamental pitch obtained with a given fingering, and the second register, sometimes referred to as overblowing, is pitched one octave higher than the first register. Even though the saxophone has an octave key facilitating the production of the second register, musicians know how to produce second register regimes without activating it. Note that contrary to the clarinet, the register key of the saxophone controls the two register holes, opening one or the other depending on all the pressed keys on the instrument. It is therefore not surprising that both regimes appear on the same fingering. In the present case, the γ interval between 0 and 2 contains all the studied limit cycles of the model, and at its bounds, only the equilibrium solution exists and is stable. The diagram in Figure 3 displays several zones of coexistence between stable regimes (i.e. multistability). These regions of coexistence are often bounded by bifurcation points, that mark qualitative changes in the oscillating regimes. In the present work, the system encounters several types of bifurcations, which we define succinctly in terms of the regime changes they correspond to. More formal definitions and characterizations of these bifurcations, of the jacobian matrix of the system, can be found in [START_REF] Kuznetsov | Elements of applied bifurcation theory[END_REF][START_REF] Beyn | chapter Numerical Continuation, and Computation of Normal Forms[END_REF]. The Hopf bifurcation marks the emergence The second coexistence zone is between first and second register, in the interval where the second register is stable between the Neimark-Sacker bifurcation NS1 and the perioddoubling bifurcation PD1 (respectively at γ = 0.66 and γ = 0.79). The Neimark-Sacker bifurcation NS1 mark the destabilization of the second register and the emergence of a quasi-periodic regime (not represented here), sometimes called multiphonics by musicians. The next coexistence zone occurs in the interval between the two period-doubling bifurcations PD1 and PD2 on the second register branch, where a stable double two-step solution [START_REF] Colinot | Multiple two-step oscillation regimes produced by the alto saxophone[END_REF] emerges. This coexistence zone is not shaded on the figure, as it could represent less of a musical issue, since double two-step regimes have roughly the same frequency as standard first register regimes. The fourth coexistence zone is more complicated: it starts between first and second register at the period-doubling bifurcation PD2, and then the equilibrium also becomes stable at the Hopf bifurcation H4. The limit of the last coexistence zone is made by the two fold bifurcations F2 and F3 where the first and second register solutions cease to exist.

The diagram in Figure 3 shows that coexistence zones between stable regimes span most of the range in γ where oscillating solutions exist, including arguably crucial γ values like the lowest for which an oscillating regime exists. Multistability is not an isolated phenomenon, but rather corresponds to the general situation, at least for this fingering.

Time-domain synthesis with blowing pressure ramps (control scenario number one)

Once multistability zones are identified, time-domain synthesis can be used to exhibit their role when playing the instrument. One of the main phenomena multistability entails is hysteresis: for several values of the blowing pressure, a different regime is produced depending on whether the blowing pressure is increasing or decreasing. Various multistable regimes are exhibited using this method in [START_REF] Takahashi | Numerical study on 1248 multi-stable oscillations of woodwind single-reed 1249 instruments[END_REF] on woodwind models. Figure 4 shows the hysteresis cycles obtained by using ramps of γ: in control scenario number one, the parameter γ is progressively increased from 0 to 2 and then decreased back to 0. Each one of the increasing and decreasing phases of the synthesis has a duration of 60 s. This duration was chosen after several trials, sufficiently long to let stable regimes establish while keeping a γ slope steep enough to limit dynamical bifurcation delays [START_REF] Bergeot | Prediction of the dynamic 1016 oscillation threshold in a clarinet model with a 1017 linearly increasing blowing pressure[END_REF].

Figure 4 shows that the synthesized signal starts from γ = 0 at equilibrium, its L 2 -norm being zero. Then, at Hopf bifurcation H1, the equilibrium becomes unstable, which causes the system to start os-cillating. At this point, the synthesis goes through a transient represented in Figure 2 (between t = 14.2 s and t = 14.8 s), shortly passing by unstable second register and quasi-periodic regimes before reaching the first register. Once the first register is established, the branch is followed all the way to extinction (around γ = 1.75 on Figure 4), because the first register does not become unstable until the fold bifurcation F3. At this point, the system returns to equilibrium until the highest value of the ramp, γ = 2.

The blowing pressure γ then starts descreasing, and that even subtle details of the behavior such as the 437 tiny branch of double two-step solution between pe-438 riod doubling PD1 and PD2 are found by the time-439 domain synthesis.

440

This exploration of the blowing pressure space us-441 ing a long ramp is very useful to exhibit the hysteresis 442 phenomenon, as well as test the coherence between 443 the two synthesis methods. However, this kind of 444 sound is extremely artificial and far from anything a 445 musician would use in everyday practice (provided it 446 is even possible for a musician to produce it). There-447 fore, we frame the conditions of the rest of the study 448 so that they can be interpreted in terms of selection 449 of one regime over another. One way to study the attraction basins more thoroughly is to run many simulations with initial conditions spanning the whole phase space. However, since the considered model has a 2N m +2 dimensional phase space, a complete exploration is not possible. Moreover, many of the possible initial conditions are unlikely to be created by the musician. More interesting is the exploration of the regions of the phase space that are crossed by the system when a given control pattern is varied. Here, we focus on a monotonic increase of the blowing pressure γ at the attack: without using the tongue, the player starts blowing progressively harder into the instrument. Such a scenario was proposed in [START_REF] Silva | Émergence des auto-oscillations dans 1233 un instrument de musique à anche simple[END_REF]. Note that instrumented mouthpiece measurements performed on the saxophone, such as those presented in [START_REF] Guillemain | An instrumented saxophone mouthpiece and its use to understand how an experienced musician plays[END_REF], often show a different profile including a pressure overshoot before the apparition of the oscillations. However, in the present study, we omit that overshoot so that the control scenario is entirely defined by a single parameter. In control scenario number two, the blowing pressure starts from 0 and rises up until stabilizing at a certain value γ f , during a certain time determined by the parameter τ g . The temporal variation of γ is given by the

γ(t) = γ f 2 1 + tanh t -5τ g τ g , (17) 
which is differentiable infinitely many times. Figure amplitudes is more than a certain threshold (here set 489 to 10 -6 ), then the regime is considered quasi-periodic.

490

Figure 6 (a) focuses on the first multistability region (highlighted in gray in Figure 3), near the first Hopf bifurcation H1. The two stable regimes in this region are the equilibrium (

) and the first register ( ). For final values γ f between 0.38 and 0.4, the system can converge to both regime depending on the characteristic rising time τ γ . It is interesting to note that equilibrium is reached for the longest rising times, i.e. the slowest γ variation, whereas the oscillating regime is reached for the shortest rising times. This is understandable as a quick γ increase tends to drive the system away from equilibrium, and therefore possibly out of its attraction basin. Note that some of the oscillating regimes near the limit, for the longest attack times, are classified as quasi-periodic. This is due to the transient being extremely long in this particular region: the steady-state regime is not yet established at the end of the synthesized signals. This classification particularity, which could be seen as an error, is not corrected because, from a musician's perspective, a regime still varying five seconds after the start of the attack will arguably not be considered periodic.

The second zone of multistability is explored in Figure 6 (b). The first and second register are separated by some stable quasi-periodic regimes ( ). This is the same quasi-periodic regime that appears in timedomain synthesis in Figure 2, which overlays the unstable portion of the second register branch. There is a particular range of characteristic time τ g that seems to produce the first register for a larger range of γ f . 

Control scenario number three: varying initial conditions

The results concerning the influence of the blowing pressure parameter can be better understood by examining the region of the phase space leading to each regime. A point in the phase space represents the current state of the system, meaning the value of the state variables and their derivatives. Since the system is deterministic, a given point in the phase space will always lead to the same stable established regime. Therefore regions of the phase space can be associated with each regime. These regions are called attraction basins.

The attraction basins are only rigorously defined in a context where all control parameters are constant. However, to interpret the results obtained with a control parameter transient such as control scenario number two, it is useful to observe the layout of attraction basins obtained for the final blowing pressure value γ f . Specifically, at the beginning of control scenario number two, the blowing pressure is subject to fast variations, making a direct approach based on attraction basins ill-defined. However, after the transient, the blowing pressure stabilizes around its final value γ f . To elucidate the behavior of the system at this moment, subsection 4.2 performs a systematical analysis of its convergence with constant control parameters, in which case the attraction basins representations are relevant. Therefore, a third control scenario is devised, where the control parameters are kept strictly constant and only the initial values of certain state variables of the system are modified.

Because the phase space is of dimension 2N m + 2 (all modal components and their derivatives, plus reed position and speed), it is necessary to choose a projection to represent the attraction basins. After some trials, a projection of the phase space on the two first modal components (see Eq. ( 12)) and the derivative of the second one, (p 1 , p 2 , ṗ2 ), was chosen as a threedimensional projection. These variables were chosen not only because of their physical or mathematical meaning, as they relate respectively to the first and second register, but also because they allow for the clearest visual separation of the limit cycles and attraction basins that could be obtained by the authors. To estimate the attraction basins, time-domain synthesis is launched with initial conditions spanning the projected phase space and constant control parameters (control scenario number three) . A total of 256 initial conditions are scattered in a Latin hypercube sampling into a rectangular parallelepiped such that

p I 1 ∈ [-0.2, 0.2], p I 2 ∈ [-2, 2], ṗ2 I ∈ [-707, 707]. ( 18 
)
These bounds should be understood with respect to the amplitude of the limit cycle along each dimension 563 (that can be seen in Figures 7 and8). They were cho-564 sen so that whenever a regime is stable, it is obtained 565 in synthesis at least once. All the other modal pres-566 sure components and their derivatives, as well as the 567 reed speed ẋ, are initially zero. So that there is no 568 discontinuity when starting the synthesis, the initial 569 values of the variables p, then x and u are computed 570 accordingly through equations ( 13), ( 4) and [START_REF] Beyn | chapter Numerical Continuation, and Computation of Normal Forms[END_REF]. All for γ = 1.1. This is explained by the attraction basin of the equilibrium being larger -there are many more black dots on Figure 7 (c) than on (b). Notice that the attraction basin of the first register expands (also many more green dots than on Figure 7 (b)), while the attraction basin of the second register (red dots) shrinks. This process (not represented here) continues until the second register ceases to be stable at fold bifurcation F3 (see Figure 3).

Figure 8 shows the attraction basins and limit cycles, in a three-dimensional projection of the phase space (p 1 , p 2 , ṗ2 ), at particular values of γ highlighted in Figure 6. Graphs 8 (a), (b), (d) and (e) should be read as further information on the regime map 6 (b), at the beginning of the multistability zone between first and second registers.

Graph 8 (a) corresponds to γ = 0.6, and confirms that the first register is the only stable regime: it was the only one to appear in the regime map 6 (b) (for γ f = 0.6). Then, a quasi-periodic attractor appears in Graph 8 (b), for γ = 0.63. Although the associated attraction basin seems smaller than that of the first register, it seems to almost surround the origin of the phase diagram. It was observed in synthesis that the transient of control scenario number two does not send the system very far from the origin in the phase space -compared, for instance, with the size of the limit cycles of register one and two. This is linked to it necessarily starting from the origin of the phase space. The fact that control scenario number two tends to lead the system to phase space points near the origin explains why regime map 6 (b) displays more quasi-periodic regimes than first register. A similar interpretation can be formulated with regards to graphs 8 (d) and (e), for γ = 0.645 and γ = 0.72 respectively. For these values of γ on Figure 6 (b), there is more second register than first register. On graphs 8 (d) and (e), it can be seen that although the size of the first register's attraction basin seems comparable to that of the second register, the latter clearly holds a central position around the origin of the phase space. When the second register attraction basin grows in Graph 8 (e), this translates to the disappearance of the first register from the regime map 6 (b). Note that Graph 8 (e) confirms that the first register is still stable, as announced by the harmonic balance method in Figure 3. Graph 8 (c) γ = 0.9 illustrates a slightly different explanation of a similar case of only second register appearing in the regime map 6 (c): in this case, the attraction basin of the first register is just too small, it only makes up for a few points in Figure 8 (c). Graph 8 (f) (γ = 1.25) is comparable to (d) in that many regimes are stable, but only the one with the most central attraction basin appears in the corresponding regime map on Figure 6 (c). In this case this regime is the equilibrium, whose 679 attraction basin in Graph 8 (f) surrounds the origin, 680 although it appears smaller than the others. To com-681 plete the study, the full evolution sequence of the at-682 traction basins obtained with control scenario number 683 three can be found as an animation in multimedia file 684 Supp1.mp4. The authors suggest frequently pausing 685 the animation to observe precisely how the attraction basins develop along multistability zones.

Effect of the resonator's inharmonicity on regime production

The concept of multistability and the attraction basins are presented and explored here because they seem to be a very important part of the observed behavior of a saxophone model. The present section offers a succinct description of the behavior of the model, applied to an instrument design problematic. It also illustrates how ignoring multistability can affect the description of the behavior of a model.

Before using the analysis of a woodwind physical model to develop new instruments, it can be very informative to apply it to existing instruments, in the idea of a reverse engineering procedure. If the analysis method can explain a posteriori some design choices made on instruments with satisfying sound production characteristics, then it might help guide further innovative design choices in the right direction. In the present case, the produced regimes are studied for the seven lowest first register fingerings, and one acoustical parameter is varied artificially: the inharmonicity between first and second resonance. The original data corresponds to measured impedance for the corresponding fingerings of a Buffet-Crampon Senzo professional alto saxophone. According to the so-called Bouasse-Benade prescription [START_REF] Bouasse | Instruments à vent[END_REF][START_REF] Benade | Sound production 1008 in wind instruments[END_REF][START_REF] Benade | Fundamentals of musical 1006 acoustics[END_REF], near perfect inharmonicity between the resonances is cited as a condition for good playability of the instrument. This prescription is also discussed in recent studies [START_REF] Gilbert | From the bifurcation diagrams to the ease of 1113 playing of reed musical instruments. a theoretical 1114 illustration of the bouasse-benade prescription?[END_REF][START_REF] Campbell | The Science of Brass Instruments[END_REF]. On the saxophone, experimental studies using an artificial mouth have shown that varying inharmonicity greatly affects regime production [START_REF] Doc | Oscillation regimes 1092 produced by an alto saxophone: Influence of the 1093 control parameters and the bore inharmonicity[END_REF]20]. In this work we define inharmonicity as the ratio between the second and first resonance f 2 /f 1 , or (s 2 )/ (s 1 ) in terms of the parameters of Eq. ( 11). On a saxophone this ratio is close to two. Many definitions of the inharmonicity can be devised, possibly taking into account more resonances. The present definition of the harmonicity has the advantage of being very short, and easy to modify in the modal formalism by adjusting only one modal frequency.

Specifically for the purpose of the following study, optimal regime production conditions are defined crudely in terms of how often each regime appears in synthesis. This definition differs from that employed in [START_REF] Gilbert | From the bifurcation diagrams to the ease of 1113 playing of reed musical instruments. a theoretical 1114 illustration of the bouasse-benade prescription?[END_REF].

On the lowest fingerings, in this study, we simply consider that optimizing regime production means maximizing the appearance of the first register while minimizing that of the second register Figure 8: Attraction basins (dots) and limit cycles (lines) in a 3D projection of the phase space obtained with control scenario number three for different blowing pressures γ. Black: equilibrium, green: first register, red: second register, blue: quasi-periodic.

and quasi-periodic regimes. Indeed, one of the chal-738 lenges many beginner saxophone players face on the 739 lowest fingerings is controlling the instrument so that 740 the first register can be produced, and not another ever they are a common issue on the lowest fingerings 744 of the saxophone. 7). As a case study, two maps computed with different inharmonicity values are presented on Figure 9 (a) and (b), so that they can be compared. In the modal formalism, the inharmonicity is changed very simply by modifying the value of the second modal frequency.

Note that changing the length of the saxophone mouthpiece constitutes another method to vary the inharmonicity. However, it modifies all the modal frequencies simultaneously, which makes some interpretations less robust. Therefore, only the results obtained by varying the second modal frequency are presented here. Similar results can be obtained by varying the length of the mouthpiece. Two typical values of inharmonicity are chosen: one that could be called null, f 2 /f 1 = 2; and the value measured on the saxophone which is slightly higher, f 2 /f 1 = 2.065.

Focusing on Figure 9 (a), several features can be described, and recognized from the situations explored in Section 4 with a fixed ζ. Coexistence regions can be noticed on most of the map, with a given (γ f , ζ) couple leading to different regimes depending on the char-acteristic time. This further demonstrates that mul-789 tistability is a very common phenomenon across the 790 control parameter space in woodwind models. A par-791 ticular case of coexistence occurs on all regime maps, 792 where long attack times lead to the system remaining at equilibrium, while fast attacks can trigger oscillations. This is the same phenomenon as in Figure 6 (a). These phenomena are located, as for Figure 6 

Rate of produced regimes: influence of the rise time on global regime production

To study the question of the inharmonicity favoring first register production, regime maps are computed for all the fingerings of the saxophone that should produce first register regimes, meaning those where the register holes are closed. For each fingering, the second modal frequency f 2 is varied from 1.96f 1 to 2.15f 1 , by steps of 0.01f 1 . A regime map containing N p = 192 points, as for Figure 9, is then computed for each value of inharmonicity. The produced regimes are counted for the whole map, and a rate is computed for each of them with respect to the total number of oscillating regime as

R i = N p,i N p , (19) 
where regime i can either be first register, second register or quasi-periodic regimes, N p,i is the number of points corresponding to regime i in the regime map 19)) for written low B fingering. Green: first register, red: second register, blue: quasi-periodic. Linestyles indicate the characteristic time. Dotted: τ g = 0.1 ms, dash-dot: τ g = 3.2 ms, dashed: τ g = 100 ms, solid: averaged rate. An upward triangle marks the maximum first register averaged rate, a downward triangle marks the minimum second register rate.

For the D fingering (Figure 11 (a)), one can see 867 that depending on the chosen increase duration τ g the 868 production ratio varies greatly (from 20% to 60%). If 869 any quantitative interpretation is to be expected from 870 these results, it can be changed dramatically depend-871 ing on the chosen attack time. Notice that the lowest 872 rate of first register corresponds to the longest attack 873 time τ g = 100 ms. Figure 9 shows that the first regis-874 ter regimes are produced on the edges of the zone of 875 oscillation, in a multistability region between the first 876 register and the equilibrium. The longest attack times 877 in this region tend not to lead to a first register, but 878 instead to an equilibrium due to its attraction basin 879 surrounding the origin (see for instance Figure 7 (c) or 880 multimedia file Supp1.mp4). Figure 11 (b) shows the 881 results for the written D fingering. This case exhibits 882 an outlier: the shortest attack time yields a optimal 883 inharmonicity value of 2.08, whereas the others point 884 to 2.04. In this case, considering several attack times 885 is a way to smooth out outliers due to a particular 886 value of the attack time.

887

Note that Graph 11 (b) can also be subject to an 888 interesting interpretation in terms of musician control 889 strategies: the fact that certain attack time values 890 seem to markedly decrease the rate of production of a 891 certain regime could be used by the musician to avoid 892 producing it. A varying control scenario explores which regime is produced in multistability zones, with the advantage that it can be tied to plausible musician actions. However, a varying control scenario only provides a very partial view of the attraction basins, and its results deserve to be explicited by representing the attraction basins in the phase space using different initial conditions. Dedicated experimental work, out of the scope of this paper, could help design more realistic control scenarios.

Accounting for multistability, the study of synthesized regimes may explain an acoustical choice made by instruments makers: the inharmonicity of the saxophone. An integer ratio between the first and second resonance frequencies does not favor the production of first register. Note that this result adds nuance one of Benade's guidelines stating that an oscillation is favored if the impedance is large at its fundamental 968 and its harmonic frequencies [START_REF] Benade | Sound production 1008 in wind instruments[END_REF]. This work shows 969 that competition between registers also comes into 970 play, depending on more than solely the impedance 971 magnitude at the playing frequency and its harmon-972 ics. Instead, an integer ratio between the first and 973 second resonance frequencies tends to favor the pro- 
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 130 classic endeavor in musical acoustics consists in 31 the systematic study of sound production features 32 of a musical instrument. Early studies use an arti-33 ficial mouth to replace the musician (on the clarinet34
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 212 essary for the system to fit the quadratic formalism 168 required by the implementation of the harmonic bal-169 ance method and asymptotic numerical continuation 170 in the MANLAB software, which produces the bifur-171 cation diagrams of the present article. Although the 172 parameter η is not necessary for the time-domain syn-173 thesis method to function, it is kept for comparison 174 purposes. The reed channel 176

Figure 1 :

 1 Figure 1: Measured input impedance (solid) and modal reconstruction (dashed) for the fingering D of the alto saxophone.

Figure 2 :

 2 Figure 2: Time-domain synthesized pressure signal. (a) temporal envelope (black) and blowing pressure parameter γ (red). (b) Normalized spectrogram (dB) with regime names indicated (unstable ones between parentheses) : equilibrium (Eq.), second register, quasi-periodic and first register. The signal is extracted from the same blowing pressure ramp as in Figure 4, between γ = 0.45 and γ = 0.51 (at first occurrence of oscillation).
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  Numerical Method can then be applied to the re-227 sulting algebraic system[START_REF] Cochelin | A high order purely frequency-based harmonic balance formulation for continuation of periodic solutions[END_REF][START_REF] Guillot | A taylor series-based continuation method for solutions of dynamical systems[END_REF] to find how the solu-228 tion changes for other constant values of a chosen con-229 trol parameter, for instance the blowing pressure pa-230 rameter γ. More precisely, knowing a solution to the 231 system for a given value of γ, the continuation method 232 finds a solution for a slightly higher or lower values 233

301

  of an oscillating solution from equilibrium. The fold 302 bifurcation corresponds to a stable and unstable solu-303 tion branch colliding and disappearing, which can be 304 better seen on the bifurcation diagrams as limit points 305 in the solution branches. Neimark-Sacker bifurcations 306 correspond to a periodic regime becoming unstable307 and being replaced by a quasi-periodic regime. A de-308 generate case of the Neimark-Sacker bifurcations is 309 the period-doubling bifurcation, where a periodic so-310 lution of halved frequency emerges from an oscillating 311 solution. On saxophone models, period doubling bi-312 furcations transform a second register regime into a 313 first register. As is discussed in the next paragraph 314 for the saxophone, Hopf and fold bifurcations often 315 delimit coexistence between the equilibrium and an 316 oscillating regime, while Neimark-Sacker and period-317 doubling bifurcations mark the limits of multistability 318 regions between two oscillating regimes.

Figure 3 :

 3 Figure 3: Bifurcation diagram obtained with harmonic balance method and numerical continuation: L 2 -norm of the acoustical pressure depending on the blowing pressure parameter γ for the low written D fingering of an alto saxophone. Thick lines: stable solution, thin lines: unstable solutions. Black: equilibrium, green: 1 st register regimes, red: 2 nd register regimes. Multistability zones are shaded: light yellow where 1 st and 2 nd register coexist, darker gray for equilibrium and 1 st register. Blue circles specify the location of bifurcations. Vertical black lines correspond to those in Figure 6 (c), and (from left to right) to phase diagrams 7 (a), (b) and (c).

Figure 3 ,F3Figure 4 :

 34 Figure3, but note that it is possible with harmonic balance method and Manlab[START_REF] Guillot | A taylor series-based continuation method for solutions of dynamical systems[END_REF]. When the quasiperiodic regime becomes unstable (around γ = 0.55) the system jumps back onto the first register branch, which is followed until fold bifurcation F1, beyond which the stable equilibrium is the unique solution of the model. The path described precedently is highly hysteretic: the sequence of regimes produced for increasing and decreasing γ are very different. Actually, the two paths only coincide in three regions: the lowest and highest γ intervals, for which only the equilibrium is stable, and a very small region around γ = 0.5 where only the first register is stable.The hysteresis phenomenon observed here in timedomain synthesis can be interpreted as the first step in attraction basin description: once a certain stable regime is reached, it is followed until extinction or loss of stability, even when other regimes are simultaneously stable. This confirms that a stable periodic regime is part of its own attraction basin. Reconstructing stable parts of the bifurcation diagram using time-domain synthesis and comparing them to those obtained using the harmonic balance method also provides validation for the numerical discretization scheme in this context. Here, it shows that timedomain synthesized signals are not perturbed by numerical artifact due to time discretization and can be trusted to describe properties of the model. Note

  likely that musicians learn to select between 453 coexisting stable regimes, adjusting their control so 454 that the established regime in a multistability region 455 is the one they desire. This idea provides the layout 456 for control scenario number two: we study the effect 457 of a parametrized transient control or initial condi-458 tions on the established steady-state regime that fol-459 lows when the control is constant. To provide an-460 other way to interpret the selection process between 461 where only initial conditions are varied and all con-463 trol parameters are constant.
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 41 Control scenario number two: in-465 creasing blowing pressure 466

467 5 displaysues γ f belonging to the multistability zones described 473 in Figure 3 .Figure 5 :

 547335 Figures 6 shows which established regimes appear in 471

Figure 6 :

 6 Figure 6: Classification of the steady-state regimes produced depending on the blowing pressure transient parameters: final value γ f and characteristic time τ g . Multistability zones (deduced from Figure 3): (a) equilibrium and first register (b) first register and second register (c) all three regime types. Blue triangles indicate quasi-periodic regimes. The horizontal line on graph (b) shows τ = 1/f 1 . The vertical lines highlight the γ values of phase diagrams in Figure 7 and 8.
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  In the last multistability (0.9 ≤ γ ≤ 1.25), three 525 regimes may be stable for the same parameter val-526 ues, as shown on Figure3. However, Figure6re-527 veals that there is no γ f region where all three are 528 produced. This can be explained by analyzing the 529 attraction basins (see Section 4.2 Figure8).
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571Figure 7

 7 Figure7shows these initial conditions in the plane

Figure 7 :

 7 Figure 7: Projection of the attraction basins obtained with control scenario number three . Large dots are initial conditions, small dots are points the synthesis goes through. The dots' colors indicate the final regime they lead to (black: equilibrium, green: first register, red: second register). Blue lines represent the limit cycles. The small one on the inside is the first register and the one on the outside is the second register. The blowing pressure γ is (a) 1, (b) 1.1, (c) 1.2 (highlighted in figures 6 and 3).

  (a) γ = 0.6 (b) γ = 0.63 (c) γ = 0.9 (d) γ = 0.645 (e) γ = 0.72 (f) γ = 1.25
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 51 Regime production regions746Expanding on the idea in Figure6, one can study 747 the produced regime across the two-dimensional pa-748 rameter space (γ f , ζ), while still varying the charac-749 teristic time τ g of control scenario number two. Fig-750 ure 9 shows the classification of obtained regimes for 751 several combinations (γ f , ζ) and several characteris-752 tic times. Note that for a musician using their lower 753 lip to control the instrument, it is difficult to control 754 the reed opening parameter ζ without also varying 755 the properties of the reed ω r and q r . Leaving the 756 reed parameters constant in this study amounts to a 757 simplification of the musician control. For readability 758 reasons, the resolution of the cartography presented 759 here is rather coarse: only eight values of γ f and ζ and 760 three characteristic times τ g , for a total of 192 synthe-761 sized signals. The range in parameter ζ is inspired 762 by the range measured in [23] for artificial mouth ex-763 periments, using the method proposed in [21]. This 764 method relies on measuring the flow rate as a function 765 of the mouth pressure, and estimating ζ based on the maximum flow using the nonlinear characteristic of Eq. (

  (a), at the boundaries between equilibrium and oscillation regimes, which correspond to the Hopf bifurcations of the model (where the equilibrium becomes unstable). On the regime maps, points containing both equilibrium regimes and oscillating regimes are seen on the vertical threshold near γ = 0.4, the horizontal threshold near ζ = 0.2 and the extinction threshold around γ = 1.1. Coexistence situations similar to Figure 6 (b) can also be seen on Figure 9 (a), for example at ζ = 1.2 and γ f 0.8, where the short and long characteristic times lead to the second register, while the medium time leads to a first register.This possibly indicates that the second register attraction basin almost surrounds the origin, as seen on Figure8, in all the multistability zones between first and second register for that fingering.

Figure 9 (

 9 Figure 9 (b) (f 2 /f 1 = 2) displays a lot more second register ( ) than Figure 9 (a) (f 2 /f 1 = 2.065). Contrary to what could be expected, a null inharmonicity, where the second resonance frequency is twice the first, does not lead to more first register production. Since an exact integer ratio between resonances does not facilitate the production of the first register, one can ask if the model shows a particular value of inharmonicity which favors the production of first register.

Figure 9 :Figure 10 Figure 10

 91010 Figure 9: Classification of the regimes produced ( equilibrium, first register, second register, quasi-periodic) depending on control parameters: γ f and ζ. Each rectangle corresponds to a couple (γ f , ζ) and the points inside indicate the regime for each characteristic time τ g (bottom 0.1 ms, middle 3 ms and top 100 ms). One rectangle on graph (b) is annotated as an example. Graphs correspond to two inharmonicities for low written D fingering (a) f 2 = 2.065f 1 , the value measured on a real saxophone and (b) f 2 = 2f 1 .
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Figure 10 :

 10 Figure 10: Rate of produced regimes (Eq. (19)) for written low B fingering. Green: first register, red: second register, blue: quasi-periodic. Linestyles indicate the characteristic time. Dotted: τ g = 0.1 ms, dash-dot: τ g = 3.2 ms, dashed: τ g = 100 ms, solid: averaged rate. An upward triangle marks the maximum first register averaged rate, a downward triangle marks the minimum second register rate.
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 53 Inharmonicity of the saxophone 894 In this section, the optimal inharmonicity in terms of 895 regime production is studied for the seven lowest fin-896 gerings of the instrument. Higher fingerings are not 897 represented because they add no relevant information: 898 first register regime production rates are close to 100% 899 for all the studied inharmonicity values. This corre-900 sponds to the saxophonists' experience that the high 901 notes of the instrument's first register are often eas-902 ier to produce than the low notes, and to the fact 903 that the first impedance peak is much higher than 904 the others on the high fingerings [14]. The optimums 905 are compared with the inharmonicity value measured 906 on the saxophone on which the model is based. Fig-907 ure 12 summarizes the production ratios for all the 908 fingerings. The optimal inharmonicity seems to vary 909 across the fingerings. It is always greater than two: 910 null inharmonicity does not favor first register pro-911 duction on the low fingerings of the saxophone. The
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 1110 Figure 11: Rate of first register regime (Eq. (19)) produced for (a) written low D fingering and (b) written low D fingering. Linestyles indicate the characteristic time. Dotted: τ g = 0.1 ms, dash-dot: τ g = 3.2 ms, dashed: τ g = 100 ms, solid: averaged rate. An upward triangle marks the maximums of first register rates.

Figure 12 :

 12 Figure12: Rate of produced regimes for the lowest fingerings of the alto saxophone (written pitch). Green: first register, red: second register. An upward triangle marks the maximum first register averaged rate, a downward triangle marks the minimum second register rate. Vertical lines mark the measured inharmonicity values.

974

  duction of second register, which is arguably unde-975 sirable for a first register fingering. Carefully tuned 976 inharmonic resonances, where the second frequency 977 is higher than twice the first, can lead to more first 978 register production. The optimal inharmonicity value 979 found on the model is close to harmonicities measured 980 on saxophone resonators. This result provides an a 981 posteriori interpretation of the acoustical characteris-982 tics of the saxophone, as chosen empirically by instru-983 ment makers, as the acoustical characteristic leading 984 to easier production of the first register. Such results 985 are among the first steps towards applying numerical 986 simulations as predictive tools to estimate playability 987 in instrument design. of the bifurcation diagram of a saxophone model, 1069 Acta Acustica united with Acustica, 105 (2019), 1070 pp. 1291-1294. 1071 [19] W. L. Coyle, P. Guillemain, J. Kergo-1072 mard, and J.-P. Dalmont, Predicting playing 1073 frequencies for clarinets: A comparison between 1074 numerical simulations and simplified analytical 1075 formulas, The Journal of the Acoustical Society 1076 of America, 138 (2015), pp. 2770-2781.

  The saxophone model used in this study is comprised 144 of three main elements: a one degree-of-freedom os-145 cillator representing the reed, a regularized nonlin-146 ear characteristic giving the flow through the reed 147 channel, and a modal description of the measured 148 impedance of the resonator. Similar models solved 149 by time-domain synthesis (Section 2.2) are used in 150 conjunction with analytical techniques to study the 151 playing frequency [19] and spectrum

	2 Numerical simulation frame-141
	work	142
	2.1 Saxophone model	143

Table 1 :

 1 Parameters of the numerical model: musician control parameters γ and ζ, reed parameters q r and ω r , contact parameter K c and parameters inherent to the numerical implementation η, N m and H.

	Name	Symbol	Value
	Blowing pressure	γ	Variable
	Reed opening at rest	ζ	0.6
	Reed damping	q r	1
	Reed eigenfrequency	ω r	4224 rad.s -1
	Mouthpiece lay stiffness	K c	100
	Contact regularization	η	10 -3
	Number of modes	N m	8
	Number of harmonics	H	20

  , with control scenario num-210 ber one. It corresponds to the first occurrence of 211 the oscillations at a blowing pressure value γ 0.45. 212 At this point, the system jumps from equilibrium to 213 the first register and passes through fleeting second 214 register and quasi periodic regimes. The spectrogram 215

	(Figure 2 (b)) shows the second register to be the oc-216
	tave (double the fundamental frequency) of the first 217
	register. The quasi-periodic portion of the signal dis-218
	plays amplitude variations, seen in the envelope of the 219
	signal (Figure 2 (a)) and on the odd harmonic com-220
	ponents of the spectrogram. Quasi-periodic regimes 221
	are well-known on saxophone-like instrument models, 222
	documented for instance in [20, 24, 23].
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