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ABSTRACT. The permutation group Sy has a quantum analogue Sj\',, which is infinite
at N > 4. We review the known facts regarding SIJ{,, and its versions S}T, with F' being
a finite quantum space. We discuss then the structure of the closed subgroups G C SJJ{,
and G C S}', with particular attention to the quantum reflection groups.



Preface

One of the most puzzling discoveries in quantum algebra, going back to work of Wang
from the late 90s, in answer to a question of Connes, is that the set X = {1,..., 4},
and more generally the set X = {1,..., N} with N > 4, has an infinity of quantum
permutations. At the first glance, this looks as one of these physicists’ crazy things,
which might be worth attention or not. But please don’t go away, and listen to what I
have so say. Yes, all this is related to physics, and even to quite crazy physics, to put it
this way. But the mathematics behind is extremely simple, and worth some attention.

Let us first look at the symmetric group Sy. When regarding this group geometrically,
as the group of permutations of the N coordinate axes of RY, the standard coordinates
u;; € C(Sy) are given by a very simple formula, namely u;;j(0) = 0(;);. It follows that
these coordinates u;; € C'(Sy) form a matrix u = (u;;) which is “magic”, in the sense that
its entries are projections, p?> = p = p*, which sum up to 1 on each row and each column.
Moreover, by Stone-Weierstrass we have C(Sy) =< u;; >, and with a bit more work,
by using the Gelfand theorem, we conclude that C(Sy) is isomorphic to the universal
commutative C*-algebra generated by the entries of a N x N magic matrix.

This is quite interesting, and suggests looking at the universal C*-algebra C(S};)
generated by the entries of a N x N magic matrix. In analogy with what happens for
C(Sy), this algebra has a comultiplication A, a counit €, and an antipode S, and so
according to the general compact quantum group theory developed by Woronowicz, its
abstract spectrum S}, is a compact quantum group, called quantum permutation group.
And the point is that the inclusion Sy C Sj is not an isomorphism at N > 4, because
diagonally joining magic matrices of size > 2 leads to the conclusion that S, is a non-
classical, infinite compact quantum group, substantially bigger than Sy.

Summarizing, some interesting mathematics going on here, and with this digested, the
first thought goes to physics. Can such beasts be of help in connection with statistical
mechanics, along the lines suggested by Jones? What about quarks and the Standard
Model, along the lines suggested by Connes? What about statistical mechanics and
nuclear physics alike, via random matrices and freeness in the sense of Voiculescu? And
also, in tune with our times, what about applications to quantum information?

3



4 PREFACE

These questions are all old and difficult, going back to Wang’s discovery of S} in the
late 90s, and the few couple of years afterwards. So, perhaps more modestly, we should
start with some pure mathematics, before getting into such questions. The point indeed is
that the symmetric group Sy and its various subgroups G C Sy have a lot of interesting
mathematical properties, so before anything, we should understand what the analogous
theory of Sy and of its closed quantum subgroups G C S¥ is. And with a bit of luck, we
will get in this way precisely into the mathematics of Connes, Jones, Voiculescu, putting
us on the right track for doing some physics afterwards.

The present book is precisely about this, the mathematics of S and of its closed
subgroups G C S}, with physics motivations in mind. We will be interested in mathe-
matics in a large sense, mixing algebra, geometry, analysis and probability. At the level
of subgroups, we will mostly insist on the quantum reflection groups, which are quite fun-
damental objects, mathematically speaking, and which are expected as well to be useful
in physics. Finally, we will discuss also the more general case of the quantum permuta-
tion groups Si. of the arbitrary “finite quantum spaces” F, and their closed subgroups
G C S}, with special attention to the quantum reflection subgroups.

There is a lot of material to be explained here, and the present book lies somewhere be-
tween graduate textbook and research monograph. Some prior familiarity with the quan-
tum groups, although not really needed, is recommended, and a way of getting started is
by quickly reading first my graduate textbook “Introduction to quantum groups”. How-
ever, the present book, while being sometimes quick and heavy, remains a self-contained
text, and can be used as such as a basis for a 1-year graduate course.

Getting back to physics, there will be not much of it in this book, which is meant to
be a purely mathematical text. However, the relation with the work of Connes, Jones,
Voiculescu, potentially leading to physics, will be carefully explained. In short, you will
learn in this way everything that is needed for doing good physics afterwards.

This book is heavily based on a number of research papers on quantum permutations
and reflections, and I am particularly grateful to Julien Bichon, Benoit Collins and Steve
Curran, for substantial joint work on the subject. Many thanks go as well to my cats, for
precious support and advice, during the preparation of the present book.
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Part 1

Quantum permutations



Carry me, caravan, take me away
Take me to Portugal, take me to Spain
Andalucia with fields full of grain

I have to see you again and again



CHAPTER 1

Quantum groups

la. Quantum groups

Generally speaking, a quantum group is a “quantum space” with group type structure.
The quantum permutation groups, that we will be interested in here, are not finite, but
rather compact. This might seem a bit surprising, but remember that what we are doing
here is quantum mechanics, where particles do not have clear positions and speeds, and
with this being a well-established fact. Along the same lines, the space {1,..., N} can be
shown to have an infinity of “quantum permutations”, and this is how things are.

Long story short, to start with, we need a good formalism for the “compact quantum
spaces”. There are several such formalisms, and a particularly simple and beautiful one,
which is exactly what we need for our quantum permutation group purposes, is provided
by the C*-algebra theory. The starting definition here is as follows:

DEFINITION 1.1. A C*-algebra is a complex algebra A, having a norm ||.|| making it
a Banach algebra, and an involution *, related to the norm by the formula

llaa™|| = [|al[?
which must hold for any a € A.

As a basic example, the usual matrix algebra My (C) is a C*-algebra, with the usual
matrix norm and involution, namely:

|M[| = sup [|Mz]]

ll|l=1

(M")ij = Mj;
More generally, any x-subalgebra A C My(C) is automatically closed, and so is a
C*-algebra. In fact, in finite dimensions, the situation is as follows:

THEOREM 1.2. The finite dimensional C*-algebras are exactly the algebras of type

A=Myn(C)®...d My, (C)

* *

with norm ||(ay, ..., ax)|| = sup; ||a]|, and involution (ay,...,ar)* = (af,...,a}).

11



12 1. QUANTUM GROUPS

PROOF. In one sense this is clear, either by standard direct sum arguments, or because
with N = Ny + ...+ N we have an embedding of x-algebras A C My (C). In the other
sense, this is something more subtle, coming by breaking the unit of our finite dimensional
C*-algebra A as a sum of central minimal projections, as follows:

IL=p1+...+pk

Indeed, when doing so, each of the x-algebras A; = p;Ap; follows to be a matrix
algebra, A; ~ My, (C), and this gives the direct sum decomposition in the statement. [

In general now, the main theoretical result about the C*-algebras, due to Gelfand,
Naimark and Segal, and called GNS representation theorem, is as follows:

THEOREM 1.3. Given a Hilbert space H, the algebra B(H) of linear bounded operators
T:H — H is a C*-algebra, with norm and involution given by:

IT]| = sup [|Tx|]
|lz[[=1
<Tzx,y>=<uz,T"y >
More generally, and norm closed x-subalgebra of this full operator algebra
AC B(H)
is a C*-algebra. Any C*-algebra appears in this way, for a certain Hilbert space H.

PROOF. There are several statements here, with the first ones being standard operator
theory, and with the last one being the GNS theorem, the idea being as follows:

(1) First of all, the full operator algebra B(H) is a Banach algebra. Indeed, given a
Cauchy sequence {7} inside B(H), we can set Tz = lim,_, T,,x, for any z € H. It is
then routine to check that we have T € B(H), and that 7,, — T in norm.

(2) Regarding the involution, the point is that we must have < Tx,y >=< z, T*y >,
for a certain vector T*y € H. But this can serve as a definition for 7%, and the fact that
T* is indeed linear, and bounded, with the bound ||T*|| = ||T|, is routine. As for the
formula ||TT*|| = ||T||?, this is elementary as well, coming by double inequality.

(3) The assertion about the subalgebras A C B(H) which are closed under the norm
and the involution is clear from definitions.

(4) Finally, the fact that any C*-algebra appears as A C B(H), for a certain Hilbert
space H, is advanced. The idea is that each a € A acts on A by multiplication, T, (b) = ab.
Thus, we are more or less led to the result, provided that we are able to convert our algebra
A, regarded as a complex vector space, into a Hilbert space H = L?(A). But this latter
conversion can be done, by using advanced functional analysis techniques. U

As a third and last basic result about the C*-algebras, which will be of particular
interest for us, we have the following well-known theorem of Gelfand:
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THEOREM 1.4. Given a compact space X, the algebra C(X) of continuous functions
f: X = C s a C*-algebra, with norm and involution as follows:

1l = ig}g!f(w)!
fr(x) = flz)

This algebra is commutative, and any commutative C*-algebra A is of this form, with
X = Spec(A) appearing as the space of Banach algebra characters x : A — C.

PROOF. Once again, there are several statements here, some of them being trivial,
and some of them being advanced, the idea being as follows:

(1) First of all, the fact that C'(X) is indeed a Banach algebra is clear, because a
uniform limit of continuous functions must be continuous.

(2) Regarding now for the formula ||ff*|| = [|f]|?, this is something trivial for func-
tions, because on both sides we obtain sup,.y | f(z)|?.

(3) Given a commutative C*-algebra A, the character space X = {x : A — C} is
compact, and we have an evaluation morphism ev : A — C(X).

(4) The tricky point, which follows from basic spectral theory in Banach algebras, is
to prove that ev is indeed isometric. This gives the last assertion. U

In what follows, we will be mainly using Definition 1.1 and Theorem 1.4, as general
theory. To be more precise, in view of Theorem 1.4, let us formulate:

DEFINITION 1.5. Given an arbitrary C*-algebra A, we agree to write
A=C(X)
and call the abstract space X a compact quantum space.

In other words, we can define the category of compact quantum spaces X as being
the category of the C*-algebras A, with the arrows reversed. A morphism f : X — Y
corresponds by definition to a morphism ® : C(Y) — C(X), a product of spaces X x Y
corresponds by definition to a product of algebras C'(X) ® C(Y'), and so on.

Finally, no discussion here would be complete without a word about von Neumann
algebras. These are operator algebras of more advanced type, that we will use later on,
in connection with more advanced questions. Their basic theory is as follows:

THEOREM 1.6. For a x-algebra A C B(H) the following conditions are equivalent, and
if they are satisfied, we say that A is a von Neumann algebra:
(1) A is closed with respect to the weak topology, making each T — Tz continuous.
(2) A is equal to its algebraic bicommutant, A = A”, computed inside B(H).
As basic examples, we have the algebras A = L®(X), acting on H = L*(X). Such algebras
are commutative, any any commutative von Neumann algebra is of this form.
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PROOF. There are several assertions here, the idea being as follows:

(1) The equivalence (1) <= (2) is the well-known bicommutant theorem of von
Neumann, which can be proved by using an amplification trick, H — CV ® H.

(2) Given a measured space X, we have indeed an emdedding L*°(X) C B(L*(X)),
with weakly closed image, given by Ty : g — fg, as in the proof of the GNS theorem.

(3) Given a commutative von Neumann algebra A C B(H) we can write A =< T >
with 7" being a normal operator, and the Spectral Theorem gives A ~ L*>®(X). O

In the context of a C*-algebra representation A C B(H) we can consider the weak clo-
sure, or bicommutant A” C B(H), which is a von Neumann algebra. In the commutative
case, C'(X) C B(L*(X)), the weak closure is L°>°(X). In general, we agree to write:

A// — LOO(X)

We are ready now to introduce the compact quantum groups. The axioms here, due
to Woronowicz [98], and slightly modified for our purposes, are as follows:

DEFINITION 1.7. A Woronowicz algebra is a C*-algebra A, given with a unitary matrix
u € My(A) whose coefficients generate A, such that the formulae

A(ugj) = Zulk & U
k

euij) =
S(ui)
define morphisms of C*-algebras as follows,
A:A—-ARA
e:A—C
S A— AP
called comultiplication, counit and antipode.

ij
*

In the above definition the tensor product used in the definition of A can be any C*-
algebra tensor product. In order to get rid of redundancies, coming from this and from
amenability issues, we will divide everything by an equivalence relation, as follows:

DEFINITION 1.8. We agree to identify two Woronowicz algebras, (A,u) = (B,v), when
we have an isomorphism of x-algebras as follows,

< Uy > U >
mapping standard coordinates to standard coordinates, w;; — v;;.

We say that A is cocommutative when YA = A, where ¥(a ® b) = b ® a is the flip.
We have then the following key result, from [98], providing us with examples:
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PROPOSITION 1.9. The following are Woronowicz algebras:
(1) C(G), with G C Uy compact Lie group. Here the structural maps are:

A(p) = (g, h) — w(gh)
e(p) = »(1)

Sp) =9 ¢lg™)
(2) C*(T"), with Fx — T finitely generated group. Here the structural maps are:

Alg)=9g®g
e(g) =1
S(g)=g"

Moreover, we obtain in this way all the commutative/cocommutative algebras.

PrROOF. In both cases, we have to exhibit a certain matrix u, and then prove that we
have indeed a Woronowicz algebra. The constructions are as follows:

(1) For the first assertion, we can use the matrix u = (u;;) formed by the standard
matrix coordinates of GG, which is by definition given by:

uii(g) ... win(g)
g= f :
uni(g) - unn(g)
(2) For the second assertion, we can use the diagonal matrix formed by generators:
g1 0
U= .
0 gnN

Finally, regarding the last assertion, in the commutative case this follows from the
Gelfand result, Theorem 1.4 above. In the cocommutative case this is something more
complicated, requiring as well an amenability discussion. We will be back to this. U

In order to get now to quantum groups, we will need as well:

ProPOSITION 1.10. Assuming that G C Uy s abelian, we have an identification of
Woronowicz algebras C(G) = C*(I"), with T being the Pontrjagin dual of G:

'={x:G—T}

Conversely, assuming that Fy — T is abelian, we have an identification of Woronowicz
algebras C*(I") = C(QG), with G being the Pontrjagin dual of T':

G={x:T—-T}

Thus, the Woronowicz algebras which are both commutative and cocommutative are exactly
those of type A = C(G) = C*(I'), with G, T being abelian, in Pontrjagin duality.
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Proor. All this follows from Gelfand duality, Theorem 1.4 above, because the char-
acters of a group algebra are in correspondence with the characters of the group. O

We have the following definition, complementing Definition 1.7 and Definition 1.8:

DEFINITION 1.11. Given a Woronowicz algebra, we write it as follows, and call G a
compact quantum Lie group, and I a finitely generated discrete quantum group:

A=C(G)=CcI)
Also, we say that G,T" are dual to each other, and write G = f, r=aG.
Summarizing, we have a nice axiomatic framework, for both the compact and the
discrete quantum groups.
Let us discuss now some tools for studying the Woronowicz algebras, and the under-

lying quantum groups. First, we have the following result:

PROPOSITION 1.12. Let (A, u) be a Woronowicz algebra.

(1) A e satisfy the usual axioms for a comultiplication and a counit, namely:
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
(2) S satisfies the antipode aziom, on the x-algebra generated by entries of u:
m(S ®id)A = m(id ® S)A = ¢(.)1
(3) In addition, the square of the antipode is the identity, S* = id.

PROOF. As a first observation, the result holds in the commutative case, A = C(G)
with G C Uy. Indeed, here we know from Proposition 1.9 that A, e, S appear as functional
analytic transposes of the multiplication, unit and inverse maps m, u, i:

A=mt | e=u" |, S=1¢

With these remark in hand, the various conditions in the statement on A, e, S come
by transposition from the group axioms satisfied by m, u, 7, namely:

m(m x id) = m(id x m)
m(u X id) = m(id X u) = id
m(i X id)d = m(id x i) = 1

Observe that the condition S? = id is satisfied too, coming by transposition from the
formula i? = id, which corresponds to the following formula, for group elements:

(g t=yg
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The result holds as well in the cocommutative case, A = C*(I') with Fy — T, trivially.
In general now, the two comultiplication axioms follow from:

(A @id)A(usy) = (id @ A)A(u) =Y g @ g @ wy
kl
(e @ id)A(uij) = (id ® ) Aui;) = wij
As for the antipode axiom, the verification here is similar. First, we have the following
computation, by using the fact that the matrix v = (u;;) is unitary:

m(S @ id)Auy) = Y upupy = (u'n)y; = 6
k

On the other hand, we have as well the following computation:

k
Finally, we have S%(u;;) = u;j, and so S? = id everywhere, as claimed. U

1b. Peter-Weyl theory

In the compact Lie group case, in order to reach to more advanced results, the idea is
to do either representation theory, or Lie algebras. In what regards the compact quantum
Lie groups, there is no Lie algebra that can be defined, at least in some elementary sense,
and we are left with doing representation theory.

Following [98], let us start with the following definition:

DEFINITION 1.13. Given a Woronowicz algebra A, we call corepresentation of it any
unitary matriz v € M, (A) satisfying the same conditions are those satisfied by u, namely:

A(vj) = Zvik v 5 e(viy) =0 ,  S(viy) = v
k

We also say that v is a representation of the underlying compact quantum group G, and
a corepresentation of the underlying discrete quantum group T'.

In the commutative case, A = C(G) with G C Uy, we obtain in this way the finite
dimensional unitary smooth representations v : G — U, as follows:

vi1(g) .- via(9)
v(g) = : :
Unl(g) e Unn(g)

In the cocommutative case, A = C*(I') with Fy — I', we will see in a moment that
we obtain in this way the formal sums of elements of I, possibly rotated by a unitary. As
a first result now regarding the representations, we have:
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PROPOSITION 1.14. The corepresentations are subject to the following operations:

(1) Making sums, v+ w = diag(v, w).

(2) Making tensor products, (v & W)iq jb = VijWap-
(3) Taking conjugates, (v);; = vj;.

(4) Rotating by a unitary, v — UvU*.

Proor. We first check the fact that the matrices in the statement are unitaries:
(1) The fact that v + w is unitary is clear.

(2) Regarding now v ® w, this can be written in standard leg-numbering notation as
v ® w = v13ws3, and with this interpretation in mind, the unitarity is clear as well.

(3) In order to check that v is unitary, we can use the antipode. Indeed, by regarding
the antipode as an antimultiplicative map S : A — A, we have:

(@) = > v = D S(viyve) = S((070);1) = 6
k k
We have as well the following computation:
(') = Y _vwaviy; = > S(uwviy) = S((00);1) = 6
k k

(4) Finally, the fact that UvU* is unitary is clear. As for the verification of the
comultiplicativity axioms, involving A, e, .S, this is routine, in all cases. U

As a consequence of the above result, we can formulate:

DEFINITION 1.15. We denote by u®*, with k = o e @ o ... being a colored integer, the
various tensor products between u,u, indexed according to the rules

®o _ XKe

u® =1 , u=u , u=u

and multiplicativity, u®* = u®* @ u®', and call them Peter-Weyl corepresentations.
Here are a few examples of such corepresentations, namely those coming from the

colored integers of length 2, to be often used in what follows:

u®° =u®u

u® =u®u

U =u®u
u®** =u®u
In order to do representation theory, we first need to know how to integrate over G.
And we have here the following key result, due to Woronowicz [98]:
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THEOREM 1.16. Any Woronowicz algebra A = C(G) has a unique Haar integration,

(L@id)A:(id@)/G)A:/G(')l

which can be constructed by starting with any faithful positive form ¢ € A*, and setting

1 n
= lim — o**

where ¢ x 1p = (¢ @ P)A. Moreover, for any corepresentation v € M,(C) ® A we have

(z-d@/G)U:p

where P is the orthogonal projection onto Fix(v) = {{ € C"|v€ = &}.

Proor. Following [98], this can be done in 3 steps, as follows:

(1) Given ¢ € A*, our claim is that the following limit converges, for any a € A:

1 n
a=lim =Y ¢*(a)

Indeed, by linearity we can assume that a is the coefficient of certain corepresentation,
a = (7 ® id)v. But in this case, an elementary computation gives the following formula,
with P, being the orthogonal projection onto the 1-eigenspace of (id ® ¢)v:

(id@/so)v:Rp

(2) Since v€ = ¢ implies [(id ® p)v]€ = &, we have P, > P, where P is the orthogonal
projection onto the following fixed point space:

Fiz(v) = {5 eC”

ve =¢}

The point now is that when ¢ € A* is faithful, by using a standard positivity trick,
one can prove that we have P, = P. Assume indeed P,{ = &, and let us set:

J k
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We must prove that we have a = 0. Since v is biunitary, we have:

Tl )l 5)

4 J

* - 1 -

= > viun&ib — vwsjfl— Uik + il
ijk

= Zw Z%@ 2 vt ) I6F

= ||§||2—<v€§> <v§r5>+||§||2
= 2(/l¢]]* — Re(< v&, € >))

By using now our assumption F,§ = £, we obtain from this:

pla) = 2p([¢]]* — Re(< vg, & >))
= 2(/[¢]]* — Re(< P£,¢ >))
= 2(/[¢]1* — 1€
=0

Now since ¢ is faithful, this gives a = 0, and so v = €. Thus f@ is independent of ¢,
and is given on coefficients a = (7 ® id)v by the following formula:

(Zd@/)vzp

(3) With the above formula in hand, the left and right invariance of [, = [ is clear
on coefficients, and so in general, and this gives all the assertions. See [98]. 4

With these integration results in hand, we can now develop a Peter-Weyl type theory
for the corepresentations, in analogy with the theory from the classical case. We will need
a number of straightforward definitions and results. Let us begin with:

DEFINITION 1.17. Given two corepresentations v € M, (A),w € M,,(A), we set
Hom(v,w) = {T € Man(C)‘T’U = wT}

and we use the following conventions:
(1) We use the notations Fixz(v) = Hom(1,v), and End(v) = Hom(v,v).
(2) We write v ~ w when Hom(v,w) contains an invertible element.
(3) We say that v is irreducible, and write v € Irr(G), when End(v) = Cl1.

In the classical case, where A = C(G) with G C Uy being a closed subgroup, we
obtain in this way the usual notions concerning the representations. Observe also that in
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the group dual case we have g ~ h when g = h. Finally, observe that v ~ w means that
v, w are conjugated by an invertible matrix.
Here are now a few basic results, regarding the above Hom spaces:

PROPOSITION 1.18. We have the following results:

(1) T € Hom(u,v),S € Hom(v,w) = ST € Hom(u,w).
(2) S € Hom(p,q),T € Hom(v,w) = S®T € Hom(p®@v,q @ w).
(3) T € Hom(v,w) = T* € Hom(w,v).

In other words, the Hom spaces form a tensor x-category.
PROOF. The proofs are all elementary, as follows:
(1) Assume indeed that we have Tu = vT, Sv = Ws. We obtain, as desired:
STu = SvT = wST
(2) Assume indeed that we have Sp = ¢S, Tv = wT. We have then:
(S@T)(p®v) = S1Topi3vas = (Sp)13(T')23
On the other hand, we have as well the following computation:
(q2w)(S®T) = q3wSiTe = (¢5)13(wT )23
The quantities on the right being equal, this gives the result.
(3) By conjugating, and then using the unitarity of v, w, we obtain, as desired:
Tv=uwl =— v'T"=T"w"
= T w = vT"w"w
= Trw=0uT"

Finally, the last assertion follows from definitions, and from the obvious fact that, in
addition to (1,2,3) above, the Hom spaces are linear spaces, and contain the units. Il

Finally, in order to formulate the Peter-Weyl results, we will need as well:

PROPOSITION 1.19. The characters of the corepresentations, given by
Xv = Zvii
behave as follows, in respect to the various operations:
Xotw =Xo + Xw » Xoww = XoXw - Xo= Xy

In addition, given two equivalent corepresentations, v ~ w, we have X, = Xw-
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PROOF. The three formulae in the statement are all clear from definitions. Regarding
now the last assertion, assuming that we have v = T~'wT, we obtain:

Yo = Tr(v) = Tr(T'wT) = Tr(w) = Yu
We conclude that v ~ w implies x, = X, as claimed. O

Consider the dense x-subalgebra A C A generated by the coefficients of the funda-
mental corepresentation u, and endow it with the following scalar product:

<a,b >:/ab*
G

With this convention, we have the following fundamental result, from [98]:

THEOREM 1.20. We have the following Peter-Weyl type results:

(1) Any corepresentation decomposes as a sum of irreducible corepresentations.
(2) Each irreducible corepresentation appears inside a certain u®*.

(3) A =D,errr(a) Maim@)(C), the summands being pairwise orthogonal.

(4) The characters of irreducible corepresentations form an orthonormal system.

PROOF. All these results are from [98], the idea being as follows:
(1) Given a corepresentation v € M, (A), consider its interwiner algebra:
End(v) = {T € Mn((C)‘Tv - UT}
We know from Proposition 1.18 that this is a finite dimensional C*-algebra, and by
using Theorem 1.2 above, we have a decomposition as follows:
End(v) = M,,(C) & ... M,, (C)

To be more precise, such a decomposition appears by writing the unit of our algebra
as a sum of minimal projections, as follows, and then working out the details:

l=p1+...4+p,

But this decomposition allows us to define subcorepresentations v; C v, which are
irreducible, so we obtain, as desired, a decomposition as follows:

V= +...+0,

(2) To any corepresentation v € M,(A) we associate its space of coefficients, given
by C(v) = span(v;;). The construction v — C(v) is then functorial, in the sense that it
maps subcorepresentations into subspaces. Observe also that we have:

A= Cu®)

keNxN
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Now given an arbitrary corepresentation v € M, (A), the corresponding coefficient
space is a finite dimensional subspace C(v) C A, and so we must have, for certain positive
integers ki, ..., kp, an inclusion of vector spaces, as follows:

Cv) c Clu® @ ... ¢ u®k)
We deduce from this that we have an inclusion of corepresentations, as follows:
vCuM @ . @ u®h
Thus, by using (1), we are led to the conclusion in the statement.

(3) By using (1) and (2), we obtain a linear space decomposition as follows:

A= C(v) = Z Maim()(C)
(4)

velrr velrr(A)

In order to conclude, it is enough to prove that for any two irreducible corepresenta-
tions v,w € Irr(A), the corresponding spaces of coefficients are orthogonal:

vobw = Cv) L C(w)

As a first observation, which follows from an elementary computation, for any two
corepresentations v, w we have a Frobenius type isomorphism, as follows:

Hom(v,w) ~ Fiz(t @ w)

Now let us set P, j, = fG v;;wr,. According to Theorem 1.16, the matrix P is the
orthogonal projection onto the following vector space:

Fiz(v®w) ~ Hom(v,w) = {0}
Thus we have P = 0, and so C(v) L C(w), which gives the result.

(4) The algebra Acenira contains indeed all the characters, because we have:
YA(xy) = Zvji @ vij = A(xw)
ij

The fact that the characters span A.cpia1, and form an orthogonal basis of it, follow
from (3). Finally, regarding the norm 1 assertion, consider the following integrals:

*
Pik,jl:/vijvkl
G



24 1. QUANTUM GROUPS

We know from Theorem 1.16 that these integrals form the orthogonal projection onto
Fiz(v®v) ~ End(v) = C1. By using this fact, we obtain the following formula:

/G XoXy = ; /G ViV
1
-2y

=1
Thus the characters have indeed norm 1, and we are done. U

Observe that in the cocommutative case, we obtain from (4) above that we must have
A = C*(I') for some discrete group I', as mentioned in Proposition 1.9.

As another consequence of the above results, following [98] and then [48], we have the
following result, dealing with amenability and functional analysis aspects:

THEOREM 1.21. Let Ay, be the enveloping C*-algebra of A, and let A,eq be the
quotient of A by the null ideal of the Haar integration. The following are then equivalent:

(1) The Haar functional of Asyy is faithful.

(2) The projection map Ajpyy — Areq 15 an isomorphism.

(3) The counit map € : Apu — C factorizes through A,eq.

(4) We have N € o(Re(xy)), the spectrum being taken inside Ayeq.

If this is the case, we say that the underlying discrete quantum group I' is amenable.

PROOF. This is well-known in the group dual case, A = C*(I"), with I" being a usual
discrete group. In general, the result follows by adapting the group dual case proof:

(1) <= (2) This simply follows from the fact that the GNS construction for the
algebra Ay,; with respect to the Haar functional produces the algebra A,.q.

(2) <= (3) Here = is trivial, and conversely, a counit map ¢ : A,.4 — C produces
an isomorphism ® : A,.q — Az, via a formula of type & = (¢ ® id)A'.

(3) <= (4) Here = is clear, coming from (N — Re(x(u))) = 0, and the converse
can be proved by doing some functional analysis. See [48], [98]. O

With these results in hand, we can formulate, as a refinement of Definition 1.11:
DEFINITION 1.22. Given a Woronowicz algebra A, we formally write as before
A=C(G)=CcI)
and by GNS construction with respect to the Haar functional, we write as well
A" = L*(G) = L(T)

with G being a compact quantum group, and I' being a discrete quantum group.
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Now back to Theorem 1.21, as in the discrete group case, the most interesting criterion
for amenability, leading to some interesting mathematics and physics, is the Kesten one,
from Theorem 1.21 (4). This leads us into computing character laws:

PROPOSITION 1.23. Given a Woronowicz algebra (A, u), consider its main character:
X = Z Wi
i

(1) The moments of x are the numbers M, = dim(Fiz(u®)).
(2) When u ~ @ the law of x is a real measure, supported by o(x).
(3) The notion of coamenability of A depends only on law(x).

Proor. All this is elementary, the idea being as follows:

(1) This follows indeed from Peter-Weyl theory.

(2) When u ~ u we have xy = x*, which gives the result.

(3) This follows from from Theorem 1.21 (4), and from (2) applied to u + 4. O

All this is quite interesting, because it tells us that, regardless on whether we want to
understand the representation theory of our compact quantum group G, or the analytic
aspects of its discrete dual I', we must compute the fixed point spaces Fiz(u®F).

The computation of these spaces is a delicate algebra problem, related to results of
Schur-Weyl, Brauer and Tannaka. In order to get started, the first idea is to replace the
series of fixed point spaces F}, = Fiz(u®*) by the double series of Hom spaces:

Cr = Hom(u®* u®)

Indeed, by Frobenius duality, computing the sequence of spaces {Fj} is the same as
computing the family of spaces {Cy}. But computing the spaces {Cy;} is simpler than
computing the spaces {F}}, because these former spaces form a category. And we can
use here the following version of Tannakian duality, due to Woronowicz [99]:

THEOREM 1.24. The following operations are inverse to each other:

(1) The construction A — C, which associates to any Woronowicz algebra A the
tensor category formed by the intertwiner spaces Cyy = Hom(u®*, u®").

(2) The construction C' — A, which associates to any tensor category C' the Woro-
nowicz algebra A presented by the relations T € Hom(u®*,u®'), with T € Cy.

PROOF. This is something quite deep, going back to [99] in a slightly different form,
and to [76] in the simplified form presented above. The idea is that we have indeed a
construction A — C' as above, whose output is a tensor C*-subcategory with duals of the
tensor C*-category of Hilbert spaces. We have as well a construction C' — A as above,
simply by dividing the free *-algebra on N? variables by the relations in the statement.
Regarding now the bijection claim, some elementary algebra shows that C' = C4, implies
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A = Ac,, and also that C' C Cjy,, is automatic. Thus we are left with proving Cs, C C.
But this latter inclusion can be proved indeed, by doing a lot of algebra, and using von
Neumann’s bicommutant theorem, in finite dimensions. See [76]. 4

As a last piece of general theory, let us discuss fusion rules, and Cayley graphs:

PROPOSITION 1.25. Let (A,u) be a Woronowicz algebra, and assume, by enlarging if
necessary u, that we have 1 € uw = u. The formula

d(v,w) :min{kGN‘l C6®w®u®k}

defines then a distance on Irr(A), which coincides with the geodesic distance on the
associated Cayley graph. Moreover, the moments of the main character,

/ x* = dim (Fiz(u®))
a
count the loops based at 1, having lenght k, on the corresponding Cayley graph.

PROOF. Observation first the result holds indeed in the group dual case, where A =
C*(T') with T' =< S > being a finitely generated discrete group. In general, the fact
that the lengths are finite follows from Peter-Weyl theory. The symmetry axiom is clear
as well, and the triangle inequality is elementary to establish as well. Finally, the last
assertion, regarding the moments, is elementary as well. O

1c. Basic examples

Let us discuss now the basic examples of compact and discrete quantum groups. We
know so far that the compact quantum groups include the usual compact Lie groups,
G C Uy, and the abstract duals G = T of the finitely generated groups Fny — I
Equivalently, we know that the discrete quantum groups include the finitely generated
groups Fy — I', and the abstract duals I' = G of the compact Lie groups, G C Uy.

We can combine these examples by performing basic operations, as follows:

PROPOSITION 1.26. The class of Woronowicz algebras is stable under taking:

(1) Tensor products, A= A" ® A", with uw =« +u". At the quantum group level we
obtain usual products, G = G x G" and ' =T" x T'"".

(2) Free products, A = A" x A", with u = v’ + u”. At the quantum group level we
obtain dual free products G = G' *G" and free products T' =T" % T,

PROOF. Everything here is clear from definitions. In addition to this, let us mention as
well that we have [ Woan = Ju® [yand [, . = [, * [, Also, the corepresentations
of the products can be explicitely computed. See [94]. O

Here are some further basic operations, once again from [94]:
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PROPOSITION 1.27. The class of Woronowicz algebras is stable under taking:

(1) Subalgebras A" =< wuj; >C A, with u' being a corepresentation of A. At the

quantum group level we obtain quotients G — G’ and subgroups I C T
(2) Quotients A — A" = A/I, with I being a Hopf ideal, A(I) CARI+1® A. At
the quantum group level we obtain subgroups G' C G and quotients I' — 1",

PROOF. Once again, everything is clear, and we have as well some straightforward
supplementary results, regarding integration and corepresentations. See [94]. U

Finally, here are two more operations, which are of key importance:

PROPOSITION 1.28. The class of Woronowicz algebras is stable under taking:

(1) Projective versions, PA =< wj, ;s >C A, where w = u® u. At the quantum
group level we obtain projective versions, G — PG and PI' C T

2) Free complexifications, A =< zu;; >C C(T) x A. At the quantum group level we

( p ; J q group

obtain free complezifications, denoted G andT.
PRrROOF. This is clear from the previous results. For details here, we refer to [94]. O

Once again following [94], as well as [37], let us discuss now a number of truly “new”
quantum groups, obtained by liberating and half-liberating. We first have:

THEOREM 1.29. The following universal algebras are Woronowicz algebras,
coog) = c* ((uij)m:l,“_,N‘u =q,u’ = u’1>
CUy) = C* ((uz’j)i,jzl,...,N‘u* =yl = a—1>
and the same goes for the following quotient algebras,
c(Oy) = C’(O;{,)/ <abc = cba|Va,b,c € {u,]}>

CWy) = CWy)/ (abe = chalva,b,c € {uy,uis} )

so the underlying spaces Ok, Uy and Ok, U} are compact quantum groups.

PRrROOF. The first assertion follows from the elementary fact that if a matrix u = (u;;)
is orthogonal or biunitary, then so must be the following matrices:

A § e _ S
k

Thus, we can define morphisms A, e, S as in Definition 1.7, by using the universality
property of C(O};), C(Uy). As for the second assertion, the proof here is similar, based on
the fact that if the entries of u satisfy abc = cba, then so do the entries of u®,u®,u®. O

Our first task is to verify that Theorem 1.29 provides us indeed with new quantum
groups. For this purpose, we can use the notion of diagonal torus, from [39]:
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PROPOSITION 1.30. Given a closed subgroup G C Uy, consider its diagonal torus,
which is the closed subgroup T C G constructed as follows:

C(T) = C(G) [ {u; = 0] # j)

This torus is then a group dual, T = K, where A =< g1, ...,gn > is the discrete group
generated by the elements g; = u;;, which are unitaries inside C(T)).

PROOF. Since u is unitary, its diagonal entries g; = u;; are unitaries inside C(T).
Moreover, from A(u;;) = >, wix ® ug; we obtain, when passing inside the quotient:

A(gi) = 9 ® g;

It follows that we have C'(T") = C*(A), modulo identifying as usual the C*-completions
of the various group algebras, and so that we have T'= A, as claimed. O

We can now distinguish between our various quantum groups, as follows:
THEOREM 1.31. The diagonal tori of the basic unitary quantum groups, namely

Uy U Uy

O o, o,

are the following discrete group duals,

—~ —_ —_

ZN ZON Z*N

with o standing for the half-classical product operation for groups.

PROOF. This is clear for Uy, where on the diagonal we obtain the biggest group
dual, namely Fly. For the other quantum groups this follows by taking quotients, which
corresponds to taking quotients as well, at the level of the diagonal torus dual A =7. [

1d. Laws of characters

Let us discuss now the representation theory of these quantum groups. In order to
formulate our results, we use the modern notion of “easiness”, from [37]:
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DEFINITION 1.32. A closed subgroup G C Uy; is called easy when we have

Hom(u®* u®") = span (T,r

Te D(k,l))

for any colored integers k,l, for certain sets of partitions D(k,l) C P(k,l), where

Tﬂ(ei1®"'®eik): Zéw(lnl Z.k)ej1®...®ejl

Juo-o

with the Kronecker type symbols 0. € {0,1} depending on whether the indices fit or not.

To be more precise here, let P(k,l) be the set of partitions between an upper row
of k points, and a lower row of [ points. Our claim is that given N € N, any partition
7 € P(k,l) produces a linear map between tensor powers of CV, as follows:

T7T . (CN)(X)k N ((CN)®Z

Indeed, if we denote by ey, ..., ey the standard basis of CV, we can define T, by the
formula in Definition 1.32, with the Kronecker symbols appearing there being computed
by putting the multi-indices 7, 7 on the legs of 7, in the obvious way. If all the blocks of
7 contain equal indices we set ¢, = 1, and if not, we set 6, = 0. We have then:

THEOREM 1.33. The basic unitary quantum groups are all easy, with

Un Un Uy P P NC,

On Ox 0% Py Py NC,
being the associated categories of partitions D C P.

Proor. This is something that requires some work, the idea being as follows:

(1) Of,.. Consider the set NCj of all noncrossing pairings. It is routine to check that
span(Ty|m € NCs) is a Tannakian category, and also that this category is the smallest
possible one allowed by the Tannakian axioms, in the u = u setting. Thus, the associated
quantum group must be the biggest subgroup G C Oy, which is O} itself.

(2) On. Since Ox C O} appears by adding the commutation relations ab = ba
between coordinates, which are implemented by the linear map 7y coming from the basic
crossing X, we obtain here the category < NCs, X >= P, of all pairings.

(3) Oy. Here we obtain the category < NCjy, { >= Py of pairings having the property
that, when legs are labelled clockwise o @ o e ... each string connects o — e.
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(4) U, Un,Uj. The situation is similar here, but due to u # @ everything is now
colored, and we obtain in all cases pairings which are “matching”, in the sense that the
vertical strings connect o — o or @ — e, and the horizontal ones connect o — e. U

Here are some concrete consequences of the above result, following [1], [23]:

THEOREM 1.34. The quantum groups OF,, Uy have the following properties:
(1) We have an isomorphism as follows, up to the standard equivalence relation:

Ot =US
(2) We have as well an isomorphism as follows, once again up to equivalence:
PO} = PUY;

(3) The fusion rules for Of; are the same as the Clebsch-Gordan rules for SU,:
T QT = Tlk—1| + Vk—t)+2 + -« - + Tkpi
4) Those for Uy are as follows, with the representations being indexed by N x N:
( N g y
Ty @1 = Z Taz
k=xy,l=1yz

(5) The main characters follow the Wigner semicircle and Voiculescu circular law:

v for Of , N >2

ry for Uy, N>2
(6) With N — oo, the truncated characters follow the t-versions of these laws:

v for O , N — o0
X I, forUy, N— oo

Proor. All this follows from our Brauer type results, via standard techniques. There
is actually quite some work ot be done here, the idea being as follows:

(1) As a first observation, by using the universal property of Uy, as being the biggest
N x N compact matrix quantum group, we have an inclusion as follows:

Ot c Uy
Now by using the easiness results from Theorem 1.33, we can compute the tensor

categories for both these quantum groups, with the conclusion that these tensor categories
are equal. Thus, our inclusion is an isomorphism, up to the equivalence relation.

(2) This follows from (1) above, via the following computation:

PU} = PO}, = PO},
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(3) This is something more complicated, the idea being that from the Brauer result
for O3 we obtain, after some work, the following formula, valid at any N > 2:

dim(End(u®*)) = |NCy(k, k)|

B 1 [2k
 k+1\k
Now since the same formula is well-known to hold for the fundamental representation
of SU,, we obtain the same combinatorics, as claimed. We will be back to this.

(4) This follows from (1) and (3). Indeed, the fusion rules for the quantum group

Uy = 5]\7 can be computed starting from the knowledge of those of O3, and we end up
with a “free complexification” of the Clebsch-Gordan rules, namely:

T T = E Txz

k=xy,l=1yz

(5) This follows once again from (1) and (3). Indeed, in what regards Oy, we can
convert our combinatorial results into a moment formula, as follows:

1 (2%
(A+fk:k+1(k)
N

But this shows precisely that x must follow the Wigner semicircle law ~;, and by
complexifying, we obtain the result for Uy as well. We will be back to this.

(6) This is something more technical. Given a parameter ¢ € (0,1], we can define a
truncation of the main character, as follows:

[tN]
Xt = Z Ujj
i=1

The point now is that our Brauer theorems allow us to explicitely integrate over
O3, U, via a combinatorial formula, and in the N — oo limit the combinatorics simpli-
fies, and in what regards y;, we obtain the laws v, I';. We will be back to this. U

The above presentation was of course quite short, but all this can be found in any
good quantum group book. Some similar results regarding O}, Uy, are available as well,
and we can twist everything at ¢ = —1 too. We will be back to this.

le. Exercises

There has been a lot of mathematics in this chapter, and for more details, more theory,
and for exercises as well regarding the general C*-algebra theory, and the general compact
quantum group theory, we refer to any standard textbook on the subject. In what follows
we will take all this material for granted, and rather focus on Theorem 1.34, which is
more specialized. Here is a first exercise, in connection with the statement (1) there:
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EXERCISE 1.35. Prove that the quantum group inclusion
Ot c Uy
15 an isomorphism at the level of the corresponding diagonal tori.

This follows of course from Theorem 1.34 (1), but the problem is that of proving this
directly, in an elementary way, via some discrete group computations.

As a second exercise, in connection with Theorem 1.34 (2), we have:
EXERCISE 1.36. Prove that the quantum group inclusion
PO} C PUy,
1s an isomorphism, by showing that the corresponding tensor categories coincide.

This is something which is related to the proof of Theorem 1.34 (1) and (2), the full
problem being that of proving all this the other way around, namely (2), then (1).

In connection with the fusion rule statements, Theorem 1.34 (3) and (4), we have:

EXERCISE 1.37. Prove that the irreducible representations of SUy can be labelled by
positive integers, such that the fusion rules are the Clebsch-Gordan rules

Tk QT = Tp—g| + Tp—tj42 + - - - + Tt
ezactly as for the quantum group OF; with N > 2.

This is certainly something difficult, but the answer can be found a bit everywhere,
in any good book on Lie groups or physics. There are actually several proofs here, all
non-trivial, beautiful, and very instructive, so just take a look, pick the one that you like
the most, and rewite it in a concise way. And as a supplementary exercise here, once this
done, and SU, understood, go back Theorem 1.34 (3) and (4), for a second read.

Finally, in connection with probability, Theorem 1.34 (5) and (6), we have:
EXERCISE 1.38. Prove that the Catalan numbers, namely
1 [2k
Cp=——
Tk < k )
are indeed the moments of the semicircle law ;.

This is something that we used, in the proof of Theorem 1.34 (5) above.



CHAPTER 2

Quantum permutations

2a. Magic matrices

Welcome to quantum permutations. The rest of this book is dedicated to them. And,
good news, the presentation will be far less intense than that in the previous chapter,
which was meant to be a quick introduction to the quantum groups, survey style.

In order to get started, let us look at the usual symmetric group Sy. We have:

PROPOSITION 2.1. Consider the symmetric group Sy, viewed as the permutation group
of the N coordinate azes of RN . The coordinate functions on Sy C Oy are then given by

U = X <C7 S G‘O’(]) = Z)
and the matriz uw = (w;;) that these functions form is magic, in the sense that its entries
are projections (p* = p* = p), summing up to 1 on each row and each column.

PROOF. The action of Sy on the standard basis e, ...,ex € RY is given by o : e;j —
€s(j)- Thus a permutation o € Sy, viewed as matrix o € Oy, is given by:

7= Z Co()s
J
The coefficients of this matrix, u;;(0) = 0;;, are then given by:
uij(0) = do(jyi

But this gives the formula of u;; in the statement. As for the fact that the matrix
u = (u;;) that these functions form is magic, this is clear. O

With a bit more effort, we obtain the following nice characterization of Sy:
THEOREM 2.2. The algebra of functions on Sy has the following presentation,
C(Sv) = Copmm ((Uz'j)i,jﬂ,...,zv‘u = magic)
and the multiplication, unit and inversion map of Sy appear from the maps

A(ugj) = Zuzk Qug; ,  e(uy) =06y ,  Sluy) =uy
k

defined at the algebraic level, of functions on Sy, by transposing.

33
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PRroOOF. This is something elementary as well. Indeed, the universal algebra A in the
statement is a commutative C*-algebra, so by the Gelfand theorem it must be of the
following form, with X being a certain compact space:

A=C(X)

Now since we have coordinates u;; : X — R, we have an embedding X C My (R).
Also, since we know that these coordinates from a magic matrix, the elements g € X
must be 0-1 matrices, having exactly one 1 on each row and each column, and so:

X =Sn

Thus we have proved the first assertion, and the second assertion is clear as well, by
using the general theory from section 1. To be more precise, the multiplication, unit and
inverse map of Sy C Oy are the standard ones for the orthogonal matrices, namely:

(9h)g =Y gwhy » Ly=65 (97" =9
k

Now by transposing, we obtain the formulae of A, e, .S in the statement. O

Following now Wang [95], we can liberate Sy, simply by lifting the commutativity
condition in Theorem 2.2. To be more precise, we have the following result:

THEOREM 2.3. The following universal C*-algebra, with magic meaning as usual
formed by projections (p* = p* = p), summing up to 1 on each row and each column,

C(S}C) =C" ((uij)i,j:17.,,7N)u = magic)
1s a Woronowicz algebra, with comultiplication, counit and antipode given by
Alui) =Y ug@urg ,  eluy) =05 S(uy) = uy
k
and so the underlying compact quantum space Sy, is a compact quantum group, called

quantum permutation group.

PROOF. As a first observation, the universal C*-algebra in the statement is indeed
well-defined, because the conditions p? = p* = p satisfied by the coordinates give:

[Jug|| <1

In order to prove now that we have a Woronowicz algebra, we must construct maps
A, e, S given by the formulae in the statement. Consider the following matrices:

A E : e _ S _
k
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Our claim is that, since v is magic, so are these three matrices. Indeed, regarding u?,
its entries are idempotents, as shown by the following computation:

A2
(quj) = g Ui Uiy @ Upj Uy
kl

= E OriUir @ Ol
kl

A

These elements are self-adjoint as well, as shown by the following computation:

(Uﬁ)* = Zu:k®uzj
k

= E Uik & U
k

A

A

The row sums for the matrix u= can be computed as follows:

ZuiAj = ZWk@lij
J jk
= Z%’k@l
k

= 1

As for the computation of the column sums, this is similar, as follows:
DUy = D ua®uy
i ik
= 2 1ouy
k

=1

Thus, v® is magic. Regarding now u, u”, these matrices are magic too, and this for
obvious reasons. Thus, all our three matrices u®,u®,u” are magic, and so we can define
A, &, S by the formulae in the statement, by using the universality property of C'(S5).

As a conclusion, the algebra C/(S5;) satisfies Woronowicz’s axioms from chapter 1
above, and so its abstract spectrum Sy is a compact quantum group, as claimed. Il

Summarizing, we have constructed a quantum group S}, which is quite similar to the
usual permutation group Sy, but whose standard coordinates do not longer commute.

Our first task now is to make sure that Theorem 2.3 produces indeed a new quantum
group, which does not collapse to Sy. Following [95], we have here:
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THEOREM 2.4. We have an embedding Sy C Sy, given at the algebra level by:
Ui — X (o‘a(j) = z)
This is an isomorphism at N < 3, but not at N > 4, where Sy is not classical, nor finite.

PROOF. The fact that we have indeed an embedding as above follows from Theorem
2.2. Observe that in fact more is true, because Theorem 2.2 and Theorem 2.3 give:

C(Sy) = C(S%) / <ab - ba>

Thus, the inclusion Sy C Sj; is a “liberation”, in the sense that Sy is the classical
version of S3,. We will often use this basic fact, in what follows. Regarding now the
second assertion, we can prove this in four steps, as follows:

Case N = 2. The fact that S5 is indeed classical, and hence collapses to S, is trivial,
because the 2 x 2 magic matrices are as follows, with p being a projection:

()
L=p p
Indeed, this shows that the entries of U commute. Thus C(Sy) is commutative, and
so equals its biggest commutative quotient, which is C'(S,). Thus, Sy = Ss.

Case N = 3. By using the same argument as in the N = 2 case, and the symmetries
of the problem, it is enough to check that w1, ugs commute. But this follows from:

Upitley = UniUga(U1n + Ui + Urg)
U11U22UTT + U11U22U13
= U1lUgoU11 + Un(l — U21 — U23)U13
= U1U22U11

Indeed, by applying the involution to this formula, we obtain from this that we have
as well ugou1; = uj1uguyy. Thus, we obtain wuyiuse = ugeuyy, as desired.

Case N = 4. Consider the following matrix, with p, ¢ being projections:

P 1—-p O 0
_|1l-» 0 0

U= 0 0 g 1—gq
0 0 1—gq q

This matrix is magic, and we can choose p, ¢ as for the algebra < p,q > to be non-
commutative and infinite dimensional. We conclude that C(S;) is noncommutative and
infinite dimensional as well, and so S is non-classical and infinite, as claimed.
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Case N > 5. Here we can use the standard embedding S, C Sj(,, obtained at the level
of the corresponding magic matrices in the following way:

u — u 0
0 Iy_4

Indeed, with this in hand, the fact that S; is a non-classical, infinite compact quantum
group implies that S3; with N > 5 has these two properties as well. U

The above result is quite surprising, and understanding all this will be our next goal.
As a first observation, we are not wrong with our formalism, because as explained once
again in [95], we have as well the following alternative picture for S};:

THEOREM 2.5. The quantum permutation group S5, acts on the set X = {1,..., N},
the corresponding coaction map ® : C(X) — C(X) ® C(Sy) being given by:

Oer) = Y e; Dy
J
In fact, S% is the biggest compact quantum group acting on X, by leaving the counting
measure invariant, in the sense that (tr @ id)® = tr(.)1, where tr(e;) = +, Vi.

PROOF. Our claim is that given a compact matrix quantum group G, the follow-
ing formula defines a morphism of algebras, which is a coaction map, leaving the trace
invariant, precisely when the matrix u = (u;;) is a magic corepresentation of C(G):

CD(eZ) = Z €; ® Ujs
J
Indeed, let us first determine when ® is multiplicative. We have:

O(e;)P(er) = Z ejer @ UjiUg
j
= Z €; @ UjiUjk
J
On the other hand, we have as well the following computation:
CD(eiek) = (5qu)(6,)

= 5ikZe]~ ®Uji
J

We conclude that the multiplicativity of ® is equivalent to the following conditions:

Ujiujk:(Siksz' , Vi, gk
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Regarding now the unitality of ®, we have the following formula:

®(1) = Y @)
= Z€j®uji

ij

Y (Zu>

J

Thus & is unital when ) u; = 1, Vj. Finally, the fact that ® is a s-morphism
translates into u;; = wujj;, Vi,j. Summing up, in order for ®(e;) = >_;e; ® uy; to be a
morphism of C*-algebras, the elements u;; must be projections, summing up to 1 on each
row of u. Regarding now the preservation of the trace condition, observe that we have:

(tr @ id)®(e;) = % Z uj;

Thus the trace is preserved precisely when the elements wu;; sum up to 1 on each of
the columns of u. We conclude from this that ®(e;) = > ;€5 ® uj; is a morphism of C*-
algebras preserving the trace precisely when u is magic, and since the coaction conditions
on ® are equivalent to the fact that u must be a corepresentation, this finishes the proof
of our claim. But this claim proves all the assertions in the statement. O

2b. Diagrams, easiness

In order to study now Sy, we can use our various methods developed in chapter 1
above. Let us begin with some basic algebraic results, as follows:
THEOREM 2.6. The quantum groups Sy, have the following properties:
(1) We have S§ %Sy, C Sy for any N, M.
(2) In particular, we have an embedding De C Sy
(3) Sy C Sy are distinguished by their spinned diagonal tori.
(4) The half-classical version Sy = S3, N O} collapses to Sy .

PROOF. These results are all elementary, the proofs being as follows:

(1) If we denote by wu,v the fundamental corepresentations of C(Sy),C(S};), the
fundamental corepresentation of C'(Sy % S;;) is by definition:

(Y

But this matrix is magic, because both u,v are magic. Thus by universality of
C(S% L) We obtain a quotient map as follows, as desired:

C(S;\LHM) — C(S% %53



2B. DIAGRAMS, EASINESS 39

2) This result, which refines our NV = 4 trick from the proof of Theorem 2.4, follows
from (1) with N = M = 2. Indeed, we have the following computation:

Sj%Sj = S9%5,
= Zoi7Zs

L% Lo

— Ty * Ly

= D
This might seem a bit wizarding, but we will be back to this, with further details.

(3) As a first observation here, the quantum groups Sy C S; are not distinguished by
their diagonal torus, which is {1} for both of them. However, according to the general
results of Woronowicz in [98], the group dual l/); C S that we found in (2) must be a
subgroup of the diagonal torus of the following compact quantum group, with the standard
unitary representations being spinned by a certain unitary F' € Uy:

(S5, FuF™)

Now since this group dual l/); is not classical, it cannot be a subgroup of the diagonal
torus of (Sy, FuF™*). Thus, the diagonal torus spinned by F' distinguishes S; C S} .

(4) Consider the following compact quantum group, with the intersection operation
being taken inside Uy, whose coordinates satisfy abc = cba:

St = SN oy

In order to prove that we have S}, = Sy, it is enough to prove that S% is classical.
And here, we can use the fact that for a magic matrix, the entries in each row sum up to
1. Indeed, by making ¢ vary over a full row of u, we obtain abc = cba = ab =ba. U

Summarizing, we have some advances on the quantum permutations, including a more
conceptual explanation for our main observation so far, namely S # S,. Let us further
build on this material. The construction in Theorem 2.6 (2), which is something quite
tricky, and is our main result so far, has the following generalization:

ProOPOSITION 2.7. Consider a discrete group generated by elements of finite order,
written as a quotient group, as follows:

Zn, % ... %Ly, =T

1

We have then an embedding of quantum groups T c Sy, where N = Ny + ...+ Nj.
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PROOF. We have a sequence of embeddings and isomorphisms as follows:

r ¢ LN, * ... * Ly,

= Zn % ... %Ly,
~ Zn, % ... %Ln,
C Sy *...%8N,
C Sf % ... %St
c Sy
Thus, we are led to the conclusion in the statement. U

The above result is quite abstract, and it is worth working out the details, with an
explicit formula for the associated magic matrix. Let us start with a study of the simplest
situation, where k = 1, and where I' = Zy,. The result here is as follows:

PROPOSITION 2.8. The magic matriz for the quantum permutation group
iN ~7Zn C Sy C SX[

with standard Fourier isomorphism on the left, is given by the formula

u=FIF*
where F' = \/Lﬁ(wij) with w = e*™/N s the Fourier matriz, and where
1
7 — 9
gN-1

is the diagonal matriz formed by the elements of Zy, regarded as elements of C*(Zy).
PROOF. The magic matrix for the quantum group Zy C Sy C Sy is given by:
Vij = X (0’ S ZN’O'(]) = l)
= b

Let us apply now the Fourier transform. According to our Pontrjagin duality conven-
tions from section 1 above, we have a pair of inverse isomorphisms, as follows:

. * 1 ik _k
d:C(Zy) — C*(Zy) | 5i—>ﬁzk:wg

v O*<ZN) — C(ZN) , gi — Zw‘lkék
k
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Here w = €2™/N | and we use the standard Fourier analysis convention that the indices

are 0,1,...,N — 1. With ' = \/Lﬁ(wij) and I = diag(g’) as above, we have:
uij = P(vy)
1 i
= Nzw( ik g
k
1 ; .
- = Z wik gy =ik
k
= Y Fulw(F")
k
Thus, the magic matrix that we are looking for is u = FIF*, as claimed. U

With the above result in hand, we can improve Proposition 2.7, as follows:

THEOREM 2.9. Given a quotient group Zy, *...*Zy, — I', we have a closed subgroup
[ C Sy, with N = Ny + ... + Ny, whose magic matriz is given by

Fn, L Fy,
U=
Fn IpFy,
where Fy = \/Lﬁ(wﬁ\],) with wy = e™/N are Fourier matrices, and where
1
I = gr
g
with g1, ..., gr being the standard generators of I'.
Proor. This follows indeed from Proposition 2.7 and Proposition 2.8. U

We will be back to this on several occasions, and notably in chapter 13 below, where
we will prove that all the group dual subgroups I' C Sy appear as above.

Let us discuss now the representation theory of Sy, which will eventually lead to a
clarification of all this. Our main result here, which is quite conceptual, will be the fact
that Sy C Sy is a liberation of easy quantum groups. Following [37], let us formulate:
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DEFINITION 2.10. Let P(k,l) be the set of partitions between an upper row of k points,
and a lower row of | points. A collection of sets
D= |D(k,1)
k,l
with D(k,1) C P(k,l) is called a category of partitions when it has the following properties:

(
(1) Stability under the horizontal concatenation, (w,0) — [7o].
(2) Stability under the vertical concatenation, (w,0) — [2].
(3) Stability under the upside-down turning, ™ — 7*.
(4) Each set P(k,k) contains the identity partition ||...||.
(5) The set P(0,2) contains the semicircle partition N.

As a basic example, we have the category of all partitions P itself. Other basic
examples include the category of pairings P, or the categories NC, NC5 of noncrossing
partitions, and pairings. There are many other examples, and we will be back to this.

Following [37], the relation with the Tannakian categories and duality comes from:

PROPOSITION 2.11. FEach partition m € P(k,l) produces a linear map
T7T . ((CN>®k — (CN>®l

given by the following formula, with ey, ..., ex being the standard basis of CV,
T
1--J1

and with the Kronecker type symbols 6, € {0,1} depending on whether the indices fit or
not. The assignement m — T, is categorical, in the sense that we have

T Ty =Tho , Tuly=NTTo | TF =T,
where c¢(m, o) are certain integers, coming from the erased components in the middle.
Proor. This follows from the elementary computations, as follows:
(1) The concatenation axiom follows from the following computation:

(T, @T,)(€, Q.. Q6, ey, ®...Q ex,)

_ 225 <]1 ;p)aa(llfll ];’T)ej1®®€]q®€l1®®els
q s

J1-Jg li..ds
— ZZ(;[WJ(,I jp lll l)ej1®”'®€jq®ell®"'®els
J1-dg l1ewds ! °

ﬂwa](eil ®---®€ip®€kl ®®€kr)
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(2) The composition axiom follows from the following computation:

TWTa(eil ®...Q €ip)

B iy Jo g
= 25"<j1 jq> Z5ﬂ(k1 m)e’“@'“@e’“

J1--Jq k1.
= > NTs o ®...0
Bk k) TR
ki...kr "

= NC(”"’)Tm(ei1 ®...Qe€,)
(3) Finally, the involution axiom follows from the following computation:
Ti(ej, ®...®ej,)
= ) <THep ®...®e,) 6, ®... R, >e, @ ... D6,

i1..ip

_ Zéﬂ(z'l Zp)eh@...@eip
— A
ip

Tr(ej, ®...®e€j,)
Summarizing, our correspondence is indeed categorical. O

In relation with the quantum groups, we have the following result, from [37]:

THEOREM 2.12. Each category of partitions D = (D(k,1)) produces a family of com-
pact quantum groups G = (Gy), one for each N € N, via the formula

Hom(u®* u®) = span (T7r T E D(k,l))

which produces a Tannakian category, and the Tannakian duality correspondence.

Proor. This follows indeed from Woronowicz’s Tannakian duality, in its “soft” form
from [76], as explained in chapter 1 above. Indeed, let us set:

C(k,1) = span (T7r © e D(k, l))

By using the axioms in Definition 2.10, and the categorical properties of the operation
m — T, from Proposition 2.11 above, we deduce that C' = (C(k,[)) is a Tannakian
category. Thus the Tannakian duality applies, and gives the result. O

We can now formulate the following key definition:

DEFINITION 2.13. A compact quantum group G is called easy when we have

Hom(u®* u®") = span <T7r T E D(kz,l))

for any colored integers k,l, for a certain category of partitions D C P.
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In other words, a compact quantum group is called easy when its Tannakian category
appears in the simplest possible way: from a category of partitions. The terminology is

quite natural, because Tannakian duality is basically our only serious tool.

Observe that the category D is not unique, for instance because at N = 1 all the
categories of partitions produce the same easy quantum group, namely G; = {1}. We

will be back to this issue on several occasions, with various results about it.

In relation now with our quantum permutation groups, and with the orthogonal quan-

tum groups too, here is our main result, coming from [1], [2] and then [23], [24], [37]:
THEOREM 2.14. The quantum permutation and rotation groups are all easy,

St o, NC NC,

Sn On P

with the corresponding categories of partitions being those on the right.

P

Proor. This is something quite fundamental, the proof being as follows:

(1) Of,. Consider the Tannakian category of O}, formed by the following spaces:
Cru = Hom(u®* u®")

By using Proposition 2.11, consider as well the following Tannakian category:

D = span (T,r mE NC’2>

We want to prove that we have C' = D. In one sense, this follows from:

' — T,ecC

— <Th>CC

ut =u~

= span (T,T

we<m>)c0
= Dc(C

In the other sense, Tannakian duality tells us that associated to D is a certain closed
subgroup G C O},. But since Tannakian duality is contravariant, at the level of categories

G C OF; translates into C' C D. Thus we have C = D, and we are done.

(2) On. Since Oy C OF appears by adding the commutation relations ab = ba
between coordinates, which are implemented by the linear map 7y coming from the basic

crossing ¥, this group is indeed easy, coming from the following category:
< NCQ, X >= P
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Alternatively, if this argument was too fast, the above proof for Of; can be simply
rewritten, by adding at each step the basic crossing X, next to the semicircle N.

(3) S%. We know that the algebra C'(Sy;) appears as follows:
C(S%) = C(O;{,)/<u = magic>

In order to interpret the magic condition, consider the fork partition:
Y € P(2,1)
The linear map associated to this fork partition Y is then given by:
Ty (e; ® ej) = d;je;
Thus, in usual matrix notation, this linear map is given by:
Ty = (8ik)ijk
Now given a corepresentation u, we have the following formula:
(TYU®2)i,jk = Z(TY)i,lm(u®2)lm,jk = Ui Uik
Im

On the other hand, we have as well the following formula:
<UTY)i,jk: = Zuil(TY)l,jk = (Sjkuij
!

We conclude that we have the following equivalence:
Ty € Hom(u®?,u) < wjjug = 65w, Vi, j, k
The condition on the right being equivalent to the magic condition, we obtain:
C(SH) = C(0%) / <Ty € Hom(u®2,u)>

Thus S}, is indeed easy, the corresponding category of partitions being:

D =<Y >=NC
(4) Sy. Here there is no need for new computations, because we have:

Sy = SE N0y

At the categorial level means that Sy is easy, coming from:

< NC,P,>=P

Alternatively, we can rewrite if we want the proof for S}, or Oy, by adding at each
step the basic crossing/fork next respectively to the fork/basic crossing. U

As explained in chapter 1, in the context of the unitary quantum groups, this kind of
easiness result has a massive number of applications. We will explore these applications
in what follows, gradually. Let us start with something philosophical:
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THEOREM 2.15. The inclusions Ox C O3 and Sy C S§; are liberation operations in
the easy quantum group sense, given by

Dg+ = DgnNNC
at the level of the associated categories of partitions.

PRrOOF. This is clear indeed from Theorem 2.14 above, and from the following trivial
equalities connecting the categories found there:

Indeed, these equalities correspond to the formulae in the statement. O

2c¢. Gram determinants

Let us get now into the real thing, namely classification of the irreducible representa-
tions, fusion rules, Cayley graphs, laws of characters, and other probabilistic questions.
As explained in chapter 1, all these problems are related, and their solution basically
requires the knowledge of the associated Tannakian category, given by:

Cru = Hom(u®* u®")

But in the easy case, where our quantum group G comes from a category of partitions
D, and which covers our 4 main examples, this problem is half-solved, because:

Cu = span (T7r T E D(k:,l))

The remaining half-problem to be solved is that of investigating the linear indepen-
dence properties of the maps 7. Let us begin with some standard combinatorics:

DEFINITION 2.16. Let P(k) be the set of partitions of {1,...,k}, and let m,0 € P(k).

(1) We write m < o if each block of 7 is contained in a block of o.
(2) We let mV o € P(k) be the partition obtained by superposing ,o.

Also, we denote by |.| the number of blocks of the partitions = € P (k).
As an illustration here, at k = 2 we have P(2) = {||,M}, and we have:
| <
Also, at k = 3 we have P(3) = {|[|,M], 1, |I1,T1}, and the order relation is as follows:
< nf, m, < m
Observe also that we have 7,0 < 7V o, and that 7 V ¢ is the smallest partition with

this property. Due to this fact, 7 V o is called supremum of 7, o.

Now back to quantum groups, and to the questions that we want to solve, by Frobenius
duality it is enough to study the partitions having no upper legs. We have:
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PROPOSITION 2.17. The vectors &, = Ty with m € P(k) are given by
& = Z Or(in, .. yig) e, ® ... Qe
i,
and their scalar products are given by the formula
<&, & >= NIVl
where V is the superposition operation, and |.| is the number of blocks.

PROOF. According to the formula of the vectors &,, we have:

<& > = Y Oalin, k)0, (i, i)

i1

— Z Savo(it, .y ik)

i1
— N|7TVO’|
Thus, we have obtained the formula in the statement. Il

In order to study the Gram matrix Gy (7, 0) = N!™°| and more specifically to compute
its determinant, we will use several standard facts about the partitions. We have:

DEFINITION 2.18. The Mébius function of any lattice, and so of P, is given by

1 itr=o0
(o) =< =2 o umT) ifmr<o
0 ifrLo

with the construction being performed by recurrence.
As an illustration here, let us go back to the set of 2-point partitions, P(2) = {||,M}.
We have by definition:
pdll 1) = p(m,m) =1
Also, we know that we have || < M, with no intermediate partition in between, and so
the above recurrence procedure gives:

pdl, 1) = —p(l, 1) = =1
Finally, we have M £ ||, and so we have as well the following formula:
p(, 1)) =0

Thus, as a conclusion, we have computed the Mébius matrix My(m,0) = p(w,0) of
the lattice P(2) = {||,M}, the formula being as follows:

1 -1
o)
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The computation for P(3) = {||[, 1,1, |M,T1} is similar, and leads to the following
formula for the associated Mobius matrix:

1 -1 -1 -1 2

0 1 0 0 -1
M;=|0 0 1 0 -1
0o 0 0 1 -1
0O 0 0 0 1

Back to the general case now, the main interest in the Mobius function comes from
the Mobius inversion formula, which states that the following happens:

flo)=)Y g(m) = glo)=> ulm a)f(m)

<o <o

In linear algebra terms, the statement and proof of this formula are as follows:

THEOREM 2.19. The inverse of the adjacency matriz of P(k), given by

1 fn<o
Ak(ﬂ’a):{o ifrLo

is the Mébius matriz of P, given by My(mw, o) = p(m, o).

Proor. This is well-known, coming for instance from the fact that A is upper trian-
gular. Indeed, when inverting, we are led into the recurrence from Definition 2.18. U

As a first illustration, for P(2) the formula M, = A;' appears as follows:
1 -1\ _ (1 1\
0 1) \0 1

Also, for P(3) = {|||, 1], 7, |, 7T} the formula M; = A3 reads:

-1

1 -1 -1 -1 2 11111
o 1 0 0 -1 01001
0o 0 1 0 —-1]=]0012071
o 0 0 1 -1 00011
o 0 0 0 1 00 0O01

In general, the inversion formula M = A,;l is something of similar nature, and this is
best seen in concrete applications of the Mobius inversion formula, in its functional form,
as formulated before Theorem 2.19. We will be back to this, with examples, later on.

Now back to our Gram matrix considerations, we have the following key result:
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PROPOSITION 2.20. The Gram matriz of the vectors & with m € P(k),
Gmf — N|7rVo'|
decomposes as a product of upper/lower triangular matrices, Gy, = Ay Ly, where

Li(m.0) = NIN-1)...(N—=|n|+1) ifo<m
A 0 otherwise

and where Ay, is the adjacency matriz of P(k).

PrROOF. We have the following computation, by using the formula of the Gram matrix
in the statement from Proposition 2.17 above:

Gp(m,0) = NI™vl
- #{il,...,z’kE{l,...,N}‘keriZW\/o}

- ¥ #{h,...,ike{1,...,N}‘kerz’:r}

T>1No

= Y N(N-1)...(N-|r|+1)

T>1mNVo
According now to the definition of Ay, Ly, this formula reads:

Gy(m,o0) = Z Ly(t,0)

= ZAk(W,T)Lk(T, o)
= (ApLg)(m,0)

Thus, we are led to the formula in the statement. O

As an illustration for the above result, at k = 2 we have P(2) = {||,M}, and the above
decomposition Gy = Ay Ly appears as follows:

N2 N\ (1 1\ (N?-N 0
N NJ \0 1 N N
At k = 3 now, we have P(3) = {|||,N],11,|M, M1}, and the Gram matrix is:

N3 N2 N2 N2 N
N2 N> N N N
Gs=|N> N N2 N N
N2 N N N2 N
N N N N N
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Regarding Ls, this can be computed by writing down the matrix Es(m, o) = dy<q|7|,
and then replacing each entry by the corresponding polynomial in N. We reach to the
conclusion that the product AsLs is as follows, producing the above matrix Gj:

11111 N3 —3N? +2N 0 0 0 0
01001 N2 —N N2 - N 0 0 0
AsLs;=[0 0 1 0 1 N2 —-N 0 N2 - N 0 0
000T1°71 N2 - N 0 0 N2—N 0
00001 N N N N N

In general, the formula G;, = A,L, appears a bit in the same way, with A; being
binary and upper triangular, and with L; depending on N, and being lower triangular.

We are led in this way to the following formula, due to Lindstom [74]:

THEOREM 2.21. The determinant of the Gram matrix Gy, is given by

N!
det(Gy) = ] RE

meP(k)

with the convention that in the case N < k we obtain 0.

PRrOOF. If we order P(k) as usual, with respect to the number of blocks, and then
lexicographically, then Ay is upper triangular, and Ly is lower triangular. Thus, we have:

det(Gk) = det(Ak)det(Lk)

= HLk(Traﬂ-)
= [[ YWV -1)...(N = x|+ 1)

Thus, we are led to the formula in the statement. Il

We will be back to all this later, with further results, in chapter 3 below.

2d. Poisson laws
Now back to the laws of characters, we can formulate:

THEOREM 2.22. For an easy quantum group G = (Gy), coming from a category of
partitions D = (D(k,l)), the asymptotic moments of the main character are given by

lim [ x* = |D(k)]

N—oo GnN

where D(k) = D(0, k), with the limiting sequence on the left consisting of certain integers,
and being stationary at least starting from the k-th term.
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PROOF. According to the Peter-Weyl theory, and to the definition of easiness, the
moments of the main character are given by the following formula:

/x’“ = / Xuok
GnNn GnN

— dim (Fm(u®k))
= dim (span (fﬂ T E D(k)>>

Now since by Theorem 2.21 the vectors &, are linearly independent with N > k, and
in particular with N — oo, we obtain the formula in the statement. Il

In order to work out consequences, we will need the following standard result:

THEOREM 2.23. The Catalan numbers Cy, = |[NCo(2k)| satisfy

their generating series f(z) = > ;- Cy2* satisfies zf* — f +1 =0, and we have:

1 (2
Ck—k+1<k>

PROOF. We must count the noncrossing pairings of {1,...,2k}. Now observe that
such a pairing appears by pairing 1 to an odd number, 2a + 1, and then inserting a
noncrossing pairing of {2,...,2a}, and a noncrossing pairing of {2a + 2,...,2k}. We
conclude that we have the following recurrence formula for the Catalan numbers:

Cr= > CuG
a+b=k—1
In terms of the generating series f(z) = Y., Cx2", this recurrence gives:

Zf2 _ Z OaCbZa+b+1

a,b>0

= Z Z C,Cy2"

E>1 a+b=k—1

k>1
= f—1
Thus z2f2 — f + 1 = 0, and by solving this equation and choosing the solution which
is bounded at z = 0, we obtain the following formula for f:

() = 1—-+v1—-14z

2z
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By using now the Taylor formula for \/z, we obtain the following formula:

1 [(2k\ 4
f(z)_zk+1(k)z
k>0
But this gives the formula in the statement, for the coefficients CY. U

Now back to quantum groups, we have the following result, from [23], [24]:

THEOREM 2.24. The asymptotic k-moments for the main quantum permutation and
rotation groups are the double factorials, and Bell and Catalan numbers,

5 o5, C, ——— Cipa

SN

On By ——— k!

the precise formulae being as follows,
(1) kM =135...(k—=3)(k—1),
(2) B = |P(k)| are the Bell numbers,

(3) Cy = %H(Qkk) are the Catalan numbers,

with the conventions k!' = 0 and Cy/o =0 for k ¢ 2N.

ProoOF. Consider indeed the quantum groups in the statement. According to the
easiness result from Theorem 2.14, and to the character formula in Theorem 2.22, the
asymptotic moments in question appear by counting the following sets of partitions:

NC(k) NCy (k)

P(k)

Py(k)
But these counting questions are all standard, as follows:

(1) Regarding k!! = |P2(k)|, this formula is clear, because we have k — 1 choices for
the pair of 1, then k£ — 3 choices for the pair of the next number, and so on.

(2) Regarding By = |P(k)|, there is nothing much to be done here, because these
numbers, called Bell numbers, cannot be explicitely computed.

(3) Regarding now the numbers Cy/, = |NCy(k)|, which are the Catalan numbers,
these can be explicitely computed by recurrence, as explained in Theorem 2.23.
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(4) Regarding Cy, = |[NC(k)|, this can be established either by recurrence, or deduced
from (3), via fattening/shrinking. Indeed, by fattening the pairings into partitions, and
shrinking the partitions into pairings, we have a correspondence as follows:

NCy(2k) =~ NC(k)
We conclude from this that we have [NC(k)| = Cy, as claimed. O

Once again following [23], [24], we have as well the following result:

THEOREM 2.25. The asymptotic laws of characters for the quantum permutation and
rotation groups are the Gaussian, Poisson, Wigner and Marchenko-Pastur laws,

Sy O% T
SN On hh———0
the precise formulae being as follows:
(1) g1 = \/%76_12/2 dx is the Gaussian law of parameter 1.
(2) ;1 = %Zp% is the Poisson law of parameter 1.

(3) m = %\/4 — x2dx is the Wigner semicircle law of parameter 1.
(4) m = %\/ 4x=! — 1dx is the Marchenko-Pastur law of parameter 1.
PRroor. This follows indeed from Theorem 2.24, by doing some calculus:

(1) By partial integration, we have the following formula:

1 k,—22/2 1 / k—2 —x?/2
— [ e Pdr = (k- 1) x — [ 2" 22 dy
\/27T/R ( ) V21 Jr

Thus the moments of g; satisfy the same recurrence as the numbers k!!.

(2) The moments of the Poisson law p; are the following numbers:

1 pk
M, ==L
AN

peEN

Computations show that the recurrence is the same as for the Bell numbers By.

(3) The moment generating function for the semicircle law 7, is given by:
1 [?Vi—2a?
o= L[V,
27 J_o 1 —2zx

By doing some computations, the coefficients of f are the Catalan numbers.
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(4) The moment generating function for the Marchenko-Pastur law 7y is:

VT

T om C1l—zz
By computation, we obtain the generatmg series of the Catalan numbers. U
The above proof was of course quite short, but all this is standard material, and we

will be back to it with full details in chapter 5 below, when doing analysis.

As a conclusion now, the representation theory of our basic quantum groups is some-
thing extremely simple and fundamental, in the N — oo limit.

We will see in the next chapter that the results in the free case can be improved,
with the convergences there being actually stationary, starting from N = 2. Also, we will
see in chapter 5 below that the above results can be extended to the case of truncated
characters, with the limiting N — oo measures being py, g;, 7, V¢, with ¢ € (0, 1].

2e. Exercises

Here is a first exercise, regarding the isomorphism S3 = S5, which is one of our most
basic results, at the level of the general theory:

EXERCISE 2.26. Find a new proof for the equality
Sg == S;

by doing manipulations with the 3 X 3 magic matrices, as to end up with the conclusion
that the coefficients must commute.

To be more precise, we have already seen such a proof in the above, and the problem
is that of finding a new proof, a bit in the same spirit, based on new computations. This
should normally not be very difficult, because there are many possible such proofs.

Along the same lines, here is something more conceptual:

EXERCISE 2.27. Prove that we have Sz = Si by looking at the coaction

d:C* = C*2C(Sy)
written in terms of the Fourier basis of C3.

To be more precise, the question here is that of changing the basis of C?, by using the
Fourier transform over the group Zs, then reformulating the magic condition at N = 3 in
terms of this new basis, and then deducing that the coefficients must commute.

Here is now another exercise, this time at N = 4:
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EXERCISE 2.28. Prove that the quantum group inclusion
Do C S
1s not an tsomorphism.

This is something which normally should not be difficult.

At N = 5 now, here is an exercise which is more advanced:
EXERCISE 2.29. Prove that the discrete quantum group
s not amenable, in the discrete quantum group sense.

This requires of course some good knowledge of the notion of amenability. As a hint
here, try finding a quantum subgroup G C S5~ whose dual is not amenable.

In relation now with easiness, here is a good exercise:
EXERCISE 2.30. Prove that Sy is easy, directly.

To be more precise, our proof for Sy was based on the fact that S¥ is easy. The
problem is that of finding a direct proof, with no reference to quantum groups.

Here is an instructive exercise in relation with partitions:

EXERCISE 2.31. Write down explicitely the matrices
A47 M47 G47 L4
appearing in the various computations from this chapter, at k = 4.

This is certainly quite time-consuming, and might look a bit futile. However, having
everything working fine requires some knowledge, which is useful, and that can only be
learned in this way. Welcome to research, where doing such things is commonplace.

In the same spirit, we have something even better, namely:

EXERCISE 2.32. Verify the Lindstom formula, namely

N!

weP(k)

at k = 2,3,4, explicitely, without any previous knowledge or trick.

Here k = 2 is something clear, k = 3 is a must-do computation, as an initiation to the
5 x 5 matrices, and k = 4 is probably something quite difficult, but worth a try.

In relation with double factorials and Bell and Catalan numbers, we have:
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EXERCISE 2.33. Prove that the number of elements of

NC(k) NCy(k)
P(k) Py (k)
are the double factorials, and Bell and Catalan numbers,
Cp —— Chp2
By ———k!!

with the conventions k!l =0 and Cyjo = 0 for k ¢ 2N.

This is something that we talked about, in the above, and then used afterwards, and
the problem now is that of working out all this, in detail.

Finally, in relation with the Poisson laws, we have:
EXERCISE 2.34. Prove that for the symmetric group Sy we have
X~ D1
with N — oo, directly, without using representations and easiness.

This looks quite doable, because this is after all something about permutations, and
their number of fixed points. As a hint, try using incusion-exclusion.



CHAPTER 3

Representation theory

3a. Basic results

We have seen so far that the inclusion Sy C Sy, as well as its companion inclusion
On C O3, are both liberations in the sense of easy quantum group theory, and that some
interesting representation theory consequences, in the N — oo limit, can be derived from
this. We discuss here the case where N € N is fixed, which is more technical.

Let us first discuss the representation theory of the quantum group OF. Here the
result, from [1], which is elementary, is as follows:
THEOREM 3.1. The quantum groups OF; with N > 2 have the following properties:

(1) The odd moments of the main character vanish, and the even moments are:
/ x> = Cy
ox
(2) The main character follows the Wigner semicircle law of parameter 1:
X~nN
(3) The fusion rules for irreducible representations are the same as for SUs:
T QT = Tlk—i] * Tk—t)+2 + -+ Tkpi

(4) The dimensions of the representations are as follows, with ¢+ q~* = N:

k41 _ o —k—1
dim(rg) = a C]_l
q—4q

PROOF. There are several proofs for this fact, the simplest one being via purely alge-
braic methods, based on the easiness property of O}, as follows:

(1) Our claim is that we can define, by recurrence on k € N, a sequence rg, 71,72, . ..
of irreducible, self-adjoint and distinct representations of Oy, satisfying:

7”0:1
" =u
Te +Tp_o =71 QT

57
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(2) Indeed, at k = 0 this is clear, and at k = 1 this is clear as well, with the irreducibil-
ity of 71 = u coming from the embedding Oy C O;{,. So assume now that rg,...,r,_1 as
above are constructed, and let us construct r,. We have, by recurrence:

Th—1+ Th—3 = Th—2 QT
In particular we have an inclusion of representations, as follows:
Tkl C T2 ® 1T
Now since r;_s is irreducible, by Frobenius reciprocity we have:
Th—2 C Tp—1 ® T
Thus, there exists a certain representation 7 such that:
Tk + T2 = Tp_1 Q71

(3) As a first observation, this representation 7y, is self-adjoint. Indeed, our recurrence
formula 7, 4+ ry_o = rx_1 ® r1 for the representations rq, 71,72, ... shows that the charac-
ters of these representations are polynomials in x,. Now since Y, is self-adjoint, all the
characters that we can obtain via our recurrence are self-adjoint as well.

(4) It remains to prove that 7 is irreducible, and non-equivalent to rg,...,7r,_1. For
this purpose, observe that according to our recurrence formula, r, + 19 = rp_1 ® 1, We
can now split u®*, as a sum of the following type, with positive coefficients:

k
u®® = ey + Ch_oTh_o + . ..

We conclude by Peter-Weyl that we have an inequality as follows, with equality pre-
cisely when 7, is irreducible, and non-equivalent to the other summands r;:

Z ¢ < dim(End(u®*))

(5) Now let us use the easiness property of OF.. This gives us an upper bound for the
number on the right, that we can add to our inequality, as follows:

Zc? < dim(End(u®*)) < Cy

]

The point now is that the coefficients ¢; come straight from the Clebsch-Gordan rules,
and their combinatorics shows that Y, ¢? equals the Catalan number Cj,, with the remark
that this follows as well from the known theory of SU,. Thus, we have global equality in
the above estimate, and in particular we have equality at left, as desired.

(6) In order to finish the proof of our claim, observe that r; is non-equivalent to
Tk—1,Tk—3,- .-, for instance because of the embedding Oy C OF, which shows that the
even and odd tensor powers of u cannot have common irreducible components.
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(7) Since by Peter-Weyl any irreducible representation of Of, must appear in some
tensor power u®* and we know how to decomposing each u®* into sums of representations
7%, these representations ry are all the irreducible representations of OF.

(8) In what regards now the law of the main character, we obtain here the Wigner law
7, as stated, due to the fact that the equality in (5) gives us the even moments of this
law, and that the observation in (6) tells us that the odd moments vanish.

(9) Finally, from the Clebsch-Gordan rules we have ryr; = 51 + rg11, and we obtain
from this, by recurrence, with ¢ > 0 being such that ¢ + ¢! = N:
dimr, = ¢+ 2+ . g 24t
But this gives the dimension formula in the statement, and we are done. U

The above result has some interesting combinatorial consequences, as follows:

PROPOSITION 3.2. The following are linearly independent, for any N > 2:
(1) The linear maps {Tx|m € NCo(k,1)}, with k+1 € 2N.
(2) The vectors {&|m € NCy(2k)}, with k € N.
(3) The linear maps {Tx|m € NCo(k,k)}, with k € N.

Proor. All this follows from the dimension equalities established in the proof of
Theorem 3.1, because in all cases, the number of partitions is a Catalan number. U

In order to pass now to quantum permutations, we can use the following well-known
trick, relating noncrossing pairings to arbitrary noncrossing partitions:

PROPOSITION 3.3. We have a bijection NC(k) ~ NCy(2k), constructed by fattening
and shrinking, as follows:

(1) The application NC(k) — NC5(2k) is the “fattening” one, obtained by doubling
all the legs, and doubling all the strings as well.

(2) Its inverse NCy(2k) — NC(k) is the “shrinking” application, obtained by col-
lapsing pairs of consecutive neighbors.

PROOF. The fact that the two operations in the statement are indeed inverse to each
other is clear, by computing the corresponding two compositions, with the remark that
the construction of the fattening operation requires the partitions to be noncrossing. [J

At the level of the associated Gram matrices, the result is as follows:
PROPOSITION 3.4. The Gram matrices of the sets of partitions
NCy(2k) ~ NC(k)
are related by the following formula, where 1 — ©' is the shrinking operation,
Gan(m,0) = 0 (AL G2 AL (', o)
and where Ay, is the diagonal of Gy,,.
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PROOF. In the context of the general fattening and shrinking bijection from Proposi-
tion 3.3 above, it is elementary to see that we have:

|t Vo|=k+2|7"Vd|—|r|— |
We therefore have the following formula, valid for any n € N:

n\ﬂ\/o\ — nk+2\7r/Va/|f\7r/|f|U’\

Thus, we obtain the formula in the statement. Now by applying the determinant, we
obtain from this a formula of the following type, with C' > 0 being a constant:

det(ng,n) =C- det(kaZ)
Thus, we are led to the formula in the statement. Il
We can now formulate a “projective” version of Proposition 3.2, as follows:

PROPOSITION 3.5. The following are linearly independent, for any N = n? withn > 2:
(1) The linear maps {Tﬂ|7r € NC’(k,l)}, with k.1 € 2N.
(2) The vectors {&|m € NC(k)}, with k € N.
(3) The linear maps {Tx|m € NC(k,k)}, with k € N.

Proor. This follows indeed from the various results from Proposition 3.2, by using
the Gram determinant formula from Proposition 3.4. O

Following [2], we can now work out the representation theory of the quantum group
S;, and more generally of any S}, with N = n? and n > 2, as follows:
THEOREM 3.6. The quantum groups Sy with N =n? and n > 2 are as follows:

(1) The moments of the main character are the Catalan numbers:
/S s X" =Ch
(2) The main character follows the Marchenko-Pastur law of parameter 1:
X~ T
(3) The fusion rules for irreducible representations are the same as for SOs:
T QT = Tkt + Vk—t)+1 + - + Tkpi

(4) The dimensions of the representations are as follows, with ¢ +q ' = N — 2:

¢ — g

dim(rg) = 1
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PRroOF. This is quite similar to the proof of Theorem 3.1 above, by using the linear
independence result from Proposition 3.5 as main ingredient, as follows:

(1) We have indeed the following computation, based on the above:

/ W = dim(Piz(u®))
SN

— #NC(k)

= #NCy(2k)

= C}
(2) This follows from (1), as explained in chapter 1 above.

(3) This is standard, by using the moment formula in (1), and the known theory of
SO;. Let indeed A = span(xi|k € N) be the algebra of characters of SO3. We can define
a morphism as follows, f being the character of the fundamental representation of Sy:

V:A-CSE) , xa—f-1
The elements f = W(xx) verify then the Clebsch-Gordan rules, namely:
Trfir = fio—y + fle—ij+1 + -+ fog

We prove now by recurrence that each f; is the character of an irreducible corepresen-
tation 7 of C(S};), non-equivalent to rq,...,7x_1. At k = 0,1 this is clear. So, assume
now that the result holds at £ — 1. By integrating characters we have, as for SOs:

Tk—2,Tk—1 C Th—1 @ T1
Thus there exists a corepresentation r; such that:
Th—1 @ T1 =Tk + Tp—1 +T%

Once again by integrating characters, we conclude that r; is irreducible, and non-
equivalent to r1,...,7x_1, as for SO3, and this proves our claim. Finally, since any
irreducible representation of Sy, must appear in some tensor power of u, and we have
a formula for decomposing each u®* into sums of representations r;, we conclude that
these representations r; are all the irreducible representations of Sy;.

(4) Finally, the dimension formula is clear by recurrence. O

3b. Meander determinants

Let us discuss now the extension of the above result, to all the quantum groups S}
with NV > 4. For this purpose we need an extension of the linear independence results
from Proposition 3.5. There are several approaches here, none being trivial, and we will
use in what follows a method which is long, but elementary and rock-solid, namely getting
the linear independence by computing the associated Gram determinant.
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We already know, from chapter 2 above, that for the group Sy the formula of the
corresponding Gram matrix determinant, due to Lindstom [74], is as follows:

THEOREM 3.7. The determinant of the Gram matrix of Sy s given by

N!
det(Grn) = H N =)

weP(k)
with the convention that in the case N < k we obtain 0.

ProOF. This is something that we know from chapter 2, the idea being that Gy
naturally decomposes as a product of an upper triangular and lower triangular matrix. [

Although we will not need this here, let us discuss as well, for the sake of complet-
ness, the case of the orthogonal group Oy. Here the combinatorics is that of the Young
diagrams. We denote by |.| the number of boxes, and we use quantity f*, which gives the
number of standard Young tableaux of shape . The result is then as follows:

THEOREM 3.8. The determinant of the Gram matriz of Oy s given by
det(GkN) = H f]\[()\)fQA
|\|=k/2
where the quantities on the right are fn(A) = [ jex(NV +24 —i—1).

PRrOOF. This follows from the results of Zinn-Justin [100]. Indeed, it is known from
there that the Gram matrix is diagonalizable, as follows:

Gin = Z fN(/\)PZ\
[A=Fk/2

Here 1 = ) P,y is the standard partition of unity associated to the Young diagrams
having k/2 boxes, and the coefficients fy(A) are those in the statement. Now since we
have Tr(Pyy) = f?*, this gives the result. See [27], [100]. O

For the free orthogonal and symmetric groups, the results, from [58], are substantially
more complicated. Let us begin with some examples. We first have:

PROPOSITION 3.9. At k = 1 the set of partitions for Sy, is NC(1) = {|}, and the
corresponding Gram matriz and its determinant are:

det(N) = N

Also, at k = 2 the set of partitions for O3, is NCy(2) = {1}, and the corresponding Gram
matriz and its determinant are:

det(N) =N
PRrRooOF. This is indeed clear from definitions. O

Next in line, we have the following result:
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PROPOSITION 3.10. At k = 2 the set of partitions for Sy is NC(2) = {||,M}, and the
corresponding Gram matrix and its determinant are:

N? N
det (N N) = N?(N —1)

Also, at k = 4 the set of partitions for OF; is NCy(4) = {1, (A}, and the corresponding
Gram matriz and its determinant are:

2
det (]]VV ]]V\Q) _ N2AN?— 1)

ProoOF. This is once again clear from definitions. O
With a few tricks, we can work out as well the next computation, as follows:

PROPOSITION 3.11. At k = 3 the partition set for S is NC(3) = {|||,n|,mq, |, M},
and the corresponding Gram matriz and its determinant are:
N3 N2 N2 N2 N
N2 N2 N N N
det | N> N N? N N|=N(N-DYN-2)
N2 N N N? N
N N N N N

Also, at k = 6 the set of partitions for O, is NCy(6) ~ NC(3), and the corresponding
Gram matriz and its determinant are:

N3 N? N? N2 N
N? N3 N N N?
det [ N2 N N3 N N?2| =N°N?-1)*N?-2)
N? N N N3 N?
N N? N2 N2 N3
PrRoOOF. We have two formulae to be proved, the idea being as follows:
(1) In what regards S}, the set of partitions here is NC(3) = P(3), and so the
corresponding Gram matrix is the one in the statement, exactly as for Sy, that we know

well from chapter 2 above, and from Theorem 3.7. By using the Lindstom formula, from
Theorem 3.7, the determinant of this matrix is, as claimed:

N!
= I o=

nEP(3) '

N! N\ N
~ (N=3)! ((N—Q)!) (N —1)!

= N(N —1)(N -2)N*(N —1)*N
= N(N—-1)*N—-2)
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(2) Regarding now O}, the set of partitions here is NC5(6), and by using the identi-
fication NC5(6) ~ NC(3) from Proposition 3.3, we can list this set as follows:

NCy(6) = { ker(aabbce), ker(aabeed), ker(abbacc), ker(abeceba), ker(abbcca)}

With this ordering convention for NCy(6), used for writing the matrix indices, we
obtain the Gram matrix in the statement, namely:

N3 N? N? N? N
N> N® N N N?
Geyn=| N> N N> N N?
N2> N N N3 N?
N N? N? N?2 N3

Regarding now the determinant, we can deduce it from (1), via the fattening/shrinking
formula in Proposition 3.4, which in our case tells that Ggy is equal to:

L 6 4 4 4 2 1
NVN N°® N* N* N* N NVN
_N N4 N4 N2 N2 N2 _N
1 N4 N2 N4 N2 N2 1
N 4 2 2 4 2
N N N N* N

\/N N2 N2 N2 N2 N2 \/N
Thus, by using (1), we obtain the following formula for the determinant:

1 1
det = x NYO(N? — 1)} (N? — 2) x
NETN ( ) ) NI

= N°’(N? - 1D*N?*-2)

e

Thus, we have obtained the formula in the statement. Il

In general, the above trick based on the Lindstom formula will not work anymore,
because NC'(k) is strictly smaller than P(k) at & > 4. Thus, in order to solve our
problems, we must do some new combinatorics.

Let us start with the following standard result:

PROPOSITION 3.12. The set NCy(k) is in bijection with the set Ly, of loops on N based
at 0, with the loop associated to a pairing m € NCy(2k) being

ho—hi —hy— ... — Iy

where h; with i € {0, ..., k} is the number of indices j € {1,2,...,i} which are joined by
7 to a number in {i+1,i+2,...,k}.
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ProoOF. When £ is odd, both sets in the statement are empty. When £ is even, let us
first work out the case k = 4. Here the numbers hy, ..., hy are easy to compute, and we
obtain the following loops, which are the only 2 possible lenght 2 loops on N:

ker(aabb) - [0 —1—-0—1—0]
ker(abba) - [0 —1—2—1—10]

At k = 6 now, the computation is elementary too, and we obtain the following loops,
which are once again all the possible length 6 loops on N:

ker(aabbcc) - [0—1—-0—-1—-0—-1-0
ker(aabcch) - [0—1-0—-1—-2—-1-0
ker(abbacc) - [0—1—-2—-1—-0—-1-0
ker(abecba) - [0—1—-2—-3—-2—-1-0
ker(abbcca) - [0 —1—-2—-1—-2—1—0]

In general, the proof is quite similar. It is clear from definitions that we have hg = 0,
hr = 0, so our loop candidates start and end at 0, as they should. Also, it is clear as
well that we have h; = 1, hy_; = 1, and with a bit more care we obtain that we have
h; = h;x1 £ 1 for any 7, and so we have indeed loops on N. But these loops are easily

seen to be distinct, and since their number is the correct one, namely the Catalan number
Cij2 = |[NC3(k)|, we obtain in this way all the lenght & loops on N, as claimed. O

]
]
]
]

The point now is that the above model for NCs(k) can be used in order to derive an
explicit interpretation of the corresponding Gram matrix. Let us start with:

PROPOSITION 3.13. The Chebycheff polynomials, given by
k=1, P=N , P, =NP.—P_,
are orthogonal polynomials for the graph N, in the sense that we have
AP =NP
where Ay; = 0ji—j|,1 is the adjacency matriz for N.

PRrROOF. The fact that eigenvalue formula AP = NP holds is indeed clear from the

definition of the polynomials P.. O
Let us record as well the first few values of the Chebycheff polynomials:
Py=1
Pr=N
Py=N*—1

Py = N(N? —2)
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These formulae are quite interesting in connection with the Gram determinant formu-
lae for OF; from Propositions 3.9, 3.10, 3.11, because in all cases there, we obtain a certain
product of Chebycheff polynomials. We will prove now that this is the case in general.
Let us start with the following fact, coming as a continuation of Proposition 3.12:

PROPOSITION 3.14. The Gram matriz of NCy(k) is given by the formula

GkN(W,O-) =< .f7r7 fo‘ >
where for m € NCy(k) we define a vector fr € Hy, = span(Ly) by

Z(Hazz,z; )z

l€Ly \irnj
where e — €° is the edge reversing, and where the “spin factor” is as follows,
b
P,
where s,t are the source and target of the edges.

f'}/:

PRrooF. This is something quite standard, which follows for instance from the general
planar algebra theory in [70]. O

The point now is that, in the above explicit picture, using loops on N, the Gram
matrix can be decomposed, in the following way:

PROPOSITION 3.15. The Gram matriz of NCy(k) decomposes as
Gin = TinThy
where Ty is the following matriz, defined using the above conventions:
Tin(m,0) H o(! )v(1(0);)
i
Moreover, this latter matriz Tyy is lower triangular.
Proor. We have several assertions to be proved, the idea being as follows:

(1) By definition of Ty, we have the following formula:
fr= ZTkN(W,O'> (o)

We therefore obtain, as desired:
Gin = TinTin

(2) We show that Ty is lower triangular. Indeed, consider the partial order on NCy(k)
given by m < o if h,(i) < h,(i) for i = 1,..., k. Our claim is that ¢ € 7 implies:

TkN(TF,O') =0
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Indeed, suppose that o £ 7, and let j be the least number with h,(j) > h.(j). Note
that we must have:

hO—l%ZhO—l)
he(7) = hx(j) +

It follows that we have i ~, j for some ¢ < j. From the definitions of T}, and I(0), if
Tyn(m,0) # 0 then we must have:

ho(i = 1) = ho(j) = ha(j) +2

But we also have h,(i—1) = h.(j), so that h,(i—1) = h,(i—1)+2, which contradicts
the minimality of j. Thus, Tjy is lower triangular, as claimed. U

We can now formulate, following [58], the following result:

THEOREM 3.16. The determinant of the Gram matriz for OF; is given by

[k/2]
det GkN H P dk/Q*T

where P, are the Chebycheff polynomials, given by
P():l 5 P1:X y PT+1:XPT—PT_1
and di, = fir — fror+1, with fy, being the following numbers, depending on k,r € Z,

(% 2%
e \k—r E—r—1
with the convention fi, =0 for k ¢ Z.

PROOF. Since Tyy is lower triangular we have:

det(Tyy) = H Tin(m, )

- I

T i~ 7r(z) 1

k/2

— H Prekr/z

r=1

Here the exponents appearing on the right are by definition as follows:

Zz(gh(zr =(2),r+1

T i~
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Our claim now, which finishes the proof, is that for 1 < r < k/2 we have:
SO ntir = frjan
T i~

Indeed, note that the left term counts the number of times that the edge (r,r + 1)
appears in all loops in L. Define a shift operator S on the edges of the graph N by:

S(s,t) =(s+1,t+1)
Given a loop I =1y ...l and 1 < s < k with [y = (r,r + 1), define a path as follows:
ST .. ST

Observe that this is a path on the graph N from 27 to 0 whose first edge is (2r,2r+1)
and first reaches r — 1 after k — s + 1 steps.

Conversely, given a path fi ... fx from 2r to 0 whose first edge is (2r,2r 4+ 1) and first
reaches r — 1 after s steps, define a loop:

fRo  fO5T () ST (o)
Observe that this is a loop based at 0 whose k — s+ 1 edge is (r,7 + 1).

These two operations are inverse to each other, so we have established a bijection
between k-loops based at 0 whose s-th edge is (r,r + 1) and k-paths from 2r to 0 whose
first edge is (2r,2r + 1) and which first reach r — 1 after k — s + 1 steps.

It follows from this that the left hand side is equal to the number of paths on the
graph N from 2r to 0 whose first edge is (2r,2r 4+ 1). By the usual reflection trick, this is
the difference of binomials defining fy /2, and we are done. O

Regarding now the quantum group S3;, we have here the following formula, also es-
tablished by Di Francesco in [58]:

THEOREM 3.17. The determinant of the Gram matriz for S, is given by

det(Gy) = (VN)™ H P (VN)%r

where P, are the Chebycheff polynomials, given by
P(]:l 5 PIIX y PT+1:XPT_P7'71
and di, = fir — fror+1, with fy, being the following numbers, depending on k,r € Z,
2k 2k
Jir = (kz—r) - (k:—r—l)

with the convention fi, =0 for k ¢ Z, and where ar, =Y pq, (2|7| — k).
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PROOF. According to Proposition 3.4 above, if we denote by G’ the Gram matrix for
O3, we have the following formula, with Dyy = diag(NI™/2=F/4);

Grn = DinGly, nDinv
With this formula in hand, the result follows from Theorem 3.16. U
We refer to [27], [58], [64] for a further discussion on these topics.

3c. Clebsch-Gordan rules

Getting back now to our quantum group questions, we have the following consequence
of Theorem 3.17, which generalizes the findings in Proposition 3.5 above:
PROPOSITION 3.18. The following are linearly independent, for any N > 4:
(1) The linear maps {Tx|m € NC(k,1)}, with k,l € 2N.
(2) The vectors {&|m € NC(k)}, with k € N.
(3) The linear maps {Tx|m € NC(k,k)}, with k € N.

PROOF. The statement is identical to Proposition 3.5, with the assumption N = n?
lifted. As for the proof, this comes from the formula in Theorem 3.17. U

With the above linear independence results in hand, we can now state and prove the
following extension of Theorem 3.6 above:

THEOREM 3.19. The quantum groups Sy with N > 4 have the following properties:
(1) The moments of the main character are the Catalan numbers:
/ Xk = Cy,
S%
(2) The main character follows the Marchenko-Pastur law of parameter 1:
X~
(3) The fusion rules for irreducible representations are the same as for SOs:
T @1 =Tkt +Tk—tj41 + -« + Tyt
(4) The dimensions of the representations are as follows, with ¢+ q~* = N — 2:
B+l _ gk
qg—1

dim(rg) =

PROOF. The above statement is identical to Theorem 3.6, with the assumption N = n?
lifted. As for the proof, this is identical to the proof of Theorem 3.6, using this time the
linear independence result from Proposition 3.18 as technical ingredient. U
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Summarizing, we have now full representation theory results for both O}, S%. These
results are quite surprising, and there are many things that can be said about O}, S, in
analogy with the known facts about SU,, SO3;. However, all this is quite technical, and
we defer the discussion to chapter 4 below. Let us record, however:

THEOREM 3.20. The quantum groups O3, Sy have the following properties:

(1) OF, S5 are coamenable, and of polynomial growth.
(2) O%, Sk with N > 3,5 are not coamenable, and have exponential growth.

PROOF. The various coamenability assertions follow from the Kesten criterion from
section 1 above, the support of the spectral measure of x being respectively:

supp(m) = [—2,2]

supp(m) = [0, 4]
As for the growth assertions, which can be of course improved with explicit exponents
and so on, these follow from the fact that the corresponding Cayley graphs are N. O

We will be back to amenability questions, later on.

3d. Planar algebras

In the remainder of this chapter we keep developing some useful general theory for
0%, S% and their subgroups. We will present among others a general result from [7],
refining the Tannakian duality for the quantum permutation groups G C S}, stating that
the following spaces form a planar algebra in the sense of Jones [69]:

Py, = Fiz(u®*)

To be more precise, we will show that these spaces form a planar subalgebra P = (Fy)
of the Jones spin planar algebra Sy, and that any planar subalgebra P C Sy appears in
this way, so that we have a refined Tannakian correspondence, as follows:

GCSf, «— PcCS8y

In order to get started, we need a lot of preliminaries, the lineup being von Neumann
algebras, II; factors, subfactors, and finally planar algebras. We already met von Neumann
algebras, in section 1 above. The fundamental result regarding them is as follows:

THEOREM 3.21. Any von Neumann algebra A C B(H) decomposes as

A:/Amdx
X

with X being the measured space appearing as spectrum of the center, Z(A) = L>(X),
and with the fibers A, being “factors”, in the sense that Z(A,) = C.
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PROOF. The decomposition result definitely holds in finite dimensions, where von
Neumann algebra is the same as C*-algebra, and where the algebras are as follows:
A=Mn (C)®...d My, (C)

Indeed, as explained in chapter 1 above, this decomposition is obtained by writing
Z(A) = CF. In general, the decomposition result in the statement is von Neumann’s
“reduction theory” result, based on advanced functional analysis. U

At an even more advanced level now, we know from Theorem 3.21 that, at least in
theory, things basically reduce to “factors”. And, regarding these factors, we have:

THEOREM 3.22. The von Neumann factors, Z(A) = C, have the following properties:

(1) They can be fully classified in terms of 11 factors, which are by definition those
satisfying dim A = oo, and having a faithful trace tr : A — C.

(2) Thelly factors enjoy the “continuous dimension geometry” property, in the sense
that the traces of their projections can take any values in [0, 1].

(3) Among the 11; factors, the smallest one is the Murray-von Neumann hyperfinite
factor R, obtained as an inductive limit of matriz algebras.

ProoOF. This is one again something heavy, the idea being as follows:

(1) This comes from results of Murray-von Neumann and Connes, the idea being that
the other factors can be basically obtained via crossed product constructions.

(2) This is subtle functional analysis, with the rational traces being relatively easy to
obtain, and with the irrational ones coming from limiting arguments.

(3) Once again, heavy results, by Murray-von Neumann and Connes, the idea being
that any finite dimensional construction always leads to the same factor, called R. U

Full details on the above can be found in any operator algebra book.
Let us discuss now subfactor theory, following Jones’ fundamental paper [66]. Jones

looked at the inclusions of II; factors A C B, called subfactors, which are quite natural
objects physics. Given such an inclusion, we can talk about its index:

DEFINITION 3.23. The index of an inclusion of 11} factors A C B is the quantity
[B: A] = dimy B € [1, 0]
constructed by using the Murray-von Neumann continuous dimension theory.
In order to explain Jones’ result [66], it is better to relabel our subfactor as:
Ay C Ay
We can construct the orthogonal projection e; : Ay — Ag, and set:

Ay =< Al, e >
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This remarkable procedure, called “basic construction”, can be iterated, and we obtain
in this way a whole tower of II; factors, as follows:

Quite surprisingly, this construction leads to a link with the Temperley-Lieb algebra
TLy = span(NCy), and with many other things.

These results can be summarized as follows:

THEOREM 3.24. Let Ag C Ay be an inclusion of 11y factors.

(1) The sequence of projections ey, es,es, ... € B(H) produces a representation of the
Temperley-Lieb algebra of index N = [Ay, Ao|, as follows:

TLy C B(H)

(2) The index N = [Ay, Ao|, which is a Murray-von Neumann continuous quantity
N € [1,00], must satisfy the following condition:

N € {4C082 <%> ’n € N} U [4, o0

PRroOOF. This result, from [66], is something quite tricky, the idea being as follows:

(1) The idea here is that the functional analytic study of the basic construction leads to

the conclusion that the sequence of projections ey, es, €3, ... € B(H) behaves algebrically,
when rescaled, exactly as the sequence of diagrams e1,¢9,€3,... € T Ly given by:

g1 = %

e2=n

es = |ln

But these diagrams generate T'Ly, and so we have an embedding T'Ly C B(H), where
H is the Hilbert space where our subfactor Ag C A; lives, as claimed.

(2) This is something quite surprising, which follows from (1), via some clever positivity
considerations, involving the Perron-Frobenius theorem. In fact, the subfactors having
index N € [1,4] can be classified by ADE diagrams, and the obstruction N = 4 cos?(Z)
itself comes from the fact that N must be the squared norm of such a graph. g

Quite remarkably, Theorem 3.24 is just the “tip of the iceberg”. One can prove indeed
that the planar algebra structure of T'Ly, taken in an intuitive sense, extends to a planar
algebra structure on the following sequence of commutants:

Py = Ay N Ay

In order to discuss this key result, from [69], that we will need as well, in connection
with our quantum permutation group problems, let us start with:
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DEFINITION 3.25. The planar algebras are defined as follows:

(1) A k-tangle, or k-box, is a rectangle in the plane, with 2k marked points on its
boundary, containing r small bozes, each having 2k; marked points, and with the
2k + > 2k; marked points being connected by noncrossing strings.

(2) A planar algebra is a sequence of finite dimensional vector spaces P = (Py),
together with linear maps Py, ® ...® P, — Py, one for each k-box, such that the
gluing of boxes corresponds to the composition of linear maps.

As basic example of a planar algebra, we have the Temperley-Lieb algebra T L.
Indeed, putting T'Ly(k;) diagrams into the small r boxes of a k-box clearly produces a
TLy(k) diagram, and so we have indeed a planar algebra, of somewhat “trivial” type.

Further examples of this type, with the elements of the planar algebra being diagrams,
include the Fuss-Catalan algebra of Bisch and Jones [47], obtained by coloring the strings
of the Temperley-Lieb diagrams. We will be back to this, later on.

In general, the planar algebras are more complicated than this, and we will be back
later with some explicit examples. However, the idea is very simple, namely “the elements
of a planar algebra are not necessarily diagrams, but they behave like diagrams”.

In relation now with subfactors, the result, which extends Theorem 3.24 (1) above,
and which was found by Jones in [69], almost 20 years after [66], is as follows:

THEOREM 3.26. Given a subfactor Ay C Ay, the collection P = (Py) of linear spaces
P, = AyN Ay
has a planar algebra structure, extending the planar algebra structure of T L.

PROOF. As a first observation, since e; : A} — Ay commutes with Ay we have e; € Pj.
By translation we obtain ey, ..., ex_1 € Py for any k, and so:

TLy CP

The point now is that the planar algebra structure of T'Ly, obtained by composing
diagrams, can be shown to extend into an abstract planar algebra structure of P. This is
something quite heavy, and we will not get into details here. See [69]. U

Getting back now to quantum groups, all this machinery is very interesting for us. We
will need the construction of the spin planar algebra Sy. Let us start with:

DEFINITION 3.27. We write the standard basis of (CN)®* in 2 x k matriz form,

iy iy iy de G ... ...
eil_._ik: . . .
U U V=1 oo cie et o

by duplicating the indices, and then writing them clockwise, starting from top left.
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Now with this convention in hand for the tensors, we can formulate the construction
of the spin planar algebra Sy, also from [69], as follows:

DEFINITION 3.28. The spin planar algebra Sy is the sequence of vector spaces
P, = (CN)&*
written as above, with the multilinear maps associated to the various k-tangles
Ty Py ®...Q0 P, — P

being given by the following formula, in multi-index notation,

Tﬂ—(eil ®®ezr) = Z(sw(ila"wi’l‘ :j>6j
J

with the Kronecker symbols 0, being 1 if the indices fit, and being 0 otherwise.

Here are some illustrating examples for the spin planar algebra calculus:

(1) The identity 1; is the (k, k)-tangle having vertical strings only. The solutions of
01, (x,y) = 1 being the pairs of the form (z, ), this tangle 1 acts by the identity:

L (e e
F\iy i i i

(2) The multiplication My, is the (k, k, k)-tangle having 2 input boxes, one on top of
the other, and vertical strings only. It acts in the following way:

B b L)) s "
]W(Cl“.n)®(m1”.mg)_@Wf“%W(q.”u

(3) The inclusion I is the (k,k + 1)-tangle which looks like 1, but has one more
vertical string, at right of the input box. Given z, the solutions of 0, (z,y) = 1 are the
elements y obtained from x by adding to the right a vector of the form (}), and so:

Jioee k) _ Juoeee gkl
@Q“.Q_;QLH@J

Observe that I, is an inclusion of algebras, and that the various [ are compatible
with each other. The inductive limit of the algebras Sy (k) is a graded algebra, denoted
Sn.

(4) The expectation Uy, is the (k + 1, k)-tangle which looks like 1, but has one more
string, connecting the extra 2 input points, both at right of the input box:

N Tk e _ o (0 o Tk
W(h”.uimj_%ww<ﬁ”.m>

Observe that Uy is a bimodule morphism with respect to I.
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(5) The Jones projection Ej is a (0, k + 2)-tangle, having no input box. There are
k vertical strings joining the first k& upper points to the first k£ lower points, counting
from left to right. The remaining upper 2 points are connected by a semicircle, and
the remaining lower 2 points are also connected by a semicircle. We have the following

formula:
B T T
Ek(l)—zl(z’l i z)
ij

The elements e, = N ! E},(1) are projections, and define a representation of the infinite
Temperley-Lieb algebra of index N inside the inductive limit algebra Sy .

(6) The rotation Ry is the (k, k)-tangle which looks like 15, but the first 2 input points
are connected to the last 2 output points, and the same happens at right:

m ]
Ry =| |
(ARRRS

The action of Ry on the standard basis is by rotation of the indices, as follows:
Rk<€i1...ik) = Cigis...ixi1
Thus Ry, acts by an order & linear automorphism of Sy (k), also called rotation.
There are many other interesting examples of k-tangles, but in view of our present
purposes, we can actually stop here, due to the following useful fact:

THEOREM 3.29. The multiplications, inclusions, expectations, Jones projections, and
rotations generate the set of all tangles, via the gluing operation.

ProoF. This is something well-known and elementary, obtained by “chopping” the
various planar tangles into small pieces, as in the above list. See [69]. O

Finally, in order for our discussion to be complete, we must talk as well about the
x-structure of the spin planar algebra. Once again this is constructed as in the easy
quantum group calculus, by turning upside-down the diagrams, as follows:

1o *: TR
TR 1o gk

Summarizing, the sequence of vector spaces Sy(k) = C(X*) has a planar x-algebra
structure, called spin planar algebra of index N = |X|. See [69].

Getting back now to quantum groups, following [7], we have the following result:
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THEOREM 3.30. Given G C Sy, consider the tensor powers of the associated coaction
map on C(X), where X = {1,..., N}, which are the folowing linear maps:

dF O(XF) = O0(XP) @ C(G)

eil..‘ik — Z e]l]k ® ujlil cte u]klk
Jie-Jk
The fized point spaces of these coactions, which are by definition the spaces

P, = {x € C’(Xk)‘@k(x) =1 ®x}
are given by P, = Fiz(u®*), and form a subalgebra of the spin planar algebra Sy .

PROOF. Since the map ® is a coaction, coming from the corepresentation u, its tensor
powers ®F are coactions too, coming fron the corepresentations u®*, and at the level of
the fixed point algebras we have the following formula, which is standard:

Py, = Fiz(u®*)

In order to prove now the planar algebra assertion, we will use Theorem 3.29.

Consider the rotation Rj. Rotating, then applying ®*, and rotating backwards by
R;! is the same as applying ®F, then rotating each k-fold product of coefficients of ®.

Thus the elements obtained by rotating, then applying ®*, or by applying ®*, then
rotating, differ by a sum of Dirac masses tensored with commutators in A = C(G):

OF Ry (2) — (R, ® id)®F () € C(X*) ® [A, A]

Now let f 4 be the Haar functional of A, and consider the conditional expectation onto
the fixed point algebra Py, which is given by the following formula:

O = (z’d@/)@k

The square of the antipode being the identity, the Haar integration [ 4 1s a trace, so
it vanishes on commutators. Thus R; commutes with ¢:
1Ry = Rigr

The commutation relation ¢, = T'¢; holds in fact for any (I, k)-tangle T. These
tangles are called annular, and the proof is by verification on generators of the annular
category. In particular we obtain, for any annular tangle 7'

o Ty =Ty

We conclude from this that the annular category is contained in the suboperad P’ C P
of the planar operad consisting of tangles T satisfying the following condition, where
¢ = (¢r), and where i(.) is the number of input boxes:

¢T¢®i(T) _ T¢®i(T)
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On the other hand the multiplicativity of ®* gives M, € P’. Since P is generated by
multiplications and annular tangles, it follows that we have P’ = P.

Thus for any tangle T" the corresponding multilinear map between spaces Py (X) re-
stricts to a multilinear map between spaces Pj. In other words, the action of the planar
operad P restricts to P, and makes it a subalgebra of Sy, as claimed. Il

As a second result now, also from [7], completing our study, we have:

THEOREM 3.31. Any planar subalgebra of the spin planar algebra
Q C Sy

comes via the construction in Theorem 3.30 from a quantum permutation group
G C Sy
and the quantum groups {1}, Sy correspond in this way to the algebras Sy, T Ly-.

PROOF. As a first observation, this statement generalizes what we know so far about
S, because knowing that this quantum group is in correspondence with T'Ly gives us
right away its representation theory, and other invariants. Thus, what we have here is an
advanced form of Tannakian duality, in the quantum permutation group case.

In practice now, the idea is that this will follow by applying Tannakian duality to the
annular category over (). Let n, m be positive integers. To any element T},.,, € Q1 We
can associate a linear map L, (Tham) @ Po(X) — P, (X) in the following way:

| N
| | | | Tn—i-m’
Lom | Toaom | lan | = | || ||
1] | an| | |
||
That is, we consider the planar (n,n + m, m)-tangle having an small input n-box, a
big input n + m-box and an output m-box, with strings as on the picture of the right.
This defines a certain multilinear map, as follows:

Po(X)® Ppim(X) = Pp(X)

Now let us put the element 7;,,, in the big input box. We obtain in this way a certain
linear map P, (X) — P,,(X), that we call L,,,. To be more precise:

(1) The above picture corresponds to n = 1 and m = 2. This is illustrating whenever
n < m, it suffices to imagine that in the general case all strings are multiple.

(2) If n > m there are n+ m strings of a,, which connect to the n +m lower strings of
T+m, and the remaining n —m ones go to the upper right side and connect to the n —m
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strings on top right of 7},.,,. Here is the picture for n = 2 and m = 1:
| m

I

an Tner : Qp — H ‘H

a.
07\ all

u|

Consider now the linear spaces formed by the maps constructed above:

Qnm - {an(Tn—l—m) : Pn<X) — Pm(X) Tn+m c Qn—l—m}

These spaces form a Tannakian category, and so by [99] we obtain a Woronowicz
algebra (A, u), such that the following equalities hold, for any m, n:

Hom(u®™, u®") = Qmn

We prove that u is a magic unitary. We have Hom(1,u®?) = Qg2 = @, so the unit of
Q> must be a fixed vector of u®?. But u®? acts on the unit of (), as follows:

“w == (2 9)

)

_Zkk®..
- 1 1 Ui Wi4

ikl
k k
kl

From u®?(1) = 1®1 ve get that uu! is the identity matrix. Together with the unitarity

of u, this gives the following formulae:
ut =ut =u!

Consider the Jones projection F; € Q3. After isotoping, Loi(E;) looks as follows:

|| | |
U bl I .
= (0 () = (72) =

In other words, the linear map M = Lo (£}) is the multiplication §; ® 0; — §;;0;:

;)0 ()
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Consider now the following element of C(X) ® A:

(M ® id)u®> ((; ;) ® 1> = (M ®id) <%: <’; ?) @ukiulj>

k
= Z (k) 5I<: ® Ui U5

K
Since M € Qo1 = Hom/(u®? u), this equals the following element of C(X) ® A:

wren({ o) = (o (o)

k

Thus ugiur; = d;juk; for any 4, j, k. With i = j we get uiz = uy;, and together with the
formula u* = u* this shows that all entries of u are self-adjoint projections. With ¢ # j we
get ugu; = 0, so the projections on each row of u are orthogonal to each other. Together
with 4! = u~!, this shows that each row of u is a partition of unity with self-adjoint
projections. The antipode is given by the formula (id ® S)u = u*. But u* is the transpose
of u, so we can apply S to the formulae saying that rows of u are partitions of unity, and
we get that columns of u are also partitions of unity. Thus v is a magic unitary.

Now if P is the planar algebra associated to u, we have Hom(1,v%") = P, = Q,, as
desired. As for the uniqueness, this is clear from the Peter-Weyl theory. O

The results established above, regarding the subgroups G C S}, have several gener-
alizations, to the subgroups G C O and G C Uy, as well as subfactor versions, going
beyond the purely combinatorial level. We refer here to [5] and related papers, and we
will be back to some of these questions in chapter 12 below.

3e. Exercises

Things have been quite technical in this chapter, and our exercises will be quite tech-
nical as well. In relation with the representation theory of OF, we have:

EXERCISE 3.32. Prove that the quantum group OF appears as a twist of SUs,,
Of ~ SU,*
and deduce the Clebsch-Gordan fusion rules for OF by using this.

All this is not exactly obvious, requiring a good knowledge of the cocycle twisting
procedure. As a bonus exercise, you can try to understand as well the relation between
O]J(] and SU, at N > 3, with the indication here that all this is related to two technical
topics, namely the “FRT deformation” procedure, and the “free symplectic groups”.
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Along the same lines, dealing this time with Sy at N = n? with n > 2, we have:
EXERCISE 3.33. Prove that the quantum group S, appears as a twist of SOs,
S ~ SOo;!
and deduce the Clebsch-Gordan fusion rules for Si by using this.

As before with the previous exercise, all this requires a good knowledge of the cocycle
twisting procedure, and basically the same comments as there apply. We will be actually
back to all this in what follows, on several occasions.

In relation now with S, at arbitrary values N > 4, we first have:

EXERCISE 3.34. Prove the main technical result in this chapter, namely that the fol-
lowing linear maps are linearly independent at N > 4,

@;weNo@@}

by computing directly the Gram determinant for Sy, without using the passage through
the Gram determinant of O%, via fattening and shrinking.

This is of course something quite long and technical, amounting in rewriting all that
has being said in the above, directly in terms of S};.

As a second exercise now, on the same topic, we have:

EXERCISE 3.35. Prove the main technical result in this chapter, namely that the fol-
lowing linear maps are linearly independent at N > 4,

@;weNo@@}

by using a well-chosen Temperley-Lieb algebra and subfactor argument.

To be more precise, the point is that the above linear independence result is known
as well in subfactors, via a different proof, which is non-trivial either, and the problem is
that of finding that proof in the literature, and writing a short account of it.

As a third and last exercise now, also on the same topic, we have:

EXERCISE 3.36. Prove the main technical result in this chapter, namely that the fol-
lowing linear maps are linearly independent at N > 4,

@;weNo@@}

by developing a theory of generalized quantum groups, of type O% with N € [2,00), then
working out their representation theory, and then doing fatterning and shrinking.

As before with the previous exercises, this remains something quite technical. How-
ever, all these exercises are worth to be worked out, hiding many interesting things.



CHAPTER 4

Twisted permutations

4a. Quantum spaces

In this chapter we investigate the quantum permutation groups S} of the finite quan-
tum spaces F. Besides providing a useful generalization of our results regarding Sy, this
will eventually explain the connection with SOs, in an elegant way. As a bonus, we will
obtain as well a conceptual result on the connection between Sy and OF,.

In order to get started, let us first talk about finite quantum spaces. We have:

DEFINITION 4.1. A finite quantum space I is the abstract dual of a finite dimensional
C*-algebra B, according to the following formula:

C(F) =B

The number of elements of such a space is by definition the number |F| = dim B. By
decomposing the algebra B, we have a formula of the following type:

C(F) = M,,(C)&...® M,,(C)

Withny = ... =ng = 1 we obtain in this way the space F = {1,... k}. Also, when k =1
the equation is C(F) = M, (C), and the solution will be denoted F = M,,.

In order to talk now about the quantum symmetry group Sj, we must use universal
coactions. As in chapter 2 above, when dealing with universal coactions on the space
F={1,...,k}, we must endow our space F' with its counting measure:

DEFINITION 4.2. We endow each finite quantum space F' with ils counting measure,
corresponding as the algebraic level to the integration functional

tr: C(F) — B(I*(F)) = C
obtained by applying the regular representation, and then the normalized matriz trace.

To be more precise, consider the algebra B = C(F'), which is by definition finite
dimensional. We can make act B on itself, by left multiplication:

7:B—L(B) , a— (b— ab)
81
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The target of m being a matrix algebra, £(B) ~ My(C) with N = dim B, we can
further compose with the normalized matrix trace, and we obtain tr:

tr:NTrow

As basic examples, for both F' = {1,..., N} and F' = My we obtain the usual trace.
In general, with C(F) = M,,(C) & ... ® M,, (C), the weights of tr are:

2
n;

Let us also mention that the canonical trace is precisely the one making C C B a

Markov inclusion. Equivalently, the counting measure is the one making F© — {.} a
Markov fibration. For a discussion of these facts, see [2], and also [5], [19].

C; =

Let us study now the quantum group actions G ~ F. It is convenient here to use, in
order to get started, the no basis approach from [2]. If we denote by p, 7 the multiplication
and unit map of the algebra C'(F'), we have the following result, from [2]:

PRrOPOSITION 4.3. Consider a linear map ® : C(F) — C(F) @ C(G), written as
(I)(ez) - Z ej X Uji
J

with {e;} being a linear space basis of C(F'), chosen orthonormal with respect to tr.

(1) @ is a linear space coaction <= wu is a corepresentation.
(2) @ is multiplicative < p € Hom(u®? u).
(3) @ is unital <= n € Hom(1,u).
(4) ® leaves invariant tr <= n € Hom(1,u*).
(5) If these conditions hold, ® is involutive <= wu is unitary.
PROOF. This is a bit similar to the proof for Sy from chapter 2, as follows:
(1) There are two axioms to be processed here. First, we have:
([d@ AP =(P@id)d <= > ;@ Aluy) Zcp er) ® U

J
— Zej ® A(uy;) = Zej @ Ujk @ Ui
J Jk

= A(uyi) Zujk ® Up;

As for the axiom involving the counit, here we have as well, as desired:
(id®e)d =id <= Zs(uji)ej =e;
J
< €(Uji) = 5]'1'
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(2) We have the following formula:

Dle;) = (Z €ji & Uji) (e;®1)
ij
= u(e; ®1)
By using this formula, we obtain the following identity:

D(ejer) = uleer®1)
= u(p®id)(e; ®ep @ 1)

On the other hand, we have as well the following identity, as desired:
O(e;)P(er) = Z ejer @ UjiUy
j

= (p®id) Z €; @ e & Uy

i
= (,U, & Zd) (Z € @ ey ® ujiulk> (61‘ ® e & 1)
ijkl
= (p®id)u®(e; ®ep ® 1)
(3) The formula ®(e;) = u(e; ® 1) found above gives by linearity:
(1) =u(l®1l)

But this shows that ® is unital precisely when u(1® 1) =1 ® 1, as desired.

(4) This follows from the following computation, by applying the involution:

(tr @ id)®(e;) =tr(e;)l <~ Ztr(ej)uﬁ = tr(e;)1
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(5) Assuming that (1-4) are satisfied, and that & is involutive, we have:

(W) = Y ujun
I
= Ztr(e;el)u;iulk
3l

= (tr ®id) Z eier @ wi
jl
= (tr ®@id)(®(e;)" P(ex))
= (tr ®id)P(efey)
= tr(ejeg)l
ik
Thus v*u = 1, and since we know from (1) that u is a corepresentation, it follows that
u is unitary. The proof of the converse is standard too, by using similar tricks. O

Following now [2], we have the following result, extending the basic theory of S3; from
the previous section to the present finite quantum space setting:

THEOREM 4.4. Given a finite quantum space F', there is a universal compact quantum
group S} acting on F, leaving the counting measure invariant. We have

C(Sf) = C’(va')/<,u € Hom(u®?* u),n € Fm(u)>

where N = |F| and where p,n are the multiplication and unit maps of C(F). For F =
{1,..., N} we have S = S5%. Also, for the space F = My we have S} = SOj.

PRrROOF. This result is from [2], the idea being as follows:

(1) This follows from Proposition 4.3 above, by using the standard fact that the
complex conjugate of a corepresentation is a corepresentation too.

(2) Regarding now the main example, for F' = {1,..., N} we obtain indeed the quan-
tum permutation group Sy, due to the results in chapter 2 above.

(3) In order to do now the computation for F' = My, we use some standard facts about
SUs,, SO5. We have an action by conjugation SUs n~ My(C), and this action produces,
via the canonical quotient map SU; — SOjs, an action SO3 ~ My(C). On the other
hand, it is routine to check, by using arguments like those from the proof of S% = Sy at
N = 2,3, from chapter 2 above, that any action G ~ M3(C) must come from a classical
group. We conclude that the action SO3 ~ My(C) is universal, as claimed. O

We will see in a moment a more conceptual proof for (3) above, based on the fact that
the inclusion SO3 C S]J\}Q can be shown to have the property that it preserves the law of
the main character, and so must be an isomorphism.
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In practice, for our purposes here it will be very useful to have bases and indices. We
will use a single index approach, based on the following formalism:

DEFINITION 4.5. Given a finite quantum space F', we let {e;} be the standard multi-
matriz basis of the algebra B = C(F), so that the multiplication, involution and unit of
B are given by the formulae

eie;=¢ej , € =€ 12261'
i=i
where (i,7) — ij is the standard partially defined multiplication on the indices, with the
convention ey = 0, and where © — 1 s the standard involution on the indices.

To be more precise, let {e/,} C B be the multimatrix basis. We set then ¢ = (abr),
and with this convention, the multiplication, coming from e e", = §,,0p.€.,, is given by:

(adr) ifr=p, b=c
br)(cdp) =
(abr){edp) {@ otherwise
As for the involution, coming from (el,)* = e}, this is given by:

(a,b,r) = (b,a,r)
Finally, the unit formula comes from the following formula for the unit 1 € B:
1=2 ¢
ar
We can now convert the main assertion in Theorem 4.4, namely the no indices formula
of S} from there into something more concrete, as follows:

THEOREM 4.6. Given a finite quantum space F', with basis {e;} C C(F) as above, the
algebra C(S}) is generated by variables u;; with the following relations,

g UipUjr = Upkl E Uik Ujp = UWUigp

ij=p kl=p
Zuij = 5jj ) Zuij =05
i=i 7=j
ujj = i
with the fundamental corepresentation being the matriz v = (u;;). We call a matriz

u = (u;;) satisfying the above relations “generalized magic”.
PROOF. This can be deduced from any of the known presentations of C'(S}):

(1) If we take the triple index presentation of C(S}) from [95], and replace there the
triple indices by single indices, we obtain the relations in the statement.
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(2) Alternatively, if we take the double index presentation of C'(S}) from [5], and
replace there the double indices by single indices, we obtain the relations in the statement.

(3) Also, when using Theorem 4.4, € Hom(u®?,u) and n € Fiz(u) produce the 1st
and 4th relations, then the biunitarity of u gives the 5th relation, and finally the 2nd and
3rd relations follow from the 1st and 4th relations, by using the antipode. O

As an illustration, consider the case F' = {1,..., N}. Here the index multiplication is
it =1 and ij = () for 7 # j, and the involution is ¢ = ¢. Thus, our relations read:

Wikl = Ok Uik Uk = 5¢juz‘k
E Uij = 1 s E Uiy = 1
i J
* e ..

We recognize here the standard magic conditions on a matrix v = (u;;).

4b. Symmetry groups

Let us develop now some basic theory for the quantum symmetry groups S}, and
their closed subgroups G C Sj. Some of the results here are well-known, some other are
folklore, and some other are new. We first have the following result, from [2]:

THEOREM 4.7. The quantum groups Si have the following properties:

(1) The associated Tannakian categories are T Ly, with N = |F)|.
(2) The main character follows the Marchenko-Pastur law my, when N > 4.
(3) The fusion rules for S} with |F| > 4 are the same as for SOj.

PROOF. This result is from [2], the idea being as follows:

(1) Our first claim is that the fundamental representation is equivalent to its adjoint,
u ~ @. Indeed, let us go back to the coaction formula from Proposition 4.3:

Oler) = Y e; Dy
J
We can pick our orthogonal basis {e;} to be the stadard multimatrix basis of C'(F),

so that we have, for a certain involution ¢ — ¢* on the index set:
*
€. = €;*

)

With this convention made, by conjugating the above formula of ®(e;), we obtain:

CID(eZ-*) = Z €, X ujz

J
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Now by interchanging 7 <> ¢* and j <> j*, this latter formula reads:

(I)(€Z> = Z €; (029 U;*i*
J
We therefore conclude, by comparing with the original formula, that we have:

*

But this shows that we have an equivalence as follows, as claimed:
U~ U

Now with this result in hand, the proof goes as for the proof for S5, from the previous
chapter. To be more precise, the result follows from the fact that the multiplication and
unit of any complex algebra, and in particular of the algebra C'(F') that we are interested
in here, can be modelled by the following two diagrams:

m=|U| , u=n

Indeed, this is certainly true algebrically, and this is something well-known. As in
what regards the x-structure, things here are fine too, because our choice for the trace
from Definition 4.2 leads to the following formula, which must be satisfied as well:

upt = N -id
But the above diagrams m,u generate the Temperley-Lieb algebra T'Ly, as stated.

(2) The proof here is exactly as for S}, by using moments. To be more precise,
according to (1) these moments are the Catalan numbers, which are the moments of 7.

(3) Once again same proof as for Sj;, by using the fact that the moments of x are the
Catalan numbers, which naturally leads to the Clebsch-Gordan rules. O

It is quite clear now that our present formalism, and the above results, provide alto-
gether a good and conceptual explanation for our SOs result regarding Sy. To be more
precise, we can merge and reformulate our main results so far in the following way:

THEOREM 4.8. The quantun groups S} have the following properties:
(1) For F ={1,...,N} we have S} = S},.
(2) For the space F' = My we have S} = POy = PU,.
(3) In particular, for the space F = My we have Sj. = SOs.
(4) The fusion rules for Sj. with |F| > 4 are independent of F.
(5) Thus, the fusion rules for S} with |F| > 4 are the same as for SOj.

PRrooOF. This is basically a compact form of what has been said above, with a new
result added, and with some technicalities left aside:

(1) This is something that we know from Theorem 4.4.
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(2) This is new, the idea being as follows. First of all, we know from chapter 1
above that the inclusion PO}, C PU}; is an isomorphism, with this coming from the free

complexification formula 57(, = U}, but we will actually reprove this result. Consider
indeed the standard vector space action of the free unitary group:

Us nCc¥
We associate to this action its adjoint action:
PUY ~ My(C)
By universality of SLN, we must have inclusions as follows:
POy, C PUy C Sy,

On the other hand, the main character of O} with N > 2 being semicircular, the
main character of PO} must be Marchenko-Pastur. Thus the inclusion PO} C S} has
the property that it keeps fixed the law of main character, and by Peter-Weyl theory we
conclude that this inclusion must be an isomorphism, as desired.

(3) This is something that we know from Theorem 4.4, and that can be deduced as
well from (2), by using the formula PO5 = SOjs, which is something elementary.

(4) This is something that we know from Theorem 4.7.
(5) This follows from (3,4), as already pointed out in Theorem 4.7. O

Summarizing, we have now a good explanation for the occurrence of SO3, in connection
with quantum permutation questions. Philosophically, the idea is that S} does not depend
that much on F', and so in order to obtain results, it is enough to take F' = M,, where
the corresponding symmetry group is simply S} = SO3, and then to conclude.

As another application of our extended formalism, the Cayley theorem for the finite
quantum groups, which fails in the S}, setting, due to some subtle reasons, as explained
in [20], holds in the S} setting. We have indeed the following result:

THEOREM 4.9. Any finite quantum group G has a Cayley embedding, as follows:
G C S
However, there are finite quantum groups which are not quantum permutation groups.
PROOF. There are two statements here, the idea being as follows:

(1) We have an action G ~ G, which leaves invariant the Haar measure. Now since
the counting measure is left and right invariant, so is the Haar measure, we conclude that
G ~ G leaves invariant the counting measure, and so we have G C S, as claimed.

(2) Regarding the second assertion, this is something non-trivial, from [20], the sim-
plest counterexample being a certain quantum group GG appearing as a split abelian exten-
sion associated to the exact factorization Sy = Z4S3, and having cardinality |G| = 24. O
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Getting back now to the quantum groups S; themselves, and to Theorem 4.8 above,
it is quite hard to go beyond this result, with results truly matching the known theory of
S%. Some simplifications, however, appear is the “homogeneous” case:

DEFINITION 4.10. We call homogeneous the finite quantum spaces of the following
type:
F=Mgx{1...,L}
That is, the algebra B = C(F') must be a finite dimensional random matriz algebra:
B = Mg(CF)

The corresponding quantum permutation groups S} are called homogeneous too.

The above spaces generalize both the spaces X = Mg and X = {1,...,L}, where
most of the known theory lies. The “random matrix” terminology comes from the fact
that the random matrix algebras, in general, are the von Neumann algebras of type
B = Mg(L*(X)), with X being a measured space, and for such an algebra to be finite
dimensional, we must have X = {1,..., L}. Thus, we are led to the above definition, up
to changing the given measure X = {1,..., L} into the counting measure.

As a first result regarding such spaces, which is well-known, we have:
THEOREM 4.11. The symmetry group of F' = Mg x {1..., L} is given by
G(F)= PUk 5
with on the right a wreath product, equal by definition to PUE x Sy.

ProoOF. The fact that we have an inclusion PUg ! .S, C G(F) is standard, and this
follows as well by taking the classical version of the inclusion PU} . S C GT(F),
established below. As for the fact that this inclusion PUg 1S, C G(F) is an isomorphism,
this can be proved by picking an arbitrary element g € G (F'), and decomposing it. [

In order to discuss the quantum analogue of the above result, we will need a notion
of free wreath product. The basic theory here, coming from [43], is as follows:

PROPOSITION 4.12. Given closed subgroups G C Uf,, H C S, with fundamental
corepresentations u, v, the following construction produces a closed subgroup of Uy, :

C(G L H) = (C(G)" « C(H))/ < [uf,va] = 0 >

]
In the case where G, H are classical, the classical version of G, H is the usual wreath
product GV H. Also, when G is a quantum permutation group, so is G 1, H.

PROOF. Consider the matrix wj, ;» = ul(?)vab, over the quotient algebra in the state-
ment. It is routine to check that w is unitary, and in the case G C S}, our claim is that
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this matrix is magic. Indeed, the entries are projections, because they appear as products
of commuting projections, and the row sums are as follows:

L (a)
Wia,jb = uij Vab
Jb Jb
_ (a)
= D tw Uy
b J

=1

As for the column sums, these can be computed as follows:

L (a)
wza,]b - uij Vab
i i
_ § : § : (a)
= Vap Uy
a 7

=1

With these observations in hand, it is routine to check that G, H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps A, e, S as in section
1, and in the case G C S}, we obtain in this way a closed subgroup of Sy, . Finally, the
assertion regarding the classical version is standard as well. See [43]. O

We refer to [11], [43], [89] for more details regarding the above construction. With
this notion in hand, we can now formulate the following result:

THEOREM 4.13. The quantum symmetry group of a finite quantum space of type
F=Mgx{1...,L}
contains the free wreath product of the corresponding quantum symmetry groups:
PUL ST c GT(F)

At the level of the classical versions, this inclusion becomes an isomorphism. However,
this inclusion itself is not an isomorphism at K, L > 2.

Proor. We have several assertions to be proved, the idea being as follows:

(1) The fact that we have PUZ, S} C GT(F) is well-known and routine, by checking
the fact that the matrix w;jq kp = “g‘l,)klvab is a generalized magic unitary.

(2) At the level of the classical versions we obtain an inclusion PUxk S, C G(F'), that
we know from Theorem 4.11 above to be an isomorphism.

(2) The inclusion PU .S} € GT(F) is not an isomorphism, for instance by using [89],
along with the fact that m X7 # m; where 7, is the Marchenko-Pastur distribution. [J
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There are many other things that can be said about the quantum symmetry groups
G*(F), especially in the homogeneous case, F = My x {1...,L}, where some of the
results regarding the cases F' = My and F = {1,..., L} can be unified. One interesting
question for instance is the study of the group dual subgroups of G*(F'), and we will be
back to this later, after solving first the problem in the case F' = {1,..., L}.

4c. Twisting results

Let us focus now on the case N = 4. According to our various considerations above,
the link between S} and SOs basically comes as follows:
{1,2,3,4} ~ M, = SZ_ ~ SO3
It is possible to get beyond this, with a very precise result, stating that S; is a twist
of SOs. Let us start with the following definition, from [12]:
DEFINITION 4.14. C(SO3*) is the universal C*-algebra generated by the entries of a
3 x 3 orthogonal matriz a = (a;;), with the following relations:
(1) Skew-commutation: a;jar = £aga;;, with sign + if i # k,j # 1, and — otherwise.
(2) Twisted determinant condition: Yoes,010(1)020(2)030(3) = 1.

Normally, our first task would be to prove that C'(SO;"') is a Woronowicz algebra.
This is of course possible, by doing some computations, but we will not need to do these
computations, because the result follows from the following result, from [12]:

THEOREM 4.15. We have an isomorphism of compact quantum groups
S;=850;"
given by the Fourier transform over the Klein group K = Zo X Zs.

PRrROOF. Consider indeed the following matrix, corresponding to the standard vector
space action of SO3 ' on C*:
10
+_

We apply to this matrix the Fourier transform over the Klein group K = Zs X Zs:
11 1 1 1 0 0 0 11 1 1

o 1 1 -1 -1 1 0 ay; a1 ai13 1 -1 -1 1
YTal =11 =10 oay am a1 -1 1 -1
1 1 -1 -1 0 a3; agg ass 1 1 -1 -1

It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier
transform over K converts the relations in Definition 4.14 into the magic relations. Thus,
we obtain the identification from the statement. O

We recall now that the subgroups of SO3 are subject to an ADE type classification.
By twisting, we obtain the following classification result, also from [12]:
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THEOREM 4.16. The closed subgroups of Si = SOz are as follows:

(1) Infinite quantum groups: Si, 03", D

(2) Finite groups: Sy, and its subgroups.

(3) Finite group twists: S;*', As'.

(4) Series of twists: D5, (n > 3), DCy! (n > 2).

(5) A group dual series: l/jn, with n > 3.
Moreover, these quantum groups are subject to an ADE classification result, with the
graphs coming from the representation theory of the quantum groups.

PROOF. The idea here is that the classification can be obtained by taking some in-
spiration from the McKay classification of the subgroups of SOs, by twising everything
using the cocycle twisting method. As for the last assertion, the idea here is that the
moments of the main character count the loops based at 1 on the graph. See [12]. U

An interesting extension of the S = SO;*' result comes by looking at the general
case N = n?, with n € N. We will prove that we have a twisting result, as follows:

PO, = (Sy)°

In order to explain this material, from [19], which is quite technical, requiring good
algebraic knowledge, let us begin with some generalities. We first have:

PROPOSITION 4.17. Given a finite group F, the algebra C’(S;g) 15 1somorphic to the
abstract algebra presented by generators xg4y, with g, h € F, with the following relations:

Tig = Tg1 = 515]

Lsgh = E Tst—1 gTth

tel

Lgh,s = E Lgt-1Th,ts

teF

The comultiplication, counit and antipode are given by the formulae

A(.Tgh) = Z.Tgs X Tsp

sel
&(zgn) = dgn
S(acgh) = Tp-1g-1
on the standard generators gp.

Proor. This follows indeed from a direct verification, based either on Theorem 4.4
above, or on its equivalent formulation from Wang’s paper [94]. O



4C. TWISTING RESULTS 93

Let us discuss now the twisted version of the above result. Consider a 2-cocycle on F,
which is by definition a map o : F' x F' — C* satisfying:
Ogh,sOgh = Og,hsOhs
Og1 = 019 = 1

Given such a cocycle, we can construct the associated twisted group algebra C (ﬁg),

as being the vector space C(F) = C*(F), with product egen, = Ogneqn. We have then the
following generalization of Proposition 4.17:

PROPOSITION 4.18. The algebra C’(Sﬁi ) is isomorphic to the abstract algebra presented
by generators x g, with g, h € G, with the relations x4 = x4 = 614 and:

OghLs,gh = E Ost—1tTst—1 gTth
teF

-1 _ -1
O4n Tgh,s = E Ut—lytsxgt—lxh,ts
tEF

The comultiplication, counit and antipode are given by the formulae

xgh E Lgs & Tgp

selF
e(Tgn) = dgn
_ ~1
S(Igh) = Uh_lho-g—lg'rh_lg_l
on the standard generators xgp.

PROOF. Once again, this follows from a direct verification. Note that by using the
cocycle identities we obtain og4,-1 = 0,-14, needed in the proof. Il

In what follows, we will prove that the quantum groups S+ and SJI are related by a

cocycle twisting operation. Let H be a Hopf algebra. We recall that a left 2-cocycle is a
convolution invertible linear map o : H ® H — C satisfying:

Oz1y10x2y2,2 = Oy1210m,y222
Ox1 = 01z = 6(1')

Note that o is a left 2-cocycle if and only if 0!, the convolution inverse of o, is a
right 2-cocycle, in the sense that we have:

-1 -1 _ -1 —1
ley1,z0m1y2 - Jf,y1210y222
-1 _ -1 _
Op1 = 01z — 5(37)



94 4. TWISTED PERMUTATIONS

Given a left 2-cocycle o on H, one can form the 2-cocycle twist H? as follows. As a
coalgebra, H? = H, and an element x € H, when considered in H?, is denoted [z]. The
product in H? is defined, in Sweedler notation, by:

[QZ] [y] = Z 0$1y10;31313 [nyQ]

Note that the cocycle condition ensures the fact that we have indeed a Hopf algebra.
Note also that the coalgebra isomorphism H — HY given by x — [z] commutes with the
respective Haar integrals, as soon as H has a Haar integral.

We can now state and prove a main theorem from [19], as follows:
THEOREM 4.19. If F is a finite group and o is a 2-cocycle on F', the Hopf algebras
+ -
c(st) . o(sy)
are 2-cocycle twists of each other, in the above sense.
PROOF. In order to prove this result, we use the following Hopf algebra map:
. + I
T C(Sﬁ) — C(F)
Tgh — 5gh€g

Our 2-cocycle 0 : F' x FF — C* can be extended by linearity into a linear map as
follows, which is a left and right 2-cocycle in the above sense:

o:C(F)®C(F) = C
Consider now the following composition:
a=o(r@mn): C(SE)@C(Sh) = C(F) @ C(F) = C

Then « is a left and right 2-cocycle, because it is induced by a cocycle on a group
algebra, and so is its convolution inverse o~!. Thus we can construct the twisted algebra,
C (Sg)“il, and inside this algebra we have the following computation:

[2gn][Trs] = O‘_l(mgaxr)a(xhaxS)[xgthS]
- U;}O-hs[xghmrs]

By using this, we obtain the following formula:

Z Ost=14 [mst—l,g] [mth] = Z O'st—l,to';;lio'gh xst_l,gxth]
teF teF
= Ogn[Tsgnl

Similarly, we have the following formula:

>0k bty lone = ol legnd

teF
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We deduce from this that there exists a Hopf algebra map, as follows:
. + +ye !
D C(Sﬁa) — C’(Sﬁ)

T, = [g,n]
This map is clearly surjective, and is injective as well, by a standard fusion semiring
argument, because both Hopf algebras have the same fusion semiring. O

Summarizing, we have proved our main twisting result. Our purpose in what follows
will be that of working out versions and particular cases of it. We first have:

PROPOSITION 4.20. If F' is a finite group and o is a 2-cocycle on F', then

D(Tginy - Tgpn) = a1,y ) Ry BTy - Ty,
with the coefficients on the right being given by the formula

m—1
Q(gh e agm> = H O91...9k,9k+1
k=1

is a coalgebra isomorphism C(S; ) — C(S;g), commuting with the Haar integrals.

PRrROOF. This is indeed just a technical reformulation of Theorem 4.19. U
Here is another useful result from [19], that we will need in what follows:

THEOREM 4.21. Let X C F' be such that og, = 1 for any g,h € X, and consider the
subalgebra

Bx C C(S; )
generated by the elements x4, with g,h € X. Then we have an injective algebra map
dy: Bx — C(S;;)

gwen by xgp, — Tgp.

ProOF. With the notations in the proof of Theorem 4.19, we have the following
equality in C(S;I)a_l, for any g;, hi, 1, 8; € X:

[Tgihy - Tgphy] * [Trisy - - Trysy] = [Tgihy - - TgphyTrysy - - - Trys,]

Now ®( can be defined to be the composition of ®|5, with the linear isomorphism

C(S;{)O‘_l — C’(S;I) given by [z] — z, and is clearly an injective algebra map. O

Let us discuss now some concrete applications of the general results established above.
Consider the group F = Z2, let w = €*>™/", and consider the following map:

oc: FxF—=C*

ik
o)kt = W’
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It is easy to see that o is a bicharacter, and hence a 2-cocycle on F. Thus, we can
apply our general twisting result, to this situation. In order to understand what is the
formula that we obtain, we must do some computations. Let E;; with i,j € Z, be the
standard basis of M, (C). Following [19], we first have the following result:

PROPOSITION 4.22. The linear map given by
n—1
V(e ) = Z W B s
k=0

defines an isomorphism of algebras 1) : C(ﬁg) ~ M,(C).

PRroOOF. Consider indeed the following linear map:
1 n—1
W(Ey) ==Y w ¥eq

n
k=0

It is routine to check that both v, are morphisms of algebras, and that these maps
are inverse to each other. In particular, ¢/ is an isomorphism of algebras, as stated. [J

Next in line, we have the following result:

PROPOSITION 4.23. The algebra map given by

[y

n—

ai—bj
o(ugjug) = W T (g i) (b1—j)

0

S|
o
I

defines a Hopf algebra isomorphism ¢ : C(S3; ) ~ C’(S;IU).
Proor. Consider the universal coactions on the two algebras in the statement:
a:M,(C) — M,(C)®C(S;.)
B:C(F,) — CF,)® c(st)
In terms of the standard bases, these coactions are given by:

a(Ey) = ZEkl®UkiUlj
kl

Bleay) = D ewn @ T, id)
kl

We use now the identification C'(F,) ~ M, (C) from Proposition 4.22. This identifica-
tion produces a coaction map, as follows:

v : M,(C) = M,(C)® C(S;Ia)
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Now observe that this map is given by the following formula:

By comparing with the formula of «, we obtain the isomorphism in the statement. [J
We will need one more result of this type, as follows:
PROPOSITION 4.24. The algebra map given by

1 ki+lj—ra—sb
P(Z(a,b),6.1)) = 3 Z W™ D(r,s), (k1)
klrs

defines a Hopf algebra isomorphism p : C(S;) ~ C(S}).
PROOF. We have a Fourier transform isomorphism, as follows:
C(F) ~ C(F)
Thus the algebras in the statement are indeed isomorphic. O
As a conclusion to all this, we have the following result, from [19]:

THEOREM 4.25. Let n > 2 and w = e*™/™. Then

n—1

1 —a(k—1 —J
O(ugjup) = n Z w etk ])Pm,jb
ab=0

defines a coalgebra isomorphism
C(PO;) — C(Sh)
commuting with the Haar integrals.

PRrROOF. We recall from Theorem 4.23 (2) that we have identifications as follows, where
the projective version of (A, u) is the pair (PA,v), with PA =< v;; > and v = u ® &

PO} = PU; =S},
With this in hand, the result follows from Theorem 4.18 and Proposition 4.20, by
combining them with the various isomorphisms established above. U

Here is a useful version of the above result, that we will need later on:

THEOREM 4.26. The following two algebras are isomorphic, via u?j — Xij:

(1) The algebra generated by the variables ui; € C(O}).
(2) The algebra generated by X;; = %Zz,bzl Piajo € C(Sh)

n



98 4. TWISTED PERMUTATIONS

PROOF. We have O(u;) = Xjj, so it remains to prove that if B is the subalgebra of

C(Sy;,) generated by the variables u;,

X ={(i,0)|i € Z,} C Z?

Then X satisfies the assumption in Theorem 4.20, and ¢(B) C Bx. Thus by Theorem
4.20, the map ©|p = pFyp|p is indeed an algebra morphism. O

then ©|p is an algebra morphism. Let us set:

We will be back to this in chapter 8 below, with some probabilistic consequences.

As an overall conclusion, the twisting formula S; = SO;' ultimately comes from
something of type Xy ~ My, where Xy = {1,2,3,4} and My = Spec(M,(C)), and at
N > 5 there are some extensions of this, and notably when N = n? with n > 3.

4d. Planar algebras

We discuss now the representation theory of the quantum groups S}, and of their
subgroups G' C S}, with planar algebra results generalizing those established in chapter
3, in the case F' = {1,..., N}. Let us start with a general definition, as follows:

DEFINITION 4.27. Let (B, tr) be a finite dimensional C*-algebra together with a posi-
tive trace. A coaction of a Woronowicz algebra A on (B, tr) is a morphism of x-algebras
®: B— B® A, subject to the following conditions:

(1) Coassociativity condition: (P ® id)® = (id @ A)®.
(2) Counitality condition: (id ® )® = id.
(3) Copreservation of tr condition: (tr @ id)® = tr(.)1.

In order to study such coactions, we will need to use some suitable bases and indices.
Following [5], we use the following conventions:

DEFINITION 4.28. Let (B,tr) be as above. Choose a system of matriz units X C B
making tr diagonal, with the following multiplication convention.:

() (1) = ()

We denote by q; the fourth roots of the weights of tr, chosen positive:

7
SO(j) =640 ., ¢ >0

Any linear map ® : B — B ® A will be written in the following form:

7: _ k —1 —1 l J
<I><j> = ; (l) ® g4 qigq 'V (k Z)

This 1s, to any linear map v we associate in this way a matriz V', and vice versa.
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It is convenient to define the coefficients V(L 7) for all indices 4, j, k, [, by saying that
they are equal to zero if (1) or (}) don’t exist. We have:

PROPOSITION 4.29. A linear map ® : B — B® A is a coaction of A on B if and only
if the matriz V' constructed above satisfies the following conditions:

s

This sequence of five conditions will be denoted (), (A), (), (u°), (°m).

PRroOF. This is something that we basically know from Proposition 4.3 above and its
proof, now rescaled by using the conventions in Definition 4.28. U

We have as well the following result:

PROPOSITION 4.30. Assume that ® is a coaction of A on B. Then the following three
conditions (S), (°u) and (m°)

g\ _ 2 20 o (0 Kk
SV (k i>_Qin 4G9V
o, (1] 2
E qiv(l- k)=5kzqk
Z o, (R s L\ _x o (1 ]
9s V(k‘ g Vi s = OV k g

are equivalent, and are satisfied if and only if ® preserves tr.

PRrROOF. As before, this is something that we basically know from Proposition 4.3
above and its proof, now rescaled by using the conventions in Definition 4.28. U
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With the above results in hand, let us construct now the tensor powers of the coaction
map ®, a bit in the same way as we did in chapter 3, in the case B = CV.

For any n the set X™ is a basis of the linear space B®". We use “loop” notations for
this basis, depending on the parity of n:

<z'.1) o (zg) - (22) _ (J:zs C ¢s+1>
J1 J2 J2s o J1 - s

i i I25— 25—1  92s—1 -+ Js
(e (oo -Co 3 )
) J2 J2s—1 “ Juee s

We have then a C*-algebra structure on the linear space B®", which is not exactly
the standard one, with multiplication and involution defined as follows:

Ao ) (o ) s (o
(@'1 ¢n> <k1 k)“sﬂ’ﬂ“'(sﬂn’f"(il Ly
T *: i g
i i Jioee Jn

The conditions (¢) and (A) show that the following matrix is a corepresentation:
L
ijkl

Consider the tensor powers of this corepresentation:

u®" = Ul n+1U2n+1 - - - Upnt1 S E(B®n) X A
Let V, be the matrix of coefficients of u®™, defined by:

P A P 1
®n __ o 1 n J1 In
v Zk; et aarin © Vn (k1 N zn)
ij

We define a linear form ¢r,, on the linear space B®" by:

so( e e "
tn (il z’n>—5@'1---in><j1---a'n>q<i1...z'n>

Here the weights are given by the following function, where +1 = (—1)™
Qs i) = G Gy iy -+ 43,
Note that we have q(;) = ¢;, and so tr1 = tr on the algebra B®' = B.

With these conventions, we have the following result:
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ProrosiTION 4.31. If ® : A — A® H 1is a coaction of A on B which preserves tr
then the linear map ®,, : B®" — B®" ® A given by

Jro-. ]n _ ll ln -1 -1
(p (Zl e ) ) o %: (kl . kn) ® q(klk)n)q(zlln)q(.h]n)q(llln)

in
T e R
Vi (k:1 A R P
is a coaction of A on B®" which preserves tr,,.

ProOF. This follows indeed from a routine computation. See [5]. O

With the above family of coaction maps ®,, constructed, we say that a linear map
T : B®" — B®™ is & -equivariant if the following diagram commutes:

B L, pgem
¢, | N

Bn@A ¥ Bemg A
With this convention, we have the following result, also from [5]:

PROPOSITION 4.32. The following linear maps
Jiooee Jne1) Jioeee g1
I (11 Ce ’in_1> o Zl: (21 e in—l l)
_ +2 42 coe Gn—2 J J
Z i q] ( g1 ... gJn—2 ) Z)

gij
=o(Jn o In) _ s Jio-ee Jn—t
E (21 Ce Zn) o 6Zn]nqln ('1 Ce an)
where £1 = (=1)", are . -equivariant.
PROOF. As before, this follows from a routine computation. See [5]. O

If ®: B — B® A is a coaction then I', = (id ® [,)®, is an idempotent of L(B®"),
whose image are the fixed points of ®,,. This follows from the following computation:

®,p(z) = @, (id@ /A ) ®,(z)

- (z’d@id@/A) (1d @ A)Pp(x)
= I(r)®1
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In order to get now to planar algebra results, we say that a pair of linear maps
(T, T9) : B®" — B®™ is weakly ®.-equivariant if the following diagram commutes:

B®n ﬂ> B®m

Il L

B®n T} B®m

The interest in this notion is that it makes the following diagram factorize:
per L, pem
U U

Im(T,) — Im(T,,)

We say that an operator T is weakly ®..-equivariant if the pair (7,7 is weakly ®.-
equivariant, in the above sense. This happens for instance if T is ®.-equivariant, because
we can glue the & .-equivariance diagram of T' to the following trivial diagram:

BEng A 24 pemg 4
id® [, ) lid® [,

B Ly Bem
With these conventions, we have the following result:

PROPOSITION 4.33. Assuming that (B,tr) is as before, with tr being the canonical
trace, the folowing happen:
(1) The following pair of maps is weakly ®..-equivariant:

J3 oo Jntl Lk J3 v Jan
In [~ 3 = 3 s
<23 e Zn+1) ; (l k 3 ... Zn+1)
g (J3 - Jnt1) _ s sl k J3 ... o
‘]n(z'g z’nﬂ)_%:ql qk(z kois ... in+1)

(2) The map J, is weakly @ -equivariant.
(3) If A is commutative then J, is P, -equivariant.

PROOF. As before, this follows from a routine computation. See [5]. g
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We have now all the needed ingredients for formulating the planar algebra result. We
recall that the annular category A is defined as follows:

(1) The objects are the positive integers.

(2) The space of arrows A(i, j) is formed by tangles in the planar operad P with
“output” disc having 25 marked points and one “input” disc, having 27 marked points.

(3) The composition of arrows is given by gluing of annuli.

Now let (B,tr) be as before, and let P(B) be the planar algebra associated to the
bipartite graph of B, with spin vector a — ¢r(1,). The sequence of vector spaces of P(B)
will be canonically identified with the sequence of tensor powers of B.

With these conventions, we have the following result:

THEOREM 4.34. We have the following results:

(1) The linear maps in the image of A are weakly ® . -equivariant.

(2) If A is commutative, these linear maps are @, -equivariant.

(3) The spaces of fixed points of the coactions ®,, form a subalgebra of P(B).
(4) Any planar subalgebra of P(B) appears in this way.

PrRoOOF. We have several things to be proved, the idea being as follows:

(1) The gluing of commutative diagrams shows that weak ®..-equivariance is stable by
composition, so the annular tangles whose image is weakly ®.-equivariant from a certain
subcategory B C A. We want to prove that we have B = A.

For this purpose, consider the inclusion tangle in A(n — 1,n), expectation tangle in
A(n,n — 1), Jones projection tangle in A(0,n) and shift tangle in A(n — 1,n + 1). The
images of these tangles are given by the various formulae above, suitably rescaled, and
we deduce from this that these tangles are in the above subcategory B.

The sets A(0,n) of Temperley-Lieb tangles being generated by inclusions and Jones
projections, these sets are in B. For z,y € A(0,n) let M(z,y) € A(n,n) be the 3-
multiplication n-tangle of P with the upper circle filled with y and the lower circle filled
with x. The corresponding linear map is given by M (x,y) : p — Zpy, and since the fixed
points of ®,, are stable under multiplication, M (x,y) is in 5.

Let now T € A(i, 7). By using boxes instead of discs, isotope T', then cut it horizontally
in three parts such that the middle part contains the inner box plus vertical strings only.
By adding contractible circles at right, we can arrange such that the number of points on
the middle cuts is greater than j. By adding more contractible circles at right, each of
them consisting of “up” and “down” semicircles plus two outside “expectation” strings
connecting them, we get an equality of the form 7°°+° = EM(z,y)IJ, where [ is a
composition of inclusion tangles, J is a composition of shift tangles, E is a composition
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of expectation tangles, x and y are in A(k, k) for some big k and T°°° is obtained from
T by adding contractible circles. Thus T°°° is in B, so T' is in B, as desired.

(2) The same proof as above works in the case where A is commutative, with “weakly
®-equivariant” replaced by “®-equivariant”, and this gives the result.

(3) Since the weakly ®.,-equivariant maps send fixed points to fixed points, the result
follows from (1) above. See [5].

(4) This is something more technical, that can be obtained along the lines of the proof
in chapter 3, in the case B = C", and we refer here to [89]. O

We will be back to this later, in chapter 12 below, with a result which is even more

general, dealing with quantum reflection groups and their subgroups.

4e. Exercises

Things have been quite technical in this chapter, especially towards the end, and our
exercises here will focus on the first part, which is more elementary. First, we have:

EXERCISE 4.35. Write down a complete, elementary proof of
S]J(/[Q = S03
and then unify this with the other such result that we have, namely S§ = Ss.

This is something quite tricky, the key word here being “elementary”. Indeed, as we
have seen in the above, all this can be understood via heavy representation theory.

As a second exercise now, dealing this time with S}, we have:

EXERCISE 4.36. Come up with some explicit constructions for the subgroups of

S; =850;"
listed in the above, and explain what the associated ADE diagrams should be.

In short, the exercise here is that of doing the “easy” part of the ADE classifica-
tion theorem, namely constructing the subgroups, and computing, or at least guessing,
the corresponding ADE graphs. In what regards the “hard” part, namely proving the
uniqueness, and working out the ADE details, we refer here to the literature.

Finally, in relation now with the quantum groups S}, we have:

EXERCISE 4.37. Perform a study of the group dual subgroups

I'csS)
in the homogeneous space case, where F' = My x {1,...,L}.

We will be back to such subgroup questions later on, when analyzing the quantum
subgroups G C S} coming from the finite quantum graphs with vertex set F.
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Analytic aspects



I'm gonna make me a good sharp aze
Shining steel tempered in the fire
I’ll chop you down like an old dead tree
Dirty old town, dirty old town



CHAPTER 5

Laws of characters

5a. Truncated characters

In this second part of this book, this chapter and the next 3 ones, we discuss a number
of analytic questions, for the most in relation with free probability. We will be mainly
interested in Sy, S3;, but in view of the subtle relationship between S3; and O%, we will
include Oy, OF; as well in our discussion. We will comment on S} extensions, too.

Let us begin with some character basics. We have the following result:

THEOREM 5.1. Given a Woronowicz algebra (A, u), with fundamental corepresentation
u € My(A), the law of the main character

N
X = Z Wij
i=1

with respect to the Haar integration has the following properties:

(1) The moments of x are the numbers My = dim(Fiz(u®*)).
(2) My, counts as well the lenght k loops at 1, on the Cayley graph of A.
(3) law(x) is the Kesten measure of the associated discrete quantum group.
(4) When u ~ u the law of x is a usual measure, supported on [—N, NJ.
(5) The algebra A is amenable precisely when N € supp(law(Re(x))).
(6) Any morphism f : (A, u) — (B,v) must increase the numbers Mj,.
(7) Such a morphism f is an isomorphism when law(x.) = law(xy).
PRrROOF. All this is very standard, basically coming from the Peter-Weyl theory devel-
oped in [98], and explained in chapter 1 above, the idea being as follows:

(1) This comes from the Peter-Weyl type theory, which tells us the number of fixed
points of v = u®* can be recovered by integrating the character y, = x*.

(2) This is something true, and well-known, for A = C*(T"), with ' =< ¢y, ..., gn >
being a discrete group. In general, the proof is quite similar.

(3) This is actually the definition of the Kesten measure, in the case A = C*(I"), with
['=<gi,...,gn > being a discrete group. In general, this follows from (2).

(4) The equivalence u ~ u translates into x, = x, and this gives the first assertion.
As for the support claim, this follows from wu* =1 = ||uy|| < 1, for any 1.

107
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(5) This is the Kesten amenability criterion, which can be established as in the classical
case, A = C*(T'), with ' =< ¢y, ..., gy > being a discrete group.

(6) This is something elementary, which follows from (1) above, and from the fact that
the morphisms of Woronowicz algebras increase the spaces of fixed points.

(7) This follows by using (6), and the Peter-Weyl type theory, the idea being that if
f is not injective, then it must strictly increase one of the spaces Fiz(u®*). O

As a conclusion to this, regardless of our precise motivations, computing the law of
X = Y, u; is a central question, and the “main problem” to be solved. Let us also
mention, in addition to what has been said above, that in the context where G acts on
some basic physical system, such as a statistical mechanical lattice model, computing the
law of xy = ZZ u;; is known to be as well the central question to be solved.

In what regards the quantum rotation and permutation groups, that we are interested
in here, we have already solved this problem for them, at N = oo, as follows:

THEOREM 5.2. The main character laws for the basic quantum groups are the Poisson,
Gaussian, Marchenko-Pastur and Wigner laws p1, g1, 71,1

SN

Oy M ——"n

Sn

On g

in the N — oo limit. Moreover, the convergence is stationary starting from N = 2 for
O}, starting from N = 4 for Sy, and is not stationary for Oy, Sy.

Proor. This is something that we know from chapters 1-4, as follows:

(1) For an easy quantum group G = (Gy), coming from a category of partitions
D = (D(k,1)), the asymptotic moments of the main character are given by:
. E . . . ok
A}linoo . X© = ]\}EI})O dim (Fiz(u®"))
= lim dim (spcm (57, e D(k)))
N—o0

= |D(#)]
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(2) This result applies to our 4 quantum groups, which are all easy, the corresponding
categories of partitions, and asymptotic moments of x, being as follows:

NC NCy Cp ———— Cip2

P P By —— kIl

But these numbers being the moments of pq, g1, 71,71, we obtain the result.

(3) Regarding the stationarity claims, these are more advanced, and come for O3, S¥

from the results in chapter 3 above. As for the non-stationarity claims for Oy, Sy, these
come either via direct computations, or from the Kesten amenability criterion. Il

All this is very nice, but the lack of symmetry between the classical and quantum
results, in what concerns the stationarity, remains an issue.

As a piece of an answer here, standard free probability theory, to be explained in
a moment, based on partitions as above, shows that the measures 7,7, are the free
analogues of the measures py, g;. However, at a more advanced level, that of the Bercovici-
Pata bijection [40], the correct statement is that the free convolution semigroups {7}, {~:}
are the free analogues of the convolution semigroups {p:}, {g:}.

All this suggests that, in order to fix things, we need a parameter ¢ > 0.

In order to do so, the idea will be that of looking at truncated characters of the
quantum group, with respect to a parameter t € (0,1]. Let us formulate indeed:

DEFINITION 5.3. Associated to any Woronowicz algebra (A,u) are the variables
[tN]

Xt = Z U
i=1
depending on a parameter t € (0,1], called truncations of the main character.

With this definition in hand, we will see that for our basic quantum groups, the
asymptotic laws of these truncated characters are respectively py, g;, 7, v, and that the
convergence at generic ¢t € (0, 1] is not stationary.

Thus, we will have our desired fix for Theorem 5.2. Also, as a bonus, all this will get
us into advanced representation theory and free probability, that we will explore later.

In order to understand what the variables y; are about, let us first investigate the
symmetric group Sy. The result here, which is something very classical, is as follows:
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THEOREM 5.4. Consider the symmetric group Sy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices.

(1) The main character x € C(Sy), defined as usual as x = >, u;, counts the
number of fized points, x(o) = #{i|lo(i) =i}.

(2) The probability for a permutation o € Sy to be a derangement, meaning to have
no fized points at all, becomes, with N — oo, equal to 1/e.

(3) The law of the main character x € C(Sn) becomes with N — oo a Poisson law
of parameter 1, with respect to the counting measure.

(4) In fact, the law of any truncated character x; = ZEZ\? uy; becomes with N — oo
a Poisson law of parameter t, with respect to the counting measure.

Proor. This is something very classical, the proof being as follows:

(1) We have indeed the following computation, which gives the result:
x(o) = Zuz‘z‘(a)
= Z 0o (i)i
— % {@"a(i) — z}
(2) We use the inclusion-exclusion principle. Consider the following sets:

= {a € SN‘U(i) = 2}

The set of permutations having no fixed points is then:

v (U%)

In order to compute |X x|, consider as well the following sets:

Siewin {0 c SN‘U(ZE) =d1,...,0(x) = Zk}

The inclusion-exclusion principle tells us that we have:

(=)

= ISvl =D ISHI D IS NS = (DY Y IS UL U Sy

1<J 11 <...<iN

= [Snl =) IS+ D ISE =+ (DN Y S

i i<j i1<...<iy
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Thus, the probability that we are interested in is given by:

P(x=0)=%<|SN|—Z|S§V|+Z|553|—..‘+(—1)N > |s§¢~~iN|)

1<j 11<...<iN

Now observe that for any i; < ... < 4 we have |Sy | = (N — k). We obtain:

Pu=0) = 13 08 S sy

11<...<i

_ %Z(—l)’“ S (N —k)!

k=0 11 <...<i

1 1 1 1
e o (DN ()N
TR S A o o s R A

Since we have here the expansion of %, we conclude that we have, as desired:

1
lim P(x =0) = -

N—o0 e

111

(3) This follows by generalizing the computation in (2). To be more precise, a similar

application of the inclusion-exclusion principle gives the following formula:

) 1
A P(x = k) = -

Thus, we obtain in the limit a Poisson law of parameter 1, as stated.

(4) As a first observation, and in analogy with the formula in (1) above, the truncated

characters count as well certain fixed points, as follows:

x(o) = Zuii(a)

_ #{i c {1,...,[tN]}‘U(i) = Z}
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Regarding now the computation of the law of y;, this follows by generalizing the
computation in (3). Indeed, an application of the inclusion-exclusion principle gives:

tk
lim P(y; = k) = —
Nooe (xe = ) klet
Thus, we obtain in the limit a Poisson law of parameter ¢, as stated. O

The above result will be something quite fundamental for us, and is worth a second
proof, with the remark that in what concerns the case t = 1, that we already discussed in
Theorem 5.2, using easiness, this will be actually a third proof of it. We can use indeed
the following integration formula over Sy, which has its own interest:

THEOREM 5.5. Consider the symmetric group Sy, with its standard coordinates:
Ui = X (U € SN’(T(j) = Z)
The integrals over Sy are given, modulo linearity, by the formula

N—|keri])! . : ;
o i1g1 - - - Wiggy 0 otherwise

where keri is the partition of {1,...,k} whose blocks collect the equal indices of i.

PRrOOF. According to the definition of u,;, the integrals in the statement are given by:

/SN Wirjy - - Wiy = %# {a € SN‘a(jl) =11,...,0(jk) = zk}
Now observe that the existence of o € Sy as above requires:
I = ln <= Jm = Jn
Thus, the above integral vanishes when keri # ker j. Regarding now the case keri =

ker j, if we denote by b € {1,...,k} the number of blocks of this partition keri = ker j,
we have N — b points to be sent bijectively to N — b points, and so (N — b)! solutions,

and the integral in the statement follows to be (Wb)!

~1» as claimed. O

As an illustration for the above formula, we can recover the computation of the as-
ymptotic laws of the truncated characters x;. We have indeed:

THEOREM 5.6. For the symmetric group Sy C Oy, regarded as a compact group of
matrices, Sy C Oy, via the standard permutation matrices, the truncated character

counts the number of fixed points among {1,...,[tN]}, and its law with respect to the
counting measure becomes, with N — oo, a Poisson law of parameter t.
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PRrROOF. The first assertion is something that we already know. For the second asser-
tion, we use the formula in Theorem 5.5. With Sy, being the Stirling numbers, counting
the partitions in P(k) having exactly b blocks, we have:

[tN]

k
/ Xe = § : / Wiyiy -+« Wigiy,
SN SN

i1 =1

tN|! N — |x|!
. [tN] (N —[n]!)

— | |
S NI =)W
[¢N]

(tN]l (N —b)!
:;([W]—b)!' NSk

In particular with N — oo we obtain the following formula:

k
li F=) Swt
Nl_{noo ; Xt ; kb
But this is the k-th moment of the Poisson law p;, and so we are done. U

Summarizing, the truncated characters for Sy are definitely interesting objects. How-
ever, in what regards Oy, S5, OF;, things are quite tricky, and we need a good motivation,
coming on top of what we know about Sy, for getting into computations here.

For this purpose, recall from our comments preceding Definition 5.3 that the need for
a parameter ¢t > 0 basically comes from theoretical probability, and more precisely from
the classical/free bijection there, at the semigroup level. So, let us explain this now.

5b. Free probability
In order to get started, recall that the Gaussian laws g; and Poisson laws p; appear

via the Central Limit Theorem (CLT) and the Poisson Limit Theorem (PLT).

Our first task will be that of explaining these results. The first of them is as follows:

THEOREM 5.7 (CLT). Given a sequence of real variables fi, fa, f3,... € L®(X) which
are i.1.d., centered, and with variance t > 0, we have, with n — 0o, in moments,

1 n
%;fi”gt

where g; is the Gaussian law of parameter t, given by:

;e*”ﬂ/%dx

= V27t
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Proor. This is something very classical, which can be done in two steps:

(1) Our first claim is that the log of the Fourier transform Fy(z) = E(e™/) linearizes
the convolution. Indeed, assuming that f,g € L>°(X) are independent, we have:

EM@ZAWWm@
214WWWﬁmmw

= [ e )du )
RxR

:AWM@4W%@
Fy(2)F,(x)

Thus, we have Fy,, = FyF,, which proves our linearization claim.

(2) The Fourier transform of the variable in the statement is:

o - (o]

ta? "
= |1-—+0(n"?
~ 6—t$2/2

On the other hand, the Fourier transform of ¢, is given by:

1 —y2 X
Fule) = o= [y
— 1 /6—(y/\/§—\/t/2ix)2—tr2/2dy

V2t Jr

1 _ 2—t 2/2
= e 7 TN 2tdz
V27t /R

1 —t 2/2/ _ .2
= —e e “dz
VT R
1
= e

e—tx2/2

Thus, we are led to the conclusion in the statement. Il

Regarding now the Poisson Limit Theorem (PLT), this is as follows:
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THEOREM 5.8 (PLT). We have the following convergence, in moments,

" " *n
((1——)50+—(51) — Dt
n n

where p; 1s the Poisson law of parameter t > 0, given by:
_ ot k5,
b= Kl
k

PROOF. Once again, we use the fact the log of the Fourier transform Fy(z) = E(e**)
linearizes the convolution. The Fourier transform of the variable in the statement is:

F(z) = lim ((1 - E) + iem)
n—00 n n

i 1 n
— lim (1 I Gl )t)
n—0o00 n

= exp ((e" — 1)t)

On the other hand, the Fourier transform of p, is given by:

it
Fu@) = e 3 F @)
k: !
th
_ e—tzyezlm
k !
B i (ezxt)k:
= € Z k!
k

= exp(—t) exp(e™t)
= exp ((e" —1)t)
Thus, we are led to the conclusion in the statement. l

In order to discuss now the free version of the above results, we first need to talk about
moments, laws and freeness, in the general operator algebra setting.

Let us start with the following definition:

DEFINITION 5.9. Let A be a C*-algebra, given with a trace tr.

(1) The elements a € A are called random variables.
(2) The moments of such a variable are the numbers My(a) = tr(a®).
(3) The law of such a variable is the functional p, : P — tr(P(a)).
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Here k = oeeo... is as usual a colored integer, and the powers a* are defined by the
following formulae, and multiplicativity:

=1, a°=a , a"=a
As for the polynomial P, this is a noncommuting *-polynomial in one variable:
PeC<X,X*>

Observe that the law is uniquely determined by the moments, because:
P(X) =) MX" = pa(P) =D \eMy(a)
k k
Let us discuss now the independence, and its noncommutative versions.

As a starting point here, we have the following straightforward definition:

DEFINITION 5.10. We call two subalgebras B,C' C A independent when the following
condition s satisfied, for anyb € B and c € C':

tr(bc) = tr(b)tr(c)
Equivalently, the following condition must be satisfied, for any b € B and ¢ € C':
tr(b) =tr(c) =0 = tr(bc) =0
Also, two variables b,c € A are called independent when the algebras that they generate
B=<b>0C=<c¢>
are independent inside A, in the above sense.

Observe that the above two independence conditions are indeed equivalent. In one
sense this is clear, and in the other sense, with o' = a — tr(a), this follows from:

tr(bc) = tr[(b' +tr(b))(d +tr(c))]
= tr(t/)+t(t)tr(c) + tr(b)tr(c) + tr(b)tr(c)
= tr(b'd) +tr(b)tr(c)
= tr(b)ir(c)

It is possible to develop some theory here, but this is ultimately not very interesting,
being just an abstract generalization of usual probability theory.

As a much more interesting notion now, coming from [91], and that we will study
next, we have the notion of freeness, which can be introduced as follows:
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DEFINITION 5.11. We call two subalgebras B,C' C A free when the following condition
is satisfied, for any b; € B and ¢; € C':
tr(b;)) =tr(c;) =0 = tr(bicibacy...) =0
Also, two variables b,c € A are called free when the algebras that they generate
B=<b>0C=<c¢>
are free inside A, in the above sense.

In short, freeness appears by definition as a kind of “free analogue” of independence,
taking into account the fact that the variables do not necessarily commute.

As a first observation, of theoretical nature, there is actually a certain lack of symmetry
between Definition 5.10 and Definition 5.11, because in contrast to the former, the latter
does not include an explicit formula for the quantities of the following type:

tT(blcleCQ .. )

However, this is not an issue, and is simply due to the fact that the formula in the
free case is something more complicated, the result being as follows:

PROPOSITION 5.12. Assuming that B,C' C A are free, the restriction of tr to < B, C >
can be computed in terms of the restrictions of tr to B,C'. To be more precise,

tr(byeibacs...) = P({tr(bilbiz Y dtr(ese, .)}j)

where P s certain polynomial in several variables, depending on the length of the word

bicibacs . .., and having as variables the traces of products of type
bilbig ce > Cj1Cjy v v+
with the indices being chosen increasing, 11 < io < ... and j; < jo < ...

ProoF. This is something quite theoretical, so let us begin with an example. Our
claim is that if b, ¢ are free then, exactly as in the case where we have independence:

tr(bc) = tr(b)tr(c)
But this follows from the computation performed after Definition 5.10. Indeed, the
only non-trivial equality is the last one, which follows from:
tr(t)=tr(d) =0 = tr(t/d) =0
In general now, the situation is of course more complicated, but the same trick applies.
To be more precise, we can start our computation as follows:

tr(blcleCg .. ) = tr [(bll + tr(bl))(cll + tT(Cl))(bIQ + tr(bg))(c’Q + tT(Cg)) ...... ]
= tr(bic)bycy . . .) + other terms

= other terms
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Observe that we have used here the freeness condition, in the following form:
tr(b;) = tr(c;) =0 = tr(bicibyey...) =0

Now regarding the “other terms”, those which are left, each of them will consist of a
product of traces of type tr(b;) and tr(c;), and then a trace of a product still remaining
to be computed, which is of the following form, with §; € B and v; € C"

tr(BimBaya---)

To be more precise, the variables [3; € B appear as ordered products of those b; € B
not getting into individual traces tr(b;), and the variables 7; € C appear as ordered
products of those ¢; € C' not getting into individual traces tr(c;). Now since the length
of each such alternating product ;716272 ... is smaller than the length of the original
alternating product bycibacs . . ., we are led into a recurrence, and this gives the result. [J

As a basic result now regarding the notions of independence and freeness, and provid-
ing us with examples, we have:

PROPOSITION 5.13. We have the following results, valid for group algebras:
(1) C*(I"),C*(A) are independent inside C*(I" x A).
(2) C*(T"),C*(A) are free inside C*(I" x A).
PROOF. In order to prove these results, we can use the fact that each group alge-

bra is spanned by the corresponding group elements. Thus, it is enough to check the
independence and freeness formulae on group elements, and this is in turn trivial. O

In short, we have now a notion of freeness, dealing with noncommutativity itself, in
its most pure form, where there are no algebraic relations at all. This is very nice, but in
practice now, we need a free analogue of the Fourier transform, or rather of the log of the
Fourier transform. The result here, due to Voiculescu [91], is as follows:

THEOREM 5.14. Given a real probability measure u, consider its Cauchy transform

G - [ dpu(t)

rRE—1
and then define its R-transform as the solution of the following equation:

a, (Ru@) " %) -

The free convolution operation is then linearized by the R-transform.

PRrROOF. The proof here, which is quite tricky, is in four steps, as follows:

(1) In order to model the free convolution, we can use the algebra of creation operators
on the free Fock space F'(R?). This is the same as the semigroup algebra C*(N * N), and
we have some freeness here, a bit in the same way as for group algebras.
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(2) In what concerns single distributions, the point here is that the variables of type
S* + f(9), with S € C*(N) being the shift, and with f € C[X] being a polynomial, are
easily seen to model in moments all the distributions u : C[X] — C.

(3) Now let f,g € C[X] and consider the variables S* + f(S) and T* + ¢(T"), where
S,T € C*(NxN) are the shifts corresponding to the generators of N N. These variables
are free, and by using a 45° argument, their sum has the same law as S* + (f + ¢)(.9).

(4) Thus the operation u — f linearizes the free convolution. We are therefore left
with a computation inside C*(N), which is standard, and whose conclusion is that R, = f
can be recaptured from p via the Cauchy transform G, as in the statement. O

We refer to [91] or [93] for full details on the above. Now with the above technology
in hand, we are ready to state and prove the free CLT, once again following [91]:

THEOREM 5.15 (FCLT). Given noncommutative self-adjoint variables x1, xq, x3, ... €
A which are f.i.d., centered, with variance t > 0, we have, with n — 0o, in moments,

1 n
\/ﬁ ; Ve
where 7y, is the Wigner semicircle law of parameter t, given by:
1
Yt = 2_t V 4t2 — $2d$
s

Proor. We follow the same idea as in the proof of the CLT, explained before:

(1) At t = 1, the R-transform of the variable in the statement can be computed by
using the linearization property from Theorem 5.14, and is given by:

R() = nR, (%)

(2) On the other hand, standard computations show that the Cauchy transform of the
Wigner semicircle law v, satisfies the following equation:

1
G 1) =

Thus we have the following formula, which by the way follows as well from S+.5* ~ v,
which is clear from the proof of Theorem 5.14 above:

~ ¢

R’Yl (f ) =<
(3) But this gives the result, and so we are done with the case t = 1. The passage to
the general case, t > 0, is routine, by dilation. Il

We can state and prove as well a free PLT, as follows:
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THEOREM 5.16 (FPLT). We have the following convergence, in moments,

Hn
((1—£>50+£(51> — Tt
n n

the limiting measure being the Marchenko-Pastur law of parameter t > 0,
4t — (x — 1 —1)?
Vit — ( P

2w

7 = max(1 —¢,0)dy +
also called free Poisson law of parametert > 0.

PRrOOF. Consider the measure in the statement, under the convolution sign:

t t
M:(l——)50+—(51
n n

The Cauchy transform of this measure is given by:

t\1 ¢t 1
o= (1-7) e+ e

We want to compute the following R-transform:
R = R:.(y) = nR,(y)
By Theorem 5.14, the equation satisfied by R is as follows:

t 1 t 1
L) gt — =y
n)yt+R/n n yl'4+R/n—-1
By multiplying by n/y, and rearranging terms, this equation can be written as:
t+yR t
1+yR/n  14+yR/n—y
With n — oo the equation simplifies, and we obtain the following formula:

t
t+yR=——
I—y

Thus we have R = ﬁ, which equals R,,, and we obtain the result.
As a conclusion to all this, let us formulate the following statement:
THEOREM 5.17. The main limiting results in classical and free probability are

FPLT FCLT Ty ————— Vi

PLT — CLT Pe— Gt

the limiting measures being Gaussian, Poisson, Wigner and Marchenko-Pastur.
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Proor. This follows indeed by putting together all the above results, classical and
free, and with gy, ps, ¢, ™ being respectively the measures in the statement. Il

Now back to our permutation and rotation questions, the above result makes a clear
connection with our quantum group scheme, from Theorem 5.2 above, namely:

Sy

OX; ™M —— N

SN ON P ————01

In order to get beyond this, and reach to the parameter ¢t > 0, as suggested by both
our quantum group and free probability results, we must do some further probability.

Following [87], given a noncommutative random variable a, we can define its classical
cumulants k,(a) and its free camulants k,(a) by the following formulae:

log Fu(§) = Y _ kn(a)¢"

Ro(€) = rnla)€"

With this notion in hand, we can define then more general quantities k(a), k-(a),
depending on partitions © € P(k), by multiplicativity over blocks, and we have:

THEOREM 5.18. We have the classical and free moment-cumulant formulae

My(a)= ) kila)

weP(k)
My (a) = Z Kr(a)
TeNC(k)
where kr(a), kr(a) are the generalized cumulants and free cumulants of a.

Proor. This is standard, by using the formulae of F,, R,, or by doing some direct
combinatorics, based on the Mébius inversion formula from chapter 2 above. See [87]. O

Now back to our liberation questions, we can use Theorem 5.18, and the cumulant
technology in general, in order to axiomatize the liberation operation in free probability.
Indeed, we can say that a random variable a appears as the free analogue of a random
variable a when the following equalities happen, for any n € N:

kn(a) = kn(a)

This is something that depends only of the corresponding laws, and in this case we
also say that the law u = u, appears as the free analogue of the law m = p,.
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The liberation operation m — pu constructed in this way is called Bercovici-Pata
bijection, and for the full story here, which actually involves semigroups of measures,
with the final bijection being something of type {m;} — {u}, we refer to [40].

Now with this advanced free probability technology in hand, we can reformulate The-
orem 5.17 above in a more conceptual way, as follows:

THEOREM 5.19. The main central limiting results in classical and free probability are
as follows, with g, p; being the Gaussian and Poisson convolution semigroups, and with
Y, ¢ being the Wigner and Marchenko-Pastur free convolution semigroups,

FPLT FCLT T ——————— Vi

PLT ——— CLT h—g,

which are related by the Bercovici-Pata bijection, in the sense that “the classical cumulants
of the classical measures are equal to the free cumulants of the free measures”.

Proor. We already know the main assertion, from Theorem 5.17, so we just have to
discuss the assertions regarding the convolution semigroup properties, the cumulants and
the Bercovici-Pata bijection [40]. For this purpose, let us recall from the above that at
t = 1 the moments of the limiting measures in the statement appear by counting certain
diagrams, according to the following scheme:

y—— NC NG,

pr——————— g P P

The point now is that at ¢ > 0 the moments of the measures in the statement can be
recaptured as well from the above diagrams, accroding to the following formula:

e 3
weD(k)

Now by putting this into the classical and free cumulant machinery from Theorem
5.18, we obtain the conclusions in the statement, in relation with [40]. See [81]. O

5c. Weingarten integration

As a conclusion to the above various probabilistic considerations, we have now a good
understanding of the limiting character measures appearing from Oy, OF;, Sy, S§;, and
with the remark that the presence of a parameter ¢ > 0 would be desirable.
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But we already have our parameter ¢ > 0 in the quantum group setting, coming from
truncated characters, introduced in Definition 5.3 above:

[tN]
Xt = Z Uis
i=1

So, following [23], [24], let us discuss now the computation of the law of x;. In general,
and in particular in what regards Oy, S}, OF, there is no simple trick as for Sy, and we
must use general integration methods, from [23], [52].

First, we have the following well-known formula:

THEOREM 5.20. Assuming that A = C(G) has Tannakian category C' = (C(k,l)), the
Haar integration over G is given by the Weingarten type formula

/Guflljl.. ugt;, ﬂUZGDk(S (J)Wi(m, o)
for any colored integer k = ey ... ey and indices i, j, where Dy, is a linear basis of C (0, k),
0r(i) =< T ey ®...Qe; >
and Wy, = G;.*, with G(m,0) =< 7,0 >.

Proor. We know from chapter 1 above that the integrals in the statement form
altogether the orthogonal projection P* onto the following space:

Fiz(u®*) = span(Dy)
Consider now the following linear map, with Dy = {{;} being as in the statement:

=) <r&>6

weDy

By a standard linear algebra computation, it follows that we have P = W E, where W
is the inverse on span(Ty|m € Dy) of the restriction of E. But this restriction is the linear
map given by Gy, and so W is the linear map given by Wj, and this gives the result. [J

In the easy quantum group case, the above formula simplifies, as follows:

THEOREM 5.21. For an easy quantum group G C O N, coming from a category of
partitions D = (D(k,l)), we have the Weingarten integration formula

/Guiljl...uikjk == Z (5 WkN(ﬂ' O')

m,oeD(k

where D(k) = D(0, k), § are usual Kronecker symbols, and Wiy = G, with
Giy(m,0) = Nlmvel

where |.| is the number of blocks.
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PrOOF. With notations from Theorem 5.20, the Kronecker symbols are given by:
0, (1) = <&rey ®...R¢€;, >
= Op(in, ..., 0)
The Gram matrix being as well the correct one, we obtain the result. See [23]. u

In practice, the above formula is something very useful, because it allows the study of
integration problems over the easy quantum groups just by using a basic laptop. We will
present in what follows various applications of this formula, on various occasions.

5d. Poisson semigroups

With the above formula in hand, we can go back now to the question of computing
the laws of truncated characters. First, we have the following moment formula, from [23]:

THEOREM 5.22. The moments of truncated characters are given by the formula
/G(un + o ug)t = Tr(WinGrs)
where Gy and Win = G,;]%[ are the associated Gram and Weingarten matrices.
PrOOF. We have indeed the following computation:

/C;(U11+...+uss>k = ZZ/UHHU%%

i1=1 =1

= ) Win(ma)d ...> 6:(6),(i)

moeD(k) =1 =1
= Z Win (7, 0)Gys(o, )
moeD(k)
= Tr(WinGis)
Thus, we have obtained the formula in the statement. U

In order to process now the above formula, things are quite technical, and won’t work
well in general. We must impose here a uniformity condition, as follows:

THEOREM 5.23. For an easy quantum group G = (Gy), coming from a category of
partitions D C P, the following conditions are equivalent:
(1) Gy-1 = Gy NUy_,, via the embedding Uy, | C Uy given by u — diag(u, 1).
(2) Gy-1 =GNy NUN_,, via the N possible diagonal embeddings Uy;_, C Uy,
(3) D is stable under the operation which consists in removing blocks.
If these conditions are satisfied, we say that G = (Gy) is “uniform”.
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PROOF. We use the general easiness theory from chapter 2 above.

(1) <= (2) This is something standard, coming from the inclusion Sy C G, which
makes everything Sy-invariant. The result follows as well from the proof of (1) <= (3)
below, which can be converted into a proof of (2) <= (3), in the obvious way.

(1) < (3) Given K C Uy _,, with fundamental corepresentation u, consider the
N x N matrix v = diag(u, 1). Our claim is that for any = € P(k) we have:

& € Fiz(v®) «— & € Fiz(v®), Vo' € P(K),n' C =
In order to prove this, we must study the condition on the left. We have:
&x € Fix(v®F)
= (V) = )i, Vi

— Z ®k l'1 gy J1e jk<€7r>j1mjk = (gﬂ)lllkavz

< Z(S ]17---;jk ’U“jl...UZ'kjk25ﬂ<i1,...,ik),Vi

Now let us recall that our corepresentation has the special form v = diag(u,1). We
conclude from this that for any index a € {1,...,k}, we must have:

With this observation in hand, if we denote by 4’ j* the multi-indices obtained from

i,j obtained by erasing all the above i, = j, = N values, and by k¥’ < k the common
length of these new multi-indices, our condition becomes:

25 jl,...,]k ( /)Z/j/zéﬂ-(il,...,ik),Vi

Here the index j is by definition obtained from j’ by filling with N values. In order
to finish now, we have two cases, depending on ¢, as follows:

Case 1. Assume that the index set {a|i, = N} corresponds to a certain subpartition
7" C w. In this case, the N values will not matter, and our formula becomes:

25 (Grs e Ga) @ Yo = (8, i)

Case 2. Assume now the opposite, namely that the set {a|i, = N} does not correspond
to a subpartition 7’ C 7. In this case the indices mix, and our formula reads:

0=0
Thus, we are led to & € F i:v(’u‘@k/), for any subpartition 7’ C m, as claimed. Now
with this claim in hand, the result follows from Tannakian duality. U

By getting back now to the truncated characters, we have the following result:
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THEOREM 5.24. For a uniform easy quantum group G = (Gy), we have the formula
li k _ |7
dm s 2
weD(k)
with D C P being the associated category of partitions.

PROOF. We use the general moment formula for truncated characters from Theorem
5.22 above. With s = [tN], this formula becomes:

/ Xt = Tr(WenGrpni)
Gn

The point now is that in the uniform case the Gram matrix, and so the Weingarten
matrix too, are asymptotically diagonal, and so we have formulae as follows:

Gy =~ diag(N'™)
Wiy ~ diag(N~™

Thus, the asymptotic moments of the truncated characters are given by:

/ Xf = TT(WkNGk[tN})
Gn

Z N—W[t]\]]\ﬂl
)

meD(k

~ Z ¢!

weD(k)

Thus, we are led to the conclusion in the statement. See [23], [29], [37]. O

12

We can now improve our quantum group results, as follows:

THEOREM 5.25. The main truncated character laws for the basic quantum groups are
the Poisson, Gaussian, Marchenko-Pastur and Wigner laws py, g, T, Vi

Sy

ON T~

Sn

in the N — oo limit. Also, the convergences are not stationary at generic t € (0, 1].

On Pt—— Gt

PRroor. This follows indeed from the easiness property of our quantum groups, and
from Theorem 5.24, which produces the moments in Theorem 5.19. As for the last asser-
tion, this follows from some standard computations, based on the formulae above. U
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As an umbrella result now, summarizing all our knowledge, we have:

THEOREM 5.26. The asymptotic truncated character laws for the basic quantum per-
mutation and rotation groups, which are all easy, as follows,

Sy

o, NC NG,

SN ON P P2

are the Poisson, Gaussian, Marchenko-Pastur and Wigner laws py, g¢, 7, Ve, which appear
from the main limiting laws in classical and free probability,

S — FPLT FCLT

p—— g PLT ——— CLT

and which form semigroups related by the Bercovici-Pata bijection, “the classical cumu-
lants of the classical measures are equal to the free cumulants of the free measures”.

Proor. This follows from Theorem 5.19 and Theorem 5.25, and from the various
results leading to them. In fact, the present result summarizes our probabilistic knowledge
in the N — oo limit, with the only things left being the technical stationarity results for
S, O%, which from the present N — oo perspective look rather “accidental”. O

There are many ways of further extending the above results, and for a basic compu-
tation here, in the spirit of [59], we refer to [29]. Also, we will be back to this later, in
chapters 11-12 below, when doing reflection groups, with the result that the various square
diagrams in Theorem 5.26 can be suitably modified, and then completed into cubes.

5e. Exercises

We have seen a lot of basic theory and fundamental results in this chapter, and our
exercises here will be mostly about this. First, we have:

EXERCISE 5.27. Work out all the details of Theorem 5.1 above, and in particular the
claim that any morphism of Woronowicz algebras

f:(Au) — (B,v)

increases the moments of the main character, with f being an isomorphism precisely when
all these moments, or equivalently, the corresponding character laws, coincide.



128 5. LAWS OF CHARACTERS

As already mentioned before, all this can only come via a straightfoward application
of the Peter-Weyl theory. The problem is that of working out all the details.

In relation now with permutations and rotations, we have:
EXERCISE 5.28. Prove that for Sy, Oy, the convergences

law(x) = p1, 1

with N — oo, established above, are not stationary.

Here both results are actually quite obvious, or at least intuitive, and the problem is
that of finding the simplest argument which proves the non-stationarity, in each case.

In relation now with free probability, as a complement to the above, we have:

EXERCISE 5.29. Formulate and prove complexr analogues of the CLT and FCLT, and
then prove that the corresponding limiting laws Gy, 'y appear as limiting laws for the main
truncated characters of Uy, U}

Here in the classical case G; can only be the complex normal law, and everything
regarding it, meaning both CLT and character theory for Uy, can only be quite standard.
As for the free case, here things are more tricky, and waiting to be discussed, with the
resulting measure I'; being called the Voiculescu circular law.

In relation now with Weingarten integration, we first have:
EXERCISE 5.30. Write down the explicit formulae of Gy and of its inverse
Wiy = Giy
for the quantum groups Sy, On, Sy, O%, at small values of k € N.

Here the inversion question can be quite tricky, and so once you get to reasonably
high values of k € N, better look for estimates of Wj,y, and of its entries.

As a second exercise now regarding Weingarten integration, we have:

EXERCISE 5.31. Work out all the details for the integration formula
li k ||
dm s 2
weD(k)
in the uniform case.
This is something that we already discussed in the above, with the needed details
concerning the fact that in the uniform case, the Gram matrix, and so the Weingarten

matrix too, is asymptotically diagonal. We will be actually back to all this in chapters
7-8 below, when doing some more advanced Weingarten computations.



CHAPTER 6

Partial permutations

6a. Partial permutations

We discuss in this chapter an extension of some of the results that we have seen so far,
both of algebraic and analytic nature, from the case of the basic quantum permutation
and rotation groups, to their “partial semigroup” analogues:

Sy

ON e 0%

SN ON g]\[ 5N

As we will see, on several occasions in what follows, this extension goes beyond the
theoretical interest, with the study of the quantum semigroups Gy on the right often
leading to new results about the quantum groups G on the left themselves.

Let us start with a discussion concerning the semigroup S n of partial permutations of
{1,...,N}. This is a quite familiar object in combinatorics, defined as follows:

DEFINITION 6.1. Sy is the semigroup of partial permutations of {1 ..., N},
Sy = {U:X:Y‘X,YC {1,...,N}}
with the usual composition operation for such partial permutations, given by:
oo o7 (X' NY)—=d(X'NY)

Observe that Sy is not simplifiable, because the null permutation hes ~, having the
empty set as domain /range, satisfies o = o) = 0, for any o € Sy. Observe also that Sy
has a “subinverse” map, sending ¢ : X — Y to its usual inverse 07" : Y — X.

A first interesting result about this semigroup S ~, which shows that we are dealing
here with some non-trivial combinatorics, is as follows:

129
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PROPOSITION 6.2. The number of partial permutations is given by

N 2
~ N
=Y m ()

k=0

that 1s, 1,2,7,34,209, ..., and with N — oo we have:

30 exp(4V/N — 1)
|Sn| =~ N!\/ P~

PROOF. The first assertion is clear, because in order to construct a partial permutation
o : X — Y we must choose an integer k = | X| = |Y|, then we must pick two subsets
X,Y c {1,..., N} having cardinality k, and there are (]]Z) choices for each, and finally
we must construct a bijection o : X — Y, and there are k! choices here:

N

Snl = D #{X X[ =k}#{Y Y| =k}#{o: X ~ Y}

k=0

- (1) ()
_ kiok!(f]j)Q

As for the estimate, which is non-trivial, this is however something standard, and
well-known, and we refer here to the combinatorics literature. U
Another result, which is trivial, but quite fundamental, is as follows:
PropPoOSITION 6.3. We have a semigroup embedding wu : §N C Mn(0,1), defined by
1 ifo(j)=1
uij(0) = :
0 otherwise

whose image are the matrices having at most one nonzero entry, on each row and column.

PROOF. This is trivial from definitions, with u : Sy € My/(0,1) extending the stan-
dard embedding u : Sy C Mx(0,1), that we have been heavily using, so far. O

Let us discuss now some probabilistic aspects, related to the Poisson computations in
chapter 5. We denote by x : Sy — N the cardinality of the domain/range, which in terms
of the standard coordinates u;; from Proposition 6.3 is given by:

R = E uij
1j
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Let also x : Sy — N be the number of fixed points. As before in terms of the standard
coordinates u;; from Proposition 6.3, this variable is given by:

X:Zuii

More generally, given a number [ < N, we denote by y; : Sy — N the number of fixed
points among {1, ...,l}. The formula of this variable is:

!
Xt = Z Ug;
i=1

Generally speaking, we are interested in computing the joint law of (x;, k). There are
many interesting questions here, and as a main result on this subject, we have:

THEOREM 6.4. The real probability measures

k= law (Xl”f = k)

-2 (R0 5

and become Poisson (st) in the k = sN,l =tN, N — oo limit.

are given by the formula

PROOF. Observe first that at k = [ = N this result corresponds to the well-known
fact that the number of fixed points x : Sy — N becomes Poisson (1), in the N — oo
limit. More generally, at k = N this corresponds to the fact that the truncated character
X: : Sy — N becomes Poisson (t), in the [ = tN — oo limit.

In general, we can use the same method as for Sy, as explained in chapter 5 above,
namely the inclusion-exclusion principle. Let us set indeed:

gz(\’f) = {0 € gN‘m(a) = k}
By inclusion-exclusion, we obtain the following formula:

P (Xl = p‘/{ = k;)
_ |§](1§)| (;)# {0 e Sy?
1

l Z L=\ | gtk—p—r)
== =N — 1 "
’SA](\I/'C)‘ (p) 7,>0< ) ( r > ‘SN?pir

oi) #1i,Yi <1 p}
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Here the index r, which counts the fixed points among {1,...,l — p}, runs a priori up
to min(k,l) — p. However, since the binomial coefficient or the cardinality of the set on
the right vanishes by definition at » > min(k,l) — p, we can sum over r > 0.

We have the following formula:

N2
— Ll
1599 k(k)

By using this and then by cancelling various factorials, and grouping back into binomial
coeffiecients, we obtain the following formula:

B § (];jf <p_—k; 7“) (P -lF r) (Pfr) k

We can now compute the measure itself. With p = ¢ — r, we obtain:

o (=
) p;; '}"?T(p—]ir)(wr)(pfr) &
RO
O REEHGTE

The sum at right being (d; — dp)*?, this gives the formula in the statement.
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Regarding now the asymptotics, in the regime k& = sN,l = tN,N — oo from the
statement, the coefficient of (§; — 8y)*?/q! in the formula of yul is:

< ()

) ()

<
) ()
= (st)?

We deduce that the Fourier transform of p is given by:

12

(v — 11
Fu)(y) =~ Z(St)qT
q>0 )
_ 6st(ey—l)
But this is the Fourier transform of Poisson (st), and we are done. u

Observe that the formula in Theorem 6.4 shows in particular that we have the following
equality, valid for any integers k,[ € N:
! k
i = 1y
This is an interesting equality, which seems to be quite unobvious to prove, with bare
hands. We will be back to this with more comments, later on.

6b. Quantum semigroups

Let us discuss now the construction and main properties of the quantum semigroup
of quantum partial permutations Sy, in analogy with the above classical considerations.
For this purpose, let us go back to the embedding in Proposition 6.3, namely:

U : gN C MN(O,l)

uij(0) = dio(j)

The image of this embedding being formed by the matrices ¥ € My(0, 1) having at
most one nonzero entry, on each row and column, the matrix u = (u;;) is “submagic”, in
the sense that its entries are projections, which are pairwise orthogonal on each row and
column. In fact, Gelfand duality shows that we have the following formula:

C(Sn) =C;, ((Uij)i7j:17._.,N’U = submagic>

comm

This suggests the following definition, given in [36]:
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DEFINITION 6.5. C’(gj\“,) 15 the universal C*-algebra generated by the entries of a N x N
submagic matrixz u, with comultiplication and counit maps given by

Alugy) = Zuzk X Ug;j
k

e(uig) = 0y
where “submagic” means formed of projections, which are pairwise orthogonal on rows
and columns. We call S§; semigroup of quantum partial permutations of {1,..., N}.

Here the fact that the morphisms of algebras A, ¢ as above exist indeed follows from the
universality property of C(Sy), with the needed submagic checks being nearly identical
to the magic checks for C'(S};), from chapter 2 above.

Observe that the morphisms A, e constructed in this way satisfy the usual axioms for
a comultiplication and antipode, namely:
(A ®id)A = (id® A)A
(e®id)A = (id®e)A =id
Thus, we have a bialgebra structure of 0(5;), which tells us that the underlying

noncommutative space gf{, is a compact quantum semigroup. This semigroup is of quite
special type, because C'(S5) has as well a subantipode map, defined by:
S(uij) = uji
To be more precise here, this map exists because the transpose of a submagic matrix

is submagic too. As for the subantipode axiom satisfied by it, this is as follows, where
m®) is the triple multiplication, and A® is the double comultiplication:

mP(S®id® S)A® = 3
Observe also that A, e, S restrict to C (§ ~), and correspond there, via Gelfand duality,

to the usual multiplication, unit element, and subinversion map of Sy.

As a conclusion to this discussion, the basic properties of the quantum semigroup §;§
that we constructed in Definition 6.5 can be summarized as follows:

PROPOSITION 6.6. We have maps as follows

C(S%) — C(S%) S o sk
i i : U U
C(gN) — C(SN) §N O Sy

with the bialgebras at left corresponding to the quantum semigroups at right.
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PROOF. This is clear from the above discussion, and from the well-known fact that
projections which sum up to 1 are pairwise orthogonal. See [36]. O

As a first example, we have S =38 At N =2 now, recall that the algebra generated
by two free projections p,q is isomorphic to the group algebra of Do, = Zs * Zy. We
denote by € : C*(Dy) — C1 the counit map, given by the following formulae:

e(l)=1
e(...pgpq...) =0
With these conventions, we have the following result, from [36]:

PROPOSITION 6.7. We have an isomorphism

O(55) = {(2.9) € C*(Dx) & C* (Do) |o(@) = £()}

which is given by the formula
u— (PO 0 0dr
- \0Ps g0

where p,q and r, s are the standard generators of the two copies of C*(Dyo).
Proor. Consider an arbitrary 2 x 2 matrix formed by projections:
u::(P R)
S Q
This matrix is submagic when the following conditions are satisfied:

PR=PS=QR=QS=0

Now observe that these conditions tell us that the non-unital algebras X =< P, Q) >
and Y =< R, S > must commute, and must satisfy zy = 0, for any x € X,y € Y.

Thus, if we denote by Z the universal non-unital algebra generated by two projections,
we have an isomorphism as follows:

CSH~CloZaZ
Now since we have C*(Dy,) = C1 @ Z, we obtain an isomorphism as follows:
<x@7:{u+mx+mxecﬂmez}
Thus, we are led to the conclusion in the statement. See [36]. O

Let us extend now to our free setting the classical results. Proposition 6.2 has no free
analogue, because S, is infinite. Proposition 6.3 was already extended, as being part of
Definition 6.5. Regarding now Theorem 6.4, we first have:
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PROPOSITION 6.8. The following two elements of C’(gf{,) are self-adjoint,
X:ZUM’, H:ZUU
i ij

satisfy 0 < x, k < N, and coincide with the usual X,k on the quotient C(gN).

PRrROOF. All the above assertions are clear from definitions, with the inequalities 0 <
X, k < N being taken of course in an operator-theoretic sense. U

More generally, we can talk about truncations of the variable y constructed above,
with respect to a parameter [ € {1,..., N}, which are constructed as follows:

l
Xt = Z U
i=1

Let us look now at Theorem 6.4. Since C (5;) has no integration functional, we cannot
talk about the joint law of (x, ). Thus, we need an alternative approach to p.

For this purpose, we use the following simple observation:
PROPOSITION 6.9. Any partial permutation o : X ~Y can be factorized as
X Z Y

{1k ——— {1, k)

with o, B,y € Sk being certain non-unique permutations, where k = k(o).

PROOF. Since we have | X| = |Y| = k, in order to reach to the factorization in the
statement, we can choose any two bijections X ~ {1,...,k} and {1,...,k} ~ Y, and
then complete them up to permutations v, € Sy. The remaining permutation 5 € S
is then uniquely determined by the formula o = af~. O

We can now formulate an alternative definition for the measures ul. We fix k < N,
and we denote by p, ¢, r the magic matrices for Sy, Sk, Sy. We have:

PROPOSITION 6.10. Consider the map ¢ : Sy X Sp X Sy — Sy, sending (e, B,7) to
the partial permutation o : v H{1,... k} ~a{l,...,k} given by:
a(v7H(t) = a(B(1))
(1) The image of ¢ is the set SW = {o € Sy|r(c) = k}.
(2) The transpose of ¢ is given by ¢*(u;;) = Zsjtgk Dis @ st @ T
(3) . equals the law of the variable p*(x;) € C(Sny x Sy X Sn).
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PRroOF. This is an elementary statement, whose proof goes as follows:

(1) Since a,v € Sy, the domain and range of the associated element o € Sy have
indeed cardinality k. The surjectivity follows from Proposition 6.9 above.

(2) For the element o € Sy in the statement, we have:

o(j) =i

3t < kv Ht) = j,a(B(t) =i
Js,t <k, yTH(t) = 5, B(t) = s, a(s)
Js,t < k,ry(7) = 1,q(8) = 1, pis(c
35,1 <k, (Pis ® qat @ 145) (v, B,y) =

uij(a) =1

l
=1

LN

111

Now since the numbers s,t < k are uniquely determined by «, 8,7,1, 7, if they exist,
we conclude that we have the following formula:

ui(o) = Z (Pis ® ot @ 145)(x, B, )

s,t<k

But this gives the formula in the statement, and we are done.

(3) This comes from the fact that the map ¢r : Sy X Sp X Sy — gj(\lf) obtained by
restricting the target of ¢ commutes with the normalized (mass one) counting measures.
At k = N this follows from the well-known fact that given («,,7) € Sy X Sy X Sy
random, the product a5y € Sy is random, and the general case is clear as well. U

The point now is that we can use the same trick, “c = af7v”, in the free case. The
precise preliminary statement that we will need is as follows:

PROPOSITION 6.11. Let p,q,r be the magic matrices for Sy, S}, S%.

(1) The matriz U;; = Zs,tgk Dis @ qst @ 145 15 submagic.
2) We have a representation T : C(gj(,) — C(S% x S x 8%, m(uy) = Uy,
) T factorizes through the algebra C(S;\r,(k)) =C(SY)/ <k=k>.

) At k = N, this factorization m, commutes with the Haar functionals.

(
(3
(4

PROOF. Once again, this is an elementary statement, whose proof goes at follows:
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(1) By using the fact that p, ¢, r are magic, we obtain:

UijUil = Z Z DisPiv @ qstGuw @ Tt5Twl

s,t<k v,w<k

= D ) Pis @ G @ i

s,t<k w<k

= Zpis®qst®7"tj7’tl

s,t<k

= ;U
The proof of U;;U;; = 6;U;; is similar, and we conclude that U is submagic.
(2) This follows from (1), and from the definition of C/(S%).

(3) By using the fact that p, ¢, are magic, we obtain indeed:

ZUij = Zzpi5®qst®7“tj
1j

1] s,t<k

= Zl®qst®1

s,t<k

= k
Thus the representation 7 factorizes indeed through the algebra in the statement.

(4) This is a well-known analogue of the fact that “the product of random permutations
is a random permutation”, that we already used before. Here is a representation theory
proof, using Peter-Weyl theory. With P = Proj(Fixz(u®")), we have:

/ Ull]lUln]n
ShxSEHxSst

- E /+ pilsl .. -pinsn /+ qsltl L antn /+ Ttljl ... Ttnjn
st SN SN SN

- § -Pil...in,sl...snPsl...sn,tl...tnPtl...tn,jl...jn
st

= Pil-~.in7j1--.jn

- / WUiygy + - - Wipgn
S+

N

Thus 7 commutes indeed with the Haar functionals, and we are done. U
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Observe that, since k is now continuous, 0 < k < N, the algebras C' (§;\r,(k)) constructed
above don’t sum any longer up to the algebra C(S};) itself. Thus, in a certain sense, the
above measures p!. encode only a part of the “probabilistic theory” of Sj..

We can however formulate a free analogue of Theorem 6.4, as follows:

THEOREM 6.12. The measures k= law(m (1)), where m, is defined as

me: C(SH) = C(Sh x Sf x St

Ui — Z Dis @ qst Q Ttj

s,t<k
become free Poisson (st) in the k = sN,l =tN, N — oo limit.
PROOF. Observe first that at k = [ = N this corresponds to the fact that the law of

the main character y : Sy, — N becomes free Poisson (1), in the N — oo limit. Unlike in
the classical case, the convergence here is stationary, starting from N = 4.

More generally, at & = N this corresponds to the fact that the truncated character
Xt : S — N becomes free Poisson (), in the [ = tN — oo limit.

In general, we can use the same technique, namely the moment method, and the
Weingarten formula. The variable that we are interested in, x} = m4(x;), is given by:

XQZZZ%S@%@M

i<l s,t<k

By raising to the power n and integrating, we obtain the following formula:

l\n
Y
ShxS xS
- E E / pilsl .- ‘pinsn / QSltl ... antn / Ttlil ... rtnin
SN Sy SN

1a<l sa,ta<k
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By using now the Weingarten formula, the above moment is:

= D > al@s(s)Wan(a, B) - 8,(5)85()Wak (7, 8) - 8- (£)3,()) Wan (£, p)

ist a..peNC(n)

= D Wan(@, OWar(y.6)Wan(e, ) Y 8a(i)d5(5)d, (5)85()8-(1)5,(0)

o...peENC(n) ist

= Z Wan(a, B)Wak(v, 0)Wan (€, p) Z 5avp<i)5ﬂ\/'y(5)5¢$w ()

a..peNC(n) ist

= Z WnN(aa B)Wnk(’ya 6>WnN(57 P) ' l|a\/p|k|,8V'y|k|5\/5\

o...peNC(n)

Let us examine now the asymptotic regime k£ = sN,[ = tN, N — oo in the statement.
We use here two standard facts from [24], namely the fact that in the N — oo limit the
Gram and Weingarten matrices are concentrated on the diagonal, and the fact that we
have the following estimate, with equality when 7 = o

|| + |o]
Vo| < ——
TV ol < 5
By using this, we obtain, as in [24]:

Ch Z N-lelp=h y—lel . flavelglavylplrvvel
a,7,eENC(n)

E N lal=lI=lel+lavel+laval+yvel | c=lvl+lavyl+ivve| | tlave|

12

a,7,6€NC(n)

> (st)

aeNC(n)

12

We recognize at right the well-known formula for the moments of the free Poisson law
of parameter st, and this finishes the proof. O

As a conclusion, with Theorem 6.4 and Theorem 6.12 in hand, and by using the well-
known fact that Poisson (st) — free Poisson (st) is indeed a liberation, in the sense of
free probability [40], [93], we can now state that Sy — S5 is a “correct” liberation.

_ As a final comment on this, we have seen in the above that the semigroups S ~ and
S naturally split into a number of components, which basically appear as homogeneous
spaces over products of quantum groups Sy and S3;. It is possible to be a bit more precise
here, and we will be back to this later on, with a number of comments on this.
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6¢c. Partial isometries

We discuss now the continuous analogues of the above constructions, involving this
time rotations and quantum rotations. Our starting point will be:

DEFINITION 6.13. Oy is the semigroup of partial linear isometries of RV,

5N:{T:A—>Bisometry A,BC]RN}

with the usual composition operation for such maps, namely:
TT:T ' (ANB)— T (ANB)
As a first remark, 5N is indeed a semigroup, with respect to the operation in the
statement, and this is best seen in the matrix model picture, as follows:
PROPOSITION 6.14. We have an embedding Ox C My(R), obtained by completing
maps T : A — B into linear maps U : RY — RY | by setting Ujar = 0. Moreover:

(1) This embedding makes 5N correspond to the set of matriz-theoretic partial isome-
tries, i.e. to the matrices U € My(R) satisfying:

UU'vU =U

(2) The semigroup operation on On corresponds in this way to the semigroup opera-
tion for matriz-theoretic partial isometries, namely:

UoV =UUUANVVHV
PrOOF. All these assertions are well-known, and elementary. For a vector space

C = A, B let indeed I : C C RY be the inclusion, and P. : RY — C be the projection.
The correspondence 71" <+ U in the statement is then given by:

A T B A T B
Py Ip Ia Pp
RN RN RN RN
U U

The fact that the composition U o V' is indeed a partial isometry comes from the fact
that the projections U'U and V'V are absorbed when performing the product:

UUUANVVHY - VHUUAVVHU - UUU AVVHV =UUUAVVHV
Thus, we are led to the conclusions in the statement. U

In general, the multiplication formula U o V = U(U'U A VV*')V in Proposition 6.14
(2), while being quite complicated, is quite unavoidable.
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In view of some future liberation purposes, we would need a functional analytic inter-
pretation of it. We have here the following result:

PROPOSITION 6.15. C(@N) is the universal commutative C*-algebra generated by the
entries of a N x N matriz v = (u;;) satisfying the relations

u=u , wulu = u
with comultiplication given by the formula

(Zd X A)U = ulg(plgg VAN qlg)ulg = nh—>nc}o Urlv]tL . UtU

2n+1 terms
where p = wu',q = u'u and U;j; = Y, wip @ uyy.

PROOF. The presentation assertion is standard, by using the Gelfand and Stone-
Weierstrass theorems. Let us find now the comultiplication map of C(Oy). For this
purpose, consider the following canonical isomorphism:

®: C(Oy) ® C(Oy) = C(Ox x Oy)
Consider as well the following map:
Lij(UV)=UoV);
With these conventions, the comultiplication map of C' (5 ~) is given by:
Aluij) = @71 (Lyy)

In order to write now the map L;; in tensor product form, we can use the following
well-known formula:

PAQ = lim (PQ)"

n—oo

More precisely, with P = VV! and Q = U'U, we obtain the following formula:

(UoV)y = Z Ui(P A Q)i
kl
= lim Y Uu(PQ)iVy
kl

With ay = k, as, = [, and by expanding the product, we obtain:

(U © V)U = nh_E{.lo E : UiaOPaoal Qamz s Pa2n—2a2n—lQa2n—la2n V;Iznj

ag...a2n

= lim E UiaoQalaz s QaQn—lazn ’ Paoa1 s Pazn—Qazn—l ‘/;Lan

n—00
ag...a2n
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Now by getting back to A(u;;) = ®(Ly;), with L;;(U, V) = (U o V);;, we conclude
that we have the following formula, with p = vu! and ¢ = v'u:

A(“U) = nh_{{.lo Z UiagGaras - - - Qasn—1a2, @ Pagay - - - Pazy—2a2n—1Uasnj
ag...a2n
Let us expand now both matrix products p = uu! and ¢ = u'u. In terms of the element

Uij = >, Wik ® uy; in the statement, the sum on the right, say Sf;l), becomes:

Si(;'l) = Z Uiag (W) ayas - -+ (W) a3, a5, @ (Ut )ggay - - - (uut)a2n72a2nflua2nj
as

- § WiaoUbyar Ubras - - - Ubpasy—1 Ubnasy ® UagerUarer -+ - Uazy_ocn Wazn—1cn Wasyj

asbscs

- E Uicl Ublcl Ub102 A Ubncn Ubn]

bscs
= (UU'...U'U);
~——
2n+1 terms

Thus we have obtained the second formula in the statement. Regarding now the first
formula, observe that we have U = ujouy3. This gives:

UUt N UtU = (ulgulg)(ut13ut12) e (u§3u§2)(u12u13)
2n+1 terms

o (urgts) (ugstinz) - - - (Ur3uns) (Urui2)tng
= U12P13912 - - - P13G12U13
Now since the product on the right converges in the n — oo limit to u12(p13 A q12)u1s,
this gives the first formula in the statement as well, and we are done. U
Observe that if we further assume that w is unitary, or that its entries satisfy the
condition u?j = pij (projection) with p = (p;;) magic, then UU*U = U, so the convergence
in the formula of A is stationary, and we obtain A(u;;) = U;;.

Thus, we can recover in this way the fact that both the inclusions Oy C Oy C My (R)
are semigroup maps, with respect to the usual multiplication of the N x N matrices. We
will be back to this observation, directly in the free case, in Proposition 6.18 below.

Let us construct now the liberations. We have here the following definition:
DEFINITION 6.16. To any N € N we associate the following algebra,

C(0%) =C* ((uz‘j)i,y‘:l,m,zv

*

YR

Ujj = U wu' = p, projection)

and we call the underlying object 6} space of quantum partial isometries.
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As a first observation, due to the presentation results in Proposition 6.15, we have an
inclusions Ox C OF;. We have as well a liberated version of Proposition 6.14, or rather
of the last assertion there, the rest being already known.

These functoriality statements are best summarized as follows:

PROPOSITION 6.17. We have embeddings of compact quantum spaces as follows,

Oy O

On On

and the compact quantum spaces on the right produce the compact quantum groups on the
left by dividing, at the algebra level, by the relations

p=p=q=q¢=1
where ¢ = u*u and ¢’ = u'u, as in Definition 6.16.

PROOF. It follows from definitions that we have embeddings as above. Regarding now
the second assertion, in the case of OF;, the relations p = p' = ¢ = ¢’ = 1 read:

We deduce that both u,u! are unitaries, and so when dividing by these relations we
obtain the quantum group O3. As for the result regarding the classical versions, this is
clear too, by dividing by the commutation relations ab = ba. U

Let us discuss now the multiplicative structure. We have here:

PROPOSITION 6.18. 6;(, has a non-associative multiplication given by

(Zd X A)u = U,lg(plg A qlg)’ulg = nhjglo UUt Ce UtU

2n+1 terms
where p = wu',q = v'u and Uy; = 3", wi @ ug;. The embeddings
On, 0% c OF
commute with the multiplications.

ProoOF. First of all, the equality between the two matrices on the right in the state-
ment follows as in the proof of Proposition 6.15. Let us call W = (WW;;) this matrix.
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In order to check that A(w;;) = W;; defines indeed a morphism, we must verify that
W = (W,;) satisfies the conditions in Definition 6.16. We have:
WWW = uis(pis A qua)uns - uiz(pis A qua)uls - waa(prs A qr2)us
= u12(P13 A q2)P13(P13 A qu2)p12(pis A qi2)uas
= u(p13 A qi2)uiz =W
Regarding now the last assertion, for the inclusion 5N C 5;{, this is clear. For the

inclusion OF; € O this is clear too, because with p = ¢ = 1 we obtain (id ® A)u = U,
which is the usual comultiplication formula for C(OF). 0

Let us discuss now probabilistic aspects. We will see that, while our space 5;{, is not
a semigroup, the Bercovici-Pata bijection criterion is satisfied for it.

We use the same method as for g};, namely a “oc = afvy” type trick. So, pick an
exponent o € {(}, +}, set x =} u;;uf;, and consider the following algebra:

i
C(OPy =C(0%)) < k=k >

With this convention, we have the following result:

PROPOSITION 6.19. For any o € {0, +} we have a representation

e s C(OM) = C(0% x 08 x O%)

i (uij) = Z Dis @ st & Tt

s,t<k

which commutes with the Haar functionals at k = N.

PROOF. In the classical case, the first observation is that any partial isometry T :
A — B, with the linear spaces A, B C R" having dimension dim(A4) = dim(B) = k,
decomposes as T = UVW , with U W € Oy and V € O:

A r B

w U

R* R*

|4

We conclude that we have a surjection ¢ : Oy X O X On — O](\];) mapping (U, V, W) to
the partial isometry T': W=Y(RF) — U(RF) given by T(W ~tx) = U(Vz). By proceeding
now as in the proof of Proposition 6.10 (2) above, we see that the transpose map 7 = ¢*
is the representation in the statement, and we are done with the classical case.
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In the free case, this is a straightforward extension of Proposition 6.11 above. Let us
first check that the matrix U = (U;;) formed by the elements appearing on the right in
the statement satisfies the partial isometry condition. We have:

(UUtD) Z UnUn Ui

Z Z Z Z DisProPly ® qstQuwyz ® Ttk TwkT zj

kl st<kv,w<ky,z<k

= Z Z Dis & qstotqu @ sz

= Z Dis & (sz X sz
$,2<k

Since u;; = uy; - implies U;; = U}’

+;» this proves the partial isometry condition.

Let us ckeck now that the representation that we have just constructed vanishes on
the ideal < kK = k£ >. We have:

Z Uz]UZt] = Z Z Z DisPiv @ qstGow & TtiTwy
]

i s,t<kv,w<k

= Z 1®Qstht®1

s,t<k
=k
Thus we have a representation 7, as in the statement. Finally, the last assertion is
already known, from the proof of Proposition 6.11 (3). O

With the above result in hand, we can construct variables x} and then real probability
measures /i exactly as in the discrete case, in the following way:

Xk = me(x1)

py, = law(x;,)
With these conventions, we have the following result, which is similar to the analytic
liberation result obtained in the above for the liberation operation S N — Sy St

THEOREM 6.20. The partial isometry semigroup liberation operation
5]\[ — 67\_7
is an analytic liberation, in the sense that we have the Bercovici-Pata bijection for

Mfc = m(x1)
in the k = sN,l =tN, N — oo limit.
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PRrooFr. This follows by using standard integration technology, from [23], [37], [52].
More precisely, the Weingarten computation in the proof of Theorem 6.12 above gives the
following formula, in the k = sN, I = tN, N — oo limit, where D(n) C P(n) denotes the
set of partitions associated to the quantum group Of under consideration:

lim )= D (st
N=00 /o3 x09x0%, acD(n)

On the other hand, we know from [23], [37], [52] that the law of the truncated
character y; is given by the following formula, in the [ = tN, N — oo limit:

[ e ¥ e
*J0% aeD(n)

We conclude that in the k = sN, [ = tN, N — oo limit, we have the following equality
of distributions:

li L _ li sl
= i
Thus, we are led to the conclusion in the statement. Il

With the above results in hand, the same comments as in the discrete case apply. In
particular, we have seen that the semigroups Oy and O} naturally split into a number
of components, which basically appear as homogeneous spaces over products of quantum
groups Oy and OF;. We refer here to the literature on the subject.

6d. Configuration spaces

Let us go back now to permutations and quantum permutations, and discuss a number
of more specialized questions. Let us start with the following definition:

DEFINITION 6.21. The diagonal algebra of C(Sy) is defined as
D(SN) =< U11y...,UNN >C C(SN)
with w;; being as usual the standard generators of the algebra C(Sy).

As a first observation, the diagonal algebra D(Sy) constructed above is generated by
the characteristic functions wu;; of the following sets:

St = {a € SN‘U(i) = z}
Our claim now is that we have the following formula:
dim D(Sy) =2N - N

Indeed, the sets S are in “almost” generic position, leading to a dimension of 2%V, but
up to the following constraint, which lowers the dimension by N:

Shn..nSv1=8'n. .. NSV
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We have in fact the following result:
PROPOSITION 6.22. The “configuration space” Sy — En given by
C(En) = D(Sn)
appears as follows, where T = Zs is the standard real torus, or cube,
Ey=Tx
and where Tx C T s a certain subspace, obtained by removing N points.

PROOF. Since the diagonal coordinates wu; are commuting projections, we have a
quotient map C*(Z5) — D(Sy), obtained via Fourier transform, which at the dual level
corresponds to an embedding of spaces Fy C Ty, as indicated in the statement. Il

Let us discuss now the semigroup case. With C' (§ ~N) =< u;; > as before, we can define
the diagonal subalgebra of C'(Sy) as follows:

D(Sy) =< ui1,...,uxy >C C(Sy)
This algebra is generated by the characteristic functions wu;; of the following sets:
St = {a € §N‘a(i) = z}
Since the sets S? are now in generic position, we have the following formula:
dim D(Sy) = 2V
We have in fact the following result:
PROPOSITION 6.23. The “configuration space” Sy — Ey given by
C(Ey) = D(S)
appears as the standard real torus, or cube:
Ey =Ty
PROOF. As before, we have a quotient map C*(ZY) = D(Sy), which at the dual level
corresponds to an embedding of spaces Ey C Ty, which must be an equality. U
We can perform the same construction in the free case, as follows:
D(S%) =<, ...,uny >C C(S¥)

Here the situation changes, and becomes much more interesting, because by [2] the
irreducible representations have the same fusion rules as SOj, and in particular their
characters are polynomials in the main character x = ). u;. Thus, we have:

C(S]—G)central C D(S]T[)

In relation with tori now, we have the following result:
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PROPOSITION 6.24. The “configuration space” Sy, — Ef; given by
C(EY) = D(Sy)
appears as a subspace of the free real torus:
EY C Ty

PROOF. As before, we have a quotient map C*(Z3") — D(S};), which at the dual
level corresponds to an embedding of spaces E}; C Ty, as indicated in the statement. [J

Finally, in order to complete the picture, we can perform the same construction in the
free semigroup case, in a similar way, as follows:

D(SH) =< uyy, ..., uny >C C(SH)
In relation with tori now, we have the following result:
PROPOSITION 6.25. The “configuration space” gj{, — E;} given by
C(Ey) = D(Sy)
appears as a subspace of the free real torus:
EfL Ty

PROOF. As before, we have a quotient map C*(Z3") — D(S}), which at the dual

level corresponds to an embedding of spaces E}; C Ty, as indicated in the statement. [

As a conclusion to all this, we have a diagram as follows, with all maps being inclusions,
and with the vertical inclusions being liberation operations:

Ey E,

Ex Ex

This diagram sits inside the diagram formed by the real tori:

Ty Ty

Tn
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We already know that on the bottom, the two tori there are the correct ones. We will
see now that the tori on top are the correct ones at well, except for the torus on top left,
which at N = 2,3 collapses to T'y. To be more precise, we have the following result:

THEOREM 6.26. The inclusion E3; C Ty is an equality at N > 4.

PROOF. The problem here is that of computing the following functional, and compar-
ing it to the Haar functional of T} :

0:C(Ty)— C(EY) C C(Sy) — C
But this leads to the conclusion that ¢ is strictly positive, giving the faithfulness of
the quotient map C(Ty) — C(EY). O

As a consequence of the above result, in what regards the quantum partial permuta-
tions, we have £y = Ty as well at N > 4. This equality holds in fact in general:

THEOREM 6.27. The inclusion Ef; C T is an equality at any N > 2.

PROOF. As already mentioned, Theorem 6.26 shows that the result holds at N > 4.
Thus, we are a priori led to a study at N = 2,3. However, in view of some further use,
later on, we will need to know the formula of the following formal composition:

¢ C(TY) = C(Ef) c C(SH) = C

The problem is that the functional on the right is not well-defined, but we can deal
with this via an homogeneous space “chopping” of S}, and we obtain the result. U

There are several interesting probabilistic questions, in relation with all this, appearing
at N = oco. Consider indeed the following “diagonal” variables:

Xs = Zuu

€S

Here S C N is a subset, and in order for things to work, we will asssume that S is
“uniform”, in the sense that we have the following formula, for a certain ¢ € (0, 1]:

1,...,N
LolSn{L. N

t
N—o0 N

Stricly speaking we have x, = 0o, so we will be doing something formal here. We
start by picking numbers ay > 0 with ) ay = 1, so that we can define a probability
measure on Sy, by the following formula:

Moo = Qofbo + Q1fb1 + Q22 + . ..
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We have then the following computation, in a formal sense:

Pulxs =k) = D anPy(xs = k)

tk t 2 Nty
N

th —t)N
= E (GN+GN+1+...)( )
N

Now observe that with ay = 2 (1 — ) with 2 € (0, 1), this formula becomes:

Poolis = k) = %Z(l—x)(ﬂm“w...)(_”

N!
tk (—tx)N
TR XN: N1

tke—tx
T K
With x — 1 we therefore obtain the following formula:
, t*
lim Poo (xs = k) = 11

Summarizing, we have reached to the formal conclusion that the “variable” yg = oo
is Poisson(t) with respect to the following “measure” on Sy:

_ 1 N _
um—}gi%;x (1—2)pn

In order to further clarify this, let us start with the classical case, that of the group S..
Here, in order to specify the integration functional, we would like to compute integrals
of products of diagonal coordinates wu;;. The problem however is that all these integrals
vanish, no matter of our choice for the weights ay > 0 of the integration:

/ WUgygq -+ - - Wipgy, = 0
oo

Thus, things are quite tricky here, and instead of considering such integrals, which
are all 0 and with this being the end of the story, we should rather consider integrals of
products of sums of variables u;;, with these sums being suitably “big”, as for the integral
to be non-vanishing. But we are led in this way precisely into truncated characters, in
the modified sense explained above, with the resulting integrals being:
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To be more precise, here we have S; C N for any ¢, and with these subsets being

“uniform” with corresponding parameters t1, ..., t; € (0,1], in the following sense:
S;n{l,...,N
fim 1200 oy,
N—o0 N

But the above integrals are not very far from those computed in above, and so a
clarification of the material above, along with a free extension, will lead us not very far
from a solution to the key problem of construcing an algebra of type D(ST).

6e. Exercises

Things in this chapter have often been related to various research questions, and our
exercises here will be research-level as well. First, we have:

EXERCISE 6.28. Construct an explicit embedding of type
§N C SQN
and then variables over Son extending our variables x, k.

Here there are of course many possible answers to the first question, but assuming that
the answer to this first question is found in the most straightforward way, our variables
X,k : Sy — N should then correspond to the variables Xieft, Xright : S2nv — N counting
respectively the number of fixed points in {1,..., N}, and in {N +1,...,2N}.

As a second exercise now, which is something longer, dealing with most of what we
have been doing here, both in the discrete and the continuous case, we have:

EXERCISE 6.29. Reformulate all the probabilistic computations for

e %

S On

in terms of suitable homogeneous spaces over the corresponding quantum groups.

The answer can be actually found in the literature, so the question is that of finding
that literature, and making a brief account of it, in the cases that we are interested in.

Finally, in relation with diagonal algebras and configuration spaces, we have:
EXERCISE 6.30. Develop some theory for the diagonal algebra D(ST).

To be more precise here, ST itself is not defined, and the problem is that of talking
however about D(S1), based on the computations did in the above.



CHAPTER 7

De Finetti theorems

7a. Invariance questions

An interesting question, which often appears in theoretical probability, as well in
connection with various questions coming from physics, is the study of the sequences of
random variables xy, z9, x3,... € L®(X) which are exchangeable, in the sense that their
joint distribution is invariant under the permutations o € Su.:

By o as,... = Hay1),00(2)%0(3)

This question is solved by the classical De Finetti theorem, which basically says that
the variables x1, x5, x3, ... must be i.i.d., in some asymptotic sense.

The De Finetti theorem has many generalizations. One can replace for instance the
action of the group S, = UnySny by the action of the bigger group O, = UnOpy, and
the sequences 1, T9, x3, ... € L>(X) which are invariant in this stronger sense, which are
called “rotatable”, can be characterized as well, via a De Finetti type theorem.

All this is interesting for us, in connection with what we have been doing so far, in
this book. On one hand the groups Sy, Oy are easy, and we would like to understand
how the above-mentioned De Finetti theorems, involving Sy, Oy, as well as their various
technical generalizations, follow from the easiness property of Sy, Oy. On the other hand,
we would like to understand as well what happens for S¥, Of.

Long story short, we would like to discuss here probabilistic invariance questions with
respect to the basic quantum permutation and rotation groups, namely:

SN O}

SN

On

We will discuss all this following the classical theory of the De Finetti theorem, then
the paper [73], then the paper [55], and then the paper [30].

153
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Let us start by fixing some notations. As we did before, on several occasions, we will
use here the formalism of the orthogonal quantum groups, which best covers the 4 main
examples that we are interested in. We first have the following definition:

DEFINITION 7.1. Given a closed subgroup G C OF;, we denote by

Oé:(c<t1,...,t]v>—>C<t1,...,tN>®C(G)
tzézt]@)u]z
J

the standard coaction of C(G) on the free complex algebra on N variables.

Observe that the map « constructed above is indeed a coaction, in the sense that it
satisfies the following coassociativity and counitality conditions:

(id® A)a = (a®id)a
(id®@e)a=1id

With the above notion of coaction in hand, we can now talk about invariant sequences
of random variables, as follows:

DEFINITION 7.2. Let (B,tr) be a C*-algebra with a trace, and xi,...,xn € B. We
say that x = (x1,...,xyN) is invariant under G C OF; if the distribution functional

uz:(C<t1,...,tN >— C
P — t’I"(P(.CEl, e ,.Z'N))
18 tnvariant under the coaction «, in the sense that we have
(ke @ id)a(P) = p1z(P)
for any noncommuting polynomial P € C < ty,...,ty >.

In the classical case, where G C Oy is a usual group, we recover in this way the usual
invariance notion from classical probability. This is clear indeed from definitions.

We have the following equivalent formulation of the above invariance condition:

PROPOSITION 7.3. Let (B, tr) be a C*-algebra with a trace, and xy,...,xy € B. Then
x = (z1,...,7N) is invariant under G C OF precisely when
tT’(ZL’Z’l Ce ZL’Zk> = Z t?”([)’}jl .. "rjk)ujlil e ujkik
J1--Jk

as an equality in C(G), for any k € N, and any i1, ...,ix € {1,...,N}.
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PROOF. By linearity, in order for a sequence x = (x1,...,zy) to be G-invariant in the
sense of Definition 7.2 above, the formula there must be satisfied for any noncommuting
monomial P € C < ty,...,ty >. But an arbitrary such monomial can be written as

follows, for a certain k € N, and certain indices 7y, ...,9; € {1,..., N}:

Now with this formula for P, we have the following computation:

(,U,a; X zd)a(P) = (um X ld) Z tjl .- 'tjk ® Wgyiy -+ - Wiy

J1seensJke
= E Mz (tjl .- 'tjk)ujih - Uiy,
J1yeeJk
= E t?“(l'jl e -’”jk)ujm Ce ujkik
J1---Jk

On the other hand, by definition of the distribution pu,, we have:
pe(P) = palti . ty)

= tr(zy...z;)
Thus, we are led to the conclusion in the statement. U

As already mentioned after Definition 7.2, in the classical case, where G C Oy is a
usual compact group, our notion of G-invariance coincides with the usual G-invariance
notion from classical probability. We have in fact the following result:

PROPOSITION 7.4. In the classical group case, G C Oy, a sequence (xy,...,Ty) is
G-invariant in the above sense if and only if

Jie-Jk
for any k € N, any iy,...,ix € {1,...,N}, and any g = (g;5) € G, and this coincides
with the usual notion of G-invariance for a sequence of classical random variables.

PROOF. According to Proposition 7.3, the invariance propery happens precisely when
we have the following equality, for any &k € N, and any iy,...,4; € {1,...,N}:

tT(ZL’il e ZL'Zk) = Z tT(ZEjl .. .xjk)ujlil cee Ugpig
Ji---Jk
Now by evaluating both sides of this equation at a given group element g € G, this
leads to the conclusion in the statement. O

Summarizing, we have so far a quite general notion of invariance, generalizing the
classical notions of exchangeability and rotatability, than we can use for reformulating
the classical De Finetti problematics, and its various generalizations.
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In order to formulate De Finetti type theorems, that we can try to prove afterwards,
we are still in need of some theory, and of many definitions. Indeed, in the classical De
Finetti theorem, the independence occurs after conditioning. Likewise, we can expect the
free De Finetti theorem to be a statement about freeness with amalgamation.

Both these concepts may be expressed in terms of operator-valued probability theory,
that we will recall now. There are many things to be said here, and in what follows we
will mainly present the main definitions and theorems, with some brief explanations.

First, we have the following definition:

DEFINITION 7.5. An operator-valued probability space consists of:

(1) A unital algebra A.
(2) A unital subalgebra B C A.
(3) An expectation E : A — B, which must be unital, E(1) = 1, and satisfying

E(blabg) = blE(a)bg
for any a € A, and any by,bs € B.

Given such an operator-valued probability space, the joint distribution of a family of
variables (z;);c; in the algebra A is by definition the following functional:

U B < (ti)ie[ >— B
P — E(P(x))
We refer to [87] and related papers for more on all this, general results and examples,
in relation with the operator-valued probability theory.
Next in line, we have the following key definition:

DEFINITION 7.6. Let (A, B, E) be as above, and (z;);er be a family of variables.

(1) These variables are called independent if the following algebra is commutative
< B, (z;)ier >C A
and for iy, ..., i € I distinct and Py,..., P, € B <t >, we have:
E(P(z;)) ... Pe(x;,)) = E(Pi(x4)) ... E(Pr(z4,))

(2) These variables are called free if for any iy,...,ix € I such that i; # 4,41, and
any Py, ..., P, € B <t> such that E(P)(z;,)) =0, we have:

E(Pi(xi))...P(z;,)) =0
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The above notions are straighforward extensions of the usual notions of independence
and freeness, that we discussed in chapter 5, which correspond to the case B = C.

As in the scalar case, B = C, in order to deal with invariance questions, we will need
the theory of classical and free cumulants, in this setting.

Let us start with the following definition:

DEFINITION 7.7. Let (A, B, E) be an operator-valued probability space.
(1) A B-functional is a N-linear map p : AN — B such that:
P(boalbh asby . .. 7aNbN) = bop(al, bias, . .. ,bN—laN)bN
Equivalently, p is a linear map of the following type
A®sN . B

where the tensor product is taken with respect to the natural B — B bimodule
structure on the algebra A.

(2) Suppose that B is commutative. For k € N let p*) be a B-functional. Given
7 € P(n), we define a B-functional p™ : AN — B by the formula

p(”)(al, coan) = H p(V)(ay,...,an)

Ver
where if V = (iy < ... <) is a block of m then:
p(V)(ar,....an) = ps(ai,, ..., ai,)
As before with the notions of independence and freeness, these are classical extensions

of the notions that we discussed in chapter 5 above.

If B is noncommutative, there is no natural order in which to compute the product
appearing in the above formula for p(™.

However, the nesting property of the noncrossing partitions allows for a natural defi-
nition of p(™ for 7 € NC(N), which we now recall:

DEFINITION 7.8. For k € N let p®) : A* — B be a B-functional. Given © € NC(N),
define a B-functional p™) : AN — B recursively as follows:

(1) If = = 1y is the partition having one block, define pi™ = ptV).
(2) Otherwise, let V.={l+1,...,1+ s} be an interval of 7 and define:

p(”)(al, coaN) = p(”’v)(al, . ,alp(s)(alH, ey Qpgs)s Qs - -5 AN)

As before, we refer to [81], [87] for more on all this.

Finally, we have the following definition:
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DEFINITION 7.9. Let (x;)ier be a family of random variables in A.

(1) The operator-valued classical cumulants cg) . A¥ — B are the B-functionals
defined by the following classical moment-cumulant formula:

E(ay...an) = Z cg)(al,...,a]\/)

TEP(N)

(2) The operator-valued free cumulants /{g) : A¥* — B are the B-functionals defined
by the following free moment-cumulant formula:

E(ay,...,ay) = Z Kg)(al,...,a]\;)
TeNC(N)

As basic illustrations here, in the scalar case, where the subalgebra is B = C, we
recover in this way the classical and free cumulants, as discussed in chapter 5 above. In
general, we refer to [87] for more on the above notions.

We have the following result, which is well-known in the classical case, and which in
the free case is due to Speicher [87]:

THEOREM 7.10. Let (x;);e; a family of random variables in A.

(1) If the algebra < B, (x;)ier > is commutative, then (z;)ie; are conditionally inde-
pendent given B if and only if when there are 1 < k,1 < N such that iy # i;:

C(EN)(bQIilbl, . 7xiNbN) =0

(2) The variables (x;);er are free with amalgamation over B if and only if when there
are 1 < k,1 < N such that i # i;:

H%N)(bofﬁilbl, Ce ,LEZ'NbN) =0

Note that the condition in (1) is equivalent to the statement that if 7 € P(NV), then
the following happens, unless 7 < ker i:

C(ET'F)(bOxilbla o Tigby) =0

Similarly, the condition (2) is equivalent to the statement that if 7 € NC(N), then
the following happens, unless 7 < ker i:

H(ETF) (boﬂ?ilbl, Ce 7xiNbN) =0

Observe also that in the case B = C we obtain the usual notions of independence and
freeness. As before, we refer to [81], [87] for more on all this.

Stronger characterizations of the joint distribution of (z;);c; can be given by specifying
what types of partitions may contribute nonzero cumulants.

To be more precise, we have here the following result:
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THEOREM 7.11. Let (x;);er be a family of random variables in A.

(1) Suppose that < B, (x;)icr > is commutative. The B-valued joint distribution of
(x;)ier 1s independent for D = P and independent centered Gaussian for D = P,
if and only if, for any m € P(N), unless m € D(N) and m < keri:

C(E7'r)<b0$i1b17 SR axiNbN) =0

(2) The B-valued joint distribution of (x;)er is freely independent for D = NC and
freely independent centered semicircular for D = NCy if and only if, for any
7€ NC(N), unless m € D(N) and m < keri:

Iig) (bol’ilbl, ce 7~riNbN) =0

PROOF. These results are well-known, coming from the definition of the classical and
free cumulants, in the present setting, via some combinatorics. U

For the detailed proofs, examples and comments on all this, we refer as before to [81],
[87]. Finally, here is one more basic result that we will need:

THEOREM T7.12. Let (x;);e; be a family of random wvariables. Define the B-valued
moment functionals EXN) by the following formula:

EWN(ay,...,ay) = E(ay...ay)
(1) If B is commutative, then for any o € P(N) and ay,...,ay € A we have:

cg)(al,...,a]v) = Z MP(N)(W,J)E(W)(al,...,a,N)

TeP(N),m<o
(2) For any o € NC(N) and ay,...,ay € A we have:
K‘(Eo)(alw'waN) = Z ,LLNC(N)(W,O')E(ﬂ)(al,...’G,N)
TeNC(N),n<c

Proor. This follows indeed from the Mobius inversion formula. O

This was the general operator-valued free probability theory that we will need, in
what follows. For the detailed proofs, examples and comments on all the above, and more
operator-valued free probability in general, we refer to [81], [87].

7b. Reverse De Finetti

With the above ingredients in hand, we can now investigate invariance questions for
the sequences of random variables, with respect to the main quantum permutation and
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rotation groups that we are interested in here, namely:

Sy Oy
Sn On
To be more precise, we can first prove a reverse De Finetti theorem, as follows:
THEOREM 7.13. Let (z1,...,zN) be a sequence in A.
(1) Ifxy,...,xN are freely independent and identically distributed with amalgamation
over B, then the sequence is Sy -invariant.
(2) Ifxy,...,xN are freely independent and identically distributed with amalgamation

over B, and have centered semicircular distributions with respect to E, then the
sequence is Ok -invariant.

(3) If < B,xy,...,xN > is commutative and x1, ..., xy are conditionally independent
and identically distributed given B, then the sequence is Sy-invariant.
(4) If < xq,...,xx > is commutative and x1,...,xx are conditionally independent

and identically distributed given B, and have centered Gaussian distributions with
respect to E, then the sequence is Oy -invariant.

PROOF. Suppose that the joint distribution of (z1,...,xy) satisfies one of the condi-
tions in the statement, and let D be the partition family associated to the corresponding
easy quantum group. We have then the following computation:

Z tr(le Ce l’jk)uj'lil ce ujkik
Ji-Jk
= > (B, m,) s, - U,

J1-Jk

— Z Z tr(€5) (@1, o 21) )Wy - - - Wiy

J1...Jk m<kerj
= Z t'f’( (ETF)(.’El,...,.CCl)) Z ujll-l...ujkik

weD(k) ker j>7

Here £ denotes the free and classical cumulants in the cases (1,2) and (3,4) respectively.
On the other hand, it follows from a direct computation that if 7 € D(k) then we have
the following formula, in each of the 4 cases under investigation:

1 if m <kers
Z WUjyiy « - Ujpip =

kor g 0 otherwise
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By using this formula, we can finish our computation, as follows:

E tr($j1 s :Bjk)ujiil o Ugiy,

Ji---Jk

= Z tr(ﬁg)(mla'--71'1))57r§keri
weD(k)

= Z tr(fgr)(xl, ce, 1))
w<keri

= tr(x, ...x;)
Thus, we are led to the conclusions in the statement. Il

Summarizing, we have so far a reverse De Finetti theorem, for the quantum groups
that we are interested in here. Our goal in what follows will be that of proving the
corresponding De Finetti theorems, which are converse to the above theorem.

This will be something quite technical, getting us, among others, into certain technical
aspects of the Weingarten integration formula, and of Weingarten combinatorics.

Let us begin with some technical results, in view to establish the above-mentioned
converse De Finetti theorems. We will use the following simple fact:

PROPOSITION 7.14. Suppose that a sequence (x1,...,xx) is G-invariant. Then there
1S a coaction

a: My(C) — My(C) ® C(G)
determined by the following formula:
a(p(x)) = (eve @ 7y )o(p)

Moreover, the fized point algebra of o is the G-invariant subalgebra By .

Proor. This follows indeed after identifying the GNS representation of the algebra
C < ty,...,ty > for the state u, with the morphism ev, : C < ty,...,ty >— My(C). O

There is a natural conditional expectation given by integrating the coaction a with
respect to the Haar state, as follows:

Ey: MN((C) — By

Evtm) = (i [ Yatm)

The point now is that by using the Weingarten calculus, we can give a simple combi-
natorial formula for the moment functionals with respect to Ey, in the case where G is
one of the easy quantum groups under consideration.

To be more precise, we have the following result:
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THEOREM 7.15. Suppose that (zy,. .., xy) is G-invariant, and that either G = O}, S¥,
or that G = Oy, Sy and (x1,...,xyN) commute. We have then

: 1
B (bowiby, o maby) = == D boy, - by by

w<keri
for any 7 in the partition category D(k) for G, and any b, ...,bx € By.

PrOOF. We prove this by recurrence on the number of blocks of 7. First suppose that
m = 1; is the partition with only one block. Then:

E](\}k)(b(]xlbh e 7$1bk)
= EN(bO:cl c. .CClbk)

= E bo.fCil . xzkbk/ Ugqq - - - Ugyl
G

i1k

Here we have used the fact that by,..., b, are fixed by the coaction a. Applying the
Weingarten integration formula, we have:

EN(boflj'l e il?lbk)

= Z b(]xil R mzkbk Z Z WkN(ﬂ-v U)

Q1...0) n<keri o
= E g Win (7, 0) E boxi, . .. x;, by
weD(k) \o€D(k) w<keri

Now observe that for any o € D(k) we have:
Gy (o, 1) = NIVl = v

It follows that for any = € D(k), we have:

N Z WkN(T(',O')

ceD(k)
= Z Win(m,0)Grn (0, 1)
oeD(k)

57r1;C
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Applying this above, we find, as desired:

EN<bol’1 Ce $1bk)

= Z %(Sﬂ.lk Z bol’il I’lkbk

meD(k) n<keri
1 N

= ¥ Z box; ... x;by
=1

If the condition (3) or (4) is satisfied, then the general case follows from:

B (bowrby, ..., wiby) = by by [ En(V) (s 21)

Ver

The one thing we must check here is that if 7 € D(k) and V' is a block of 7 with s
elements, then 1, € D(s). This is easily verified, in each case.

Suppose now that the condition (1) or (2) is satisfied. Let 7 € D(k). Since 7 is
noncrossing, 7 contains an interval V.= {l+1,...,l4+ s+ 1}. We then have:

E](\?)(bol‘lbl, N ,l‘lbk)
= E%_V)(bohbl, oo En(@bgr b)), L 2aby)

To apply induction, we must check that # —V € D(k — s) and 1, € D(s). Indeed,
this is easily verified for NC, NC5. Applying induction, we have:

Ez(\;r)(boﬂﬁbl, e >$1bk)

1
= W Z boxil . bl (En(.’lj'lbprl Ce :Ullers)) xil+s Ce wzkbk

m—V<keri
1 1 N
= —N\ﬂ*l Z bol’il ) (N Z .fl?in_l RN bxilers) Lipyy - - - xzkbk
m—V <ker1 i=1
1
w<keri
This completes the proof. 0

Summarizing, we have so far reverse De Finetti theorems for the quantum groups that
we are interested in here, along with some technical results, connecting the corresponding
potential De Finetti theorems to the Weingarten integration combinatorics.



164 7. DE FINETTI THEOREMS

7c. Weingarten estimates

In order to advance, we will need some standard Weingarten estimates for our quantum
groups, which have their own interest, and that we will discuss now. So, consider the
diagram formed by the main quantum permutation and rotation groups, namely:

SN O%

Sn On

Regarding the symmetric group Sy, the situation here is very simple, because we can
explicitely compute the Weingarten function, and then estimate it, as follows:

PROPOSITION 7.16. For Sy the Weingarten function is given by
N —|7|)!
Win(mo) = 3 ulr.mutr,0) ST
T<TNAO
and satisfies the folowing estimate,
Win(m,0) = N~ (u(x A o, ma( A 7, 0) + O(N)
with p being the Mdébius function of P(k).
PRrROOF. The first assertion follows from the Weingarten formula, namely:
[t = Y 808 Wi (o)
SN m,0€P(k)

Indeed, in this formula the integrals on the left are known, from the explicit integration
formula over Sy that we established in chapter 5, namely:

/ Girj G i = w if keri = ker j
sy T 0 otherwise

But this allows the computation of the right term, via the Mébius inversion formula,
explained in chapter 2. As for the second assertion, this follows from the first one. O

The above result is of course something very special, coming from the fact that the
integration over Sy is something very simple.

Regarding now the quantum group Sy, that we are particularly interested in, let us
begin with some explicit computations.

We first have the following simple and final result at k = 2, 3, directly in terms of the
quantum group integrals:
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PROPOSITION 7.17. At k = 2,3 we have the following estimate:

- i1g1 - - Wiy ~ N —|keril (ker i = ker j)

N

PROOF. Since at k& < 3 we have NC(k) = P(k), the Weingarten integration formulae
for S and Sy coincide, and we obtain, by using the above formula for Sy:

/+ Wiygy « - - Uiggy, = / Wiy gy -+ - - Uiy gy,
S SN

N
(N — | keri|)!
N!

But this gives the formula in the statement. U

5ker i,ker j

In general now, the idea will be that of working out a “master estimate” for the
Weingarten function, as above. Before starting here, let us record the formulae at k = 2, 3,
which will be useful, as illustrations. At k = 2, with indices ||, M, and with the convention
that &~ means componentwise dominant term, we have:

N2 _N—2
Waon ~ (_N_z N-L )
At k = 3 now, with indices |||, |7, 7], M11T1, and same meaning for ~, we have:

N3 N3 —_N3 —_N3 2N73
—N—3 N2 N3 N3 N2
WSN ~ —N_3 N_3 N_2 N_3 —N_2
—-N—3 N3 N3 N2 _N—2
QN3 —_N2 —_N2 _N2 NI

These formulae follow indeed from the plain formulae for Wiy at k = 2,3 from [23],
after rearranging the matrix indices as above.

Observe in particular that we have the following formula, which will be of interest in
what follows:

VV3N<||_|7 |_||) ~ .]\/vi3

In order to deal now with the general case, let us start with:

PROPOSITION 7.18. The following happen, regarding the partitions in P(k):
(1) |7|+|o| < |7 Va|+|mAal.
(2) [rVT|+|TVaol <|rVa|l+]T]|
(3) d(m,0) = m — |7V ol is a distance.
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Proor. All this is well-known, the idea being as follows:

(1) This formula is well-known, coming from the fact that P(k) is a semi-modular
lattice.

(2) This follows from (1), as explained for instance in [30].
(3) This follows from (2), which says that the following holds:

w1l
2
7| + |0
- 2
Thus, we obtain the triangle inequality:

d(m,7) +d(r,0) > d(m,0)

[Tl +lol

d
(ﬂ-? T) + 2

d(t,o)

—d(m,0) +|7|

As for the other distance conditions, these are all clear. U

Actually in what follows we will only need (3) in the above statement. For more on
this, and on the geometry and combinatorics of partitions, see [81].
As a main result now regarding the Weingarten matrix, we have:
THEOREM 7.19. The Weingarten matrix Wiy has a series expansion in N1,
Win(r, ) = N b ™ K, o) N
g=0
where the objects on the right are defined as follows:

(1) A path from w to o is a sequence as follows:

p=lr=m#n#. . #£n=o0

(2) The signature of such a path is + when r is even, and — when r is odd.
(3) The geodesicity defect of such a path is:

9(p) = Zd(nfl,n) —d(m,0)

(4) K, counts the signed paths from w to o, with geodesicity defect g.

PrROOF. We recall that the Weingarten matrix Wjyy appears by definition as the in-
verse of the Gram matrix Gy, which is given by the following formula:

GkN(ﬂ', O’) = Nlﬂ-vg‘
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Now observe that the Gram matrix can be written as follows:

Gin(m, o) = Nlmvel
_ N yinvol-tge i
— N5 Ndme) NI

Consider now the folowing diagonal matrix:
A = diag(N |%‘)

Consider as well the following matrix:

In terms of these two matrices, the above formula simply reads:

Giv = A1+ H)A
Thus, the Weingarten matrix is given by the following formula:

Win = A_l(l + H)_IA_I

In order to compute the inverse of 1 + H, we will use the following formula:

(1+H) '=1-H+H>-H+ ...

167

Consider indeed the set P,(m, o) of length r paths between m and . The powers of H

are then given by:

H'(m,0) = Z H(ro,71) ... H(1p-1,7)

pE P (m,0)

_ Z N—d(m0)=g(p)

pE P (m,0)

Thus by using the formula (1+ H)™'=1— H + H*> — H® + ... we obtain:

[e.9]

1+ H) (m0) = Y (-1)'H'(7,0)

r=0

= N—d(”ﬂ)i Z (=1)"N—9®)

7=0 pePy(m,0)
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It follows that the Weingarten matrix is given by:

Win(m,0) = AN(m)(1+ H) ™ (m,0)A7 (o)

_ NJ%'J%Ld(w,a) Z (_1)1"]\779(10)

?O—)

— Nﬂ\/olﬂllai Z (—=1)"N—9®)

r=0 peP,(m,0)

ﬁ
Il

[en)
S
M

s
S

Now by rearranging the various terms of the above double sum according to their
geodesicity defect g = g(p), this gives the following formula:

o
Wiy (m, o) = NImvel=lrl=lo] Z Ky(m,o)N79
g=0
Thus, we are led to the conclusion in the statement. U
As an illustration, we have the following explicit estimates:

THEOREM 7.20. Consider an easy quantum group G = (Gy), coming from a category
of partitions D = (D(k)). For any m < o we have the estimate

Win(m,0) = N~ (u(m,0) + O(N))
and for w, o arbitrary we have
Wi () = O(NImvel-lri=il)
with p being the Mobius function of D(k).
PrROOF. We have two assertions here, the idea being as follows:

(1) The first estimate is clear from the general formula established in Theorem 7.19
above, namely:

WkN(ﬂ-a 0‘) = N‘WVU‘_|7"|_|0—‘ Z Kg(ﬂ-7 O')N_g
g=0
(2) In the case 7 < o it is known that K coincides with the Mobius function of

NC(k), as explained for instance in [30], so we obtain once again from Theorem 7.19 the
fine estimate as well, namely:

Win(m, o) = N™(u(x,0) + O(N7Y)) Vr <o
Observe that, by symmetry of Wy, we obtain as well the following estimate:
Win(m,0) = N7l (u(o,7) + O(N1)) Vo> o

Thus, we are led to the conclusions in the statement. U
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When 7,0 are not comparable by <, the situation is quite unclear. The simplest
example appears at k = 3, where we have the following formula, which is elementary:

Win(JM,M|) = N3
Observe that the exponent —3 is precisely the dominant one, because:
’|I‘|\/I‘I|‘—‘|H‘—’I‘I|‘:1—2—2:—3

As for the corresponding coefficient, Ky(|M,M|) = 1, this is definitely not the Mobius
function, which vanishes for partitions which are not comparable by <. According to
Theorem 7.19, this is rather the number of signed geodesic paths from | to M|.

In relation to this, observe that geometrically, NC(5) consists of the partitions |1, 1], 1]
which form an equilateral triangle with edges worth 1, and then the partitions |||, M1, which
are at distance 1 apart, and each at distance 1/2 from each of the vertices of the triangle.

It is not exactly obvious how to recover the formula Ky(|M,M]) = 1 from this.

Finally, we will need as well the following result:

PROPOSITION 7.21. We have the following results:

(1) [fD = NC, NCQ, then /LD(k)(ﬂ',O') = ,uch(k)(ﬂ',O').
(2) [fD = P, P2 then ,uD(k)(ﬂ',O') = Mp(k)(ﬂ',a').

PROOF. Let Q = NC, P according to the cases (1,2) in the statement. It is easy to
see in each case that D(k) is closed under taking intervals in Q(k), in the sense that if
m,m € D(k), 0 € Q(k) and m; < 0 < m then ¢ € D(k). The result now follows from
the definition of the Mdbius function. O

7d. De Finetti theorems

With the above combinatorial ingredients in hand, let us go back now to invariance
questions with respect to the main quantum permutation and rotation groups that we are
interested in here, namely:

Sn O%

Sn On

We can now state and prove an approximation result for finite sequences, from [30],
as follows:
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THEOREM 7.22. Suppose that (z1,...,zy) is Gy-invariant, and that Gy = O, S¥,
or that Gy = Oy, Sy and (x1,...,xN) commute. Let (y1,...,yn) be a sequence of By-
valued random variables with By-valued joint distribution determined as follows:

(1) G = O™ : Free semicircular, centered with same variance as x.

(2) G = S*: Freely independent, y; has same distribution as x.

(3) G = O: Independent Gaussian, centered with same variance as x.
(4) G = S: Independent, y; has same distribution as x;.

Then if 1 < j1,..., 5k < N and by, ...,b, € By, we have the following estimate,
Ci(G)
N

with Ci(G) being a constant depending only on k and G.

[|En(boxj, - .. 25,0r) — E(boy;, - - - yj.b0) || < 1| |¥1Bol | - - - |1bx ]|

PRrROOF. First we note that it suffices to prove the result for N sufficiently large. We
will assume that N is sufficiently large as for the Gram matrix Gy to be invertible.

Let 1 <ji,....5k < N and by, ...,br € By. We have:
EN<b0$j1 c. l'kak)

= E boxil .. -xikbk / Wy gy« + - Uiy gy,

11...0k

= Z bofL‘il R ZElkbk Z Z WkN(’]D 0)

11...0k w<keri o<kerj
= Z ZWkN(W,U) Z bo.%“.ﬁ[lkbk
o<kerj m w<keri
On the other hand, it follows from the assumptions on (yi,...,yyx) and the various

moment-cumulant formulae, that we have:
E(boyjl e yjkbk) = Z §<E?I\), (bol’lbl, e ,Ilbk)
o<kerj
Here, and in what follows, £ are the relevant free or classical cumulants:

The right hand side can be expanded, via Mobius inversion, in terms of expectation
functionals as follows, with 7 being a partition in NC| P according to the cases (1,2) or
(3,4), and with 7 < o for some o € D(k):

E](\;r) (boﬂ')lbl, e ,l’lbk)
Now if m ¢ D(k) then we claim that this expectation functional is zero.

Indeed this is only possible if D = NC5, P, and 7 has a block with an odd number of
legs. But it is easy to see that in these cases x; has an even distribution with respect to
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En, and therefore we have, as claimed:

E](\;r) (bol’lbl, o ,l’lbk) =0

This observation allows to to rewrite the above equation as:

E(boyj, - ynbe) = Y ZMD(k)(W,U)EJ(\?)(bo%bl, )
o<lkerjn<o
We therefore obtain the following formula:
E(boyj, - - - yjbr) = Z ZND(k)(WaU)N_W Z bowi, - .. i, by

o<kerj n<o w<keri

Comparing these two equations, we find that:
EN(bol’jl Ce «T]kbk) — E(boyj1 . y]kbk)
- Z Z (WkN(ﬂ', o) — o (T, U)N’W) Z boxi, - . . x;, by

o<kerj m mw<keri

Now since x1,...,xyN are identically distributed with respect to the faithful state ¢,
it follows that these variables have the same norm. Therefore, for any 7 € D(k):

Z bol’il Ce xzkbk

w<keri

< Nl [P lfeoll . 112

Combining this with the former equation, we obtain:
[|En(boj, - - 25,06) — E(boyy, - - - 95, 0x) |
< O S Wan(m o) N = gy ()| ] Mol - - 1o

o<kerj w

Let us set now:

Ci(G) = sup N x Z Wi (mr, ) N — pupg (, 0)|

NeN o,meD(k)

But this is finite by our main estimate, which completes the proof. O

We will make use of the inclusions Gy C Gy for N < M, which correspond to the
Hopf algebra morphisms wy ps : C(Gpr) — C(Gy) determined by:

() = Jus HISij <N
N, M \Uij 0;; if max(z,7) > N

We begin by extending the notion of G y-invariance to infinite sequences:
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DEFINITION 7.23. Let (z;);en be a sequence in a mnoncommutative probability space
(A, ). We say that (z;)ien is G-invariant if
(T1,...,2N)
is Gn-invariant for each N € N.

In other words, the condition is that the joint distribution functional of (xy,...,xy)
should be invariant under the following coaction, for each N € N:

ay:C<ty,... .ty >>C<ty,...,txy > RC(Gy)

It is convenient to extend these coactions to a coaction on the algebra of noncommu-
tative polynomials on an infinite number of variables, as follows:

Oy :C<tlie N>—= C<t;li e N>C(Gy)
Indeed, we can define Sy to be the unique unital morphism such that:
Y ti®uy if1<j<N
Bu(t;) = .
t;®1 if j>N
It is clear that [y is an action of G. Also, we have the following relations, where
in:C<ty,...,ty > C < t;]i € N > is the natural inclusion:
(id @ wn,m)Bym = B
(v ®id)ay = Byiy
By using these compatibility relations, we have the following result:

PROPOSITION 7.24. An infinite sequence of random variables (x;);en is G-invariant if
and only if the joint distribution functional

pe: C<t;i e N>—C
P — tr(P(x))
18 invariant under the coaction By, for each N € N.
PRrooOF. This is clear indeed from the above discussion. Il
In what follows (x;);en will be a sequence of self-adjoint random variables in a von
Neumann algebra (M, tr). We will assume that M is generated by (z;)en.
We denote by L?(M,tr) the corresponding GNS Hilbert space, with inner product
which is by definition as follows:
< my, mg >= tr(mimsy)

Also, the strong topology on M, that we will use in what follows, will be taken by
definition with respect to the faithful representation on L*(M, tr).
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We let Py be the fixed point algebra of the action Sy, and we set:

By = {p($)‘p S PN}H
We have then the following formula:
(id @ wy N+1)Bn+1 = BN
Thus we have an inclusion as follows, for any n > 1:
Bny1 C By
We then define the G-invariant subalgebra by:

B:ﬂBN

N>1

With these conventions, we have the following result:

PROPOSITION 7.25. If an infinite sequence of random variables (x;);en is G-invariant,
then for each N € N there is a coaction

By M — M®L®(Gy)
determined by the following formula, for any p € Ps:
B (p(x)) = (eve @ mv) B (p)
The fized point algebra of BN 15 then By.

ProOF. This is indeed clear from definitions, and from the various compatibility for-
mulae above, between the coactions ay and Sy. Il

We have as well the following result, which is clear as well:

PROPOSITION 7.26. In the above context, of an infinite sequence of random variables
belonging to an arbitrary von Neumann algebra M with a trace

(2i)ien
which is G-invariant, for each N € N there is a trace-preserving conditional expectation
En : M — By given by integrating the action By :

Bx(m) = (id [ ) Bt

By taking the limit of these expectations as N — oo, we obtain a trace-preserving condi-
tional expectation onto the G-invariant subalgebra.

PROOF. Once again, this is clear from definitions, and from the various compatibility
formulae above, between the coactions ay and [Gy. O

Next, we have the following result:
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PROPOSITION 7.27. Suppose that (z;)ien is G-invariant. Then:

(1) For any m € M, the sequence Enx(m) converges in 2-norm and with respect to
the strong topology to a limit E(m) € B.

(2) E is a trace-preserving conditional expectation of M onto B.

(3) Form e NC(k) and my,...,my € M we have, with strong convergence:

EM(mi®...0my) = li_)m E]((,r)(ml ® ... mg)

PRrOOF. This is again clear from definitions. Note that (1) is just a simple noncom-
mutative reversed martingale convergence theorem. U

We are now prepared to state and prove the main theorem, from [30], which comes as
a complement to the reverse De Finetti theorem that we already established:

THEOREM 7.28. Let (;)en be a G-invariant sequence of self-adjoint random variables
in (M,tr), and assume that M =< (x;);en >. Then there is a subalgebra B C M and a
trace-preserving conditional expectation E @ M — B such that:
(1) If G = (Sn), then (x;)ien are conditionally independent and identically distributed
given B.
(2) If G = (S}), then (x;)ien are freely independent and identically distributed with
amalgamation over B.
(3) If G = (On), then (x;)ien are conditionally independent, and have Gaussian
distributions with mean zero and common variance, given B.
(4) If G = (OF), then (x;)ien form a B-valued free semicircular family with mean
zero and common variance.

PrROOF. We use the various partial results and formulae established above. Let
Jis---, 0 € Nand by, ...,br € B. We have the following computation:

E(bo.%ﬁ . $kak)

= ]\}l_rgo En(boxj, - - - w5,by)

= ]\}1_}11(1)0 Z ZWkN(’]T,O') Z bQ.QT“CEZkbk

o<kerj m w<keri
. E : E —|™ 2
= lim uD(k) (7'(', O')N Il bomil cee Tgy, bk
N—o00
o<kerj m<o w<keri

Let us recall now from the above that we have the following compatibility formula,
where Ty : W*(x1,...,2x) — M is the obvious inclusion, and ay is as before:

(in ® id)an = Bnin
By using this, and the above cumulant results, we have:

E(b(]le .. .Tjkbk) Z Z /fJD(k) (71'7 U)Eﬁ)(boxlbl, e ,l’lbk)

o<kerj m<o

= lim
N—o00
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We therefore obtain the following formula:
E(b()l'jl Ce l’jkbk) = Z Z MD(k)(W, U)E(W)(boaﬁbl, e ,$1bk)
o<kerj <o
We can replace the sum of expectation functionals by cumulants to obtain:
E(bol’jl ce ZL‘]kbk) = Z fg)(boxlbl, c. ,ZL‘lbk)
o<kerj

Here and in what follows £ denotes the relevant free or classical cumulants, depending
on the quantum group that we are dealing with, free or classical.
Now since the cumulants are determined by the moment-cumulant formulae, we find
that we have the following formula:
9 (boarby, ..., maby) if 0 € D(k) and o < ker j
g(E)(bOxﬁbl;“-axjkbk) = éE ( O+ 1 k) X ( ) - J
0 otherwise

The result then follows from the characterizations of these joint distributions in terms
of cumulants. U

We refer to [30] and related papers for more on the above.

7Te. Exercises

Things have been quite technical in this chapter, dealing with advanced probability
theory, and so will be our exercises here. As a first exercise, we have:

EXERCISE 7.29. Formulate and prove the classical De Finetti theorem, concerning
sequences which are invariant under S, without using representation theory methods.

This is something very standard, and is a must-do exercise, the point being that all
the Weingarten technology used in this chapter, which is something quite heavy, was
motivated by the fact that we want to deal with several quantum groups at the same
time, in a “uniform” way. In the case of the symmetric group itself things are in fact
much simpler, and the exercise is about understanding how this works.

We have as well the following exercise, regarding now the free case:

EXERCISE 7.30. Formulate and prove the free De Finetti theorem, concerning se-
quences which are invariant under (S%), without using representation theory methods.

The same comments as for the previous exercise apply, the idea being that, once again,
the Weingarten function machinery can be avoided in this case.

We have as well several exercises in connection with the Weingarten function estimates,
that we needed in the proof of the De Finetti theorems, and which are of independent
interest as well. First, we have the following exercise:
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EXERCISE 7.31. Work out the full proof of the explicit formula for the Weingarten
function for Sy, namely

Win(r.0)= 3 ptr,wutro) &

r<mAc
then of the main estimate for this function, namely
Win(m,0) = N~ (u(x Ao, mu(n Ao,o) + O(NY)
where p is the Mdébius function of P(k).
This was something that was already discussed in the above, the idea being that all

this comes from the explicit knowledge of the integrals over Sy, via the Mobius inversion
formula, and the problem now is that of working out all the details.

As a second exercise now, which is quite technical, we have:

EXERCISE 7.32. Work out estimates for the integrals of type

/ Usy 1 Wiggp Uig gz Wigga
S+
N

and then for the Weingarten function of S¥ at k = 4.

Once again, this was something partly discussed in the above, with the comment that
things are clear at k = 2,3, due to the formula P(k) = NC(k) valid here. The problem
now is that of working out what happens at £ = 4, where things are non-trivial.

Finally, we have the following very standard exercise:

EXERCISE 7.33. Prove directly that the function
_frl+lol

d(m, o) 5

|V o

is a distance on P(k).

To be more precise here, this is something that we talked about in the above, with the
idea being that this follows from a number of well-known facts regarding the partitions
in P(k). The problem now is that of proving directly this result.



CHAPTER 8

Hypergeometric laws

8a. Hyperspherical laws

We have seen so far that, in what concerns the probability theory on classical or
quantum groups, the first problem which appears, and which is of key importance, is that
of computing the laws of characters, and more generally of truncated characters:

[tN]

Xt = Z Ui
i=1

For the quantum rotation and permutation groups, this problem can be investigated
by using easiness and combinatorics, and satisfactory results in this sense, which are in
tune with free probability theory, can be obtained in the N — oo limit.

That was for the basic theory. In this chapter we discuss more advanced aspects,
regarding the case where N € N is fixed, or variables which are more general than the
truncated characters x;, or regarding both, more advanced variables at fixed N € N.

As in the previous chapters, we will investigate such problems for the main quantum
permutation and rotation groups, namely:

SN O}

SN

On

Let us first discuss the case of the orthogonal group Oy. In certain situations, we can
use the following elementary and well-known fact:

PROPOSITION 8.1. Each row of coordinates on Oy has the same joint distribution as
the sequence of coordinates on the real sphere S]fg_l,

(Ui1,~--,UiN) ~ (3717--'733N)

and the same happens for the columns.

177
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PROOF. Given an index ¢ € {1,..., N}, our claim is that we have an embedding as
follows, which commutes with the corresponding uniform integration functionals:

C(SE1) c C(On)
Tj —> U5
In order to prove this claim, consider the subalgebra C'(S) C C'(Oy) generated by the

variables u;;, with 7 being fixed, and with j = 1,..., N. Since these N variables are real,
and their squares sum up to 1, we have a quotient map, as follows:

C(SY™1) — C(S) C C(Ox)
Tj — Ui
Now observe that S C S]{{ ~! must be an isomorphism, because by Gram-Schmidt we
can complete any vector of Sg ~!into an orthogonal matrix. Thus, the above composition

of morphisms is an embedding. As for the commutation with the uniform integration
functionals, this follows from the fact that we have an action Oy ~ S. U

Motivated by the above observation, let us compute now the hyperspherical laws at

fixed values of N € N. We begin with a full discussion in the classical case.

At N = 2 the sphere is the unit circle T, and with z = e the coordinates are
cost,sint. The integrals of the arbitrary products of such coordinates can be computed
by using standard calculus, the result being well-known, as follows:

THEOREM 8.2. We have the following formula,
/W/2 cos tsin?tdt = (E)E(p)E(Q) —p!!q!!
0 2 (p+q+ 1)
where e(p) = 1 if p is even, and £(p) = 0 if p is odd, and where
mll=(m—1)(m—3)(m—2>5)...
with the product ending at 2 if m is odd, and ending at 1 if m is even.

ProOF. This is something known to everyone loving and teaching calculus. Let us
first discuss the case ¢ = 0. Consider the integral in the statement at p = 0, namely:

w/2
I, = / cos? t dt
0

We compute this integral by partial integration. For this purpose, we use:
(cosPtsint) = pcosP ' t(—sint)sint + cos’ t cost
= pcosP™t —pcosP Lt + cosPT ¢
= (p+1)cos®™t —pcosP 't
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By integrating between 0 and /2, we obtain the following formula:
(p+ Dlpt1 = plys

Thus we can compute [, by recurrence, and we obtain:

p—1
I, = TP—Z
_p—1 p-3
- p p—27""
_p—1 p=3 p— 51
p p—2 p—4
pll
= —— i
(p+ 1w

7T

Together with Iy = Z and I; = 1, which are both clear, we obtain:

I (7‘()5(19) p!!
PN\2 (p+ 1)

Summarizing, we have proved the following formula, with one equality coming from
the above computation, and with the other equality coming from this, via t = 7 — s:

/2 w/2 e(p) I
/ cosPtdt = / sinftdt = (Z) _ b
0 0 2 (p+ 1!

In relation with the formula in the statement, we are therefore done with the case
p=0or g =0. Let us investigate now the general case. We must compute:

w/2
Iy = / cosP tsin? t dt
0

In order to do the partial integration, observe that we have:

(cosP tsin?t) = pcosP ! t(—sint)sin?t
+ cosPt-gsin? ! tcost

= —pcosP ttsin?tt 4+ gcosPT tsin? Tt
By integrating between 0 and 7/2, we obtain, for p,q > 0:

pIpfl,qul = q[erl,qfl
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Thus, we can compute I, by recurrence. When ¢ is even we have:

qg—1
Ly, = mlpm,m
q—1 q—3

Ny S
p+1 p+3 Pt
g—1 ¢—3 q—5
p+1 p+3 p+5 6,46

Cpligl!
_'(p+qﬂV%“

But the last term was already computed above, and we obtain the result:

Al
plgll ) (pt )]
= Grana) Grerm
m\e@e@  pligh
-3 oram

Observe that this gives the result for p even as well, by symmetry. Indeed, we have

I, = I, by using the following change of variables:

i T
=—-—5
2

In the remaining case now, where both p, ¢ are odd, we can use once again the formula

plp—14+1 = qlpt1,4-1 established above, and the recurrence goes as follows:

a-1,

pq p—i—l p+2,g—2

a=1 q¢=3,

p+1 pt3 Prhat
¢—1 ¢=3 ¢=5,
p+1 p+3 p+5 p+6,4-6

pllig! I
S (prg-ptTH
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In order to compute the last term, observe that we have:

/2
I, = / cosP tsintdt
0

1 w/2
= = (cosPTht) dt
p 0

1
p+1

Thus, we can finish our computation in the case p, g odd, as follows:

B plligh
Ipg = m%w—u
pllg!! 1
 (p+g-D! p+g
pllig!
 (p+g+

Thus, we obtain the formula in the statement, the exponent of 7/2 appearing there
being in the present case:

e(p)e(q) =0-0=0

Thus, we are led to the conclusion in the statement. Il

In order to discuss the higher spheres, we will use spherical coordinates, which are
constructed as follows:

THEOREM 8.3. We have spherical coordinates in N dimensions,

¢

T = rcost;

To = rsint; costs

Tny_1 = rsint;sinty...sinty_ocosty_i
I rsint;sints...sinty_osinty_q

the corresponding Jacobian being given by the following formula:
J(r,t) = rVtsinV 2t sinV Pty ... osin? ty_gsinty_o

ProoOF. The fact that we have coordinates is clear. Regarding the Jacobian, the proof
is similar to the one from 2 or 3 dimensions, by developing the determinant over the last
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column, and then by proceeding by recurrence. Indeed, by developing, we have:

Jy = rsinty...sinty_sosinty_; X sinty_1Jy_1
+ rsint;...sinty_ocosty_q1 X costy_1Jn_1
= rsin tl c. SthN_g(Sin2 tN—l + COS2 tN—l)JN—l

= rsint;...sinty_o2Jn_1
Thus, we obtain the formula in the statement, by recurrence. Il

Let us first compute the volume of the sphere. The result here is as follows:

THEOREM 8.4. The volume of the unit sphere in RY is given by

v (5)"

oN
N+
with the convention
NIl'=(N—-1)(N-=3)(N—-5)...
with the product ending at 2 if N is odd, and ending at 1 if N is even.

PROOF. Let us denote by B* the positive part of the unit sphere, or rather unit ball
B, obtained by cutting this unit ball in 2V parts. At the level of volumes, we have:

V=2Vt
We have the following computation, using spherical coordinates, and Fubini:

V+

:/1
Bt

1 pr/2 w/2
= / / Ce / T‘N_l SiIlN_2 tl ...sin tN_Q d’f‘dtl . dtN_l
0 Jo 0
1 2

T/ /2 w/2
TN_I d?"/ SiHN_2 tl dtl . / sin tN_thN_Q / ]_dtN_l
0 0 0

Il
S—

1 (7T>[N/2] (N =2)I' (N=3)! 210 1N
= — X |= X . e — -
N 2 (N -1 (N=2)! 312l
1 <7T>[N/2] 1
N 2 (N -1
B <7r>[N/2] 1
- 2 (N + 1)!!



8A. HYPERSPHERICAL LAWS 183

Here we have used the following formula, for computing the exponent of 7 /2:
e(0)+e(1)+e(2)+...+e(N —2)
= 140+1+...+&(N—2)
S Rr]
2

I[N
|2
Thus, we obtain the formula in the statement. Il

With the above ingredients in hand, we can now compute arbitrary polynomial inte-
grals, over the spheres of arbitrary dimension, the result being is as follows:

THEOREM 8.5. The spherical integral of x;, . .. x;, vanishes, unless eacha € {1,..., N}
appears an even number of times in the sequence iy, ... ,i,. We have

N — DN !
/ xil...xikdac:( ) N
SNt

(N + X — D!
with 1, being this number of occurrences.

PrROOF. We can restrict attention to the case [, € 2N, since the other integrals vanish.
The integral in the statement can be written in spherical coordinates, as follows:

N w/2 /2
[:—/ / Zlflll...[El]iTVJdtl...dtN_l
14 0 0

In this formula V is the volume of the sphere, J is the Jacobian, and the 2V factor
comes from the restriction to the 1/2V part of the sphere where all the coordinates are
positive. The normalization constant in front of the integral is:

2N 2N N 2 [N/2]
Z -2 rlZx1)=(Z2 N -1
V. NzN/2 (2 * ) <7T) ( )

As for the unnormalized integral, this is given by:

w/2 /2
I'= / / (costy)"(sint; costy)™
0 0

(sintysinty...sinty_gcosty_1) ™
(sintysinty...sinty_psinty_1)™
SiIlN_2 tl sinN_3 tg e Sin2 tN_g sin tN_g
dty...dty_q
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By rearranging the terms, we obtain:

w/2
I = / coslt ¢y sinf2 TN EN=2 ¢ qp
0

w/2
/ cos' ty sinB TN EN=3 4 gt
0

w/2
/ COSlN*2 tN_Q SilllN*l—HN—’—1 tN_Q dtN_g
0
w/2
/ cos!N1tn_1sin'™N g dty_q
0

Now by using the formula at N = 2, from Theorem 8.2, this gives:

I/ . lln(l2++l]\[+N—2)” (7T>8(N_2)
(L Iy EN-DI N2
LNIs+ ...+ Iy + N =3I (W)E(N3)

o+ ... +Iy+N=2)l \2

INn—oM(In—1 + v+ D! <Z>€(1)
(In—o+ Iy + Iy +2)11\2
lN—l!!lN” 7\ €(0)

(Ino1 + iy + 1) (E)

Now observe that the various double factorials multiply up to quantity in the state-
w)[N/2]

ment, modulo a (N — 1)!! factor, and that the 7 factors multiply up to F = (2

Thus by multiplying with the normalization constant, we obtain the result.

In connection now with our probabilistic questions, we have:

THEOREM 8.6. The even moments of the hyperspherical variables are

N — 1)l
kd :(—
/Sﬂéy_l T N R - D

and the variables y; = xl/\/ﬁ become normal and independent with N — oo.
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ProoF. The moment formula in the statement follows from Theorem 8.5. Now ob-
serve that with N — oo we have the following estimate:

i R e o LB A
/ T k-

~ NFZ2 x kN
N*20My (1)

Thus, we have x;/ VN ~ g1, as claimed. Finally, the independence assertion follows
as well from the formula in Theorem 8.5, via standard probability theory. O

In the case of the free sphere now, the computations are substantially more compli-
cated. Let us start with the following result, that we know from chapter 5:

THEOREM 8.7. For the free sphere S]fg;l, the rescaled coordinates

yi = VNuz;
become semicircular and free, in the N — oo limit.

PROOF. As explained in chapter 5 above, the Weingarten formula for the free sphere,
together with the standard fact that the Gram matrix, and hence the Weingarten matrix
too, is asymptotically diagonal, gives the following estimate:

/ $i1...$ikdx§N_k/2 Z 55(2.1,...,7;k)
Sat cENCy(k)
With this formula in hand, we can compute the asymptotic moments of each coordinate
x;. Indeed, by setting 7; = ... = 1 = ¢, all Kronecker symbols are 1, and we obtain:
/ ok da ~ N2 NCy (k)|
Sax’

Thus the rescaled coordinates y; = v Nx; become semicircular in the N — oo limit, as
claimed. As for the asymptotic freeness result, this follows as well from the above general
joint moment estimate, via standard free probability theory. See [23]. U

Summarizing, we have fully satisfactory results in the N — oo limit.

8b. Free coordinates

The problem now, which is highly non-trivial, is that of computing the moments of
the coordinates of the free sphere at fixed values of N € N. The answer here, from [26],
based on advanced quantum group and calculus techniques, is as follows:
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THEOREM 8.8. The moments of the free hyperspherical law are given by
I+1

1 g+1 1 20+ 2 r
2l T
dr = : : 1
/SI{J T g l+1T:Z( )(HTH)HQT

—1
+ —1-1

where q € [—1,0) is such that ¢ +q ' = —N.

PROOF. The idea is that x; € C(Sﬁ;l) has the same law as uj; € C(O3;), which has
the same law as a certain variable w € C(SUJ), which can be in turn modelled by an
explicit operator on [?(N), whose law can be computed by using advanced calculus.

Let us first explain the relation between Of and SUJ. To any matrix F € GLy(R)
satisfying F'2 = 1 we associate the following universal algebra:

C(O;) =C" <(Uij)i7j:17_._7]\[‘u = FuF = unitary)

Observe that OfN = OF. In general, the above algebra satisfies Woronowicz’s gener-
alized axioms in [98], which do not include the strong antipode axiom S? = id.

At N =2, up to a trivial equivalence relation on the matrices F', and on the quantum
groups O}, we can assume that F is as follows, with ¢ € [—1,0):

pe(, 0 v—a
1/v/—¢ 0
Our claim is that for this matrix we have:
O; = SUJ

Indeed, the relations © = FuF tell us that u must be of the following special form:

()
Yy (%

Thus C(O}) is the universal algebra generated by two elements «, v, with the relations
making the above matrix v unitary. But these unitarity conditions are:

ay = gqya
ay’ =gy«
V="

afa+y'y=1

ao* + ¢y =1
We recognize here the relations in [98] defining the algebra C'(SUJ), and it follows
that we have an isomorphism of Hopf C*-algebras, as follows:

C(0F) ~ C(SUY)
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Now back to the general case, let us try to understand the integration over O}. Given
m € NCy(2k) and @ = (i1, ..., 19), We set:

oy (i) = H Fii,

sem

Here the product is over all strings s = {s; ~ s,.} of 7. Our claim is that the following
family of vectors, with m € NCs(2k), spans the space of fixed vectors of u®2:

Sﬂ' = 255(2)611 ®...Q Ciog

Indeed, having & fixed by u®? is equivalent to assuming that v = FuF is unitary.
By using now the above vectors, we obtain the following Weingarten formula:

/O+ Uirjy -+ Ui, = Y On (1)35 (/)W (7, 0)

F s

With these preliminaries in hand, let us start the computation. Let N € N, and
consider the number ¢ € [—1,0) satisfying:

g+q'=-N

Our claim is that we have:
/ O(VN +2u;) = / pla+a" +v—q7)
o

SUg
Indeed, the moments of the variable on the left are given by:

/+ u?f = ZWkN(ﬂ',O')
ON iyes

On the other hand, the moments of the variable on the right, which in terms of the
fundamental corepresentation v = (v;;) is given by w = >, v;;, are given by:

/ w =307 SE (@)L () Win (7, )

iy  To

+
N

We deduce that w/+/N + 2 has the same moments as w;;, which proves our claim.

In order to do now the computation over SUJ, we can use a matrix model due to
Woronowicz [97], where the standard generators «,y are mapped as follows:

mu()er = V1 —q*er4

Wu(’y)ek = quek
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Here u € T is a parameter, and (e;) is the standard basis of {*(N). The point with
this representation is that it allows the computation of the Haar functional. Indeed, if D
is the diagonal operator given by D(e) = ¢**e;, then the formula is as follows:

Jgr =0 [romng

With the above model in hand, the law of the variable that we are interested in is of
the following form:

| etatatr—ar) = (1=¢) [ rDp(an)

du

2miu

To be more precise, this formula holds indeed, with:
M (er) = exsr+ ¢"(u—quer + (1 — ¢*)epy

The point now is that the integral on the right can be computed, by using advanced
calculus methods, and this gives the result. We refer here to [26]. U

There are many interesting open questions in relation with the above result, the first
of which being the problem of finding a simpler proof for it.

8c. Hypergeometric laws

Following now [19], let us discuss the free hypergeometric laws. We will use here a
twisting result established in chapter 4 above, which is also from [19]. We know from
that twisting result that we have, at the probabilistic level:

THEOREM 8.9. The following two algebras are isomorphic, via ufj — X;
(1) The algebra generated by the variables ui; € C(O}),
(2) The algebra generated by X;; = %Zz,bzl Piajp € C(Sh),

n

YE

and this isomorphism commutes with the respective Haar integration functionals.

Proor. This follows indeed from the general twisting result from chapter 4. U

As pointed out in [19], it is possible to derive as well this result directly, by using the
Weingarten formula, and manipulations on the partitions:
THEOREM 8.10. The following families of variables have the same joint law,
(1) {ui;} € 10(02),
(2) {Xij = 3 X apPiage} € C(S2),
where w = (u;;) and p = (piajp) are the corresponding fundamental corepresentations.
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PROOF. As already mentioned, this result can be obtained via twisting methods. An
alternative approach is by using the Weingarten formula for our two quantum groups,
and the shrinking operation m — #’. Indeed, we obtain the following moment formulae:

/ u?f = Z Wopn(m, 0)
o

m,0€NC2(2k)

k ! |+|o’ |-k ro
X5 = E n™ =R e (7 o)

S+
n? m,o0€NCo(2k)

According to the fattening results in chapter 2 the summands coincide, and so the
moments are equal, as desired. The proof for joint moments is similar. O

In what follows we will be interested in single variables. We have here:
DEFINITION 8.11. The noncommutative random variable
(n,m,N) Z Zuw e C( S+
i=1 j=1

is called free hypergeometric, of parameters (n,m,N).

The terminology comes from the fact that the variable X'(n, m, N), defined as above,
but over the algebra C(Sy), follows a hypergeometric law of parameters (n,m, V).

Following [19], here is an exploration of the basic asymptotic properties of these laws,

by using standard cumulant machinery:

THEOREM 8.12. The free hypergeometric laws have the following properties:
(1) Let n,m, N — oo, with %2 — t € (0,00). Then the law of

X(n,m,N)

converges to Marchenko-Pastur law .
(2) Let n,m, N — oo, with 5z — v € (0,1) and 5 — 0. Then the law of

S(n,m,N) = (X(n,m, N) —mv)//mv(l —v)
converges to the semicircle law ;.
PRroor. This is standard, by using the Weingarten formula, as follows:
(1) From the Weingarten formula, we have:

/X(n,m,N)k’: Z WkNﬂg 7l o]

m,0eNC(k
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The point now is that we have the following estimate:

N~ O(N-I7=1) if r =0

WkN(7T7 U) = {O(N|WVU|7T|U|) if ?é [

It follows that we have:

thl ifr=¢o

Wi (. o )l™lmle! s
(T, o)n"m 0 ifn#o

Thus the k-th moment of X (n, m, N') converges to:

Z Al

TeNC(k)
But this is the k-th moment of the Marchenko-Pastur law m;, and we are done.
(2) We need to show that the free cumulants satisfy:
1 ifp=2
RO[S(n,m, N),..., S(n,m, N)] =9 0P
0 ifp#2
The case p = 1 is trivial, so suppose p > 2. We have:

kP [S(n,m,N),...,S(n,m,N)]
= (mv(l - y))*p/zm(p) [(X(n,m,N),..., X(n,m,N)]

On the other hand, from the Weingarten formula, we have:
kP [X(n,m,N),..., X(n,m,N)]
= Z pp(w, 1) H Z Wew)n (my, ov)n™Iml7v]

weNC(p) Vewny,oyeNC(V)

— Z 1ip(w, 1) H Z (N (v, o) + O(N— I =1y yplvlplov
weNC(p) Vewny,oyeNC(V)

= Y (N (o) £ O bl ST (w,1,)
ﬂ,UEJ!C(p) we]\iC’(p)

We use now the following standard identity:

1 ifo=1
Z fp(w, 1) = {O it o o 1p
weNC(p) p
o<w
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This gives the following formula for the cumulants:
kP [X(n,m,N),...,X(n,m,N)]

= m Z (N (7, 1,) + O(N 7171y )7
TeENC(p)

It follows that for p > 3 we have, as desired:
kP [S(n,m,N),...,S(n,m,N)] =0
As for the remaining case p = 2, here we have:
1
5(2)[S(n,m, N),S(n,m, N)] — m Z y|7"|lu2(7'[', 12)

TENC(2)
1
= ———(v=1?)
v(l—v)
= 1
This gives the result. O

We refer to [19] for more results and comments regarding the hypergeometric and

hyperspherical laws, and the relation between them.

8d. Traces of powers

As a final analytic topic, let us discuss now, following [29], the computation of the

asymptotic laws of the following variables, depending on an integer k£ € N:

X = Tr(uf)

These variables, called Diaconis-Shahshahani variables, following the paper [59], gen-

eralize the usual characters, which appear at k = 1:

X =1Tr(u)

As before with the previous analytic questions that we investigated, we will do the

computations for the main quantum permutation and rotation groups, namely:

SN

Oy

Sn On

In order to do our computation, let us start with the following standard definition:
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DEFINITION 8.13. Associated to ki, ..., ks € N is the permutation v € Sk, having
cycles as follows, with k = > k;,

(1,....k)
(By 41,k + ko)

(k—ks+1,...,k)
called trace permutation associated to kq, ..., ks € N.
We denote by 7(o) the partition given by:
{ Noj <~ /y(l) ~y(o) /7(.])
With these conventions, we have the following result:

THEOREM 8.14. Given an easy quantum group G, we have:

/ Tr(uf) ... Tr(u®) du = # {7T € Dk‘ﬂ' = v(ﬂ)} +O(N™Y
G
If G 1s classical, this estimate is exact, without any lower order corrections.

Proor. We have two assertions to be proved, the idea being as follows:

(1) Let I be the integral to be computed. According to the definition of v, we have:
I = /Tr(ukl)...Tr(uks)du
G

= E , (uiﬂ'z .- ulkh) """ (uik7k5+1ik—ks+2 3 'uikik—kerl)
010k

= E / uiliy(l) Ce uikiw(k)
i1..0p Y G
We use now the Weingarten formula. We obtain:

30 Sl DRUNEY

i1...15 m<keri o<ker iy

=2 2 2 Wlmo)

1.1, m<keri y(o)<keri
wVy(o
= E Nl g )|WkN(7T,O')
m,0€Dy,

= Z N|7T\/’Y(<7)|N|7TV‘7|_‘7T|_|U|(1 +O<N_1))

m,0€Dy



8D. TRACES OF POWERS 193
Let us look now at the power of NV in the above, namely:

NI™VA(@)+mvel—=|r|—]o|

The leading order is N°, which is achieved if and only if ¢ > 7 and © > (o), or
equivalently when 7 = o = (o). But this gives the formula.

(2) In the classical case, instead of using the approximation for Wyy(w, o), we can
write NI™7@) = Gy (y(0), ), and we can continue as follows:

I = ) Gin(y(o), ") Win(r,0)

= #{o € Difo =~(m)}

Thus, we are led to the conclusion in the statement. U

If ¢ is a cycle we use the notation ¢! = ¢, and ¢*= cycle opposite to c.

We have the following definition, generalizing Definition 8.13 above:

DEFINITION 8.15. Associated to any ki, ..., ks € N and any ey, ..., es € {1,%} is the
trace permutation v € Sy, with k = _ k;, having as cycles

(... k)

(k’l—|—1,...,k‘1+/€2)62

(k—ks+1,... k)
called trace permutation associated to ky,... ks € N and ey, ..., es € {1,x*}.

With this convention, Theorem 8.14 extends to this setting, as follows:

THEOREM 8.16. Given an easy quantum group G, we have:
/ Tr(u™)e . Tr(u®)® du = # {7r € Dk‘w = 'y(ﬁ)} +O(N™)
€]
If G is classical, this estimate is exact, without any lower order corrections.

Proo¥F. This is similar to the proof of Theorem 8.14. O

In terms of cumulants, we have the following result, also from [29]:
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THEOREM 8.17. For G = On, Sy we have the following cumulant formula:
er(Tr(uf)er, . Tr(ufr)er) = # {7r € Dk‘ﬂ Vy=lg = 7(7?)}
Also, for G = O}, S}, we have the following free cumulant formula:
ko (Tr(u)e, . Tr(ufr)er) = # {7‘(‘ € Dk’ﬂ' Vy=1lg 7= v(ﬂ)} +O(N™)
PrRoOOF. We have two assertions to be proved, the idea being as follows:

(1) Let ¢, be the considered cumulant. We write, for those partitions © € Py such
that the restriction of 7 to a block of ¢ is an element in the corresponding set D),:

D, = {71’ € Pk‘p‘v € Dy, Vv € a}
We have then the following equivalent formula:
D, = {7T € Dk‘ﬂ' < a”}
Then, by the definition of the classical cumulants via Mobius inversion, we get:

¢ = Y o) #{r € Dolr = 5(m))

oc€P(r)

= 3 uo.1,) #{m € Dilr < 07, m = ()}

oc€P(r)
= > plo1) D1
ceP(r) <o, m=v(7)

In order to exchange the two summations, we first have to replace the summation over
o € P(r) by a summation over 7 = ¢” € P(k). Note that the condition on the latter is
exactly 7 > 7 and that we have p(o,1,) = u(o?,1;). Thus:

G = Z,u(r,lk) Z 1

T>7 7w <r,m=~(m)
= 2 > mrL)
m=y(m) TVY<T

The definition of the M6bius function gives for the second summation:

1 ifrvy=1;
2 M) =00 e
vl otherwise
With this formula in hand, the assertion follows.

(2) In the free case, the proof runs in the same way, by using free cumulants and the

corresponding Mobius function on noncrossing partitions. Note that we have the analogue
of our equation in this case only for noncrossing o. U
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We can now recover the theorem of Diaconis and Shahshahani in [59]:

THEOREM 8.18. The variables uy, = limy_,oo Tr(u”) are as follows:

(1) For Oy, the uy are real Gaussian variables, with variance k and mean 0 or 1,
depending on whether k is odd or even. The uy are independent.

(2) For O%, at k = 1,2 we get semicircular variables of variance 1 and mean 0 for
uy and mean 1 for us, and at k > 3 we get circular variables of mean 0 and
covariance 1. The uy are x-free.

PRrROOF. This follows by using the formula in Theorem 8.17, as follows:

(1) In this case Dy consists of all pairings of k elements. We have to count all pairings
7 with the properties that 7V v = 1; and 7 = ().

Note that if 7 connects two different cycles of v, say ¢; and ¢;, then the property
7 = 7(p) implies that each element from ¢; must be paired with an element from ¢;. Thus
those cycles cannot be connected to other cycles and they must contain the same number
of elements. This means that for s > 3 there is no such n. Thus all cumulants of order 3
and higher vanish asymptotically and all traces are asymptotically Gaussian.

Since in the case s = 2 we only have permissible pairings if the two cycles have the
same number of elements, we also see that the covariance between traces of different
powers vanishes and thus different powers are asymptotically independent. The variance
of uy is given by the number of matchings between {1,...,k} and {k + 1,...,2k} which
are invariant under rotations. Since such a matching is determined by the partner of the
first element 1, for which we have k possibilities, the variance of u; is k. For the mean,
if k is odd there is clearly no pairing at all, and if £ = 2p is even then the only pairing
of {1,...,2p} which is invariant under rotations is (1,p+ 1), (2,p + 2),..., (p, 2p). Thus
the mean of wuy, is zero if k£ is odd and 1 if £ is even.

(2) In the quantum case Dy consists of noncrossing pairings. We can essentially
repeat the arguments from above but have to take care that only noncrossing pairings
are counted. We also have to realize that for £ > 3, the uy are not selfadjoint any longer,
thus we have to consider also uj, in these cases. This means that in our arguments we
have to allow cycles which are rotated “backwards” under ~.

By the same reasoning as before we see that free cumulants of order three and higher
vanish. The pairing which gave mean 1 in the classical case is only in the case k = 2 a
noncrossing one, thus the mean of us is 1, all other means are zero. For the variances,
one has again that different powers allow no pairings at all and are asymptotically *-free.
For the matchings between {1,...,k} and {k+1,...,2k} one has to observe that there is
only one non-crossing possibility, namely (1, 2k), (2,2k—1), ..., (k,k+1) and this satisfies
7w = (m) only if y rotates both cycles in different directions.
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For £k = 1 and k = 2 there is no difference between both directions, but for k& > 3
this implies that we get only a non-vanishing covariance between u; and uj, with value
1. This shows that u; and us are semicircular, whereas the higher u, are circular. O

In order to discuss permutations and quantum permutations, let us start with:

PROPOSITION 8.19. The cumulants of uy, = imy_,oo Tr(u*) are as follows:
(1) For S, the classical cumulants are given by:
Cr(Upyy e vy Up,) = Z g !
qlk:Vi=1,...,r
(2) For Sy, the free cumulants are given by:
2 ifr—=1,k >2
if’l“:2, k’lzkg, 61:6;
if’f’:2, ]{7121{32:2

otherwise

cr(ugl, .. uy ) =

NN

ProoF. We have two assertions to be proved, the idea being as follows:

(1) Here Dy consists of all partitions. We have to count partitions 7 which have the
properties that 7 Vv = 1 and © = (7).

Consider a partition 7 which connects different cycles of . Consider the restriction of
7 to one cycle. Let k be the number of elements in this cycle and ¢ be the number of the
points in the restriction. Then the orbit of those ¢ points under v must give a partition of
that cycle, which means that t is a divisor of k£ and that the ¢ points are equally spaced.
The same must be true for all cycles of v which are connected via 7, and the ratio between
t and k is the same for all those cycles.

But this means that if one block of m connects some cycles then the orbit under v of
this block connects exactly those cycles and exhausts all points of those cycles. So if we
want to connect all cycles of v then this can only happen in the way that we have one
block of 7 intersecting each of the cycles of ~.

To be more precise, let us consider ¢, (ug,, . . ., ux, ). We have then to look for a common
divisor ¢ of all kq,..., k., and a contributing 7 is then one the blocks of which are of the
following form: k;/q points in the first cycle, equally spaced, and so on up to k,/q points
in the last cycle, equally spaced.

We can specify this by saying to which points in the other cycles the first point in the
first cycle is connected. There are ¢"~! possibilities for such choices, and this gives the
formula in the statement.
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(2) For S¥ we have to consider noncrossing partitions instead of all partitions. Most
of the contributing partitions from the classical case are crossing, so do not count for the
quantum case.

Actually, whenever a restriction of a block to one cycle has two or more elements then
the corresponding partition is crossing, unless the restriction exhausts the whole group.

This is the case ¢ = 1 from the considerations above, corresponding to the partition
which has only one block, giving a contribution 1 to each cumulant ¢, (uy,, ..., ug, ).

For cumulants of order 3 or higher there are no other contributions. For cumulants
of second order one might also have contributions coming from pairings, where each
restriction of a block to a cycle has one element.

But this is the same problem as in the O} case, and we only get an additional con-
tribution for the second order cumulants co(ug, u}). For first order cumulants, singletons
can also appear and make an additional contribution.

Taking this all together gives the formula in the statement. U

With the above ingredients in hand, we can now formulate a result about permutations
and quantum permutations:

THEOREM 8.20. The variables uy, = limy_,oo Tr(u”) are as follows:

(1) For Sy we have a decomposition of type
U = Z lCl
1k

with the variables Cy being Poisson of parameter 1/k, and independent.
(2) For S}, we have a decomposition of the type

u1201 N uk:Cl—i-Ck (k‘22)

where the variables C) are x-free, Cy s free Poisson, Cy is semicircular, and CY
with k > 3 are circular.

Proor. We have several assertions to be proved, the idea being as follows:

(1) Let Cj be the number of cycles of length k. We have uy = 3, IC;. We are
claiming now that the C} are independent and each is a Poisson variable of parameter
1/k, i.e., that ¢, (Cy,, ..., () is zero unless all the [; are the same, say = [, in which case
it is 1/1, independently of . This is compatible with the cumulants for the uy, according
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to the following computation:

cr(ukl,...,ukr) = Z...le...ZTCT(Cll,...,ClT)

Liky  Lelkr
- Y
o

1|k Vi

Since the ('}, are uniquely determined by the u,, via some kind of Md6bius inversion,
this shows that the C} are independent, and that Cj, is Poisson with parameter 1/k.

(2) In the classical case the random variable C; can be defined by:

1
Cl = j Z UiliQUi2i3 Ce Uim
i1...4; distinct
Note that we divide by [ because each term appears actually [ times, in cyclically
permuted versions, which are all the same because our variables commute.

Note that, by using commutativity and the monomial condition, in general the ex-
pression U, Wiy, - - - Ui, has to be zero unless the indices (iy,..., ) are of the form
(41, ..., 01,01, -, 1, ...), where [ divides k and 4y, . .., are distinct. This yields then the
following relation, which we used before to define Cj:

ky E
T?“(u ) = UiyioWUigig « - - uml
91...9]

k/l
- Z Z (uili2ui2i3 . um-l) /

l|k i1...4; distinct

= Zlq

Ik

This explicit form of Cj in terms of u;; can be used to give a direct proof, by using
the Weingarten formula, of the fact that the C; are independent and Poisson.

(3) In the free case we define the “cycle” C; by requiring neighboring indices to be
different, as follows:
Cl = Z UjqpioWigig « - - uilil
i Fio . FuFi
Note that if two adjacent indices are the same in w;,;, Uiy, - - - U, then, because of the
relation u;;u;, = 0 for j # k, all must be the same or the term vanishes. For the case
where all indices are the same we have:

i i
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But this gives then the following relation:
Tr(uk) =C,+C,

Again, the C) are uniquely determined by the Tr(u*) and thus our calculations also
show that the C; defined by our equation are x-free and have the distributions as stated.
Thus, we are led to the conclusion in the statement. Il

8e. Exercises

There are many interesting exercises, in connection with the above material. Let us
start with some standard calculus. First, we have:

EXERCISE 8.21. Prove, with full details, that we have the equality of joint laws
(uﬂ, e ,uiN) ~ (5131,. .. ,iL'N)
where u;; are the coordinates of Oy, and x; are the coordinates of Slfgf -1

This is something that we already discussed in the above, the idea being that of using
the action Oy Sﬂg ~!. The problem is that of working out all the details.

Here is another classical exercise, which is instructive as well:

EXERCISE 8.22. Prove that the volume of the unit sphere in RY is given by
Ve <27re>N/ 1
N vaN

The obvious way to go here is with the Stirling formula, and the problem is that of
working carefully what happens when N is odd, and when N is even, with the above
formula, which is unifom in N, as a final conclusion.

i the N — oo limit.

Still in relation with such questions, we have:

EXERCISE 8.23. Prove that the area of the unit sphere in RY is given by

with the our usual convention for the double factorials, namely
NIl'=(N—-1)(N-=3)(N—=5)...
and compute as well asymptotic estimates for A, in the N — oo limit.

As with the volume problem, the way to go here is via spherical coordinates.

Finally, here is one more classical exercise, of the same type:
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EXERCISE 8.24. Prove that we have the following integration formula over the sphere
Sg‘l, with respect to the normalized measure, valid for any exponents k; € N,

|I’k1 fEkN'dj[j _ z S(kiye.kn) (N — 1)”/{1” .. k‘N”
N-—1 1 4N Vs (N“‘Zk’z—l)”

with ¥ = [odds/2] if N is odd and ¥ = [(odds +1)/2] if N is even, where “odds” denotes
the number of odd numbers in the sequence kq, ..., ky.

As before with other such questions, the way to go is via spherical coordinates.

In relation now with the quantum group questions, we first have:

EXERCISE 8.25. Find some evidence for the formula

I+1
1 qg+1 1 2042 r
2l r
2] dr = . . -1
/SD? ! (N+1) ¢g—1 l+1r;1( ) (l+7‘+1)1+q7"

—1
,+

where q € [—1,0) is such that ¢+ ¢~' = —N, independent of the proof of this formula.
This is something quite tricky, involving some non-trivial computations.
Here is a more difficult question now, regarding the free hypergeometric laws:
EXERCISE 8.26. Work out some basic theory for the free hypergeometric variables

X(n,m,N) = ZZUU € C(SY)

i=1 j=1
going beyond what was done in the above.

This is actually a research-level question, which nothing much being known.

Finally, in connection with the Diaconis-Shahshahani variables, we have:
EXERCISE 8.27. Work out the basic theory of the Diaconis-Shahshahani variables
X" = Tr(u)
for the unitary group Uy, and for the free unitary quantum group Uy

Here the problem is that of suitably adapting the above computations for Oy, OF.
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Quantum reflections



I'm coming up only to hold you under
I'm coming up only to show you wrong
And to know you is hard, we wonder
To know you all wrong, we warn



CHAPTER 9
Finite graphs

9a. Finite graphs

In this third part of this book, this chapter and the next 3 ones, we study the main
examples of quantum subgroups G C Sy, or more generally G C S}, with emphasis on
the quantum reflection groups, which are the central examples of such subgroups.

Many interesting examples of quantum permutation groups appear as particular cases
of the following general construction from [6], [7], involving finite graphs:

PROPOSITION 9.1. Given a finite graph X, with adjacency matriz d € My(0,1), the
following construction produces a quantum permutation group,

C(GH(X)) = C(SF) / <du - ud>
whose classical version G(X) is the usual automorphism group of X.

PrOOF. The fact that we have a quantum group comes from the fact that du = ud
reformulates as d € End(u), which makes it clear that we are dividing by a Hopf ideal.
Regarding the second assertion, we must establish here the following equality:

C(G(X)) = C(Sy) / <du - ud>
For this purpose, recall that the coordinates are given by:
ui;(0) = do(y)

By using this formula, we have the following computation:
du z] Z dzkuk] Z dzk(s ke — za(]
On the other hand, we have as well the followmg formula:

Ud 7,] Z uzk dk’] Z 5U(k?)idkj = dafl(i)j
k

Thus the condition du = ud reformulates as dij = dy(i)s(j), and we are led to the usual
notion of an action of a permutation group on X, as claimed. Il

Let us work out some basic examples. We have the following result:

203
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THEOREM 9.2. The construction X — G*(X) has the following properties:

(1) For the N-point graph, having no edges at all, we obtain Sy.

(2) For the N-simplez, having edges everywhere, we obtain as well Sy.
(3) We have GH(X) = GT(X°), where X is the complementary graph.
(4) For a disconnected union, we have GT(X)*GH(Y) C GH(XUY).
(5) For the square, we obtain a non-classical, proper subgroup of Sy .

PROOF. All these results are elementary, the proofs being as follows:
(1) This follows from definitions, because here we have d = 0.

(2) Here d = I is the all-one matrix, and the magic condition gives ul = Iu = NI. We
conclude that du = ud is automatic in this case, and so GT(X) = S§.

(3) The adjacency matrices of X, X¢ being related by the following formula:
dX + ch == ]I

We can use here the above formula ull = Iu = NI, and we conclude that dxu = udx
is equivalent to dycu = udyc. Thus, we obtain, as claimed, G*(X) = G*(X°).

(4) The adjacency matrix of a disconnected union is given by:
dxuy = diag(dx, dy)

Now let w = diag(u, v) be the fundamental corepresentation of G*(X) % G*(Y). Then
dxu = udx and dyv = vdy imply, as desired, dx yw = wdx y.

(5) We know from (3) that we have G () = G*(| |). We know as well from (4) that
we have Zy % Zy C GT(] |). Tt follows that G (0) is non-classical. Finally, the inclusion
GT(O) c Sy is indeed proper, because S; C S does not act on the square. O

In order to further advance, and to explicitely compute various quantum automor-
phism groups, we can use the spectral decomposition of d, as follows:

PROPOSITION 9.3. A closed subgroup G C S5, acts on a graph X precisely when
Pou=uP, , VXeR
where d =, X - Py is the spectral decomposition of the adjacency matriz of X.

PROOF. Since d € My(0,1) is a symmetric matrix, we can consider indeed its spectral
decomposition, d = >, A - Py. We have then the following formula:

< d >= span {P,\’)\ € ]R}
But this shows that we have the following equivalence:

d € End(u) <= P, € End(u),Y\ € R

Thus, we are led to the conclusion in the statement. U
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In order to exploit this, we will often combine it with the following standard fact:
PROPOSITION 9.4. Consider a closed subgroup G C Sy, with associated coaction map
d:CYN - CVeC(G)
For a linear subspace V C CV, the following are equivalent:

(1) The magic matriz u = (u;j) commutes with Py .
(2) V is invariant, in the sense that ®(V) C V @ C(G).

PROOF. Let P = Py. For any i € {1,..., N} we have the following formula:

O(Ple;)) = @ (Z sz'ek>

= E Pkiej & Ujk
ik

= Zej ® (uP);;

On the other hand the linear map (P ® id)® is given by a similar formula:
(Poid) @) = 3 Plen) @ uy
k

= E Pjre; @ ug;
ik

= > ¢ ® (Pu);;
J
Thus uP = Pu is equivalent to ®P = (P ® id)®, and the conclusion follows. u

We have as well the following useful complementary result, from [6]:

PROPOSITION 9.5. Let p € My(C) be a matriz, and consider its “color” decomposi-
tion, obtained by setting (p.)i; = 1 if p;; = ¢ and (p.)i; = 0 otherwise:

p=> cpe

ceC

Then u = (u;;) commutes with p if and only if it commutes with all matrices p..
ProOF. Consider the multiplication and counit maps of the algebra C:
M:e;®@e; — ee;

C:ei—>ei®ei
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Since M, C' intertwine u, u®?, their iterations M®) C*) intertwine u, u®*, and so:

B = Bk o®)

k
= § C Dc
ceC

€ FEnd(u)

Let S = {c € C|p. # 0}, and f(c) = ¢. By Stone-Weierstrass we have S =< f >, and
so for any e € S the Dirac mass at e is a linear combination of powers of f:

5. = Zk:)\kf’“
Rty

ceS
- X (X
ceS k
The corresponding linear combination of matrices p®) is given by:

Lo = (%)

ceS

- X (T

ceS k

The Dirac masses being linearly independent, in the first formula all coefficients in the
right term are 0, except for the coefficient of d., which is 1. Thus the right term in the
second formula is p,, and it follows that we have p. € End(u), as claimed. O

The above results can be combined, and we are led to the following statement:
THEOREM 9.6. A closed subgroup G C S¥ acts on a graph X precisely when
u = (u)
commutes with all the matrices coming from the color-spectral decomposition of d.

Proor. This follows by combining Proposition 9.3 and Proposition 9.5, with the
“color-spectral” decomposition in the statement referring to what comes out by succesively
doing the color and spectral decomposition, until the process stabilizes. O

The above statement might seem in need of some further discussion, and axiomatiza-
tion, in what regards the two operations used there. In answer to all this, the point is
that we are in fact doing planar algebras. We have the following result, from [7]:
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THEOREM 9.7. The planar algebra associated to GT(X) is equal to the planar algebra
generated by d, viewed as a 2-box in the spin planar algebra Sy, with N = | X|.

PROOF. We recall from chapter 3 above that any quantum permutation group G C S
produces a subalgebra P C Sy of the spin planar algebra, given by:
Py, = Fiz(u®F)
In our case, the idea is that G = G (X) comes via the relation d € End(u), but we
can view this relation, via Frobenius duality, as a relation of type:
¢4 € Fiz(u®?)

Indeed, let us view the adjacency matrix d € My(0,1) as a 2-box in Sy, by using the
canonical identification between My (C) and the algebra of 2-boxes Sy (2):

(dij) < ;di]— (; ;)

Let P be the planar algebra associated to GT(X) and let @ be the planar algebra
generated by d. The action of u®? on d viewed as a 2-box is given by:

“(za ) - pal Homn

ij ikl

= > (]; l;) ® (udul)g

kl
Since v is a magic unitary commuting with d we have:

udu! = duut = d

This means that d, viewed as a 2-box, is in the algebra P, of fixed points of u®?. Thus
we have ) C P. For P C @ we use the duality found in chapter 3. Let indeed (B,v)
be the pair whose associated planar algebra is (). The same computation with v at the
place of u shows that v commutes with d. Thus we have a morphism A — B, given by
u;; — V5, and it follows that we have P C (), and we are done. Il

With the above results in hand, it is quite clear that our assumption that d € My(0, 1)
is the adjacency matrix of a usual graph X is somehow unnatural, and that we can look at
more general objects. We can consider for instance general permutation quantum groups
of the following type, depending on an arbitrary matrix d € My(C):

C(GH(X)) = C(SF) / <du - ud>

Here X stands for the combinatorial object associated to d, namely the complete
graph having as vertices {1,..., N}, with each oriented edge i — j colored by d;; € C.
Generally speaking, the theory extends well to this setting, and we have analogues of the
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above results, some valid for any d € My(C), and some other valid under the asumption
d = d*. We refer to [7] and subsequent papers for a full discussion here.

9b. Circulant graphs

With these issues discussed, so let us get back now to concrete things. As a basic
application of the above results, following [6], we can further study G*(0), as follows:

THEOREM 9.8. The quantum automorphism group of the N-cycle is as follows:
(1) At N # 4 we have GT(X) = Dy.
(2) At N =4 we have Dy C GT(X) C S, with proper inclusions.

Proor. We aknow that the results hold at N < 4, so let us assume N > 5. Given a
N-th root of unity, w? = 1, the vector £ = (w?) is an eigenvector of d, with eigenvalue:

A=w+w" !

Now by taking w = e>™/N

, it follows that the are eigenvectors of d are:

Lf 2., N

More precisely, the invariant subspaces of d are as follows, with the last subspace
having dimension 1 or 2 depending on the parity of N:

Cl,CfoCfN-t, CcfroCsN=2,. ..
Consider now the associated coaction ® : C¥N — CV @ C(G), and write:
d(fl=f@a+ N 1@b
By taking the square of this equality we obtain:
(A =fod+ b+ 1 (ab+ ba)
It follows that ab = —ba, and that ®(f?) is given by the following formula:
() =f2ed+ N 2ep
By multiplying this with ®(f) we obtain:
() =fed+ NP+ N’ + f @ ba’

Now since N > 5 implies that 1, N — 1 are different from 3, N — 3, we must have
ab® = ba* = 0. By using this and ab = —ba, we obtain by recurrence on k that:

() = fF ot + Nk
In particular at k = N — 1 we obtain:
(NN = N g 4 fe
On the other hand we have f* = f¥~1 so by applying * to ®(f) we get:
OV = N o+ fob
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Thus a* = o™~ and b* = b¥~!. Together with ab® = 0 this gives:
(ab)(ab)* = abb*a”
abNaN-1
= (ab?)pN 2N
=0
From positivity we get from this ab = 0, and together with ab = —ba, this shows that

a,b commute. On the other hand C(G) is generated by the coefficients of ®, which are
powers of a, b, and so C'(G) must be commutative, and we obtain the result. O

Summarizing, this was a bad attempt in understanding G*(OJ), which appears to be
“exceptional” among the quantum symmetry groups of the N-cycles. We will be back to
this question later, with a second bad solution, and then with the good solution.

Following [17], let us keep discussing the case of the circulant graphs, which is quite
interesting, due to the fact that we can use the Fourier transform. We first have:

DEFINITION 9.9. Associated to any circulant graph X having N wvertices are:
(1) The set S C Zy given by i ~x j < j—i€ S.
(2) The group E C Z% consisting of elements g such that gS = S.
(3) The number k = |E|, called type of X.

The interest in k£ comes from the fact that this is a good parameter measuring the
“complexity of the spectral theory” of X. Here are a few basic examples:

(1) The type can be 2,4,6,8, ... This is because {+1} C E.
(2) The cycle Cy is of type 2. Indeed, we have S = {+1}, E = {£1}.
(3) The empty graph Xy is of type p(N). Indeed, here S =0, E = Zj,.

Following [17], we can start by diagonalizing the adjacency matrix d € My(0,1), by
using the discrete Fourier transform, and we are led to the following result:

THEOREM 9.10. A type k circulant graph having p >> k wvertices, with p prime, has
no quantum symmetry.

Proor. This basically follows by using the same idea as above, for the cycle graph
Cy, namely the spectral decomposition of the adjacency matrix d € My(0,1), and then
a number of arguments eventually converting the needed algebra into analysis. O

In the case where NV is not prime, the way that the eigenvectors group into eigenspaces
is something which is of subtle arithmetic nature, and in order to overcome the difficulties
here, we must use a strategy different from the one in [17], namely doing as much algebra
as we can, and in a “uniform” way, in our study of the actions G ~ X, and leaving the
arithmetics for the end. In principle, this can lead to extensions of Theorem 9.10.
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9c. The hypercube

Let us go back now to the square problem, that we left open in the above. An
alternative approach to the understanding of G*(OJ) comes by regarding the square as
the N = 2 particular case of the N-hypercube [y. Indeed, the usual symmetry group of
Oy is the hyperoctahedral group Hy, so we should have a formula of type G(O) = H,.

Quite surprisingly, we will see that G () is in fact a twist of Oy. In order to discuss
this material, let us start with:

THEOREM 9.11. There is a signature map € : Poyen, — {—1,1}, given by

(1) = (-1’
where ¢ is the number of switches needed to make T noncrossing. In addition:

(1) For T € Sk, this is the usual signature.
(2) For T € P, we have (—1)°, where ¢ is the number of crossings.
(3) For 7 <m € NCoyen, the signature is 1.

PROOF. The fact that ¢ is indeed well-defined comes from the fact that the number ¢
in the statement is well-defined modulo 2, which is standard combinatorics.

In order to prove the remaining assertion, observe that any partition 7 € P(k,[) can
be put in “standard form”, by ordering its blocks according to the appearence of the first
leg in each block, counting clockwise from top left, and then by performing the switches
as for block 1 to be at left, then for block 2 to be at left, and so on.

Here is an example of such an algorithmic switching operation, with block 1 being
first put at left, by using two switches, then with block 2 left unchanged, and then with
block 3 being put at left as well, but at right of blocks 1 and 2, with one switch:

With this convention, the proof of the remaining assertions is as follows:

(1) For 7 € Sk the standard form is 7/ = id, and the passage 7 — id comes by
composing with a number of transpositions, which gives the signature.

(2) For a general 7 € Py, the standard form is of type 7/ =|... |55, and the passage

T — 7' requires ¢ mod 2 switches, where ¢ is the number of crossings.

(3) Assuming that 7 € P, comes from m € NCqpe, by merging a certain number of
blocks, we can prove that the signature is 1 by proceeding by recurrence. U

With the above result in hand, we can now formulate:
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DEFINITION 9.12. Associated to a partition ™ € Peyen(k,1) is the linear map

Tﬂ(eh@"'@eik)_zfsﬂ(z-l Z.k)ejl®...®€jl

Jr o

where the signed Kronecker symbols
o, € {—1,0,1}
are given by 0, = (1) if T > 7, and 5 = 0 otherwise, with T = ker(é).

In other words, what we are doing here is to add signatures to the usual formula of
T.. Indeed, observe that the usual formula for 7T, can be written as folllows:

Tﬂ<€i1®"'®eik): Z €j1®"'®ejl
j:ker(;)zw

Now by inserting signs, coming from the signature map ¢ : Py, — {1}, we are led
to the following formula, which coincides with the one from Definition 9.12:

Te(ei, ®...0e¢;) Z e(r Z ey ®...0e;
T>T 7 ker(;):*r
We have the following key categorical result:

PROPOSITION 9.13. The assignement © — T} is categorical, in the sense that
T,oT, = T[m]
1.7, = N,
T =T

where ¢(m,0) are certain positive integers.

PROOF. In order to prove this result we can go back to the proof from the easy case,
and insert signs, where needed. We have to check three conditions, as follows:

1. Concatenation. It is enough to check the following formula:

- ker - ker ki...k, — o (ker i p ki...k,
J1---Jq ll l J1---Jq ll...ls
Let us denote by 7,v the partitions on the left, so that the partition on the right is
of the form p < [rv]. Now by switching to the noncrossing form, 7 — 7" and v — v/, the

partition on the right transforms into p — p’ < [7'v/]. Now since [7'1/] is noncrossing, we
can use Theorem 9.11 (3), and we obtain the result.

2. Composition. Here we must establish the following formula:

Qe () Coe () == (e (i)
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Let 7, v be the partitions on the left, so that the partition on the right is of the form
p < [7]. Our claim is that we can jointly switch 7,v to the noncrossing form. Indeed, we
can first switch as for ker(j; ... j,) to become noncrossing, and then switch the upper legs
of 7, and the lower legs of v, as for both these partitions to become noncrossing.

Now observe that when switching in this way to the noncrossing form, 7 — 7/ and
v — V', the partition on the right transforms into p — o' < [}]. Now since [7] is
noncrossing, we can apply Theorem 9.11 (3), and we obtain the result.

3. Involution. Here we must prove the following formula:
5. (1) g (B
"\J1---Jq T\
But this is clear from the definition of §,, and we are done. O

As a conclusion, our construction m — 7T}, has all the needed properties for producing
quantum groups, via Tannakian duality. So, we can now formulate:

THEOREM 9.14. Given a category of partitions D C Peyepn, the construction

Hom(u®* u®") = span (Tﬂ TE D(k;,l))

produces via Tannakian duality o quantum group Gy C O}, for any N € N.

Proor. This follows indeed from the Tannakian results from chapter 1 above, exactly
as in the easy case, by using this time Proposition 9.13 as technical ingredient. U

We can unify the easy quantum groups, or at least the examples coming from categories
D C P.,en, with the quantum groups constructed above, as follows:

DEFINITION 9.15. A closed subgroup G C O} is called q-easy, or quizzy, with defor-
mation parameter ¢ = +1, when its tensor category appears as follows,

Hom(u®", u®") = span (T,r T E D(k:,l))

for a certain category of partitions D C P.yen, where, for ¢ = —1,1:
T=T,T
The Schur-Weyl twist of G is the quizzy quantum group G' C OF; obtained via ¢ — —q.

Let us compute now the twist of Oyn. We recall that the Mobius function of any
lattice, and in particular of P.,.,, is given by:

1 ifo=m
plo,m) =< = i hilo,m) ifo<m
0 ifoLn

With this notation, we have the following result:
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PROPOSITION 9.16. For any partition m € Pyye, we have the formula
T, = Z a1
T<m

where g = Y e(T)u(o,7), with p being the Mdbius function of Peyen.-

PROOF. The linear combinations 7= >____«, T, acts on tensors as follows:

T

T(611®®61k) = ZQTTT(eiI ®®€’Lk>

T<m

= ZaTZ Z e ®...0 e

T<m O=T jiker(})=0

— Z(Z aT> Y e ®...®e

o<m \o<T<T jiker(§)=c
Thus, in order to have T, = > ___«,T;, we must have, for any o <
e(o) = E o

o<t<m

But this problem can be solved by using the Mobius inversion formula, and we obtain
the numbers a, = > __ __e(7)u(o, 7) in the statement. O

We can now twist the orthogonal group. The result here is as follows:
THEOREM 9.17. The twist of Oy is obtained by replacing the relations ab = ba with
ab = tba
with anticommutation on rows and columns, and commutation otherwise.

PROOF. The basic crossing, ker (;JZ) with ¢ # j, comes from the transposition 7 € S5,

so its signature is —1. As for its degenerated version ker (ZZ), this is noncrossing, so here
the signature is 1. We conclude that the linear map associated to the basic crossing is:

- —e;®e; fori#j
Ty(e;, ®e;) = J
i i) {ej R e; otherwise

We can proceed now as in the untwisted case, and since the intertwining relations
coming from Ty correspond to the relations defining Oy, we obtain the result. U

Getting back now to graphs, we have the following result, from [17]:
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THEOREM 9.18. The quantum symmetry group of the N-hypercube is
Gt (Oy) = Oy
with the corresponding coaction map on the verter set being the map
®: C*(ZY) — C*(ZY) ® C(Oy)

9i = Z g;i ® uji
J
via the standard identification Oy = Z5'.

ProoF. We use here the fact that the cube [y, when regarded as a graph, is the
Cayley graph of the group Z3. The eigenvectors and eigenvalues of (ly are as follows:

_ i1j1+...+FiNJN J1 JIN
= E (_1) g1 ---9n
Ji-JN

A = ()" +...+ (=)W

11...IN

Viy..in

Modulo some standard computations, explained in [17], it is enough to construct a
map ® as in the statement. For this purpose, consider the following variables:

G = Zgj & Uj;
J

We must show that these variables satisfy the same relations as the generators g; € Z% .
The self-adjointness being automatic, the relations to be checked are therefore:

G? == 1 y GlG] == G]Gl
In what regards the squares, we have the following formula:
G} = Z 9kgt @ uipuy =1+ Z IeGt @ (Ui + wirtiy,)
kl k<l
Also, we have the following formula:
G, G, = nggl @ (Wikty — UjpUy + Wiljr — Ui
k<l

From the first relation we obtain ab = 0 for a # b on the same row of u, and by using
the antipode, the same happens for the columns. From the second relation we obtain:

[Wike, wjr) = [wjp, wa] Yk #1
Now by applying the antipode we obtain:
[rj, wri] = [wai; g
By relabelling, this gives, for j # i:
[k, sz] = [ug, ujk]
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Thus for ¢ # j, k # | we must have:
[k, wjt] = [wjr, ug) =0
We are therefore led to G C Oy, as claimed. O

In connection with the various extensions of our formalism, regarding colored graphs,
or finite metric spaces, let us record as well the following result, also from [17]:

THEOREM 9.19. The quantum isometry group of the N -hypercube, regarded as a finite
metric subspace of RY, is:

GT(Oy) = Oy
That is, we obtain the twisted orthogonal group O.

ProOF. The distance matrix of the cube has a color decomposition as follows:

d=d; +V2dy+V3ds + ...+ VNdy

Since the powers of d; can be computed by counting loops on the cube, we have
formulae as follows, with z;; € N being certain positive integers:

d% = T2 1N + x22d2
di = x31ln + x39ds + 1333
dY = anily +aneds + Tnsds + ...+ 2yndy

But this shows that we have the following equality of algebras:
<d>=<d; >

Now since d; is the adjacency matrix of [y, viewed as graph, this proves our claim,
and we obtain the result from Theorem 9.18. O

Our purpose now is to understand which representation of Oy produces by twisting
the magic representation of Oy. In order to solve this question, we will need:

PROPOSITION 9.20. The Fourier transform over ZY is the map
o C(ZY) = C*(ZY)

1 y . .
5921'1.“9"N — 2_N Z <_1)< ’j>g{1 . 'gg\]fv

N

with the usual convention < i,j >= ", irji, and its inverse is the map
B:CNZy) — C(Zy)
g g = Z (=176 5w
J1---IN
with all the exponents being binary, iy, ... i, ji,...,jn € {0,1}.
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PROOF. Observe first that the group ZY can be written as follows:
7y = {g?...g;‘g i, iy € {0,1}}

Thus both «, 3 are well-defined, and it is elementary to check that both are morphisms
of algebras. We have as well a8 = fa = id, coming from the standard formula:

Ly - (i)

Ji--JN k=1 Jr
= 0o
Thus we have indeed a pair of inverse Fourier morphisms, as claimed. O

As an illustration here, at N = 1, with Zy = {1, g}, the map « is given by:

1 1
51—>§(1+9) , 5g—>§(1—9)

As for its inverse (3, this is given by the following formulae:

1 —=01+064 , g—01—0
By using now these Fourier transforms, we obtain following formula:
THEOREM 9.21. The magic unitary for the embedding On C S;N 15 given by

1 <i+kp,j> 1 Hoen j
Wi = g 3 3 (1) (N) ol

Ji.-JN b1...bn

where ky = (ky,, .., ky ), with respect to multi-indices i,k € {0,1}" as above.

PROOF. By composing the coaction map ® from Theorem 9.18 with the above Fourier
transform isomorphisms «, 3, we have a diagram as follows:

CH(ZY) 2 N ZY)® C(Oy)
N B&id
C(ZY) v Y= C(ZY) 2 C(On)

In order to compute the composition on the bottom W, we first recall from Theorem
9.18 above that the coaction map ® is defined by the following formula:

q)(gb) = Z Ya & Ugp
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Now by making products of such quantities, we obtain the following global formula
for @, valid for any exponents iy,...,iy € {1,...,N}:

. . 1\ #(€) . . . .
q)(gil---gzév):(N) Zglﬁ'-'gbx@“szl“-uj\%zv
b1...by

The term on the right can be put in “standard form” as follows:

i1 IN Zb —1% Zb 23
by - Joy = 91 N e gN "t

We therefore obtain the following formula for the coaction map ®:

(g ... gN) = (N) S g gy @l uld
bi...bn

Now by applying the Fourier transforms, we obtain the following formula:

, 1 S .
— (Beidd (z—N 2 <—1><ﬂ>g{1...g5$)
Ji--JN
1 y 1 #(0€j) S s S e . )
= ¥ ) (- (N) I3 (91 bt gt ) ® U, - - - Uy,
Ji..jn b1...by

By using now the formula of § from Proposition 9.20, we obtain:

1 1 #(0€j)
- HE T ()
J1--JN b1..bn k1. kN
(—1><i’j>(_1)<(be:1jz’"-yzbm:Njz)v(k1,~~-7kN)>

Ok & ®uj1 T
g1 gty 16, Nby

Now observe that, with the notation k, = (ks,, . .., kpy ), we have:
<<Zh > jw> ,(k;l,...,kN)> =< j, kyp >
be=1 bp=N

Thus, we obtain the following formula for our map W:

_ 1 <ithyg> (L #(0@)5 gt in
S Ly s s ey e (D) e,

Ji--Jn b1..bn k1. kN



218 9. FINITE GRAPHS

But this gives the formula in the statement for the corresponding magic unitary, with
respect to the basis {591'1 giN} of the algebra C(ZY'), and we are done. O
1 "IN

We can now solve our original question, namely understanding where the magic rep-
resentation of Oy really comes from, with the following final answer to it:

THEOREM 9.22. The magic representation of Oy, coming from its action on the N-
cube, corresponds to the antisymmetric representation of Oy, via twisting.

Proor. This follows from the formula of w in Theorem 9.21, by computing the char-
acter, and then interpreting the result via twisting, as follows:

(1) By applying the trace to the formula of w, we obtain:

XX (g S ) () e,

J1.--JN b1...bN 1. 0N

(2) By computing the Fourier sum in the middle, we are led to the following formula,
with binary indices ji,...,jy € {0,1}, and plain indices by, ..., by € {1,...,N}:

1\ #(0€5) A .
X = Z Z (N) 5j172bg3:1 ]z R 6]'Nyzbz:1\]jzu‘ﬁ)1 ctt u?\%)]\]

J1...jN bi..by

(3) With the notation r = #(1 € j) we obtain a decomposition of type:

N
X = Z Xr

r=0

To be more precise, the variables y, are as follows:
1 : .
XT = W Z Z 5j172bz:1 Jx t 6]'N7sz:]v]’zu{%71 v u?\%}v
#(1€j)=rb1...by
(4) Consider now the set A C {1,..., N} given by:
A= {a|ja = 1}

The binary multi-indices j € {0, 1} satisfying #(1 € j) = r being in bijection with
such subsets A, satisfying |A| = r, we can replace the sum over j with a sum over such
subsets A. We obtain a formula as follows, where j is the index corresponding to A:

LS Y 5
Xr = NN [ID S PV TN S H Uab,,
|A|=rb1...bN acA

(5) Let us identify b with the corresponding function b : {1,..., N} — {1,..., N}, via
b(a) = b,. Then for any p € {1,..., N} we have:

0j, 5y, ge = 1 = [07H(p) N Al = xa(p) (mod 2)
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We conclude that the multi-indices b € {1,..., N} which effectively contribute to
the sum are those coming from the functions satisfying b < A. Thus, we have:

1
ve e S o

|A|=r b<A a€A

(6) We can further split each y, over the sets A C {1,..., N} satisfying:
Al =r

The point is that for each of these sets we have:

1
o S = 3 M

b<AacA sesh acA

Thus, the magic character of Oy splits as:

To be more precise, the components are:

e = > ] taota

|Al=r 0'65'1‘3 a€A

(7) The twisting operation Oy — Oy makes correspond the following products:
€<O-) H Uao(a) —7 H Uqao(a)
acA acA

Now by summing over sets A and permutations o, we conclude that the twisting
operation Oy — Oy makes correspond the following quantities:

> e [ ] vaow = Y D ] tartw

|Al=r UESK‘, acA |Al=r 0651‘3 a€A
Thus, we are led to the conclusion in the statement. U

We will be back to all this in chapter 10 below, with yet another solution to the square
problem. The idea there will be that of regarding the square as the complement of the
graph formed by 2 segments, and then looking at the quantum symmetry group Hj; of
the graph formed by N segments, which will be the correct generalization of Hy.
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9d. Partial symmetries

As a final topic for this chapter, let us discuss now the partial automorphism groups
of the finite graphs X, and their quantum analogues. Let us start with:

PROPOSITION 9.23. Given a graph X with N wvertices, and adjacency matriz d &€
Mny(0,1), consider its partial automorphism semigroup, given by:

G(X) = {O’ € Sy

dij = do(i)o(j), Vi,J € Dom(o )}
We have then the following presentation formula,
C(G(X)) = C(Sy) / <R(du —ud)C = 0>

with R = diag(R;), C = diag(C;), where R;,C; are the row and column sums of the
associated submagic matrix u.

PROOF. With the convention ¢ ~ j when 7,7 are connected by an edge of X, the
definition of G(X) from the statement reformulates as follows:

G(X) = {o € Sx|i~ . 30().30() = oli) ~ ()}

We have the following computations:

if o(j) ~1i
deukj Zuk] { 2

— 0 otherwise

ZUdekj Zuzk {1 ifO'_ ()N]

0 otherwise
k~j

On the other hand, we have as well the following formulae:

Z“w {1 if Jo1(i)

0 otherwise
if 3o(y)
=2 ulo
0 otherwise
Now by multiplying the above formulae, we obtain the following formulae:
1 if o(j) ~iand 30~ 1(4) and Fo(j)
(Ri(du);;C;)(0) = :
0 otherwise

1 if 671(i) ~ j and Fo71(i) and Fo(j)

0 otherwise

(Ri(ud);;C) (o) = {
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We conclude that the relations in the statement, which read R;(du);;C; = R;(ud);;C},
when applied to a given o € Sy, correspond to the following condition:

A07(i), Fo(j) = [o(j) ~i <= o7'(i) ~ ]
But with i = o(k), this latter condition reformulates as follows:
do(k), 30(j) = [0(j) ~a(k) < k~j]
Thus we must have o € G(X), and we obtain the presentation result for G(X). O
With the above result in hand, we are led to the following statement:

THEOREM 9.24. Given a graph X, with adjacency matriz d € My(0,1), the following
construction, R,C being the diagonal matrices formed by the row and column sums of u,

C(GH(X)) = C(S%) / <R(du —ud)C = 0>

produces a quantum semigroup with subantipode é+(X ) C gj\;, called quantum semigroup
of quantum partial automorphisms of X, whose classical version is G(X).

PROOF. In order to construct A, consider the elements U;; = >, wip ® ug;. We must
prove that the relations in the statement are satisfied by U = (U;;). We have:

RY(dU);CY = > Ui Y daliy Y U
k l m
= Z Uip @ Unk Z dilulo X Upj Z Umyp & Upj
kn lo mp

- § dil * UinUloUmp & UnkUojUpj

klmnop

= E dil * Ui UioUmo @ UnkUoj
klmno

= E dil CUipUo @ UnkUoj
klno

On the other hand, we have as well the following formula:
Ri(du);C; = Z Wi, Z dijuyj Z Up
k l m

= E dil'uikuljumj
klm

= E dil'uikulj
Kl
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Now by getting back to our computation, we can finish it as follows:

RiU(dU)ijC]U = Z diy * UinUio @ Upk o,

kino

= Z Uip @ Unk Z dil “ U @ Upj
kn lo

= Z dil . A(uzk)A(ul])
kl

= A (Z dj - Uik“lj)
kl

= A(Ri(du);;C;)
The second computation that we need is similar. We first have:
RY(Ud);CY = Z Uik Z Undy; Z Unj
k l m
= Z Ui, X Upk Z dijUio @ U Z Ump @ Up;
kn lo mp

= E dlj * UinUioUmp X UnkUolUpj

klmnop

= E dlj * UinUmp & UnkUnlUp;
klmnp

= § dlj * UinUmp & UnkUpj
kmnp

On the other hand, we have as well the following formula:

Ri(ud);;C; = Zuikzuildljzum]’
k l m

= E dlj'uikuilumj
klm

= Zdlj * Uik Umy
km
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Now by getting back to our computation, we can finish it as follows:

RZU(Ud)Z]CjU = Z dlj * UinUmp ® unkupj

kmnp

= g Uin, & Unk E dij - Ump @ Upj
kn mp

= Y diy - i) Alu,)

= A (Z dlj : uikumj>
km
= A(Ri(ud);;C;)
We can now construct A, based on the formulae found above.

Regarding now ¢, the algebra in the statement has indeed a morphism ¢ defined by
u;; — 0;;, because the following relations are trivially satisfied:

Ri(le)ijCj = Ri(lNd)ijCj

Regarding now S, we must prove that we have a morphism S given by w;; — w;;. Here
the best is to use the reformulation of the relations in the statement mentioned before the
statement itself, which is as follows, with R = diag(R;) and C = diag(C}):

R(du —ud)C =0
Indeed, when transposing this formula, we obtain:
C*(u'd — du")R" = 0

Now since O, R! are respectively the diagonal matrices formed by the row sums and
column sums of u, we conclude that the relations R(du — ud)C' = 0 are satisfied by the
transpose matrix u!, and this gives the existence of the subantipode map S. Il

There are many interesting questions regarding the above semigroups.

9e. Exercises

The constructions discussed in this chapter produce many interesting examples of
quantum permutation groups, and we will keep studying them, in the remainder of this
book. As a first exercise about all this, in direct relation to the above, we have:

EXERCISE 9.25. Work out the behavior of the operation
X — GH(X)

with respect to the basic product operations on the graphs.
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There are several possible product operations to be investigated here, and none of
them is trivial, ultimately leading to the study of the eigenvalues of the corresponding
adjacency matrices. We will be back to all this in the next chapter, with a detailed study
of the disconnected unions, and of some related product operations.

In connection now with the circulant graphs, we have:

EXERCISE 9.26. Work out some theoretical generalizations of the no quantum symme-
try result for the N-cycle, in the N — oo limit.

This is something that we already discussed in the above, with the comment that some
technology is available in the case where N is prime, and that all this is in need of some
further extensions, to the case where N is not necessarily prime.

In connection with the twists and hypercubes, we have:
EXERCISE 9.27. Find graphs X related to the hypercube, for which the operation
X — GH(X)
produces twists of classical Lie groups.

This is something quite tricky, requiring for instance going beyond the Schur-Weyl
twisting procedure, say by using a twisted version of the determinant.

Finally, we have several theoretical questions. Let us start with:

EXERCISE 9.28. Discuss some applications of the general planar algebra theory to the
computation of the quantum symmetry groups of type GT(X).

This is something that we briefly discussed in the above, with a general structure
result for the planar algebra associated to G*(X). The problem is that of going beyond
this, with explicit applications of the planar algebra theory to G*(X) problems.

As a second theoretical exercise, we have:

EXERCISE 9.29. Prove that any graph having N > 2 vertices does have quantum partial
symmetry, in the sense that Gt (X) is not classical. Also, try constructing the quantum
partial automorphism group of an infinite graph.

Here the first question is quite elementary, and the second one is quite tricky, leading
to quite complicated functional analysis.



CHAPTER 10

Reflection groups

10a. Wreath products

Let us go back now to the square problem. In order to present the correct, final
solution to it, the idea will be that to look at the quantum group G (] |) instead, which
is equal to it. We will need the following result, from [42]:

THEOREM 10.1. Given closed subgroups G C Uy, H C S}, with fundamental corep-
resentations u,v, the following construction produces a closed subgroup of Uy, :

C(G . H) = (C(G)™ x C(H))/ < [uff, va] = 0 >

In the case where G, H are classical, the classical version of G 1, H s the usual wreath
product GV H. Also, when G is a quantum permutation group, so is G 1, H.

PRrOOF. Consider indeed the following matrix, written using double indices, over the
quotient algebra in the statement:

R (Y
wza,jb - uij Vab
Then w is unitary, and in the case G C Sj;, this matrix is magic.

With these observations in hand, it is routine to check that G, H is indeed a quantum
group, with fundamental corepresentation w, by constructing maps A, e, S as in chapter
1 above, and in the case G C S5, we obtain in this way a closed subgroup of S7,.

For details on all this, we refer to [42]. O

We refer to [11], [42], [89] for more details regarding the above construction. With
this notion in hand, we can now formulate a non-trivial result, as follows:

THEOREM 10.2. Given a connected graph X, and k € N, we have the formulae
G(kX)=G(X) Sk
GHkX)=GT(X)n S

where kX = X ... U X is the k-fold disjoint union of X with itself.
225
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PRrROOF. The first formula is something well-known, which follows as well from the
second formula, by taking the classical version. Regarding now the second formula, it is
elementary to check that we have an inclusion as follows, for any finite graph X:

GT(X) . Sf C GH(kX)

Regarding now the reverse inclusion, which requires X to be connected, this follows
by doing some matrix analysis, by using the commutation with u. To be more precise, let
us denote by w the fundamental corepresentation of G*(kX), and set:

Ugj) = Z Wia,jb Vab = Z Vab
b i
It is then routine to check, by using the fact that X is indeed connected, that we have
here magic unitaries, as in the definition of the free wreath products. Thus, we obtain:
GHkX) Cc GT(X)un S
But this gives the result. See [11]. O
We are led in this way to the following result, from [17]:

THEOREM 10.3. Consider the graph consisting of N segments.

(1) Its symmetry group is the hyperoctahedral group Hy = Zo ! Sy .
(2) Its quantum symmetry group is the quantum group Hj; = Zy 1. Sy

PROOF. Here the first assertion is clear from definitions, with the remark that the
relation with the formula Hy = G(Oy) comes by viewing the N segments as being the
[—1, 1] segments on each of the N coordinate axes of RY.

Indeed, a symmetry of the N-cube is the same as a symmetry of the N segments, and
so, as desired:

G(Oy) =721 Sy
As for the second assertion, this follows from Theorem 10.2 above, applied to the
segment graph. Observe also that (2) implies (1), by taking the classical version. O

Now back to the square, we have GT(0J) = H,, and our claim is that this is the
“good” and final formula. In order to prove this, we must work out the easiness theory
for Hy, H};, and find a compatibility there. We first have the following result:

PROPOSITION 10.4. The algebra C(H};) can be presented in two ways, as follows:

(1) As the universal algebra generated by the entries of a 2N X 2N magic unitary
having the “sudoku” pattern w = (¢ %), with a,b being square matrices.

(2) As the universal algebra generated by the entries of a N x N orthogonal matriz
which is “cubic”, in the sense that w;ju, = wjuk; = 0, for any j # k.

As for C(Hy), this has similar presentations, among the commutative algebras.
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PROOF. We must prove that the algebras Ay, A. coming from (1,2) coincide. We can
define a morphism A, — A, by the following formula:

p(uij) = aij — b

We construct now the inverse morphism. Consider the following elements:

2
WE Ty
2
1) 2

These are projections, and the following matrix is a sudoku unitary:

- ({5 6)

Thus we can define a morphism A; — A, by the following formula:

uf + u;j
Play) = jTj
uZ — Uy
¥(by) = UTJ

We check now the fact that 1, ¢ are indeed inverse morphisms:

Yo(uij) = Y(ay — biy)

2 2
Uzj +Uij Uz — Ui
2 2

As for the other composition, we have the following computation:

R
@1/1(%') = @(%)

(ai; — bij)* + (ai; — bij)
2

A similar computation gives ¢ (b;;) = b;;, as desired. As for the final assertion,
regarding C'(Hy), this follows from the above results, by taking classical versions. O

We can now work out the easiness property of Hy, Hy, with respect to the cubic
representations, and we are led to the following result, which is fully satisfactory:
THEOREM 10.5. The quantum groups Hy, HJ; are both easy, as follows:

(1) Hy corresponds to the category P.yen.
(2) Hy corresponds to the category NCeyen.
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PRrROOF. These assertions follow indeed from the fact that the cubic relations are
implemented by the one-block partition in P(2,2), which generates NClyep,- O

As a final conclusion now, to the long story told here, the correct analogue of the
hyperoctahedral group Hy is the quantum group H}; constructed above, with Hy — Hy;
being a liberation, in the sense of easy quantum group theory.

10b. Complex reflections

These quantum groups Hy and Hj; belong in fact to series, depending on a parameter
s € NU {00}, as follows:

HJSV =71 SN
H]SVJ'_ == Zs 2* S]'\f‘[
We discuss here, following [9], [38], the algebraic and analytic structure of these latter

quantum groups. The main motivation comes from the cases s = 1, 2, oo, where we recover
respectively Sy, Sy and Hy, Hy, and the full reflection groups Ky, K.

Let us start with a brief discussion concerning the classical case. The result that we
will need, which is well-known and elementary, is as follows:

PrOPOSITION 10.6. The group HY = Zs1 Sy of N x N permutation-like matrices
having as nonzero entries the s-th roots of unity is as follows:
(1) Hy = Sn s the symmetric group.
(2) H% = Hy is the hyperoctahedral group.
(3) HY = Ky 1is the group of unitary permutation-like matrices.

PROOF. Everything here is clear from definitions. U
The free analogues of the reflection groups H3; can be constructed as follows:

DEFINITION 10.7. C(HY) is the universal C*-algebra generated by N? normal ele-
ments u;;, subject to the following relations,
(1) u = (w;;) is unitary,
(2) u' = (uj;) is unitary,
(3) pij = wijuy; is a projection,
(4) iy = pij,
with Woronowicz algebra maps A, e, S constructed by universality.

Here we allow the value s = oo, with the convention that the last axiom simply
disappears in this case. Observe that at s < oo the normality condition is actually
redundant. This is because a partial isometry a subject to the relation aa* = a°® is
normal. As a first result, making the connection with Hy;, we have:
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THEOREM 10.8. We have an inclusion as follows,
HY C HY

which is a liberation, in the sense that the classical version of HY ", obtained by dividing
by the commutator ideal, is HY;.

PROOF. This follows as for Oy C OF; or Sy C S5, by using the Gelfand theorem. O
In analogy with the results from the real case, we have the following result:

PROPOSITION 10.9. The algebras C(H}") with s = 1,2,00, and their presentation
relations in terms of the entries of the matriz uw = (u;;), are as follows.

(1) For C(HNT) = C(SY;), the matriz u is magic: all its entries are projections,
summing up to 1 on each row and column.

(2) For C(H%") = C(HY;) the matriz u is cubic: it is orthogonal, and the products
of pairs of distinct entries on the same row or the same column vanish.

(3) For C(HY™") = C(Ky;) the matriz u is unitary, its transpose is unitary, and all
its entries are normal partial isometries.

PROOF. The idea here is as follows:
(1) This follows from definitions and from standard operator algebra tricks.
(2) This follows as well from definitions and from standard operator algebra tricks.

(3) This is just a translation of the definition of C'(H¥"), at s = oo. O

Let us prove now that Hy" with s < co is a quantum permutation group. For this
purpose, we must change the fundamental representation. Let us start with:

DEFINITION 10.10. A (s, N)-sudoku matriz is a magic unitary of size sN, of the form

a® o' ... a!
as—l CLO CLS_2
m = _
at  a? a’
where a®, ..., a*" ' are N x N matrices.

The basic examples of such sudoku matrices come from the group H;. Indeed, with
w = e?™/* each of the N? matrix coordinates u;; : Hy — C takes values in the set:

S={0}u{l,w,...,w"'}

Thus this coordinate decomposes as follows:
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Here each aj; is a function taking values in {0, 1}, and so a projection in the C*-algebra
sense, and it follows from definitions that these projections form a sudoku matrix. With
this notion in hand, we have the following result:

THEOREM 10.11. The following happen:

(1) The algebra C(H3Y;) is isomorphic to the universal commutative C*-algebra gen-
erated by the entries of a (s, N)-sudoku matriz.

(2) The algebra C(HY) is isomorphic to the universal C*-algebra generated by the
entries of a (s, N)-sudoku matriz.

PRrROOF. The first assertion follows from the second one, via Theorem 10.8. In order to
prove now the second assertion, consider the universal algebra in the statement, namely:

A=C" (afj

q—p)
(a” pi,qj

= (s, N) — sudoku )

Consider also the algebra C(H3"). According to Definition 10.7, this is presented by
certain relations R, that we will call here level s cubic conditions:

C(H)=C" <Uz‘j

u=N x N level s cubic)

We will construct a pair of inverse morphisms between these algebras.

(1) Our first claim is that U;; = Zp w*pafj is a level s cubic unitary. Indeed, by using
the sudoku condition, the verification of (1-4) in Definition 10.7 is routine.

(2) Our second claim is that the elements A}, = 137 w"™uj;, with the convention

u?j = pij, form a level s sudoku unitary. Once again, the proof here is routine.

(3) According to the above, we can define a morphism ® : C(Hy") — A by the formula
®(uy;) = Uy, and a morphism ¥ : A — C(HY") by the formula ¥(af;) = A7

(4) We check now the fact that ®, ¥ are indeed inverse morphisms:

UO(uy) = Y wPA
p
T
P T

1
- = (r—p, r
= Sg w (ar
pr
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As for the other composition, we have the following computation:

PU(al,) = % > WUy,
= % Z w' Z w_“la?j
T q
_ é Sl wrto
q r

— p
= &ij

Thus we have an isomorphism C(H3") = A, as claimed. U

Let us discuss now the interpretation of Hy,, Hy' as classical and quantum symmetry
groups of graphs.

We will need the following simple fact:

ProPOSITION 10.12. A sN x sN magic unitary commutes with the matriz

0 Iy O ... O

0 0 Iy ... O
s=|:

0 0 0 ... Iy

I 0 0 ... 0

if and only if it is a sudoku matriz in the sense of Definition 10.10.

Proor. This follows from the fact that commutation with ¥ means that the matrix
is circulant. Thus, we obtain the sudoku relations from Definition 10.10 above. U

Now let Z, be the oriented cycle with s vertices, and consider the graph N Z, consisting
of N disjoint copies of it. Observe that, with a suitable labeling of the vertices, the
adjacency matrix of this graph is the above matrix 3. We obtain from this:

THEOREM 10.13. We have the following results:

(1) Hy, is the symmetry group of NZs.
(2) Hy' is the quantum symmetry group of NZ.

PROOF. The idea here is as follows:

(1) This follows from definitions.

(2) This follows from Theorem 10.11 and Proposition 10.12, because C'(H3') is the
quotient of C'(S]y) by the relations making the fundamental corepresentation commute
with the adjacency matrix of NZ,. Il
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Next in line, we must talk about wreath products. We have here:

THEOREM 10.14. We have the following results:
(1) HY = Z4 1 Sn.

Proor. This follows from the following formulae, valid for any connected graph X,

and explained before, applied to Z,:
G(NX) = G(X)1Sy
GT(NX) = GT(X)u S}

Alternatively, (1) follows from definitions, and (2) can be proved directly, by con-

structing a pair of inverse morphisms. For details here, we refer to [38]. U

Regarding now the easiness property of the quantum groups Hy, Hy', we already
know that this happens at s = 1,2. In general, we have the following result, from [9]:

THEOREM 10.15. The quantum groups Hy;, Hﬁfr are easy, the corresponding categories
P*CP
NC* C NC
consisting of partitions having the property
#o —#e=0(s)
as a weighted sum, in each block.
PROOF. Observe that the result holds at s = 1, trivially, and at s = 2 as well, where

our condition is equivalent to # o +#e = 0(2), in each block. In general, this follows as
in the proof for Hy, Hy;, by using the one-block partition in P(s, s). See [9]. O

The above proof was of course quite brief, but we will not be really interested here in
the case s > 3, which is quite technical. In fact, the above result, dealing with the general
case s € N, is here for providing an introduction to the case s = oo, where we have:

THEOREM 10.16. The quantum groups Ky, Kf\} are easy, the corresponding categories
Peven C P
NCeyen C NC
consisting of partitions having the property
#o = Fte
as a weighted equality, in each block.
Proor. This follows from Theorem 10.15, or rather by proving the result directly, a

bit as in the s = 1, 2 cases, because the s = oo case is needed first, in order to discuss the
general case, s € NU {oo}. For details here, we refer once again to [9]. O
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10c. Fusion rules
Let us discuss now, following [38], the classification of the irreducible representations

of H3", and the computation of their fusion rules.

For this purpose, let us go back to the elements w;;, p;; in Definition 10.7 above. We
recall that, as a consequence of Proposition 10.9, the matrix p = (p;;) is a magic unitary.
We first have the following result:

PROPOSITION 10.17. The elements u;; and p;; satisfy:

(1) pijui; = wi;-
(2) u;kj = ufj_l‘
(3) wijus =0 for j # k.
ProOOF. We use the fact that in a C*-algebra, aa* = 0 implies a = 0.

(1) This follows from the following computation, with a = (p;; — 1)u;:
aa” = (pij — V)pi;(pij — 1)
=0
(2) With a = uj; — ufj_l we have aa* = 0, which gives the result.
(3) With a = u;;u;, we have aa® = 0, which gives the result. O
In what follows, we make the convention u% = pi;- We have then:

THEOREM 10.18. The algebra C(HY") has a family of N-dimensional corepresenta-
tions {ug|k € Z}, satisfying the following conditions:
(1) w, = (uy;) for any k > 0.
(2) up = upys for any k € Z.
(3) @ = u_y, for any k € Z.

PRrROOF. The idea here is as follows:

(1) Let us set u, = (uy;). By using Proposition 10.17 (3), we have:

k
A<u2]) = E Uity - - - Wy, ®ullj...ulkj

We have as well, trivially, the following two formulae:
e(ug;) = b

() = w3t
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(2) This follows once again from Proposition 10.17 (3), as follows:

= b
k
= UyPij
(3) This follows from Proposition 10.17 (2), and we are done. O

Let us compute now the intertwiners between the various tensor products between
the above corepresentations u;. For this purpose, we make the assumption N > 4, which
brings linear independence. In order to simplify the notations, we will use:

DEerINITION 10.19. For iy, ..., 4 € Z we use the notation
where {w;|i € Z} are the corepresentations in Theorem 10.18.

Observe that in the particular case iy,...,ix € {£1}, we obtain in this way all the
possible tensor products between v = u; and @ = u_;, known by [98] to contain any
irreducible corepresentation of C(H3"). Here is now our main result:

THEOREM 10.20. We have the following equality of linear spaces
pe NCS(il...ik,jl...jl)}

where the set on the right consists of elements of NC(k,l) having the property that in
each block, the sum of i indices equals the sum of 7 indices, modulo s.

Hom(uil-nika ujl...jl) = span {Tp

PRrROOF. This result is from [38], the idea of the proof being as follows:

(1) Our first claim is that, in order to prove D, we may restrict attention to the case
k = 0. This follow indeed from the Frobenius duality isomorphism.

(2) Our second claim is that, in order to prove D in the case k = 0, we may restrict
attention to the one-block partitions. Indeed, this follows once again from a standard
trick. Consider the following disjoint union:

NC, = D U NCo(0,41 - dx)

k=041...ip

This is a set of labeled partitions, having property that each p € N is noncrossing,
and that for p € NC§, any block of p is in NC. But it is well-known that under these
assumptions, the global algebraic properties of NCy can be checked on blocks.

(3) Proof of D. According to the above considerations, we just have to prove that the
vector associated to the one-block partition in NC(I) is fixed by w;,. ;,, when:

sljr+ ...+ i
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Consider the standard generators e,, € My (C), acting on the basis vectors by:

eab<€c) = 6bcea
The corepresentation u;, . j, is given by the following formula:
Us L ujl ujl ® e ® ® e
JieJi — a1by * Yl aiby s arby
ai...a; by...b;

As for the vector associated to the one-block partition, this is:

By using now several times the relations in Proposition 10.17, we obtain, as claimed:

w108 = > uly ul ®e, ®... @,

ai...a; b
j1+-.-+J l
= D e
ab
= 1®¢

(4) Proof of C. The spaces on the right in the statement form a Tannakian category
in the sense of [99], so they correspond to a certain Woronowicz algebra A.

This algebra is by definition the maximal model for the Tannakian category. In other
words, it comes with a family of corepresentations {v;}, such that:

Hom(v;, i, ,vj,.. ;) = span {Tp p€ NCs(iy.. .0k, 71 .- .jl)}

On the other hand, the inclusion D that we just proved shows that C(H%") is a model
for the category. Thus we have a quotient map as follows:

A— C(H3)

Vi — U,
But this latter map can be shown to be an isomorphism, by suitably adapting the
proof from the s = 1 case, for the quantum permutation group S¥. See [9], [38]. O

As an illustration for the above result, we have the following statement:

THEOREM 10.21. The basic corepresentations ug, . ..,us_1 are as follows:
(1) uy,...,us_q1 are irreducible.
(2) ug =1+ rg, with ro irreducible.
(3) ro,u1, ..., us—1 are distinct.
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Proor. We apply Theorem 10.20 with k =1 =1 and 4; = ¢,j; = j. This gives:
dim(Hom/(u;, uj)) = #NCs(3, j)

We have two candidates for the elements of NCs(i,7), namely the two partitions in
NC(1,1). So, consider these two partitions, with the points labeled by i, j:

We have to check for each of these partitions if the sum of ¢ indices equals or not the
sum of j indices, modulo s, in each block. The answer is as follows:

p € NCs(i,j) <= i=]j
g€ NCs(i,j) <= i=j=0

By collecting together these two answers, we obtain:

0 ifij
HNC(ij) =1 ifi=j#0
2 ifi=j=0

We can now prove the various assertions, as follows:
(1) This follows from the second equality.
(2) This follows from the third equality and from the fact that we have 1 € u,.
(3) This follows from the first equality. d
Let us record as well, as a second consequence, the following result:
THEOREM 10.22. We have the formula
#Llew, ®@...0u,)=#NC(iy...i)

where the set on the right consists of noncrossing partitions of {1,...,k} having the prop-
erty that the sum of indices in each block is a multiple of s.

PRrRooOF. This is clear indeed from Theorem 10.20 above. O

We can now compute the fusion rules for Hy'.

The result here, from [38], is as follows:
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THEOREM 10.23. Let F =< Zg > be the words over Zg, with involution

(i ig)™ = (—ig) ... (—i1)

and with fusion product given by:

The irreducible representations of Hy" can then be labeled r, with x € F, such that the
mwvolution and fusion rules are ¥, = rz and

Te QTy = Z Tow + Toaw
T=VZ,Yy=ZwW
and such that we have r; = u; — d;01 for any i € Zs.

PRrROOF. This basically follows from Theorem 10.20, the idea being as follows:

(1) Consider the monoid A = {a,|r € F'}, with multiplication a,a, = a,,. We denote
by NA the set of linear combinations of elements in A, with coefficients in N, and we
endow it with fusion rules as in the statement:

a; @ Ay = E Ay + Ay
T=VZ,Yy=ZwW

With these notations, (NA, +,®) is a semiring. We will use as well the set ZA,
formed by the linear combinations of elements of A, with coefficients in Z. The above
tensor product operation extends to ZA, and (ZA, +,®) is a ring.

(2) Our claim is that the fusion rules on ZA can be uniquely described by conversion
formulae as follows, with C' being positive integers, and D being integers:

E E J1---J1
all ®alk Czl zkajl Ji

I J1-Ji

J1---J1
Ay ..ipy = E : E :Dzl zkah '®ajl

g1t
Indeed, the existence and uniqueness of such decompositions follow from the definition
of the tensor product operation, and by recurrence over k for the D coefficients.

(3) Our claim is that there is a unique morphism of rings ® : ZA — R, such that
®(a;) = r; for any . Indeed, consider the following elements of R:

. R E E J1---J1 .
Tllmlk - Dzl 'Lkrjl . ® r]l
I ji-di

In case we have a morphism as claimed, we must have ®(a,) = r, for any z € F.
Thus our morphism is uniquely determined on A, so it is uniquely determined on ZA.
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In order to prove the existence, we can set ®(a,) = r, for any = € F, then extend
® by linearity to the whole ZA. Since ® commutes with the above conversion formulae,
which describe the fusion rules, it is indeed a morphism.

(4) Our claim is that ® commutes with the linear forms = — #(1 € z). Indeed, by
linearity we just have to check the following equality:

#(1 Gai1®...®aik) :#(1 6Ti1®...®7‘ik)

Now remember that the elements r; are defined as r; = u; — d;01. So, consider the
elements ¢; = a; + d;01. Since the operations r; — u; and a; — ¢; are of the same nature,
by linearity the above formula is equivalent to:

#(1€cu®®czk)=#(1€ull®®ulk)

Now by using Theorem 10.20, what we have to prove is:

#(1 €c, ®... ®C,k) = #NCS(Zl . Zk)

In order to prove this formula, consider the product on the left:

P = (ail + 5i101) (024 (CI,Z‘2 + (51‘201) ®...Q (U,ik + 5zk01)

This quantity can be computed by using the fusion rules on A. A recurrence on k
shows that the final components of type a, will come from the different ways of grouping
and summing the consecutive terms of the sequence (iy,...,4), and removing some of
the sums which vanish modulo s, as to obtain the sequence . But this can be encoded
by families of noncrossing partitions, and in particular the 1 components will come from

the partitions in NCs(iy .. .4). Thus #(1 € P) = #NC(iy ... i), as claimed.

(5) Our claim now is that ® is injective. Indeed, this follows from the result in the
previous step, by using a standard positivity argument:
P(a)=0 = P(aa”)=0
= #(leP(aa™))=0
= #(lecaa")=0
== a=0
Here v is arbitrary in the domain of ®, we use the notation a’ = az, where a — #(1, a)
is the unique linear extension of the operation consisting of counting the number of 1’s.

Observe that this latter linear form is indeed positive definite, according to the identity
#(1, aza;) = 04y, which is clear from the definition of the product of ZA.

(6) Our claim is that we have ®(A) C R;... This is the same as saying that r, € R;.,
for any € F, and we will prove it by recurrence on the length of z.

Assume that the assertion is true for all the words of length < k, and consider an
arbitrary length k word, z = 7; ...4,. We have:

iy @ Wiy iy, = Oz + iy tig ig..ip T Oiy+in,00is. i
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By applying ® to this decomposition, we obtain:
Tiy @ Tig. iy, = To T Tiitioig...i T 0i1tia,07i5...ix

We have the following computation, which is valid for y = i1 + 9, 73.. .17, as well as
for y = i3...14; in the case 71 + 1o = 0:

#(Ty ery, ® Tiz...ik) = #(1’ Ty BT & Tizmik)
=1

Moreover, we know from the previous step that we have r;, i, i, 7 Tis..ip, SO We
conclude that the following formula defines an element of R*:

Q=173 @ iy i = Tirtinis..ip, — Oir+iz,0Tis...ix

On the other hand, we have o = r,, so we conclude that we have r, € R*. Finally,
the irreducibility of r, follows from the following computation:

#ler,®@r) = #1er,®rz)
= #(1 €a,®az)
= #(l€a,®a,)
=1

(7) Summarizing, we have constructed an injective ring morphism:

d:7ZA— R

CI)(A) C Ry

The remaining fact to be proved, namely that we have ®(A) = Ry, is clear from
the general results in [98]. Indeed, since each element of NA is a sum of elements in A,
by applying ® we get that each element in ®(NA) is a sum of irreducible corepresenta-
tions in ®(A). But since ®(NA) contains all the tensor powers between the fundamental
corepresentation and its conjugate, we get ®(A) = Ry, and we are done. O

As an illustration for the above result, at s = 1 we obtain the Clebsch-Gordan rules
for the irreducible representations of Sy. The cases s = 2,00 are quite interesting too.

We refer to [39] for more on all the above.
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10d. Bessel laws

Let us discuss now the computation of the asymptotic laws of characters. We begin
with a discussion for Hy, from [17], which has its own interest:

THEOREM 10.24. The asymptotic law of x; for the group Hy is given by

(t /2 Ylel+2p
ot
O
— S i
where 0y, is the Dirac mass at k € 7.
Proor. We regard the hyperoctahedral group Hy as being the symmetry group of
the graph Iy = {I',... I} formed by N segments. The diagonal coefficients are then:
0 if g moves I°
ui(g) = { +1if g fixes I
—1 if g returns I

Let s = [tN], and denote by 1 ¢, ] ¢ the number of segments among {I*, ... I*} which
are fixed, respectively returned by an element g € Hy. With this notation, we have:

u11+---+uss:Tg_\Lg

We denote by Py probabilities computed over the group Hy. The density of the law
of u;; + ...+ uss at a point k£ > 0 is given by the following formula:

D(k) = Pn(tg—1g=k)

= > Px(tg=k+plg=p)

p=0
Assume first ¢t = 1. We use the fact that the probability of o € Sy to have no fixed

points is asymptotically P, = % Thus the probability of ¢ € Sy to have m fixed points
is asymptotically P +m = ﬁ In terms of probabilities over Hy, we obtain:

. . k+2p
— k+2p —
A}lm D(k) = A}lm ;:0(1/2) <k p) Pn(T g+ 1 g=k+2p)
k+2p 1
_ E 1/2 k+2p
(1/2) (k+p>e(k+2p)!

p=0
1 o 1/2k+2p
- EZ (k+p)lp!

p=
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The general case t € (0,1] follows by performing some modifications in the above
computation. The asymptotic density is computed as follows:

. . - k+2p
— k+2p —
tm o) = g S0 () g Lo =2
-
— i 1/2 k+2p (k + 2]9) th
pard k+p ) et(k+2p)
_ - i t/2 k+2p
p:() k; —+ p 'p'

On the other hand, we have D(—k) = D(k), so we obtain the result. O

Observe that the measure found above is of the form:

Next, we have the following result, once again from [17]:
THEOREM 10.25. The Bessel laws b; have the additivity property
bs * by = bspy
so they form a truncated one-parameter semigroup with respect to convolution.

PRrROOF. The Fourier transform of b, is given by:

[e.e]

Fo(y) =e™" D e fi(t/2)

k=—o00

We compute now the derivative with respect to ¢:

—t o0

Fhy) = —Fbi(y) + 5 Y & fi(t/2)

k=—o00



242 10. REFLECTION GROUPS

On the other hand, the derivative of fj with k£ > 1 is given by:

oo k, 2 tk+2p71
R = S A
i.("fﬂo)lﬁ’““p1  pttE
- Il Il
= (k+p)'p! — (k+p)'p!
=y ——+
— 1\ (p— 1)
pard (k+p—1)p! e~ (k+p)(p—1)!
o0 2f(l~c71)+2p o0 t(k+1)+2(p71)

Z (CERERTRP SN CES R o
= fea () + fenn (8

This computation works in fact for any k, so we get:

—t oo

Fhl) = =Fbo)+ 5 32 (ialt/2) + fen(t/2)

k=—o00

= —Fbt<y)+€7_t i BTV fi(t/2) + e*T D fi(t/2)

k=—o00

eV +e?
= —Fb(y) + —5— Fbu(y)

_ (*T - 1) Fh(y)

Thus the log of the Fourier transform is linear in ¢, and we get the assertion. O

In order to discuss now the free analogue (; of the above measure b;, as well as the
s-analogues b7, 8; of the measures b, 5;, we need some free probability. We have the
following notion, extending the Poisson limit theory from chapter 5 above:

DEFINITION 10.26. Associated to any compactly supported positive measure p on R
are the probability measures

1 *n
p, = lim <(1 — E) do + —p)
n—00 n n

. c 1 Hn
=t (1) o0t o)

where ¢ = mass(p), called compound Poisson and compound free Poisson laws.
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In what follows we will be interested in the case where p is discrete, as is for instance
the case for p = §; with ¢ > 0, which produces the Poisson and free Poisson laws.

The following result allows one to detect compound Poisson/free Poisson laws:
ProrosiTION 10.27. For p = Zle ¢i0,, with ¢; > 0 and z; € R we have

B, (y) = exp (2 (e — 1>>

i=1
i Ci%;
Re,(y) =) —
=1

where F', R denote respectively the Fourier transform, and Voiculescu’s R-transform.

PROOF. Let p,, be the measure in Definition 10.26, under the convolution signs:

c 1
= (1= Y aps L
n n
In the classical case, we have the following computation:

c 1 < .
P = (1= ) « LS e
un(y) n +nzzz;ce
—  Fun(y) = (1—5)+lic-ei% '
pir\Y) = n n £ i
— B, =ew (Z i - 1>>

=1

In the free case now, we use a similar method. The Cauchy transform of p,, is:

G () = (“%)%J“%Zgiz

i=1

Consider now the R-transform of the measure u&", which is given by:

Ru%" (y) = nRk,, (y)

The above formula of G, shows that the equation for R = R @n is as follows:

S

c 1 1 C;
(1_ﬁ> y—l—i—R/n—i_ﬁZy_l—l—R/n—zi:y

=1

S

c 1 1 C;
— 1——)— l i —1
( n 1+yR/n+nzl+yR/n—yzi

i=1
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Now by multiplying by n, rearranging the terms, and letting n — oo, we get:

s

c+yR _Z Ci
1+yR/n 1+yR/n—yz

i=1

S

Ci
) Rﬂ_ =
¢+ yRx,(y) ;1_%
°L oz
— Rﬂ— _ 147
() Zl —ym
This finishes the proof in the free case, and we are done. O

We have as well the following result, providing an alternative to Definition 10.26:

THEOREM 10.28. For p = Zle ci0,, with ¢; > 0 and z; € R we have

pp/ T, = law (Z z,»ozi>

=1

where the variables o are Poisson/free Poisson(c;), independent/free.

PROOF. Let a be the sum of Poisson/free Poisson variables in the statement. We will
show that the Fourier/R-transform of « is given by the formulae in Proposition 10.27.

Indeed, by using some well-known Fourier transform formulae, we have:
Fo,(y) = exp(ci(e” — 1))
- inai (y) = eXp(Ci(eiyZi - 1))
= Fu(y) =exp (Z ci(e — 1))
i=1
Also, by using some well-known R-transform formulae, we have:

CA
Ro,(y) = —
(W) =1-
CiZi
— Rza' —
i (y) =1 "
. Cizi
— Ra =
(4) ; T
Thus we have indeed the same formulae as those in Proposition 10.27. U

Summarizing, we have now a full extension of the basic Poisson limit theory from
chapter 5, in the classical and free cases.

We can go back now to quantum reflection groups, and we have:
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THEOREM 10.29. The asymptotic laws of truncated characters are as follows, where
es with s € {1,2,...,00} is the uniform measure on the s-th roots of unity:

(1) For Hj, we obtain the compound Poisson law b] = pe, .
(2) For H3" we obtain the compound free Poisson law [ = m.,.

These measures are in Bercovici-Pata bijection.
PRrROOF. This follows from easiness, and from the Weingarten formula, exactly as for
the classical and quantum permutation groups. To be more precise, at t = 1 this follows

by counting the partitions, and at ¢ € (0, 1] general, this follows in the usual way, for
instance by using cumulants. For details here, we refer to [9]. g

The Bessel and free Bessel laws have particularly interesting properties at the param-
eter values s = 2,00. So, let us record the precise statement here:

THEOREM 10.30. The asymptotic laws of truncated characters are as follows:

(1) For Hyx we obtain the real Bessel law by = pye,.

(2) For Ky we obtain the complex Bessel law By = p._, .

(3) For H}; we obtain the free real Bessel law By = ..

(4) For Ky we obtain the free complex Bessel law B; = Ty .

ProoF. This follows indeed from Theorem 10.29 above, at s = 2, co. U
We have the following result:

THEOREM 10.31. The moments of the various central limiting measures, namely

61&8 Yt I';

bi Gt Gy
are always given by the same formula, involving partitions, namely
= 3
weD(k)

where the sets of partitions D(k) in question are respectively

NC® Ny NC,

pPs Py Ps

and where |.| is the number of blocks.
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Proor. This follows by putting together the various moment results that we have. [J

As already mentioned, in what regards the Bessel and free Bessel laws b7, 37, the
important particular cases are s = 1,2,00. It is therefore tempting to leave one of these
3 cases aside, and fold the corresponding diagram into a cube.

Quite surprisingly, in order to do so, in a correct way, the case which must be left
aside is the most important one, namely s = 1, corresponding to the Poisson and free
Poisson laws p;, m;. We will comment later on this, but let us just start by doing so:

THEOREM 10.32. The moments of the various central limiting measures, namely

B, —— I}

e

@f Tt

B, Gy

e

b —————a

are always given by the same formula, involving partitions, namely

M=)t

weD(k)

where the sets of partitions D(k) in question are respectively

Nceven -~ NC2

even

Proor. This follows by putting together the various moment results that we have. [J

61}671

Peven

and where |.| is the number of blocks.

In addition to what has been said above, there are as well some interesting results
about the Bessel and free Bessel laws involving the multiplicative convolution x, and the
multiplicative free convolution X from [92]. For details, we refer here to [9].
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10e. Exercises

The present chapter was just an introduction to the quantum reflection groups, and
there are many more basic things that can be said. As a first exercise, we have:

EXERCISE 10.33. Prove that Hy, H};, regarded as intermediate quantum groups
Sy C Hy C Oy
Sy c Hf c O%
are indeed easy, the corresponding categories of partitions being as follows,
P> Poye, OB
NC D NCepen D NCy

with “even” standing for “with all the blocks having even size”.

This is something that we briefly discussed in the above, and the problem now is that
of working out all the details. As a hint here, the partition which generates the partitions
having even blocks is m = ITT1, and so the problem is that of undertstanding the meaning
of the condition T, € Fiz(u®?*), and relating this to the definition of Hy, Hy.

As a continuation of the above exercise, we have:

EXERCISE 10.34. Reformulate the Schur-Weyl twisting theory from chapter 9 in terms
of the intermediate easy quantum groups

Hy CGC U;
as a duality between such intermediate quantum groups.

The point here is that, as explained in chapter 9, in order to perform the Schur-Weyl
twisting operation we need a signature map for the partitions, and this signature map
is only defined on P,,.,. Thus, we have a link here with Hy, and so the whole twisting
material from chapter 9 above must be now reviewed, by taking this into account.

As a third exercise, on the same topic, we have:
EXERCISE 10.35. Prove that the quantum reflection groups
Hy, HY;
equal their own Schur-Weyl twists, and then do the same for H3,, Hy' .

This is not something very difficult, normally coming from definitions, one subtlety
however coming from the fact that for the second question we must assume s € 2N, in
order for the quantum groups Hy, Hx' to be indeed twistable in our sense.

At a more advanced level now, we have:
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EXERCISE 10.36. Prove that the intermediate easy quantum groups
Hy C G C Hy,
are subject to a dichotomy, as follows,
HycGcHY' /)  HYcGcH
where H ][f;o lis a certain suitably chosen such intermediate quantum group.

As already mentioned, this is a rather difficult exercise.

Along the same lines, and as a final exercise on the subject, we have:

EXERCISE 10.37. Fully classify the intermediate easy quantum groups
Hy CcGC Hj\;
by solving the 2 classification problems raised by the previous exercise.

As before, this is a difficult exercise, and the problem here is rather that of finding
the relevant literature, and writing down a brief account of that.



CHAPTER 11

Liberation theory

11a. Reflection subgroups

We have seen in the previous chapter that the basic reflection groups HRY = Z ! Sy
have free analogues HY™ = Z I, Sy, and that the theory of these quantum groups, both
classical and free, is very interesting, algebrically and analytically speaking.

The world of quantum reflection groups is in fact much wider than this. In the classical
case already, the classification theorem for the complex reflection groups, a celebrated
result by Shephard and Todd [85], from the 50s, is as follows:

THEOREM 11.1. The irreducible complex reflection groups are

Hd = {U € H|(det U)d = 1}

along with 34 exceptional examples.

PRroOF. This is something quite advanced, and we refer here to the paper of Shephard
and Todd [85], and to the subsequent literature on the subject. U

In the general quantum case now, the axiomatization and classification of the quantum
reflection groups is a key problem, which is not understood yet.

We will be interested in what follows in the “twistable” case, where the theory is more
advanced than in the general case.

Let us start with the following definition:

DEFINITION 11.2. A closed subgroup G C Uy; is called:

(1) Half-homogeneous, when it contains the alternating group, Ay C G.
(2) Homogeneous, when it contains the symmetric group, Sy C G.
(3) Twistable, when it contains the hyperoctahedral group, Hy C G.

These notions are mostly motivated by the easy case. Here we have by definition
Sy C G C Uy, and so our quantum group is automatically homogeneous.

The point now is that the twistability assumption corresponds to the following condi-
tion, at the level of the associated category of partitions D C P:

D cC Peven
249
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We recognize here the condition which is needed for performing the Schur-Weyl twist-
ing operation, explained in chapter 9 above, and based on the signature map:

€ Popen — {1}

As a conclusion, in the easy case our notion of twistability is the correct one. In
general, there are of course more general twisting methods, usually requiring ZY c G
only. But in the half-homogeneous case, the condition ZY C G is equivalent to Hy C G.

With this discussion done, let us formulate now the following definition:
DEFINITION 11.3. A twistable quantum reflection group is an intermediate subgroup
Hy C K C K},

between the group Hy = Zo! Sy, and the quantum group Kj; =T, S§.

Here is now another definition, which is important for general compact quantum group
purposes, and which provides motivations for our formalism from Definition 11.3:

DEFINITION 11.4. Given a closed subgroup G C Uy which is twistable, in the sense
that we have Hy C G, we define its associated reflection subgroup to be

K=GnK}

with the intersection taken inside Uy,. We say that G appears as a soft liberation of its
classical version Guass = G N Uy when G =< Gugss, I >.

These notions are important in the classification theory of compact quantum groups,
and in connection with certain noncommutative geometry questions as well.

As a first observation, with K being as above, we have an intersection diagram, as
follows:

K G

K class

Gclass

The soft liberation condition states that this diagram must be a generation diagram.
We will be back to this in a moment, with some further theoretical comments. Let us
work out some examples. As a basic result, we have:
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THEOREM 11.5. The reflection subgroups of the basic unitary quantum groups

Un Uk Uy

On Oy o)
are as follows,

Ky K3 K}

Hy Hy HY;

and these unitary quantum groups all appear via soft liberation.

PROOF. The fact that the reflection subgroups of the quantum groups on the left are
those on the right is clear in all cases, with the middle objects being by definition:

Hi = Hyn O,

Ky =KynNUy
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case there is nothing to prove, because any classical group is by
definition a soft liberation of itself.

(2) In the half-classical case the results are non-trivial, but can be proved by using
the technology developed by Bichon and Dubois-Violette in [46].

(3) In the free case the results are highly non-trivial, and the only known proof so far
uses the recurrence methods developed by Chirvasitu in [51]. u

11b. Toral subgroups

Summarizing, we are here into recent and interesting quantum group theory. We will
discuss a bit later the concrete applications of Theorem 11.5. There is a connection here
as well with the notion of diagonal torus, introduced in chapter 1 above. We can indeed
refine Definition 11.4, in the following way:
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DEFINITION 11.6. Given Hy C G C Uy, the diagonal tori T = GNT}, and reflection
subgroups K = G N K}, for G and for Guass = G N Uy form a diagram as follows:

T K G

Tclass Gclass

We say that G appears as a soft/hard liberation when it is generated by Goqss and by
K/T, which means that the right square/whole rectangle should be generation diagrams.

Kclass

It is in fact possible to further complicate the picture, by adding free versions as well,
with these free versions being by definition given by the following formula:

G pree =< G, ST, >

Importantly, we can equally add the parameter N € N to the picture, the idea being
that we have a kind of “ladder”, whose steps are the diagrams in Definition 11.6, perhaps
extended with the free versions too, at fixed values of V € N.

The various generation and intersection properties of this ladder are important proper-
ties of G = (Gy) itself, with subtle relations between them. In fact, as already mentioned
in the proof of Theorem 11.5 above, the proof of the soft generation property for OF;, Uy
uses in fact this ladder, via the recurrence methods developed in [51].

All this is quite technical, so as a concrete result in connection with the above hard
liberation notion, we have the following statement, improving Theorem 11.5:

THEOREM 11.7. The diagonal tori of the basic unitary quantum groups

Un Uk Uy

On Oy (0)
are as follows,

Ty T T

Tn Ty T

and these unitary quantum groups all appear via hard liberation.
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PROOF. The first assertion is something that we already know, from chapter 1 above.
As for the second assertion, this can be proved by carefully examining the proof of The-
orem 11.5, and performing some suitable modifications, where needed. O

As an interesting remark, some subtleties appear in the following way:

PRrROPOSITION 11.8. The diagonal tori of the basic quantum reflection groups

Ky K3 K3

Hy HY, HY;
are as follows,

Ty T T,

Tn T Ty

and these quantum reflection groups do not all appear via hard liberation.

PRrOOF. The first assertion is clear, for instance as a consequence of Theorem 11.7,
because the diagonal torus is the same for a quantum group, and for its reflection sub-
group:

GNTL=(GNKy)NTL
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case the hard liberation property definitely holds, because any
classical group is by definition a hard liberation of itself.

(2) In the half-classical case the answer is again positive, and this can be proved by
using the technology developed by Bichon and Dubois-Violette in [46].

(3) In the free case the hard liberation property fails, due to some intermediate quan-
tum groups H}f;o], Kz[io], where “hard liberation stops”. We will be back to this. O

As a conjectural solution to these latter difficulties, coming from Proposition 11.8, we
have the notion of Fourier liberation, that we will discuss now.

Let us first discuss the group dual subgroups of the arbitrary compact quantum groups

G C Uy.

To start with, we have the following basic statement:
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PROPOSITION 11.9. Let G C Uy be a compact quantum group, and consider the group
dual subgroups A C G, also called toral subgroups, or simply “tori”.

(1) In the classical case, where G C Uy is a compact Lie group, these are the usual
tori, where by torus we mean here closed abelian subgroup.

(2) In the group dual case, G = T with T =< Ji,...,9n > being a discrete group,
these are the duals of the various quotients I' — A.

PROOF. Both these assertions are elementary, as follows:

(1) This follows indeed from the fact that a closed subgroup H C Uy is at the same
time classical, and a group dual, precisely when it is classical and abelian.

(2) This follows from the general propretles of the Pontrjagin duality, and more pre-
cisely from the fact that the subgroups AcT correspond to the quotients I' — A. O

At a more concrete level now, most of the tori that we met appear as diagonal tori.
However, for certain quantum groups like the bistochastic ones, or the quantum permu-
tation group ones, this torus collapses to {1}, and so it cannot be of use in the study of
G. In order to deal with this issue, the idea, from [35], will be that of using:

PROPOSITION 11.10. Given a closed subgroup G C Uy, and a matriz Q € Uy, we let
Ty C G be the diagonal torus of G, with fundamental representation spinned by Q:

C(Tg) = C(G) / ((QuQ")y = 0]vi # j)

This torus is then a group dual, Ty = /A\Q, where Ag =< g1, ...,gn > is the discrete group
generated by the elements g; = (QuQ*);;, which are unitaries inside C(1g).

ProoF. This follows indeed from our results, because, as said in the statement, T¢, is
by definition a diagonal torus. Equivalently, since v = QuQ* is a unitary corepresentation,
its diagonal entries g; = v;;, when regarded inside C'(1y), are unitaries, and satisfy:

A(gi) = 9i ® g;

Thus C(Tg) is a group algebra, and more specifically we have C'(T) = C*(Ag), where
Ag =< ¢1,...,9n > is the group in the statement, and this gives the result. U

Summarizing, associated to any closed subgroup G C Uy is a whole family of tori,
indexed by the unitaries U € Uy. As a first result regarding these tori, we have:

THEOREM 11.11. Any torus T C G appears as follows, for a certain Q) € Uy:
TcTyoCcG

In other words, any torus appears inside a standard torus.



11B. TORAL SUBGROUPS 255

PROOF. Given a torus T' C G, we have an inclusion T C G C U};. On the other hand,

we know that each torus T = A C Uy, coming from a discrete group A =< gy, ..., gn >,
has a fundamental corepresentation as follows, with Q) € Uy:

U = leag(gh s 7gN)Q*
But this shows that we have T' C Tg, and this gives the result. U

Let us do now some computations. In the classical case, the result is as follows:
PrRoPOSITION 11.12. For a closed subgroup G C Uy we have
To =GN (QTYQ)
where TN C Uy is the group of diagonal unitary matrices.

ProoOF. This is indeed clear at () = 1, where I'; appears by definition as the dual of
the compact abelian group G N'TY. In general, this follows by conjugating by Q. U

In the group dual case now, we have the following result, from [41]:

ProrosITION 11.13. Given a discrete group I' =< gq,...,gn >, consider its dual
compact quantum group G =T, diagonally embedded into Uy;. We have then

g =T/ {gi = ;[ k. Qui #0,Qu; #0)

with the embedding Ty C G = r coming from the quotient map I' — Aq.

PROOF. Assume indeed that I' =< g1,...,g9ny > is a discrete group, with T c Ux
coming via u = diag(gi,...,gn). With v = Qu@*, we have:

ZQsivsk = ZQsiQstthgt

st
= Z 0it Qrt e
t

= Qkigi
Thus v;; = 0 for 7 # j gives Qrivit = Qrigi, which is the same as saying that Q; # 0
implies g; = vi,. But this latter equality reads:

9i = Z |Quil*g;
J
We conclude from this that Qx; # 0,Qy; # 0 implies g; = g;, as desired. As for the
converse, this is elementary to establish as well. U

In view of the above, we can expect the collection {T5H|Q € Uy} to encode various
algebraic and analytic properties of G. We have the following result, from [35]:
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THEOREM 11.14. The following results hold, both for the compact Lie groups, and for
the duals of the finitely generated discrete groups:

(1) Generation: any closed quantum subgroup G C Uy, has the generation property
G =<Ty|Q € Uy >. In other words, G is generated by its tori.

(2) Characters: if G is connected, for any nonzero P € C(G)centrar there ezists Q €
Un such that P becomes nonzero, when mapped into C(Tg).

(3) Amenability: a closed subgroup G C Uy is coamenable if and only if each of the
tort Ty 1s coamenable, in the usual discrete group sense.

(4) Growth: assuming G C Uy, the discrete quantum group G has polynomaal growth
if and only if each the discrete groups Ty has polynomial growth.

PROOF. In the classical case, where G C Uy, the proof is elementary, based on stan-
dard facts from linear algebra, and goes as follows:

(1) Generation. We use the following formula, established above:
To =GNQTYQ
Since any group element U € G is diagonalizable, U = Q*DQ with Q € Uy, D € TV,
we have U € Ty for this value of () € Uy, and this gives the result.

(2) Characters. We can take here Q € Uy to be such that QT'Q* C TV, where T' C Uy
is a maximal torus for GG, and this gives the result.

(3) Amenability. This conjecture holds trivially in the classical case, G C Uy, due to
the fact that these latter quantum groups are all coamenable.

(4) Growth. This is something nontrivial, well-known from the theory of compact Lie
groups, and we refer here for instance to the literature.

Regarding now the group duals, here everything is trivial. Indeed, when the group du-
als are diagonally embedded we can take () = 1, and when the group duals are embedded
by using a spinning matrix () € Uy, we can use precisely this matrix Q). O

The various statements above are conjectured to hold for any compact quantum group.
We refer to [35] and to subsequent papers for a number of verifications, notably covering
many basic examples of easy quantum groups, as well as half-liberations.

Let us focus now on the generation property. We will need:

PROPOSITION 11.15. Given a closed subgroup G C Uy and a matriz Q € Uy, the
corresponding standard torus and its Tannakian category are given by

T, =GnT,
CTQ =<< Cg,CTQ >

where Tg C Uy, is the dual of the free group Fy =< g1,...,gn >, with the fundamental
corepresentation of C(Tq) being the matriz v = Qdiag(gi, - - ., gn)Q*.
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PROOF. The first assertion comes from the well-known fact that given two closed
subgroups G, H C Uy, the corresponding quotient algebra C'(Uy) — C(G N H) appears
by dividing by the kernels of both the quotient maps

CUy) = C(G) , C(Uy) = C(H)

Indeed, the construction of Ti; amounts precisely in performing this operation, with

H = Tg, and so we obtain Ty = G N Ty, as claimed. As for the Tannakian category
formula, this follows from this, and from the general duality formula Cony =< Cq, Cy >.
O

We have the following Tannakian reformulation of the generation property:
THEOREM 11.16. Given a closed subgroup G C Uy, the subgroup
(y3:<:1kﬂa?€ Un >

generated by its standard tori has the following Tannakian category:

Co = (w <:(13,C%Q >

Qeln

In particular we have G = G’ when this intersection reduces to Cg.

PRrOOF. Consider indeed the subgroup G C G constructed in the statement. We

have:
Co= () Cr,
QeUn
Together with the formula in Proposition 11.15, this gives the result. U

The above result can be used for investigating the toral generation conjecture, but
the combinatorics is quite difficult, and there are no results yet, along these lines. Let us
further discuss now the toral generation property, with some modest results, regarding its
behaviour with respect to product operations. We first have:

PROPOSITION 11.17. Given two closed subgroups G, H C Uy, and Q € Uy, we have:
<To(G),To(H) >C To(< G, H >)
Also, the toral generation property is stable under the operation <, >.

PRrROOF. The first assertion can be proved either by using Theorem 11.16, or directly.
For the direct proof, which is perhaps the simplest, we have:

To(G)=GNTg C<G,H>NTg =To(< G, H >)
We have as well the following computation:

To(H)=HNTy C<G,H>NTg =Tyh(< G, H >)
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Now since A, B C C implies < A, B >C C, this gives the result. Regarding now the
second assertion, we have the following computation:

<G H> = <<Tph(G)|Q e Uy >, <Ty(H)|Q € Uy >>
= <Tp(G),To(H)|Q € Uy >
= <<Tph(G), To(H) > |Q € Uy >
C <To(< G H>)Q¢eUy >

Thus the quantum group < G, H > is generated by its tori, as claimed. U

We have as well the following result:
ProPOSITION 11.18. We have the following formula, for any G, H and R, S:
Tres(G x H) =Tr(G) x Ts(H)
Also, the toral generation property is stable under usual products x.
PRrROOF. The product formula is clear. Regarding now the second assertion, we have:

<To(GxH)QeUyun> DO <Tres(Gx H)|ReUy,S €Uy >
= <Tgr(G)xTs(H)|R € Uy, S €Uy >
< Tr(G) x {1}, {1} x Ts(H)|R € Up;, S € Uy >
= <Tr(G|ReUy >x <Tg(H)|H € Uy >
= GxH

Thus the quantum group G x H is generated by its tori, as claimed. U

11c. Fourier liberation

Let us go back now to the quantum permutation groups. In relation with the tori, let
us start with the following basic fact, which generalizes the embedding D, C S, that we
met in chapter 2 above, when proving that we have S} # S;:

PropoOSITION 11.19. Consider a discrete group generated by elements of finite order,
written as a quotient group, as follows:

ZN **ZNk_>F

1

We have then an embedding of quantum groups Tc Sy, where N = Ny + ...+ Nj.
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PROOF. We have a sequence of embeddings and isomorphisms as follows:

r ¢ LN, * ... * Ly,

= Zn % ... %Ly,
~ Zn, % ... %Ln,
C Sy *...%8N,
C Sf % ... %St
c Sy
Thus, we are led to the conclusion in the statement. U

The above result is quite abstract, and it is worth working out the details, with an
explicit formula for the associated magic matrix. Let us start with a study of the simplest
situation, where k = 1, and where I' = Zy,. The result here is as follows:

ProPoOSITION 11.20. The magic matriz for the quantum permutation group
iN ~7Zn C Sy C SX[

with standard Fourier isomorphism on the left, is given by the formula

u=FIF*
where F' = \/Lﬁ(wij) with w = e*™/N s the Fourier matriz, and where
1
7 — 9
gN-1

is the diagonal matriz formed by the elements of Zy, regarded as elements of C*(Zy).
PROOF. The magic matrix for the quantum group Zy C Sy C Sy is given by:
Vij = X (0’ S ZN’O'(]) = l)
= b

Let us apply now the Fourier transform. According to our Pontrjagin duality conven-
tions from chapter 1 above, we have a pair of inverse isomorphisms, as follows:

. * 1 ik _k
d:C(Zy) — C*(Zy) | 5i—>ﬁzk:wg

v O*<ZN) — C(ZN) , gi — Zw‘lkék
k
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Here w = €2™/N | and we use the standard Fourier analysis convention that the indices

are 0,1,...,N — 1. With ' = \/Lﬁ(wij) and I = diag(g’) as above, we have:

uij = P(vy)
1 »
= Nzw( ik gk
%
1 . .
— Nzwzkgkw—]k
%
= ZFz'kak(F*)kj
%

Thus, the magic matrix that we are looking for is u = FIF™*, as claimed. O
With the above result in hand, we can refine Proposition 11.19, as follows:

THEOREM 11.21. Given a quotient group Zn, * ...* Zy, — I, we have an embedding
[ C Sy, with N = Ny + ... + Ng, with magic matriz given by the formula

Fn, I F,
u =
Fn I Fy,
where Fy = \/Lﬁ(w%) with wy = e>™/N are Fourier matrices, and where
1
gr
I. =
gt
with g1, ..., gr being the standard generators of I
Proor. This follows indeed from Proposition 11.19 and Proposition 11.20. U

As explained in [44], as a consequence of the orbit theory developed there, any group

dual subgroup T c S appears in the above way, from a partition N = Ny + ... + Ny,
and then a quotient group Zy, * ... * Zy, — I

We will be back to this in chapter 13 below, when discussing the orbit theory developed
in [44], and its applications.

In the meantime, we can recover this result, that we will need in what follows, by
using our maximal torus method.

Following [10], we have indeed the following result:
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THEOREM 11.22. For the quantum permutation group SJJ(,, we have:

(1) Given Q € Uy, the quotient Fx — Ag comes from the following relations:

gi=1 if ZlQiﬁéo
9ig9; =1 if >, QuQu #0
9i9i9k = 1 if Zz Qilelel #0

(2) Given a decomposition N = Ni+. ..+ Ny, for the matriz QQ = diag(Fn,, ..., Fn,),
where Fiy = \/Lﬁ(ﬁ”)” with &€ = e*™/N s the Fourier matriz, we obtain:

Ao =Zn, *... %Ly,

(3) Given an arbitrary matriz QQ € Uy, there exists a decomposition N = Ny + ...+
Ny, such that Ao appears as quotient of Zn, * ... * Ly, .

ProoOF. This is more or less equivalent to the classification of the group dual sub-
groups I' C S}, from [44], and can be proved by a direct computation, as follows:

(1) Fix a unitary matrix () € Uy, and consider the following quantities:

=, Qu
Cij = El QilQZl
dije = Y QuQ Qi

We write w = QuQ@*, where v is the fundamental corepresentation of C'(S¥). Assume
X ~{1,...,N}, and let a be the coaction of C'(S%) on C(X). Let us set:

pi =Y Qud € C(X)
l

Also, let g; = (QuQ*);; € C*(Ag). If B is the restriction of o to C*(Ag), then:

Blwi) = ¢ ® gi

Now recall that C(X) is the universal C*-algebra generated by elements dy,...,dy
which are pairwise orthogonal projections. Writing these conditions in terms of the lin-
early independent elements ¢; by means of the formulae §; = >, Qu¢;, we find that the
universal relations for C'(X) in terms of the elements ; are as follows:

Zi cipi =1

@; = Z]’ CijPj
©i; = Y dijk Pk
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Let /~\Q be the group in the statement. Since J preserves these relations, we get:

cij(9ig;, —1) =0
diji(9i95 — gk) =0

We conclude from this that Ag is a quotient of Ag. On the other hand, it is immediate
that we have a coaction map as follows:

C(X) = C(X) ® C*(Ag)

Thus C(Ag) is a quotient of C'(S};). Since w is the fundamental corepresentation of
S with respect to the basis {¢;}, it follows t~hat the generator w;; is sent to g, € A,
while w;; is sent to zero. We conclude that Ay is a quotient of Ag. Since the above
quotient maps send generators on generators, we conclude that Ag = Ag, as desired.

(2) We apply the result found in (1), with the N-element set X used in the proof there
chosen to be the following set:

X =7y U.. UZy,

With this choice, we have ¢; = ;o for any <. Also, we have ¢;; = 0, unless ¢, j, k belong
to the same block to ), in which case ¢;; = 9,40, and also d;j; = 0, unless 7, j, k belong
to the same block of @), in which case d;j; = 0;4;%. We conclude from this that Ag is the
free product of k groups which have generating relations as follows:

995 = Gitj O =9-i
But this shows that our group is Ag = Zy, * ... * Zy,, as stated.
(3) This follows indeed from (2). See [41]. O

As already mentioned, there are many other possible ways of recovering the above
results, the standard way being via orbit theory. We will be back to this in chapter 13
below, when discussing the orbit theory developed in [44], and its applications.

In connection with our liberation questions now, in the quantum permutation group
case, the standard tori parametrized by Fourier matrices play a special role.

This suggests the following definition:

DEFINITION 11.23. Consider a closed subgroup G C Uy;.
(1) Its standard tori Tp, with F = Fn, ® ... ® Fy,, and N = Ny + ...+ Nj being
regarded as a partition, are called Fourier tori.
(2) In the case where we have Gy =< G, (Tp)r >, we say that Gy appears as a
Fourier liberation of its classical version G§;.
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The conjecture is that the easy quantum groups should appear as Fourier liberations.
With respect to the basic examples, the situation in the free case is as follows:

(1) O%, Uy are diagonal liberations, so they are Fourier liberations as well.

(2) By, Cy are Fourier liberations too, with this being standard.

(3) Sf; is a Fourier liberation too, being generated by its tori [50], [51].

(4) Hy, Ky remain to be investigated, by using the general theory in [83].

As a word of warning here, observe that an arbitrary classical group Gy C Uy is not
necessarily generated by its Fourier tori, and nor is an arbitrary discrete group dual, with

spinned embedding. Thus, the Fourier tori, and the related notion of Fourier liberation,
remain something quite technical, in connection with the easy case.

As an application of all this, let us go back to quantum permutation groups, and more
specifically to the quantum symmetry groups of finite graphs, from chapter 9 above. One
interesting question is whether G*(X) appears as a Fourier liberation of G(X). Generally
speaking, this is something quite difficult, because for the empty graph itself we are in
need of the above-mentioned technical results from [50], [51].

In order to discuss this, let us begin with the following elementary statement:

THEOREM 11.24. In order for a closed subgroup G C UL to appear as G = GT(X),
for a certain graph X having N vertices, the following must happen:

(1) We must have a representation G C U;.

(2) This representation must be magic, G C S};.

(3) We must have a graph X having N wvertices, such that d € End(u).

(4) X must be in fact such that the Tannakian category of G is precisely < d >.

ProoF. This is more of an empty statement, coming from the definition of the quan-
tum automorphism group G (X), as formulated in chapter 9 above. Il

In the group dual case, forgetting about Fourier transforms, and imagining that we
are at step (1) in the general strategy outlined in Theorem 11.24, we must compute the

Tannakian category of T'c Uy, diagonally embedded, for the needs of (3,4). We have:

ProproSITION 11.25. Given a discrete group I' =< ¢1,...,g9n >, embed diagonally
[ C Uy, via the unitary matriz u = diag(g, ..., gn). We have then the formula

Hom/(u®* u®") = {T = (T, jir.in)

Gir - Gin 7 Gjn - 95 = Throgiirin = 0}
and in particular, with k =1 =1, we have the formula
End(w) = {T = (Tj)|g: # 9; = Ty =0}

with the linear maps being identified with the corresponding scalar matrices.
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PRroOF. This is well-known, and elementary, with the first assertion coming from:

T € Hom(u®" u®) <= Tu®" =u®'T
k !
— (TU® )jl---jzm--.ik = (U® T>j1~-~jl»i1--~ik
— TJ’L--J’l:iL--ikgil < Giy = Ghy - 'glejL--jl,ilmik
= Thgiveic(Gi - i = Gjr - 95) =0
As for the second assertion, this follows from the first one. O

Let us go ahead now, with respect to the general strategy outlined in Theorem 11.24,
and apply [44] in order to solve (2), and then reformulate (3,4), by using Proposition
11.25, and by choosing to put the multi-Fourier transform on the graph part. We are led
in this way into the following refinement of Theorem 11.24, in the group dual setting:

THEOREM 11.26. In order for a group dual T to appear as G = GT(X), for a certain
graph X having N vertices, the following must happen:

(1) First, we need a quotient map Zy, * ... * Zy, — L.

2) Let u = diag(1ly,...,Iy), with I, = diag(Zy,), for any r.
) Consider also the matriz F' = diag(Fy,, ..., Fn,).
) We must then have a graph X having N vertices.
) This graph must be such that F*dF #0 = I, = I,.

(
(3
(4
(5
(6) In fact, < F*dF > must be the category in Proposition 11.25.

ProoF. This is something rather informal, the idea being as follows:

(1) This is what comes out from the classification result in [44], explained above,
modulo a unitary base change, as explained before.

(2) This is just a notation, with I, = diag(Zy, ) meaning that I, is the diagonal matrix
formed by 1,g,4?%, ...,¢" 1, with g € Zy_ being the standard generator.

(3) This is another notation, with each Fourier matrix Fy, being the standard one,
namely Fy, = \/LNfr(wij), with w = e?™/Nrand with indices 0,1,..., N, — 1.

(4) This is a just a statement, with the precise graph formalism to be clarified later
on, in view of the fact that X will get Fourier-transformed anyway.

(5) This is an actual result, our claim being that the condition d € End(u) from
Theorem 11.24 (3) is equivalent to the condition F*dF # 0 = I, = I; in the statement.
Indeed, we know that with F, I being as in the statement, we have u = F'IF*. Now with
this formula in hand, we have the following equivalences:

TAX <« du=ud
<~ dFIF*=FIF*d
<~ [FdF,I]=0
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Also, since the matrix [ is diagonal, with M = F*dF have:
< Mij-[j = Izsz
We therefore conclude that we have, as desired:
INX < [F'dF 40 = I, = I]]

(6) This is the Tannakian condition in Theorem 11.24 (4), with reference to the explicit
formula for the Tannakian category of G = I' given in Proposition 11.25. U

Going ahead now, in connection with the Fourier tori, we have:

PROPOSITION 11.27. The Fourier tori of Gt (X) are the biggest quotients

ZN **ZNk—>F

whose duals act on the graph, T~ X.
Proor. We have indeed the following computation, at F' = 1:
C(Ti(GT(X)) = C(GT(X))/ <uy=0,Vi#j>
[C(S%)/ < [du] =0>]/ <y =0.¥i # j >
= [C(S})/ <wyj=0,Vi#j>]/ <[du]=0>
= C(Tu(Sy))/ < ldu] =0>
Thus, we obtain the result, with the remark that the quotient that we are interested
in appears via relations of type d;; =1 = ¢; = g;. The proof in general is similar. [

In connection now with the above-mentioned questions, we have:

THEOREM 11.28. Consider the following conditions:
(1) We have G(X) = GT(X).
(2) G(X) C G*(X) is a Fourier liberation.
(3) T' ~ X implies that T" is abelian.
We have then (1) <= (2) + (3).

Proor. This is something elementary, the proof being as follows:
(1) = (2,3) Here both the implications are trivial.

(2,3) = (1) Assuming G(X) # G*(X), from (2) we know that G*(X) has at least
one non-classical Fourier torus, and this contradicts (3). u
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With this in hand, the question is whether (3) = (1) holds. This is a good question,
which in practice would make connections between the various conjectures that can be
made about a given graph X, and its quantum symmetry group G (X).

As an illustration for the potential interest of such considerations, it is known from
[75] that the random graphs have no quantum symmetries, with this being something
highly non-trivial. Our point now is that, assuming that one day the general compact
quantum Lie group theory will solve its Weyl-type questions in relation with the tori,
and in particular know, as a theorem, that any G*(X) appears as a Fourier liberation of
G(X), this deep graph result from [75] would become accessible as well via its particular
case for the group dual subgroups, which is something elementary, as follows:

PROPOSITION 11.29. For a graph X having N wvertices, the probability for having an
action N
I'~X
with I' being a non-abelian group goes to 0 with N — oo.

Proor. This is something quite elementary, the idea being as follows:

(1) First of all, the graphs X having a fixed number N € N of vertices correspond
to the matrices d € My(0,1) which are symmetric, and have 0 on the diagonal. The
probability mentioned in the statement is the uniform one on such 0-1 matrices.

(2) Regarding now the proof, our claim is that this should come in a quite elementary
way, from the du = ud condition, as reformulated before. Indeed, observe first that in the
cyclic case, where F' = Fly is a usual Fourier matrix, associated to a cyclic group Zy, we
have the following formula, with w = e>™/N:

(F*dF);; = Z(F*)ikdmﬂj
kl
_ Zwlj—ikdkl
kl
_ Zwlj—ik

kel
(3) In the general setting now, where we have a quotient map Zy, * ... *'ZN,C — I
with Ny 4 ...+ N, = N, the computation is similar, as follows, with w; = e2™/N::

(F*dF);; = Z(F*)ikdlelj
Kl

= ) (F)uF,

k~l1

= Z (wNi)_ik(wNjyj

k:il:g,k~l1
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Here the conditions k : ¢ and [ : j refer to the fact that k&, must belong respectively
to the same matrix blocks as 7, 7, with respect to the partition Ny + ...+ N, = N, and
k ~ [ means as usual that there is an edge between k, [, in the graph X.

(4) The point now is that with the partition Ny + ...+ N, = N fixed, and with d €
Mn(0,1) being random, we have (F*dF);; # 0 almost everywhere in the N — oo limit,
and so we obtain I; = I; almost everywhere, and so abelianity of I', with N' — oo. O

11d. Easy reflections

We discuss here a number of more specialized classification results, for the twistable
easy quantum groups, and for more general intermediate quantum groups as follows:

HNCGCUﬁ

The idea will be that of viewing our quantum group as sitting inside the standard
cube:

7L 1
) Jﬁ
On
Let us first discuss the classification in the easy case, for the front face of the standard
cube, the orthogonal one. We first have the folowing result:

Ky Uy
N Un

Hy
Hy

PROPOSITION 11.30. The easy quantum groups Hy C G C O} are as follows,

HY Ox
HE 0%
Hy O

with the dotted arrows indicating that we have intermediate quantum groups there.

Proor. This is a key result in the classification of easy quantum groups, whose proof
is quite technical, the idea being as follows:
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(1) We have a first dichotomy concerning the quantum groups in the statement, namely
Hy C G C Oy, which must fall into one of the following two classes:

On C G C OF
HNCGCHJJ\r;

This dichotomy comes indeed from the early classification results for the easy quantum
groups, from [23], [37], [38], whose proofs are quite elementary.

(2) In addition to this, these early classification results solve as well the first problem,
namely Oy C G C O, with G = O} being the unique non-trivial solution.

(3) We have then a second dichotomy, concerning the quantum groups which are left,
namely Hy C G C Hj;, which must fall into one of the following two classes:

Hy c Gc HY

HY ¢ G c H:

This comes indeed from various papers, and more specifically from the final classifi-
cation paper of Raum and Weber [83], where the quantum groups Sy C G C Hy with

G¢H ][\C;o I were classified, and shown to contain H][\?O]. For full details, we refer to [83]. O

Summarizing, in order to deal with the front face of the main cube, we are left with
classifying the following intermediate easy quantum groups:

Hy C G c HY
HY c G c HE

Regarding the second case, namely H ][30 lcac H7;, the result here, from [83], which
is quite technical, but has a simple formulation, is as follows:

PrROPOSITION 11.31. Let H][G] C Hy; be the easy quantum group coming from:

1 ... rr ... 1
7T7"_ker(l T 1)
We have then inclusions of quantum groups as follows,
Hy=HU>HISHY 5 . > H

and we obtain in this way all the intermediate easy quantum groups
HY ¢ G c H:
satisfying the assumption G # H ][\?O I

PROOF. Once again, this is something technical, and we refer here to [83]. u
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It remains to discuss the easy quantum groups Hy C G C H ][\?o ], with the endpoints
G=Hy,H ][30 Vincluded. Once again, we follow here [83]. First, we have:

DEFINITION 11.32. A discrete group generated by real reflections, g? =1,
I'=<aq,....,98 >
is called uniform if each o € Sy produces a group automorphism, g; — Go(i)-
Consider now a uniform reflection group, as follows:
N T — 7y

We can associate to it a family of subsets D(k,l) C P(k,l), which form a category of
partitions, as follows:

1
D(k,l) = {7r € P(k’,l)‘ ker (j) <T = Giy---Gi, = Gjs - - .gjl}
Observe that we have inclusions of categories as follows, coming respectively from
n € D, and from the quotient map I' — Z5':

P> cDc P,

even

Conversely, consider a category of partitions as follows:

Pl cDc P,

even

We can associate to it a uniform reflection group Zs¥ — T' — Z | as follows:

I = <g1,...gN Giy - Gip, = Gjyr - -- 5, V1, 5, k., [ ker (j) = D(k:,l)>

As explained in [83], the correspondences I' = D and D — I constructed above are
bijective, and inverse to each other, at N = oo.

We have in fact the following result, from [83]:

PrRoPOSITION 11.33. We have correspondences between:
(1) Uniform reflection groups 25> — I — Z3°.
(2) Categories of partitions P, cDc Poen-
(3) Fasy quantum groups G = (Gy), with H][\?o} OGN D Hy.

Proor. This is something quite technical, which follows along the lines of the above
discussion. As an illustration, if we denote by Z3" the quotient of Z3" by the relations
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of type abc = cba between the generators, we have the following correspondences:
7y N N
Hy H H

5] constructed

More generally, for any s € {2,4, ..., 00}, the quantum groups H](\‘,S) C Hy
in [23] come from the quotients of Z3" < ZN by the relations (ab)® = 1. See [83]. [
We can now formulate a final classification result, as follows:
THEOREM 11.34. The easy quantum groups Hy C G C Of are as follows,
Hy, Oy
i
HY
!
HY O%
f
Hy
!
Hy On
with the family HY covering Hy, HJ[\?O}, and with the series H][:;] covering Hy.
OJ

PRrROOF. This follows indeed from the above results. See [83].

Beyond easiness, let us start with:
DEFINITION 11.35. Associated to any closed subgroup Gy C Uy are its classical,

discrete and real versions, given by

¢ =GnNUy
G4 =Gy NKY
n=GyNOL

as well as its free, smooth and unitary versions, given by
Gl =< Gy, HY >
G?\f =< GN, Oy >
GuN =< GN, KN >

where <, > s the topological generation operation.
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We will need as well a second definition, as follows:

DEFINITION 11.36. Associated to any closed subgroup Gn C Uy are the mizes of its
classical, discrete and real versions, given by

G5l = Gy N Ky
T =GynOjk
G¥ = Gy N H;

as well as the mizes of its free, smooth and unitary versions, given by
Gl =< Gy, 0% >
Gl =< Gy, Kf >
GY =< Gpy,Uy >

where <, > 1s the topological generation operation.

With the above notions in hand, we can formulate:

DEFINITION 11.37. A closed subgroup Gy C Uy, is called “oriented” if
Gy =< G¥¢,G%, GY% >
Gy =GE NG NGy
and “weakly oriented” if the following conditions hold,
Gy =< G, G%, Gy >
Gy =GL NGy NGy
where the various versions are those in Definition 11.35 and Definition 11.36.

With these notions, our claim is that some classification results are possible:

(1) In the classical case, we believe that the uniform, half-homogeneous, oriented
groups are the obvious examples of such groups.

This is of course something quite heavy, well beyond easiness, with the potential tools
available for proving such things coming from advanced finite group theory and Lie algebra
theory. Our uniformity axiom could play a key role here, when combined with [85], in
order to exclude all the exceptional objects which might appear on the way.

(2) In the free case, under similar assumptions, we believe that the solutions should
be the obvious examples of such quantum groups.

This is something heavy, too, related to a well-known freeness conjecture, namely
< Gn, Sy >= {G), Sy} Indeed, assuming that we would have such a formula, and
perhaps some more formulae of the same type as well, we can in principle work out our
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way inside the cube, from the edge and face projections to Gy itself, and in this process
G n would become easy. This would be the straightforward strategy here.

(3) In the group dual case, the orientability axiom simplifies, because the group duals
are discrete in our sense. We believe that the uniform, twistable, oriented group duals
should appear as combinations of certain abelian groups, which appear in the classical
case, with duals of varieties of real reflection groups, which appear in the real case.

This is probably the easiest question in the present series, and the most reasonable
one, to start with. However, there are no concrete results so far, in this direction.

11e. Exercises

Things have been quite technical in this chapter, and as a unique exercise, summarizing
the problems that we have been talking about here, we have:

EXERCISE 11.38. Find an abstract framework for the “quantum reflection groups”, as
intermediate quantum groups of type

Ay Cc G C K;
covering at the same time all the intermediate easy quantum groups of type
Sy C G C Ky

and all the classical, non-exceptional complex reflection groups, namely

Hd = {U € H|(det U)d = 1}

and then start classifying such beasts.

The point here is that in the classical case, there is a definition and then classification
result for the complex reflection groups, with the classification stating that we have as
exemples the above groups H3¢, plus a number of exceptional examples, which can be
classified as well. The problem is that of finding the correct quantum extension of this.



CHAPTER 12

Twisted reflections

12a. Quantum graphs

We have seen in the previous 3 chapters that some general theory can be developed
for the quantum subgroups G C S}, in particular with a notion of “quantum reflection
group”. We discuss here the twisted extension of some of these results, and in particular
the twisted analogues of the quantum reflection groups, obtained by using generalized
quantum permutation groups, S} with F' being an arbitrary finite quantum space.

Let us first recall from chapter 4 above that we have:

DEFINITION 12.1. A finite quantum space F' is the abstract dual of a finite dimensional
C*-algebra B, according to the following formula:

C(F)=B

The number of elements of such a space is by definition the number |F| = dim B. By
decomposing the algebra B, we have a formula of the following type:

C(F) = My, (C)&...® M,,(C)

Withny = ... = ng = 1 we obtain in this way the space F = {1,... k}. Also, when k =1
the equation is C'(F) = M, (C), and the solution will be denoted F' = M,,.

As explained in chapter 4, each such finite quantum space F has a counting measure,
corresponding as the algebraic level to the following integration functional, obtained by
applying the regular representation, and then the normalized matrix trace:

tr: C(F) — B(I*(F)) = C

As basic examples, for both F' = {1,..., N} and F' = My we obtain the usual trace.
In general, with C(F') = M,,,(C) & ... ® M,, (C), the weights of ¢r are:

2
1

B >im;
Let us also mention that the canonical trace is precisely the one making C C B a

Markov inclusion. Equivalently, the counting measure is the one making F© — {.} a
Markov fibration. For a discussion of these facts, see [2], and also [5], [19].

C;

273
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We will also need the definition and main properties of the quantum symmetry groups
S} of such spaces F. The result here, from chapter 4 as well, is as follows:

THEOREM 12.2. Given a finite quantum space F', there is a universal compact quantum
group S} acting on F, leaving the counting measure invariant. We have

C(Sf) = C(U§)/<,u € Hom(u®*,u),n € sz(u)>

where N = |F| and where p,n are the multiplication and unit maps of C(F). For F =
{1,...,N} we have S} = S%. Also, for the space F = My we have S} = SOj.

ProoOF. This is something that we know as well from chapter 4, with the proof being
based on the fact that the coaction axioms for a map ¢ : C(F) — C(F) ® C(G), written
as ®(e;) = ), e ® uy;, correspond to the fact that u = (u;;) must be a corepresentation,

satisfying the conditions u € Hom(u®?,u) and n € Fiz(u) in the statement. O

For our purposes here it will be useful to have bases and indices. We will use a single
index approach, based on the following formalism:

DEFINITION 12.3. Given a finite quantum space F, we let {e;} be the standard multi-
matriz basis of the algebra B = C(F), so that the multiplication, involution and unit of
B are given by the formulae

where (i,7) — ij is the standard partially defined multiplication on the indices, with the
convention ey = 0, and where i — 1 15 the standard involution on the indices.

To be more precise, let {e/,} C B be the multimatrix basis. We set then ¢ = (abr),
and with this convention, the multiplication, coming from e’ e’ = §,,05.€5,, is given by:

(adr) ifr=p, b=c

(abr)(cdp) = {@

otherwise
As for the involution, coming from (el,)* = e}, this is given by:
(a,b,7) = (b,a,r)

Finally, the unit formula comes from the following formula for the unit 1 € B:
1=2 ¢

Regarding now the generalized quantum permutation groups S, the construction in
Theorem 12.2 reformulates as follows, by using the single index formalism:
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THEOREM 12.4. Given a finite quantum space F', with basis {e;} C C(F) as above,
the algebra C(S}) is generated by variables u;; with the following relations,

E Uik Ujr = Up gl E Uik U1 = Uigp

ij=p kl=p
Zuij =455 Zuij = 0ii
i=i J=J
ujj = i
with the fundamental corepresentation being the matriz v = (w;). We call a matriz

u = (u;j) satisfying the above relations “generalized magic”.

PROOF. Once again, this is something that we know from chapter 4 above, the idea
being that the relations p € Hom(u®?,u) and n € Fix(u) in Theorem 12.2 produce the
1st and 4th relations, then the biunitarity of u gives the 5th relation, and finally the 2nd

and 3rd relations follow from the 1st and 4th relations, by using the antipode. O
As an illustration, consider the case F' = {1, N }. Here the index multiplication is
it =1 and ij = () for ¢ # j, and the involution is ¢ = . Thus, our relations read:
Uikli = Ok Ui Ul = 5ijuik
doug=1 . Y uy=1
i J
Ujj = Ui

We recognize here the standard magic conditions on a matrix u = (u;;).

Getting now to the point where we wanted to get, namely the quantum symmetries of
the finite “quantum” graphs, and the generalized quantum reflection groups, let us start
with the following straightforward extension of the usual notion of finite graph, from [61],
obtained by using a finite quantum space as set of vertices:

DEFINITION 12.5. We call “finite quantum graph” a pair of type
X = (F,d)
with F being a finite quantum space, and with d € My(C) being a matriz.

Such a quantum graph can be represented as a colored oriented graph on {1,..., N},
where N = |F'|, with the vertices being decorated by single indices i as above, and with
the colors being complex numbers, namely the entries of d. This is quite similar to the
formalism from chapter 10, but there is a discussion here in what regards the exact choice

of the colors, which are normally irrelevant in connection with our G*(X) problematics,
and so can be true colors instead of complex numbers. More on this later.

With the above notion in hand, we have the following definition, also from [61]:
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DEFINITION 12.6. The quantum automorphism group of X = (F,d) is the subgroup
GT(X) c Sf
obtained via the relation du = ud, where u = (u;;) is the fundamental corepresentation.

We refer to [61] and to [89] for more on this notion, and for a number of advanced
computations, in relation with the free wreath products.

At an elementary level, a first problem is that of working out the basics of the corre-
spondence X — G*(X), following [6]. There are several things to be done here, namely
simplices, complementation, color independence, multi-simplices, and reflections.

Let us start with the simplices. The result here is as follows:
THEOREM 12.7. Given a finite quantum space F', we have
G (Fempty) = G (Fpun) = Spr

where Feppey ts the empty graph, coming from the matriz d = 0, and where Fyyy is the
simplex, coming from the matric d = NP, — 1y.

Proor. This is something quite tricky, the idea being as follows:

(1) First of all, the formula G*(F,,) = SF is clear from definitions, because the
commutation of v with the matrix d = 0 is automatic.

(2) Regarding G (Fpu) = Si, let us first discuss the classical case, F' = {1,...,N}.
Here the simplex Ff,; is the graph having having edges between any two vertices, whose
adjacency matrix is d = Iy — 1y, where Iy is the all-1 matrix. The commutation of u
with 1y being automatic, and the commutation with Iy being automatic too, u being
bistochastic, we have [u,d] = 0, and so G (F,;) = S7 in this case, as stated.

(3) In the general case now, we know from Theorem 12.2 that we have n € Fiz(u),
with n: C — C(F') being the unit map. Thus we have P, € End(u), and so [u, P;| = 0 is
automatic. Together with the fact that in the classical case we have the formulally = NP,
this suggests to define the adjacency matrix of the simplex as being d = NP, — 1y, and
with this definition, we have G*(Fp,;) = SF, as claimed.

(4) Thus, we have the result, and the only piece of discussion still needed concerns the
understanding of what the simplex F,; really is, say pictorially speaking. According to
our conventions, the adjacency matrix of the simplex is:

dij = (NPr—1n)i
= i, 1j — 6ij
- 5‘ 7 51']‘

w55 T
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(5) For FF = {1,..., N}, where the involution on the index set is ¢ = i, we obtain
=1
©]

d — 9,5, as we should. In the case F' = M,, now, by using double indices we have:

dab,cd = 5ab,ba(scd,dc - 5ab,cd
= 5ab50d - 5a05bd

Thus, we obtain a matrix d € My(—1,0,1), which generically has 0 entries. This
matrix is symmetric. It has not 0 on the diagonal, the self-edges, worth 1, appearing at
the off-diagonal points of F'. The case of edges worth -1 is possible too. U

With the above result in hand, we can now talk about complementation, as follows:

THEOREM 12.8. For any finite quantum graph X we have the formula
GT(X) = GT(X")
where X — X¢ is the complementation operation, given by dx + dxe = dp,,,-

Proor. This follows from Theorem 12.7, and more specifically from the fact that the
condition [u, dp,,,] = 0 is automatic, as explained there. There is of course still some
discussion here to be done, in what concerns the pictorial representation of X¢ as a
continuation of the discussion in (4) from the proof of Theorem 12.7. O

As basic examples, with F' = {1,..., N} we recover the usual G (X) quantum groups.
For F' = M, we have S} = Sp = SOz, and for the few graphs here, having |M,| = 4
vertices, we recover certain subgroups of SO3, which can be computed explicitely.

Following now [6], let us discuss an important point, namely the “independence on
the colors” question. The idea indeed is that given a classical graph X with edges colored
by complex numbers, or by other types of colors, G(X) does not change when changing
the colors. This is obvious, and a quantum analogue of this fact, involving G (X), can
be shown to hold as well, as explained in [6], and in chapter 10 above.

In the quantum graph setting things are more complicated, with the independence on
the colors not necessarily being true. Let us start with the following definition:

DEFINITION 12.9. We say that a quantum graph X = (F,d) is washable if, whenever
we have another quantum graph X' = (F,d') with same color scheme, in the sense that

dij =dy <— d;J = d;d
we have GT(X) = GT(X').
As already mentioned, it was proved in [6] that in the classical case, FF = {1,..., N},
all graphs are washable. This is a key result, and this for several reasons: (1) first of all,
it gives some intuition on what is going on with respect to colors, in analogy with what

happens for G(X), which is very intuitive, and trivial, (2) also, it allows the use of true
colors (black, blue, red...) when drawing colored graphs, instead of complex numbers,
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and (3) this can be combined with the fact that G*(X) is invariant as well via similar
changes in the spectral decomposition of d, at the level of eigenvalues, with all this leading
to some powerful combinatorial methods for the computation of G*(X).

All these things do not necessarily hold in general, and to start with, we have:

PrRoPOSITION 12.10. There are quantum graphs, such as the simplex in the homoge-
neous quantum space case, F' = My x {1,..., L} with K, L # 2, which are not washable.

PROOF. We know that the simplex, in the case F' = Mg x{1,..., L}, has as adjacency
matrix a certain matrix d € My(—1,0,1), with N = K2L. Moreover, assuming K, L. > 2
as in the statement, entries of all types, —1,0, 1, are possible. Now assuming that this
simplex is washable, it would follow that we have dim(End(u)) > 3, a contradiction. [

In order to come up with some positive results as well, the idea will be that of using
the method in [6]. Let us start with the following statement, coming from there:

PROPOSITION 12.11. The following matrixz belongs to End(u), for any n € N:
it = > > digyy - dig,
i=k1.okp j=l1...ln

In particular, in the classical case, F'={1,..., N}, all graphs are washable.

PrRoOOF. We have two assertions here, the idea being as follows:

(1) Consider the multiplication and comultiplication maps of the algebra C'(F'), which
in single index notation are given by:

plei ® ;) = €5
v(e) = Z ej @ ey,
i=jk
Observe that we have p* = v, with the adjoint taken with respect to the scalar product
coming from the canonical trace. We conclude that we have:
p € Hom(u®* )
v € Hom(u,u®?)

The point now is that we can consider the iterations (™, ~™ of u,~, constructed in
the obvious way, and we have then:

p™ € Hom(u®", u)
7™ e Hom(u,u®")
Now if we assume that we have d € End(u), we have d®*" € End(u®") for any n, and

we conclude that we have:
p™Md® " € End(u)
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In single index notation, we have the following formula:

(Md® ")y = 3" > iy dia,

i=ky...kn j=l1...ln
Thus, we are led to the conclusion in the statement.

(2) Assuming that we are in the case F' = {1,..., N}, the matrix d*" in the statement
is simply the componentwise n-th power of d, given by:

Xn __
" = dij

As explained in [6], a simple analytic argument, using n — oo and then a recurrence
on the number of colors, shows from this that we have washability indeed. U

In order to exploit now the findings in Proposition 12.11, we will assume that we are
in the case FF = My x {1,...,L}, and we will use an idea which is familiar in random
matrices and quantum information, namely assuming that d is “split”. We have:

THEOREM 12.12. Assuming that we are in the case F = My x {1,..., L}, and that
the adjacency matrixz is split, in the sense that one of the following happens,

dab,cd = eabfcd
dab,cd = eacfbd

dab,cd = eaclfbc

the quantum graph is washable.

PRrROOF. The idea here is that of computing the matrix d*™ from Proposition 12.11,
and then adapting the proof from the K = 1 case, from [6], explained above. We know
from Proposition 12.11 that we have the following formula, in single index notation:

Xn
dij = E E dklll e dknln
i=ky...kn j=l1...lpn,
In double index notation, which is more convenient for our purposes here, we have:

Xn _ § : 2 :
dab,cd - ddl‘l,cyldI1x27y1y2dgj2x37y2y3 ......

Z1.--Tn—1 Y1---Yn—1

""" dxn72znfl yYn—2Yn—1 dxnflbvynfld

We have 3 cases to be investigated, and here are the computations of this matrix:
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(1) In the case dupca = €apfea we have the following computation:

xn _
dab,cd - § E €Caxy fcyl Crix9 fy1y2 €xozs fy2y3 ......

Z1.-Tn—1Y1---Yn—1

""" €$n72In71 fyn72yn71 eznflbfynfld

= Z Cax1 CrymyCromy + + v v - - €z omm_ 1€z _1b
Tr1...Tn—1
Z fcy1fy1y2fy2y3 ------ fyn—Zyn—lfyn—ld
Yi1---Yn—1

= (e")ar([")ea

(2) In the case dgpcd = €qcfoa We have the following computation, where the x opera-
tion at the end is the usual componentwise product of the square matrices, and where £
is the total sum of the entries of a given square matrix:

Xn _
dab,cd - § § 6acfx1y1 €ziyp foyQ Cxoyso fg;3y3 ......
T1.-Tn—1Y1---Yn—1

""" e$n72yn72 fl'nflynfl 6xnflyn—l fbd

Cacra D D (€X Plan(e X Py -+ (& X Fanryns

L1 n—1 Y1---Yn—1
= eqceraF [(e x f)" ]

(3) In the case dupca = €aafoc we have the following computation, in a rough form,
with the general case depending on the parity of n:

xn _
dab,cd - E E €ayr fxlcexlyg fx2y1 €xoys fx3y2 ......

Z1.--Tn—1Y1---Yn—1

""" 61'7L72yn71 fznfl?Janeznfldfbynfl

= Z Z Cayn (f VyrosCanys -+ -+ (") ews €are (F s -+ - -

= [(eft)n/2i| ad [(fte)n/Q] cb

With these formulae in hand, we are led to the conclusion in the statement. O
As a conclusion, the basic theory of the quantum groups G*(X) from chapter 10
extends to the present setting, modulo some subtleties in connection with the colors.

12b. Cayley graphs

As a first application of our quantum graph considerations, let us discuss some theo-
retical questions, in connection with the Cayley theorem. Let us start with:
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PROPOSITION 12.13. For any finite quantum group G, the counting measure is the
Haar measure.

PROOF. Given an arbitrary finite quantum group GG, we must prove that the counting
measure is left and right invariant, in the sense that we have:

(tr @ id)A = (id @ tr)A = tr

But this is something well-known, which follows from the definition of the canonical
trace, as being the following composition:

tr: C(G) — B(I*(Q)) = C
Indeed, this composition is left and right invariant, as desired. O

As a consequence, we have a Cayley theorem in the present setting, as follows:
THEOREM 12.14. For any finite quantum group G, we have:
G C S
That is, the Cayley theorem holds, in the present setting.

Proor. We have an action G ~ G, which leaves invariant the Haar measure. Now
since by Proposition 12.13 the Haar measure is the counting measure, we conclude that
G ~ G leaves invariant the counting measure, and so we have G C SZ, as claimed. [

By adding now edges, we are led to the following result:

THEOREM 12.15. Given a finite quantum group G, the following happen:

(1) We have G C G (X¢) with Xg = (G, d) when the matriz d € Mg(C) belongs to
the image of the right reqular representation.

(2) In this context, we can always arrange as for the inclusion G C GT(Xg) to be
“optimal”, in the sense that {d} = End(u).

(3) In fact, we can always arrange as for having a formula of type G = G*(X¢), for
a certain quantum graph Xg.

ProoF. This follows from Theorem 12.14, and from the basic properties of the left
and right regular representation, for the finite quantum groups. Il

There are many interesting questions in relation with the above, notably in relation
with the problem of realizing a given quantum permutation group G C Sj;, or more
generally G C S}, as the quantum automorphism group of a quantum graph.
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12c. Twisted reflections

Let us discuss now some basic examples of quantum symmetry groups of quantum
graphs, in relation with the reflection problematics. We first have the following result:
THEOREM 12.16. We have the following results:
(2) G ~ X implies Gl S ~ NX.

PROOF. These results are standard, following the proofs from the usual graph case,
where F' = {1,..., N}, and we refer here to [61], and to [89]. O

Let us also mention that under suitable connectedness assumptions on X, similar to
those in the classical case, taken in a functional analytic sense, the action in (2) above
can be shown to be universal, when taking G = G*(X), and so we have:

GT(NX)=G"(X) . SE

For more on this material, we refer to [61], [89] and related papers.

With the above technology in hand, we can talk about multi-simplices, and quantum
reflections. The idea is that the quantum automorphism groups S} ., of the Markov
fibrations F' — FE, which correspond by definition to the Markov inclusions of finite
dimensional C*-algebras C(E) C C(F'), were studied in [4].

As explained in [6] and in subsequent papers, in the classical case, F' = {1,..., N}, the
quantum groups S}, are of the form GT(X), with X being a multi-simplex, obtained
as a union of simplices, and correspond to the notion of quantum reflection group.

In the general case, the quantum groups of type S}, ., with F' — F being a Markov
fibration, can be thought of as being “generalized quantum reflection groups”.

In order to discuss this, let us start with the following definition:

DEFINITION 12.17. Let B C D be an inclusion of finite dimensional C*-algebras and
let ¢ be a state on D. We define the universal C*-algebra Ay (B C D) generated by the
coefficients v;; of a unitary matriz v subject to the conditions

m € Hom(v®? v)
u € Hom(1,v)

e € End(v)

where m : D ® D — D is the multiplication, u : C — D is the unit and e : D — D 1is the
projection onto B, with respect to the scalar product < x,y >= p(xy*).
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By universality we can construct maps A, ,.5, and so we have a Woronowicz algebra
in the sense of chapter 1 above. This is something standard, see [4].

Let us discuss now the corepresentation theory of A, (B C D). The matrix v is a
corepresentation of A, (B C D) on the Hilbert space D, and the three “Hom” conditions
translate into the fact that v corresponds to a coaction of Ay (B C D) on the C*-algebra
D, which leaves ¢ and B invariant. Following [4], we will prove that the corresponding
Tannakian category is the Fuss-Catalan category, introduced by Bisch-Jones in [47].

The Fuss-Catalan category, as well as other categories to be used in what follows, is a
tensor C*-category having (N, +) as monoid of objects.

In what follows, we will call such a tensor category a N-algebra. If C' is a N-algebra
we use the following notations:
C(m,n) = Home(m,n)
C(m) = Endc(m)
As a first class of examples, which is very wide, associated to any object O in a tensor
C*-category is the N-algebra NO given by the following formula:

NO(m,n) = Hom(O®™, O%")
Let us first discuss in detail the Temperley-Lieb algebra, as a continuation of the
material from chapters 1-4. In the present context, we have the following definition:
DEFINITION 12.18. The N-algebra TL* of index § > 0 is defined as follows:
(1) The space TL*(m,n) consists of linear combinations of noncrossing pairings be-

tween 2m points and 2n points:

------ — 2m points
TL*(m,n) = Z a W <+ m+n strings
. — 2n points

(2) The operations o, ®, x are induced by the vertical and horizontal concatenation
and the upside-down turning of diagrams:

B

A

(3) With the rule O = 4, erasing a circle is the same as multiplying by 6.

AoB:() , AB=AB , A'=V

Our first task will be that of finding a suitable presentation for this algebra. Consider
the following two elements u € TL*(0,1) and m € TL?*(2,1):

wu=02N , m=2042|U]

With this convention, we have the following result:
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THEOREM 12.19. The following relations are a presentation of TL? by the above
rescaled diagrams u € TL*(0,1) and m € TL*(2,1):

(1) mm* = §°.

(2) wu=1.

(3) m(m®1) =m(l®@m).

(4) mleu) =muel) =1

(5) (me)(lem’) = (1em)(m" ®1)=m"m.

Proor. This is something very standard, well-known, and elementary, which follows
by drawing diagrams. O

In more concrete terms, the above result says that u, m satisfy the above relations,
which is something clear, and that if C' is a N-algebra and v € C'(0,1) and n € C(2,1)
satisfy the same relations then there exists a N-algebra morphism as follows:

> > C
u—v

m-—n

Now let D be a finite dimensional C*-algebra with a state ¢ on it. We have a scalar
product < z,y >= p(zy*) on D, so D is an object in the category of finite dimensional
Hilbert spaces. Consider the unit 4 and the multiplication m of D:

u € ND(0,1)

m € ND(2,1)

The relations in Theorem 12.19 are then satisfied if and only if the first one, namely
mm* = §2, is satisfied, and this is automatic when ¢ is the standard trace. One can
deduce from Theorem 12.19 that in this case, the category of corepresentations of the
Hopf algebra A,:(D) is the completion of T'L?, in the sense of [99].

Getting now to Fuss-Catalan algebras, we have here:

DEFINITION 12.20. A Fuss-Catalan diagram is a planar diagram formed by an upper
row of 4m points, a lower row of 4n points, both colored

cCceeocoOcee. ..

and by 2m + 2n noncrossing strings joining these 4m + 4n points, with the rule that the
points which are joined must have the same color.
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Fix f > 0 and w > 0. The N-algebra F'C is defined as follows. The spaces F'C(m,n)
consist of linear combinations of Fuss-Catalan diagrams:

00000000 . . . ... <+ 4m colored points
m + n black strings
Z Q@ 20 — and
m + n white strings
0Cee00ee0 . . . ... < 4n colored points

As before with the Temperley-Lieb algebra, the operations o, ®, % are induced by
vertical and horizontal concatenation and upside-down turning of diagrams, but this time
with the rule that erasing a black/white circle is the same as multiplying by §/w:

AoB:(i) . A®B=AB , A*=V

black — () = 3 , white =& () = w

Let 6 = fw. We have the following bicolored analogues of the elements u, m:

w=0"2 ) . m=0 ||l

These elements generate in F'C' a N-subalgebra which is isomorphic to T'L2.

Consider also the black and white Jones projections, namely:

. 4,U a1 U
e=w 2], f=aT oI

We have f = 372(1 ® me)m*, so we won’t need f for presenting F'C. For simplifying
writing we identify x and = ® 1, for any . We have the following result:

THEOREM 12.21. The following relations, with f = 372(1®@me)m*, are a presentation
of FC by m € FC(2,1), u € FC(0,1) and e € FC(1):

(1) The relatzons in Theorem 12.19, with 6 = fw.
; Lf=and (10 f)f = fA@ ).
)

—m(1® e)ym* = [32.
) m (®e® e)=emm(e®@1®e).

SS
Al

(2) e
(3
(4
(5
PRrROOF. As for any presentation result, we have to prove two assertions:

(I) The elements m, u, e satisfy the relations (1-5) and generate the N-algebra F'C.

(IT) If M, U and E in a N-algebra C satisfy the relations (1-5), then there exists a
morphism of N-algebras F'C' — C sending m — M, u — U, e — FE.
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The proof will be based on the results from the paper of Bisch and Jones [47], plus
some diagrammatic computations for (I), and some purely algebraic computations for

(II).
(I) First, the relations (1-5) are easily verified by drawing pictures.

Let us show now that the N-subalgebra C' =< m,u,e > of F'C is equal to FC. First,
C contains the infinite sequence of black and white Jones projections:

1|U

P1=€=WwW m|

_ U
_ _ 1
pa=f=p" 121
U
_ _ -1
p=l@e=w 2]

_ U
p=10f=p" [l 21l

The algebra C' contains as well the infinite sequence of bicolored Jones projections:

e =uut =0t %

Yy

er =0 m*m=0"| A

es = 1@ uu’ =5 |[| %

s =21 @mm) = 7 [l g1

By the results of Bisch and Jones in [47], these latter projections generate the diagonal
N-algebra AFC. Thus we have inclusions as follows:

AFC cCcC CFC
By definition of ', we have as well the following equality:
AFC = AC
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Also, the existence of semicircles shows that the objects of C' and F'C' are self-dual,
and by Frobenius reciprocity we obtain that for m + n even, we have:

dim(C(m,n)) = dim (C (m;n))

- anre(=52)

= dim(FC(m,n))

By tensoring with v and u* we get embeddings as follows:
C(m,n) C C(m,n+1)
FC(m,n) C FC(m,n+1)

But this shows that the above dimension equalities hold for any m and n. Together

with AFC C C' C FC, this shows that C' = FC.

(IT) Assume that M,U, E in a N-algebra C satisfy the relations (1-5). We have to
construct a morphism FC' — C sending:

m— M
u— U

e—FE
As a first task, we would like to construct a morphism AFC — AC sending:

m*m — M*M
uu* — UU*
e~ F
By constructing the corresponding Jones projections E; and P;, we must send:
e, — E;
pi = B

In order to construct these maps, we use now the fact, from [47], that the following
relations are a presentation of AFC:

AN

a) €2 = e, e;e; = eje; if |i — j| > 2 and e;e;116; = 0 2e;.
b) p; = p; and pip; = p;p;-

(
(
(¢) eipi = piei = ¢; and pie; = e;p; if |i — j| > 2.
(
(

ST

_ 92 -2
d) €2i+1D2i€2i41 = B “egix1 and egpairi1€; = W 7ey;.

_ -2 -2
e) P2i€2i+1D2i = B~ D2ix1D2i and Pojr1€2iPrit1 = W P2iP2it1-
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Thus, it remains to verify that we have the following implication, where m,u,e are
now abstract objects, and we are no longer allowed to draw pictures:

(1-5) = (a—e)

First, by using €,,2 =1 ® e, and p,12 = 1 ® p,,, these relations to be checked reduce
to the following new collection of relations:

e2 =¢; fori=1,2, ejeae; = 6 2e; and ezeies = J 2e,.

Q) €;

B

)
) pi=p; fori=1,2 and [p1,p2] = [1 ® p1,pa] = [1 ® p2,pa] = 0.
)

(
(
(7) [e2,1 @ po] = [p2, 1 ® €3] = 0 and e;p; = pie; = e; for i = 1,2.
(01) e1pae; = B7%e; and (1@ ep)pa(l ®ey) = B72(1 @ ey).
(02) eapres = ea(1 @ p1)es = w2es.
(e1) BPpaerpa = w?preapr = pipa.
(€2) BPpa(1 @ e1)pe = W (1@ pr)ea(1 @ p1) = (1@ p1)p2

With e; = uu*, e = 6 2m*m, p1 = e and p, = f we can see that most of these
relations are trivial. What is left can be reformulated in the following way:

y) l@e)m m(l®e) =5 f* (1@ e).

z)
t)le,fl=[1®e, f] =[mm,1® f] =[f,1®m*m] =0.
By multiplying the relation (5) by u and by 1 ® 1 ® u to the right we obtain the
following useful formula, to be used many times in what follows:
m(e®e) =em(l®e) =eme
Let us verify now the above conditions (x-t). First, we have:
Ffe=mlexe)(l@m’)
By replacing m(e ® e) with eme we get em*me, so (x) is true. Also, we have:
(Ieemm(l®e) =m(l® (em(l®e))*)
By replacing em (1 ® e) with eme we get 52f*(1 ® e), so (y) is true. We have:
ff = B7*m(l ® em*me)m*

By replacing em*me with eme(1 ® m*), then eme with m(e ® e) we get f*, so (z) is
true. The first two commutators are zero, because fe and f(1 ® e) are self-adjoint.
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The same happens for the others, because of the following formulae:
mm*(1® ff*) = 1®1®@me)m* m mm(l ®1®em*)
(1@m'm)ff*= 1@ m me)m*m(l ® em*m)
The conclusion is that we constructed a certain N-algebra morphism, as follows:
AJ: AFC — AC

We have to extend now this morphism into a morphism J : FC' — C' sending u — U
and m — M. We will use a standard argument. For w > k, [ we define:

¢ : FO(L, k) — FC(w)

= WM @ 1)z (W) e 1)
We can define as well a morphism as follows:

0: FC(w) — FC(l, k)

z— ()PP 1)z (WP e1)

Here 1;, = 19% and the convention z = x ® 1 is no longer used. We define ® and © in
C by similar formulae. We have ¢ = ©P = [d. We define a map J by:

FC(I, k) —1— C(1, k)

¢ C]

FC(w) —2L— O(w)

Since the element J(a) does now depend on the choice of w, these J maps are the
components of a global map, as follows:

J:FC = C

This map J extends AJ and sends v — U and m — M. It remains to prove that J
is a morphism. We have:

Im(¢) = {x € FC(w)’x = ((wu*)®@ M @ 1) z ((uu)®@ D @ 11)}

We have as well as a similar description of Im(®), and so J sends:

Im(¢) — Im(P)
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We have also ©P = Id, so PO = Id on Im(®P). Thus the following diagram commutes:
FC(I, k) —1— C(1, k)

FC(w) —2L— O(w)

It follows that J is multiplicative, because we have:
J(ab) = O(AJP(a)AJ (b))
= O(dJ(a)PJ(b))
= 02(J(a)J(b))
= J(a)J(b)
In order to finish, it remains to prove that we have:
J(a®b)=J(a)® J(b)

Since we have a ® b = (a ® 15)(1; ® b) for certain s and ¢, it is enough to prove the
above formula for pairs (a,b) of the form (1;,0) or (a,1s). For (a,1,) this is clear, so it
remains to prove that the following set equals F'C"

B={ve FC|J(1,@b) =1, J(b), ¥t € N}
For this purpose, observe first that AJ being a N-algebra morphism, we have:
AFCCB
On the other hand, a direct computation gives:
JLouel)=1LU®I1,

Since B is stable by involution and multiplication, B contains the compositions of
elements of AFC with 1; ® u ® 1, and 1; ® u* ® 1, maps. But any b € FC' is equal to
0¢(b), so it is of this form, and we are done. O

Getting back now to the inclusions B C D of finite dimensional C*-algebras, as in
Definition 12.17 above, we have the following result:

THEOREM 12.22. If ¢ is a (B,w)-form on B C D then:
<m,u,e >= FC

PRrROOF. It is routine to check that the linear maps m, u, e associated to an inclusion
B C D as in the statement satisfy the relations (1-5) in Theorem 12.21. Thus, we obtain
a certain N-algebra surjective morphism, as follows:

J:FC =< m,u,e >
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It remains to prove that this morphism J is faithful. For this purpose, consider the
following map, where v = m*u € FC(0,2):
¢n: FC(n) — FC(n —1)
z— (182D @ ") (z @ 1)(1%"V @ v)
Consider as well the following map, where v = m*u € FC(0,2) is as above:
tp: C(n) — C(n—1)
z = (1°07V @ J(0))(z @ 1)(1%" Y @ J(v))

These maps make then the following diagram commutative:

FC(n) / C(n)

¢’n ’d}n

FC(n—1) —2

C(n—1)

By gluing such diagrams we get a factorization by J of the composition on the left of
conditional expectations, which is the Markov trace. By positivity J is faithful on AFC),
then by Frobenius reciprocity faithfulness has to hold on the whole F'C. U

Getting back now to quantum groups, we have:

THEOREM 12.23. If ¢ is a (B,w)-form on B C D then the tensor C*-category of finite
dimensional corepresentations of Aqu(B C D) is the completion of FC.

PRrOOF. The algebra A,,(B C D) being by definition presented by the relations
corresponding to m, u, e, its tensor category of corepresentations has to be completion of
the tensor category < m,u, e >. On the other hand, the linear form ¢ being a (3, w)-form,
Theorem 12.22 applies and gives an isomorphism < m,u,e >~ FC. U

As already mentioned in the above, in terms of quantum spaces and quantum graphs,
the conclusion of all this is that the quantum automorphism groups S} . ; of the Markov
fibrations F' — FE, which can be thought of as being the “twisted versions” of the quantum
reflection groups Hy; studied in chapter 11 above, correspond to the Fuss-Catalan algebras.
We refer to [4] and related papers for more on these topics.

12d. General reflections

As a final topic for this chapter, we discuss some further generalizations of all the
above. The point indeed is that in the ' = {1,..., N} case we have seen in chapter 11
that an interesting question is the classification of the general quantum reflection groups,
which appear as intermediate quantum groups, as follows:

ANCGCK]T[
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On the other hand, we have seen in this chapter that most of the FF = {1,..., N}
material has extensions to the general case, where F' is an arbitrary finite quantum space.
Thus, the story is not over yet, and the most general notion of “quantum reflection group”,
using such finite quantum spaces F', is still to be axiomatized, and studied.

In order to get started, let us go back to the case F' = {1,...,N}. In the classical
case, the classification theorem for the complex reflection groups, a celebrated result by
Shephard and Todd [85], from the 50s, is as follows:

THEOREM 12.24. The irreducible complex reflection groups are

Hd = {UGHf\,

(det )4 = 1}
along with 34 exceptional examples.

PRrooOF. This is something quite advanced, and we refer here to the paper of Shephard
and Todd [85], and to the subsequent literature on the subject. U

In the general quantum case now, the axiomatization and classification of the quantum
reflection groups is a key problem, which is not understood yet. We will be interested
in what follows in the “twistable” case, where the theory is more advanced than in the
general case. Let us start with the following definition:

DEFINITION 12.25. A closed subgroup G C Uy; is called:

(1) Half-homogeneous, when it contains the alternating group, Ay C G.
(2) Homogeneous, when it contains the symmetric group, Sy C G.
(3) Twistable, when it contains the hyperoctahedral group, Hy C G.

These notions are mostly motivated by the easy case. Here we have by definition
Sy C G C Uy, and so our quantum group is automatically homogeneous. The point now
is that the twistability assumption corresponds to the following condition, at the level of
the associated category of partitions D C P:

D C Peven

We recognize here the condition which is needed for performing the Schur-Weyl twist-
ing operation, explained in chapter 10 above, and based on the signature map:

€ Popen — {1}

As a conclusion, in the easy case our notion of twistability is the correct one. In
general, there are of course more general twisting methods, usually requiring ZY c G
only. But in the half-homogeneous case, the condition ZY C G is equivalent to Hy C G.

With this discussion done, let us formulate now the following definition:
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DEFINITION 12.26. A twistable quantum reflection group is an intermediate subgroup
Hy C K C K},
between the group Hy = Zo ! Sy, and the quantum group K =T, Sf.

Here is now another definition, which is important for general compact quantum group
purposes, and which provides motivations for our formalism from Definition 12.25:

DEFINITION 12.27. Given a closed subgroup G C Uy, which is twistable, in the sense
that we have Hy C G, we define its associated reflection subgroup to be
K=GnK}
with the intersection taken inside Uy,. We say that G appears as a soft liberation of its

classical version Guess = G N Uyn when G =< Ggss, K >

These notions are important in the classification theory of compact quantum groups,
and in connection with certain noncommutative geometry questions as well. As a first
observation, with K being as above, we have an intersection diagram, as follows:

K G

Kclass Gclass

The soft liberation condition states that this diagram must be a generation diagram.
We will be back to this in a moment, with some further theoretical comments. Let us
work out some examples. As a basic result, we have:

THEOREM 12.28. The reflection subgroups of the basic unitary quantum groups

Un Uy Uy

On Ox o
are as follows,

Ky K3, K}

Hy Hy HY,

and these unitary quantum groups all appear via soft liberation.
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PROOF. The fact that the reflection subgroups of the quantum groups on the left are
those on the right is clear in all cases, with the middle objects being by definition:
Hy = HyvN Oy
Ky =KynUy
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case there is nothing to prove, because any classical group is by
definition a soft liberation of itself.

(2) In the half-classical case the results are non-trivial, but can be proved by using
the technology developed by Bichon and Dubois-Violette in [46].

(3) In the free case the results are highly non-trivial, and the only known proof so far
uses the recurrence methods developed by Chirvasitu in [51]. U

Summarizing, we are here into recent and interesting quantum group theory. We will
discuss a bit later the concrete applications of Theorem 12.28. There is a connection here
as well with the notion of diagonal torus, introduced in chapter 1 above. We can indeed
refine Definition 12.27, in the following way:

DEFINITION 12.29. Given Hy C G C Uy, the diagonal tori T = GNT}, and reflection
subgroups K = G N K}, for G and for Guuss = G N Uy form a diagram as follows:

T K G

Tclass

Kclass

Gclass

We say that G appears as a soft/hard liberation when it is generated by Geqass and by
K/T, which means that the right square/whole rectangle should be generation diagrams.

It is in fact possible to further complicate the picture, by adding free versions as well,
with these free versions being by definition given by the following formula:

Gree =< G, S% >

Importantly, we can equally add the parameter N € N to the picture, the idea being
that we have a kind of “ladder”, whose steps are the diagrams in Definition 12.29, perhaps
extended with the free versions too, at fixed values of N € N.

The various generation and intersection properties of this ladder are important proper-
ties of G = (Gy) itself, with subtle relations between them. In fact, as already mentioned
in the proof of Theorem 12.28 above, the proof of the soft generation property for Of, Uy
uses in fact this ladder, via the recurrence methods developed in [51].
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All this is quite technical, so as a concrete result in connection with the above hard
liberation notion, we have the following statement, improving Theorem 12.28:

THEOREM 12.30. The diagonal tori of the basic unitary quantum groups

Un Uy Uy

On Ox o
are as follows,

Ty T T,

Tn TN Ty

and these unitary quantum groups all appear via hard liberation.

PRrROOF. The first assertion is something that we already know, from section 1 above.
As for the second assertion, this can be proved by carefully examining the proof of The-
orem 12.28, and performing some suitable modifications, where needed. O

As an interesting remark, some subtleties appear in the following way:

PRroOPOSITION 12.31. The diagonal tori of the basic quantum reflection groups

Ky K3 K}
Hy Hy, HY,
are as follows,
Ty T T,
Tn TX% Ty

and these quantum reflection groups do not all appear via hard liberation.
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PRrROOF. The first assertion is clear, as a consequence of Theorem 12.28, because the
diagonal torus is the same for a quantum group, and for its reflection subgroup:
GNTL=(GNKy)NTL
Regarding the second assertion, things are quite tricky here, as follows:

(1) In the classical case the hard liberation property definitely holds, because any
classical group is by definition a hard liberation of itself.

(2) In the half-classical case the answer is again positive, and this can be proved by
using the technology developed by Bichon and Dubois-Violette in [46].

(3) In the free case the hard liberation property fails, due to some intermediate quan-

tum groups H][f;o], K][\?O], where “hard liberation stops”. U

Summarizing, we are led into the notion of Fourier liberation from chapter 9, as well
into the classification results for the easy quantum reflection groups from [83]. All this is
quite technical, and on top of this comes the question of axiomatizing and understanding
the structure of the quantum reflection groups, in the case where the base space F' is an
arbitrary finite quantum space. There are many interesting questions here.

12e. Exercises

This have been quite technical in this chapter, and so will be our exercises here. First
we have, in relation with the quantum spaces and graphs in general:

EXERCISE 12.32. Work out the theory of the discrete group dual actions
I~ X
with X = (F, D) being a finite quantum graph.

To be more precise here, one interesting question is that of understanding when the
quantum automorphism groups G (X) C S} can be group duals.

In relation now with the quantum reflection groups, we have:

EXERCISE 12.33. Make the connection between the easiness results from chapter 11,
regarding the quantum groups HY , and the representation theory results from here, re-
garding the quantum automorphism groups S}, of the Markov fibrations F — E.

This is something a bit tricky, in the sense that no new computations are needed, with
the work instead consisting of making lots of identifications, in order to view the main
results from chapter 11 as particular cases of those obtained here.

Finally, we have all the open questions mentioned in the above, in relation with the
axiomatization and study of the most general “quantum reflection groups”.
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And I wait praying to the Northern Star
I'm afraid it won’t lead you anywhere
He’s so cold raining on the world tonight
All the angels kneeling to the Northern Lights



CHAPTER 13

Orbits, orbitals

13a. Orbit theory

In this fourth part of this book, this chapter and the next 3 ones, we discuss a number
of more specialized methods for dealing with the quantum permutation groups G C SY;.
As before with the third part of the present book, there has been a lot of work here, and
our main aim in what follows will be that of surveying this material.

In the classical case, G C Sy, a useful tool for the study of GG are the orbits of the
action G ~ {1,..., N}, and more generally the higher orbitals of this action. In the
quantum case, G C S}, the theory goes back to Bichon’s paper [44]. We first have:

THEOREM 13.1. Given a closed subgroup G C Sj;, with standard coordinates denoted
w;; € C(G), the following defines an equivalence relation on {1,..., N},

that we call orbit decomposition associated to the corresponding action G ~ {1,..., N}.

In the classical case, G C Sy, this is the usual orbit equivalence.

Proor. We first check the fact that we have indeed an equivalence relation. The
reflexivity axiom ¢ ~ ¢ follows by using the counit, as follows:

e(uy) =90 = e(uy) =1
= u; #0
The symmetry axiom ¢ ~ 5 = j ~ i follows by using the antipode:
S(uij) =u; = [w; #0 = uy; # 0]
As for the transitivity axiom ¢ ~ j,j ~ k = i ~ k, this follows by using the
comultiplication. Consider indeed the following formula:

A(ug,) = Z Ujj @ Ujk
J

On the right we have a sum of projections, and we obtain from this:
u; #0,ujr #0 = uj; Q@ujp >0
—  A(uyg) >0
= U #0
299
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Finally, in the classical case, where G C Sy, the standard coordinates are:
Ui; = X <O' S G‘O’(]) = Z)

Thus u;; # 0 is equivalent to the existence of an element o € G such that o(j) = 1.
But this means that ¢, 7 must be in the same orbit under the action of G, as claimed. [J

Generally speaking, the theory from the classical case extends well to the quantum
group setting, and we have in particular the following result, also from [44]:

THEOREM 13.2. Given a closed subgroup G C Sy, with magic matriz denoted u =
(uij), consider the associated coaction map, on the space X = {1,...,N}:

¢:OX) > CX)RCG) , e Y e @u;

The following three subalgebras of C(X) are then equal
Fiz(u) = {5 c C’(X)‘ug - 5}
Fia(®) = {5 e O(X)‘cb(f) —£® 1}
F={cec|i~i = &i)=¢0)}
where ~ 1is the orbit equivalence relation constructed in Theorem 135.1.

PrOOF. The fact that we have Fiz(u) = Fix(®P) is standard, with this being valid
for any corepresentation v = (u;;). Regarding now the equality with F', we know from
Theorem 13.1 that the magic unitary u = (u;;) is block-diagonal, with respect to the orbit
decomposition there. But this shows that the algebra Fiz(u) = Fiz(®) decomposes as
well with respect to the orbit decomposition, and so in order to prove the result, we are
left with a study in the transitive case, where the result is clear. See [44]. O

We have as well a useful analytic result, as follows:

THEOREM 13.3. Given a closed subgroup G C S5, consider the following matriz:

P :/uij
G

Then P is the orthogonal projection onto the linear space
F={¢eCinj = &=¢}
and so the orbits and their sizes can be deduced from the knowledge of P.

Proor. This follows from the above results, and from the standard fact, coming from
the Peter-Weyl theory, that P is the orthogonal projection onto Fiz(u). U
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As a main application of the above orbit theory, let us go back to the group dual
results from chapter 2 above. We recall from there that we have:

PROPOSITION 13.4. Given a quotient group Zy, *. . .xZy, — I', we have an embedding
[ C Sy, with N = Ny + ...+ Ni, with magic matriz given by the formula

Fy, L F},
u =
Fr o F5,
where Fy = \/Lﬁ(wﬁ\],) with wy = >N are Fourier matrices, and where
1
gr
I, =
gt

with g1, ..., gr being the standard generators of T'.

Proor. This is something that we already know. To be more precise, given a quotient
group Zy, * ... * Zy, — I' as in the statement, we have an embedding as follows:

f C ZNl*---*ZNk

= Zn % ... %1y,

~ Ty k.. ATy,

C Sw *...%Sn,

C Spx...%S%
+

c Sf

Here all the embedings and identifications are standard, with the ~ sign standing
for a multi-Fourier transform, and when working out what happens at the level of the
correseponding magic unitaries, we are led to the formula in the statement. U

We can now improve the above result, in the following way:
THEOREM 13.5. Consider a quotient group as follows, with N = Ny + ...+ Nj:
Ly, * ... %Ly, =T
We have then T C S, and any group dual subgroup of Sy, appears in this way.

PROOF. In one sense, this is something that we already know, from Proposition 13.4.
Conversely now, assume that we have a group dual subgroup I' C S};. By Peter-Weyl,
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the corresponding magic unitary must be of the following form, with U € Uy:
g1
u=U U~
gn
Now if we denote by N = N; + ...+ Ni the orbit decomposition for T c S, coming
from Theorem 13.1, we conclude that u has a N = Ny + ...+ N block-diagonal pattern,

and so that U has as well this N = Ny 4+ ...+ N, block-diagonal pattern.
But this discussion reduces our problem to its k& = 1 particular case, with the statement

here being that the cyclic group Zy is the only transitive group dual Tc S%. The proof
of this latter fact being elementary, we obtain the result. See [44]. O

13b. Quasi-transitivity
Let us discuss now the notion of transitivity, and its generalizations. We first have:
DEFINITION 13.6. Associated to a quantum group G C Sy, producing the equivalence
relation on {1,..., N} given by i ~ j when u;; # 0, are as well:
(1) The partition m € P(N) having as blocks the equivalence classes under ~.

(2) The binary matriz e € My(0,1) given by €55 = du;; 0.

Observe that each of the objects ~, m, e determines the other two ones.
We will often assume, without mentioning it, that the orbits of G C S} come in
increasing order, in the sense that the corresponding partition is as follows:

7T:{1,...,K1},...,{K1—|—...+KM_1—|—1,...,K1+...—|—KM}
Indeed, at least for the questions that we are interested in here, we can always assume

that it is so, simply by conjugating everything by a suitable permutation o € Sy.

In terms of these objects, the notion of transitivity reformulates as follows:

DEFINITION 13.7. We call G C S5, transitive when u;; # 0 for any i,j. Equivalently:

(1) ~ must be trivial, i ~ j for any i, 7.
(2) ™ must be the 1-block partition.
(3) € must be the all-1 matriz.

Let us discuss now the quantum analogue of the fact that given a subgroup G C Sy,
with orbits of lenghts K, ..., Kj;, we have an inclusion as follows:

GCSKIX...XSKM

Given two quantum permutation groups G C Sj, H C S}, with magic corepresenta-
tions denoted u, v, we can consider the following algebra, and matrix:

A=C(G)«xC(H) , w=diag(u,v)
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The pair (A, w) satisfies Woronowicz’s axioms, and since w is magic, we therefore
obtain a quantum permutation group, denoted G H C Sy, ;. See [94].

With this notion in hand, we have the following result:

PROPOSITION 13.8. Given a quantum group G C S§;, with associated orbit decompo-
sition partition m € P(N), having blocks of length K, ..., Ky, we have an inclusion

GCSIJ;1>T< %S}M
where the product on the right is constructed with respect to the blocks of w. In the classical
case, G C Sy, we obtain in this way the usual inclusion G C Sk, X ... X Sk,

PROOF. Since the standard coordinates u;; € C(G) satisfy w;; = 0 for i ¢ j, the
algebra C'(G) appears as quotient of the following algebra:

C(S%) [ {uiy = 0.¥i £ j) = C(S§)* ...« C(SE,)
= C(S}gl ... %S}M)
Thus, we have an inclusion of quantum groups, as in the statement. Finally, observe
that the classical version of the quantum group S;gl ...k S};M is given by:

(S;El ;!; tte >/l;'Syl—;]\/j)dass = (SKl X.o.. X SK[w)ClaSS

= Sk, X ... xSk,
Thus in the classical case we obtain G C Sk, X ... x Sk,,, as claimed. g
Let us discuss now an extension of the notion of transitivity, from [32], as follows:

DEFINITION 13.9. A quantum permutation group G C S, is called quasi-transitive
when all its orbits have the same size. Equivalently:

(1) ~ has equivalence classes of same size.
(2) 7 has all the blocks of equal length.
(3) € is block-diagonal with blocks the flat matriz of size K.

As a first example, if G is transitive then it is quasi-transitive. In general now, if we
denote by K € N the common size of the blocks, and by M € N their multiplicity, then
we must have N = K M. We have the following result:

PROPOSITION 13.10. Assuming that G C S§; is quasi-transitive, we must have
GCSE*x... %Sk
—_——
M terms

where K € N is the common size of the orbits, and M € N is their number.

PRroor. This follows indeed from definitions. O
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Observe that in the classical case, we obtain in this way the usual embedding:

G CSgx...x8k
—_——
M terms

Let us discuss now the examples. Assume that we are in the following situation:
GCSEx. ... %Sk

If u,v are the fundamental corepresentations of C'(Sy;), C(S}), consider the quotient
map 7; : C(S}) — C(S}) constructed as follows:

u—)dmg(lK,...,lK, v ,1[(,...,1[()
i—th term

We can then set C(G;) = m;(C(G)), and we have the following result:
ProprosIiTION 13.11. If G; is transitive for all v, then G is quasi-transitive.

Proor. We know that we have embeddings as follows:
Gix...xGyu CGCSEx... xSk

—_——
M terms
It follows that the size of any orbit of GG is at least K, because it contains G X...x Gy,
and at most K, because it is contained in S % ... %S}, Thus, G is quasi-transitive. [

We call the quasi-transitive subgroups appearing as above “of product type”. There
are quasi-transitive groups which are not of product type, as for instance:

G=08yC Sy x8S,C Sy
o— (0,0)

Indeed, the quasi-transitivity is clear, say by letting GG act on the vertices of a square.
On the other hand, since we have G; = G5 = {1}, this group is not of product type.

In general, we can construct examples by using various product operations:

PROPOSITION 13.12. Given transitive subgroups Gy, ..., Gy C Si, the following con-
structions produce quasi-transitive subgroups as follows, of product type:

+ 3 5 Qt+
GCSp*...%Sg
~—_——

M terms

(1) The usual product: G = Gy x ... X Gyy.
(2) The dual free product: G = G1% ... ¥Gyy.

PRrROOF. All these assertions are clear from definitions, because in each case, the quan-
tum groups G; C S} constructed before are those in the statement. O

In the group dual case, we have the following result:
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PrOPOSITION 13.13. The group duals which are of product type
[ CSha.. %5t
—_———
M terms

are precisely those appearing from intermediate groups of the following type:

L ... xlyxg -1 = Zg X...xX 7Lk
— -

~
M terms M terms

PROOF. In one sense, this is clear. Conversely, consider a group dual Tc S, coming
from a quotient group Z:M — T'. The subgroups G; C T constructed above must be group
duals as well, G; = F,, for certain quotient groups I' — I';. Now if T is of product type,
F C S} must be transitive, and hence equal to ZK Thus we have I' — Z3!. U

In order to construct now some other classes of examples, we use the notion of nor-
mality for compact quantum groups. This notion, from [57], is introduced as follows:

DEFINITION 13.14. Given a quantum subgroup H C G, coming from a quotient map
7 : C(G) — C(H), the following are equivalent:

(1) The following algebra satisfies A(A) C A® A:
A= {a e C(G)‘(z’d@w)A(a) —a® 1}
(2) The following algebra satisfies A(B) C B ® B:
B={ac O(G)’(w ®id)A(a) =1®a}
(3) We have A = B, as subalgebras of C(G).
If these conditions are satisfied, we say that H C G is a normal subgroup.

Now with this notion in hand, we have, following [32]:

THEOREM 13.15. Assuming that G C Sy is transitive, and that H C G is normal,
H C SF; follows to be quasi-transitive.

PRrOOF. Consider the quotient map 7 : C(G) — C(H), given at the level of standard
coordinates by w;; — v;;. Consider two orbits Oy, O of H and set:

ZUZZE Wij yz’:E Uiz

jE€OL j€O02
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These two elements are orthogonal projections in C'(G) and they are nonzero, because
they are sums of nonzero projections by transitivity of G. We have:

(id@m)A(x;) = Z Z Ut @ Vg

k jeO1

= Z Zuik®vkj

k€O, j€O

= ;®1
Thus by normality of H we have the following formula:
(mr @id)A(z;) = 1 ®
On the other hand, assuming that we have i € Oy, we obtain:

(r@id)Alz) = Y > v ®

k jeO1

= Z%‘k@@ﬂﬁk

keO2

Multiplying this by v;, ® 1 with k& € Oy yields vy, ® zp = v ® x;, that is to say,
xrr = x;. In other words, x; only depends on the orbit of ¢. The same is of course true for
y;- By using this observation, we can compute the following element:

S 5D DU pramrAn
k€02 j€01 keO2
On the other hand, by applying the antipode, we have as well:
S(z) = Z Z Ujk = Z y; = |O1ly;
k€O jeOy JE€O1

We therefore obtain the following formula:

|04
S(zi) = =y,
( ) |02| J
Now since both z; and y; have norm one, we conclude that the two orbits have the
same size, and this finishes the proof. O

13c. Higher orbitals

Following Lupini, Mancinska, Roberson [75], let us discuss now the higher orbitals.
To start with, we have the following standard result, from the classical case:
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PROPOSITION 13.16. Given a subgroup G C Sy, consider its magic unitary:
Uij = X (0 € G’J(j) = z)
We have then the following equivalence,
Uirjy - Uiy 70 <= Jo € G, o(iy) =71,...,0(ik) = Jk
and these conditions produce an equivalence relation
(11, -y ig) ~ (J1y -+ Jk)
whose equivalence classes are the k-orbitals of G.

PROOF. The fact that we have indeed an equivalence as in the statement, which
produces an equivalence relation, is indeed clear from definitions. O

In the quantum case, the situation is more complicated. We follow the approach to
the orbits and orbitals developed in [75]. We first have:

THEOREM 13.17. Let G C S5, be a closed subgroup, with magic unitary u = (u;;), and
let k € N. The relation

(11, sik) ~ (J1,- - Jk) == Uiyjy - Uiy, 70
is then reflexive, symmetric, and transitive at k = 1,2.
PRrROOF. This is known from [75], the proof being as follows:
(1) The reflexivity simply follows by using the counit:
(i) = 1L,Vr = (Ui, - Uipiy,) =1
= Uy - - Uiy, 0
= (i1, ...y 0g) ~ (i1, .., 0k)
(2) The symmetry follows by applying the antipode, and then the involution:
(i1, yin) ~ (J1s -y Jk) = Uiy - Uipj, 0
= Ujp - - Ujyiy 70
= Uiy - Wiy, 7 0
= (J1,--- k) ~ (i1, ig)
(3) The transitivity is something more tricky. We need to prove that we have:
Uirjy - Uigge 7 05 Wity -+ Ujp, 70 = Uipgy - Uiy, 70

In order to do so, we use the following formula:

A(Uiygy - Uyg,) = g Uiysy -+ Wi s, @ Usyly - - - Usyly

81...8k
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At k =1 the result is clear, because on the right we have a sum of projections, which
is therefore strictly positive when one of these projections is nonzero.

At k = 2 now, the result follows from the following trick, from [75]:
(uiljl ® uj1l1)A(uilllui2l2)(ui2j2 ® ujzlz)

= E WUgy 51 Wiy s Wigsy Wigjo ® Ujyly Usyly Usaly Ugaly
51892
Wiy j1 Wiggo ® WUsyly Ujals
Indeed, we obtain from this that we have u;,;,u;,, # 0, as desired. 4

In general, the above equivalence relation is not transitive, the basic counterexample
at k = 3 being the Kac-Paljutkin quantum group. See [78].

In view of the results that we have so far, we can formulate:
DEFINITION 13.18. Given a closed subgroup G C SY;, consider the relation defined by:

(i17...,ik) ~ (]1,,]k) < Ujyjy - - - Wiy 7é 0
(1) The equivalence classes with respect to ~1 are called orbits of G.
(2) The equivalence classes with respect to ~o are called orbitals of G.

In the case where ~y with k > 3 happens to be transitive, and so is an equivalence relation,
we call its equivalence classes the algebraic k-orbitals of G.

We have as well an analytic approach to this higher orbital problematics, which is
particularly useful when ~y, is not transitive, that we will explain now.

Let us begin with the following standard result:

PROPOSITION 13.19. For a subgroup G C Sy, which fundamental corepresentation
denoted u = (u;;), the following numbers are equal:
(1) The number of k-orbitals.
(2) The dimension of space Fix(u®*).
(3) The number [, X", where x =, ui;.

Proor. This is well-known, the proof being as follows:

(1) = (2) Given o € G and vector £ = ) Qi€ @ ... ® e, we have:

i1k

1.0k
§ = Z QA (i)..o (i) Eolin) @ - -+ @ €q(iy)
i1k
Thus 0®*¢ = ¢ holds for any o € G precisely when « is constant on the k-orbitals of
G, and this gives the equality between the numbers in (1) and (2).
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(2) = (3) This follows from the Peter-Weyl theory, because x = >, u;; is the character
of the fundamental corepresentation wu. Il

In the quantum case now, G C Sy, by the general Peter-Weyl type results established

by Woronowicz in [98], we still have the following formula:
dim Fiz(u®*) = / x*
a

The problem is that of understanding the k-orbital interpretation of this number. We
first have the following result, basically coming from [44], [75]:

PROPOSITION 13.20. Given a closed subgroup G C S};, and a number k € N, consider
the following linear space:

F, = {5 c ((CN>®I~:

irvie = G Vit 38) ~ Gty 0) |
) We have Fy, C Fiz(u®*).

) Atk =1,2 we have Fy, = Fiz(u®*).

) In the classical case, we have F}, = Fix(u®*).

(1
(2
(3
(4) For G = S}, with N > 4 we have Fy # Fiz(u®?).

PROOF. The tensor power u®* being the corepresentation (Wiy oot gt it ooior. > tHE

corresponding fixed point space Fiz(u®) consists of the vectors ¢ satisfying:
Z uiljl s uzk]ké.jljk = g’tlzk ) Vilv s )ik
Ji---Jk
With this formula in hand, the proof goes as follows:
(1) Assuming £ € Fy, the above fixed point formula holds indeed, because:

E Wiyjy -+ Wiy, §jr gy = E Wigy - - - Wiy S,

Ji---Jk J1---Jk
= lezk

(2) This is something more tricky, coming from the following formulae:

Uik (Z Uz‘gfj - fz') = Uik(fk - fz‘)

Witk (Z Wiy jy WingyErja — §i1i2> Uiy = Wirky Winks (Shiks — &iriz)
Jij2
(3) This follows indeed from Proposition 13.19 above.
(4) This follows from the representation theory of Sy with N > 4, and from some
elementary computations, the dimensions of the two spaces involved being 4 < 5. To be
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more precise, let us start with the symmetric group Sy. It follows from definitions that
the k-orbitals are indexed by the partitions 7 € P(k), as follows:

C, = {(z’l,...,ik)‘ keri = w}
In particular at £ = 3 we have 5 such orbitals, corresponding to:
Mmool g, ]
Regarding now Sy, the 3-orbitals are exactly as for Sy, except for the fact that the ]
and ||| 3-orbitals get merged. Thus, we have 4 such orbitals, corresponding to:
O N | S
As for the number of analytic orbitals, this is the same as for Sy, namely 5. O

The above considerations suggest formulating the following definition:

DEFINITION 13.21. Given a closed subgroup G C Uy, the integer

dim Fiz(u®*) :/Xk
G

15 called number of analytic k-orbitals.

To be more precise, in the classical case the situation is of course well understood, and
this is the number of k-orbitals. The same goes for the general case, with k = 1,2, where
this is the number of k-orbitals. At k = 3 and higher, however, even in the case where
the algebraic 3-orbitals are well-defined, their number is not necessarily the above one.

In the particular case k = 3, we have as well the following result, which brings some
more support for the above definition:

PROPOSITION 13.22. For a closed subgroup G C Sy, and an integer k < 3, the
following conditions are equivalent:
(1) G is k-transitive, in the sense that Fiz(u®*) has dimension 1,2,5.
(2) The k-th moment of the main character is [, x* =1,2,5.
(3) We have the integration formula

(N — k)|
G Wiygy + o Uiggp = T

for distinct indices i, and distinct indices j,.
(4) An arbitrary polynomial integral

/ Wiygy - - - Uiy gy,
G

w when keri = ker j, and equals 0, otherwise.

equals
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PROOF. Most of these implications are known, the idea being as follows:

(1) <= (2) This follows from the Peter-Weyl type theory from [98], because the
k-th moment of the character counts the number of fixed points of u®*.

(2) <= (3) This follows from the Schur-Weyl duality results for Sy, Sy and from
P(k) = NC(k) at k < 3.

(3) <= (4) Once again this follows from P(k) = NC(k) at k < 3, and from a
standard integration result for Sy. U

As a conclusion to all these considerations, we have:

THEOREM 13.23. For a closed subgroup G C Sj;, and an integer k € N, the number
dim(Fiz(u®)) = [, X" of “analytic k-orbitals” has the following properties:
(1) In the classical case, this is the number of k-orbitals.
(2) In general, at k = 1,2, this is the number of k-orbitals.
(3) At k = 3, when this number is minimal, G is 3-transitive in the above sense.

PRroor. This follows indeed from the above considerations. O

13d. Finite subgroups

Let us discuss now an alternative take on these questions, in the finite quantum group
case. We start with the following standard definition:

DEFINITION 13.24. Associated to any finite quantum group F' is its dual finite quantum

group G = F, given by C(G) = C(F)*, with Hopf C*-algebra structure as follows:

(1) Multiplication (pp)a = (¢ @ ¥)A(a).

(2) Unit 1 =e.

(3) Involution ¢*(a) = ¢(S(a)*).

(4) Comultiplication (Ap)(a ® b) = ¢(ab).

(5) Counit £(¢) = p(1).

(6) Antipode (Sp)a = o(S(a)).

Our aim in what follows will be that of reformulating in terms of G = F the condition
F c Si. We will see later how this can potentially helps, by dropping the assumption
that F,G are finite, in connection with various quantum permutation group questions.

In order to get started, we have the following well-known fact:
PROPOSITION 13.25. Given F and G = F as in Definition 13.2/, the formula
m:C(G) = My(C)

v = [o(uy)li
defines a x-algebra representation precisely when u is a corepresentation.
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PROOF. In one sense, the fact that 7 is multiplicative follows from the fact that u is
comultiplicative, in the sense that A(w;;) = >, uix @ uy;, as follows:

T(py) = [(p¥)uiliy
= [(p®@¥)A(uy)lij

_ [Z go(uik)l/)(ukj)] 3
k

(i )i [ (wig)]ig
= w(o)m()

The fact that the morphism 7 constructed above is unital is clear, coming from the
fact that w is counital, in the sense that e(u;;) = 9,5, as follows:

m(e) = [e(uiy)li; =1
Regarding now the fact that 7 is involutive, observe first that we have:
0" (uig) = @(S(ui;)*) = p(uji)
Thus, we can prove that 7 is indeed involutive, as follows, using the fact that u is

coinvolutive, in the sense that S(u;;) = uj;, as follows:

(@) = o (uy)ly
= [e(uo)ls;
= [[@(uij)]ij] *
= m(p)
Finally, the proof in the other sense follows from exactly the same computations. [

In order to reach now to the condition F' C Sy, we must impose several conditions on
the matrix u = (u;;). Let us start with the bistochasticity condition. We have here:

PROPOSITION 13.26. Given F and G = F as in Proposition 13.25, the matriz v =
(ui;) is bistochastic, in the sense that all the row and column sums are 1, precisely when
the associated *-algebra representation 7 : C(G) — My (C) satisfies the conditions

T(p) = p(1)§
()€ = p(1)¢

where £ € CV s the all-one vector.

Proor. We want the following two conditions to be satisfied:

Zuij:]_ s Zuwzl
J i
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In what regards the condition ) juwij =1, observe that in terms of 7, we have:

Z T(p)iy = Z i (uij)

- o (2]

Thus, we want this quantity to be (1), for any ¢, and this leads to the condition
()6 = (1)§ in the statement. As for the second condition, namely ), u;; = 1, this
leads to the second condition in the statement, namely m(p)'¢ = p(1)E. O

Independently of the above result, we must impose the condition that the coordinates
u;; are self-adjoint. The result here is as follows:

PROPOSITION 13.27. Given F and G = F as in Proposition 13.25, we have u;; = uj;
precisely when the associated x-algebra representation m : C(G) — My(C) satisfies:

mS(p) = ()

PROOF. According to the antipode formula (S¢)a = ¢(S(a)) from Definition 13.24,
we have the following computation:

S(p) = [Sp(uif)li

= [‘P(“}kz)]m
With this formula in hand, we see that the condition u;; = u;; means that this latter
matrix should be [p(u;;)];; = (), as claimed. O

Let us put now what we have together. We are led to the following statement:

PROPOSITION 13.28. Given F and G = F as in Proposition 13.25, u = (uij) is
bistochastic, with self-adjoint entries, precisely when associated x-algebra representation

m:C(G) - My(C)

¢ = [p(uy)li
satisfying the following conditions,

with &€ € CN being the all-one vector.
Proor. This follows indeed from Proposition 13.26 and Proposition 13.27. U

In order to reach now to F' C Sy, we must impose one final condition, stating that
the entries of u = (u;;) are idempotents, u?j = u;;. This is something more technical:
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PROPOSITION 13.29. Given F and G = F as in Proposition 13.28, we have ufj = Ujj

precisely when the associated x-algebra representation w: C(G) — My(C) satisfies
m(m @ m)A(p) = m(p)m
as an equality of maps CN @ CN — CV, where m is the multiplication of CV.

ProoOF. This is something which is quite routine. We have indeed the following
computation, valid for any indices ¢, 7, by using the Sweedler notation:

m(r @ m)A(p)(e; ®e;) = m(r®m) (Z P11 ® 902> (€; ®e;)
- m (Z (1) ® W(@z)) (ei ®ej)
= m (Z m(p1)e; ® 7T(902)€j>

= m (Z %: pr(uri)er @ 902(%')61)
:}j%yme@wmq
__ZD;%WW%WM%

_ Z ;(% ® ©2) (Ui @ uk;)er

_ %}M@Ww®wﬂ%

= Z P (ukittg)ex
k

On the other hand, we have as well the following computation:
m(p)m(e; ®ej) = w(p)dijei
= [e(uig)],;0iei
8ij Y olur)er
k

Thus, the condition in the statement simply reads ugug; = 0;;ur;, for any ¢, 7, k. In
particular with ¢ = 5 we obtain, as desired, the idempotent condition:
Uiz = Uk

Conversely now, if this idempotent condition is satisfied, then u = (u;;) follows to be
a matrix of projections, which is bistochastic. Thus this matrix is magic, and so we have
UpiU; = 05Uy, for any 4, j, k, and this leads to the formula in the statement. O
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Let us put now what we have together. We are led to the following statement:

THEOREM 13.30. Given F and G = F as in Definition 13.24, we have F C S§;, with
associated magic matriv u = (u;;), precisely when we have a *-algebra representation
m:C(G) - My(C)
© = [p(uig)li
satisfying the following conditions,

()€ = p(1)§
()€ = p(1)¢
mS(p) = ()

m(r @ T)A(p) = m(p)m
where £ € CN is the all-one vector, and m is the multiplication of CV.

Proor. This follows indeed from Proposition 13.28 and Proposition 13.29, and from
the well-known fact, already mentioned in the proof of Proposition 13.29, that a magic
matrix u = (u;;) is the same as a matrix of projections which is bistochastic. g

As a firsyt illustration, in the classical case, we have:

PrRoPOSITION 13.31. Given a closed subgroup F' C Uy, the associated x-algebra rep-
resentation constructed in Theorem 13.30 is given by

m: C*(F) — My(C)
Z)\gg — Z)\gg

and we have F' C Sy precisely when the conditions in Theorem 13.30 are satisfied.

PROOF. Here the first assertion is clear from definitions. As for the second assertion,
this is something that we know from Theorem 13.30, but here is a direct check as well:

(1) For ¢ € C*(F) given by ¢ = >° Ajg we have m(p) = > A;g, and also o(1) =
>y A via C*(F) ~ C(F)* so the bistochasticity condition F* C Cy corresponds indeed
to the conditions m(¢)¢ = p(1)§ and 7(p)'¢ = ¢(1)€ from Theorem 13.30.

(2) Once again with p =) 4 A¢g; we have the following formulae:

TSp=m <Z )\gg—1> — Z Agg
W(@)t = (Z )‘gg> = Z)\ggt
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Thus F' C Oy, which is the same as saying that ¢~ = ¢¢, for any ¢ € F, is indeed
equivalent to the condition 75(p) = m(p)" from Theorem 13.30.

(3) As before with ¢ = 3" Ayg, assuming F' C Sy, we have the following formula:

m(r @ m)A(p)(ei ©e;) = m (Z Mg & 9> (e @ ¢;)

= m (Z Aglq(i) @ %(j))
g
8ij Y Ageq(i)

geG
On the other hand, we have as well the following formula:

T(p)m(e; ®e;) = <Z /\gg) m(e; @ e;)

= (Z /\gg> (0ije:)
g
8ij Y dgeqti
g

Thus the condition m(r®@7)A(¢) = m(¢)m in Theorem 13.30 must be indeed satisfied,
and the proof of the converse is similar, using the same computations. U

In the group dual case now, the result is a priori sometlling more subtle, related to
Bichon’s classification in [44] of the group dual subgroups I' C S};. However, and here
comes our point, in the present dual setting everything drastically simplifies, and the
complete result, with complete proof, is as follows:

THEOREM 13.32. Given a finite group G, and setting F' = @, the associated x-algebra
representation constructed in Theorem 13.30 appears as follows, for a certain family of
generators gi,...,g9n € H, and for a certain unitary U € U,

m: C(G) = My(C)
v — Udiag(qr,...,gn)U"

and we have F' C S3; precisely when the conditions in Theorem 13.30 are satisfied, which
in turn mean that the representation © appears as in [44].

PROOF. Here the first assertion is standard, coming from Woronowicz’s Peter-Weyl
type theory from [97]. As for the second assertion, this is a priori something which is

less obvious, related to Bichon’s classification of the group dual subgroups T c S in
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[44]. However, in our dual formulation this is something clear, because the algebra C'(G)
is commutative, so its matrix representation m must appear diagonally, spinned by a
unitary. Thus, we obtain the result, without a single computation needed. Il

There are many things that can be done with finite quantum permutation groups,
that can be sometimes simpler by using the present dual formalism.

In order to discuss this, let us start with:
PROPOSITION 13.33. Given G = F as in Theorem 18. 30, the x-algebra representation
m:C(G) = My(C)
gives rise to a family of x-algebra representations as follows, for any k € N,
7 C(G) — My(C)®F
ok — @k A R)
that we will still denote by m, when there is no confusion, which are given by

Wil...ik,jy..jk(go) = (p(uiljd s u’ikjk)

in standard multi-index notation for the elements of My (C)®*.
PROOF. Let us begin with the following computation, in Sweedler notation:
<7 AP (0)(e;, ® ... ®e€j ) e, R ... Qe >

= <7r®k <Z¢1 ®...®gpk> (e, ®...®e€j) €, ®...®eik>
= Z < (m(p1) @ ... @07 (pr))(ej, ®...®ej) €, Q...Re, >
= Z <7(p1)ej, ® ... m(pr)ej, e Q... Qe >
= Z < 7(p1)ej, e > ... < w(pr)ej,, e, >
= Y onluig) - pnluig,)
= Z(§01®--~®90k)(ui1j1®--~®Uz‘kjk)
= A(k)(@(uiljl e Uigy)

- Sp(uimi . ulk]k)

Thus, we have the following formula, valid at any k& € N:
Equivalently, the representation 7 = 7®*A®) is given by the following formula:

7Ti1~~ik7j1~~jk<90) - gp(uiljl s uikjk)

Thus, we are led to the conclusion in the statement. U

U1k, J1 - Jk
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Following [23], let us discuss now integration results. We have:

THEOREM 13.34. The polynomial integrals over G are given by

{/ Wiy gy - - ulk]k:| = 7T®kA(k)(f)
110k, J1 -0k

and the moments of the main character x =, u;; are given by

[ = et
where [ € C(G) is the Haar integration functional.

PRrOOF. The first formula is clear from Proposition 13.33. Regarding now the mo-
ments of the main character, observe first that we have the following general formula:

i1k

= (Z Uiiiq - - uzklk>

010k
= o(x")

In particular, with ¢ = [, the Haar integration, we obtain:

Tr(r*A®)([)) = / X

Thus, we are led to the conclusions in the statement. U

As a second topic, which is of key interest, let us discuss the orbit and orbital theory,
following [44], [75]. Regarding the orbits, following [44] we have:

THEOREM 13.35. The orbits of F C Sy can be defined dually by i ~ j when
mij(p) >0
for a certain positive linear form ¢ > 0.

PrOOF. We know from [44] that ¢ ~ j when u;; # 0 is an equivalence relation on
{1,...,N}. Here is a proof of this fact, using our present, dual formalism:

(1) The reflexivity of ~ as defined in the statement is clear, coming from:
(2) The symmetry is clear too, coming from wS(p) = 7(p)". Alternatively:

(") = 7m(p)" = m;(") = m(p)
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(3) Regarding now the transitivity, things are a bit more tricky. We have:
ij () = Zﬂz‘k(@%(@/’)
k

Now since ¢ > 0 implies ¢(u;;) > 0 for any ¢, j, we obtain the result. O
Regarding the orbitals, following [75], we first have:
PROPOSITION 13.36. The relation on {1,..., N}* given by i ~ j when

7Ti1---ik7j1---jk(90) >0
for a certain positive linear form ¢ > 0, is reflexive and symmetric.

PRrROOF. The reflexivity is clear exactly as at kK = 1, coming from:
(1) =1 = M ipir.in 7 0

The symmetry is clear too, coming from 7S(p) = 7(p)". Alternatively:

*

m(0") =7(0)" = Tiripgr g (P7) = Tiriggr..in (©)
Thus, we are led to the conclusion in the statement. U

Regarding the transitivity of the relation constructed above, things here are quite
tricky, and we do not have something simple, using our dual formalism. Nevertheless,
following [75], [78], let us formulate an informal statement, as follows:

THEOREM 13.37. The relation constructed in Proposition 13.36 is transitive at k = 2,
not necessarily transitive at k > 3, and these results can be both recovered in dual form.

PROOF. As mentioned, all this is quite complicated, the situation being as follows:

(1) It is known from [75] that we have transitivity at k& = 2, the proof being something
tricky, but fairly short, as follows:

(uiljl ® uj1l1)A(uill1ui2lz)(ui2j2 ® uj2l2)

= E Wiy jy Wiy sy Wigsy Winjy @ Ujyly Usy by Usyly Uialy
182
Uiy jy Wigjo ® Usyly Ujals
Indeed, we obtain from this that we have u;,;, u;,, # 0, as desired.

(2) The challenge now is to reformulate the above proof from [75] in the dual setting,
somehow by applying linear forms on both sides. This is something non-trivial, and a
quite technical proof, using a conditioning method, and totalling about 1 page or so, can
be found in [78]. Tt is not clear on how to simplify that proof.

(3) As good news however, the fact that we don’t necessarily have transitivity at k& = 3,
which was something conjectured in [75] and in follow-up papers, and not accessible with
the methods there, was recently done in [78], using dual methods. U
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13e. Exercises

We have seen in this chapter how to deal with the arbitrary subgroups G C S, by
using orbitals, group duals, and related techniques. As a first exercise, we have:

EXERCISE 13.38. Formulate and study a notion of transitivity for the subgroups
G C Sy
by requiring that the corresponding action G ~ {1,..., N} has only 1 orbit.

There are many things that can be done here, in analogy with the theory of the
transitive subgroups G C Sy, and we will actually be back to this later.

Along the same lines, but at a more advanced level, we have:

EXERCISE 13.39. Formulate and study a notion of k-transitivity for the subgroups
G C Sy
by requiring that the action G ~{1,..., N} has a minimal number of k-orbitals.

As before, there are many things that can be done here, in analogy with the theory
of the higher transitive subgroups G C Sy, but in the quantum case some of the things
will work only at k =1, or k£ < 2, or £ < 3. We will be back to all this.

Finally, in relation with the group dual approach, we have:
EXERCISE 13.40. Extend the theory of the duals G = F of the finite subgroups
Fc Sy
developed here, notably by solving the orbital problem formulated above.

As with the previous exercises, this is something quite tricky, partly going into unex-
plored territory, and the more the results, the better.



CHAPTER 14
Transitive groups

14a. Transitivity

We have seen in the previous chapter that a theory of orbits and orbitals can be
developed for the closed subgroups G C Sy, and that all this is particularly interesting
in connection with tori. In this chapter we restrict the attention to the transitive case.

Let us first review the basic theory, that we will need in what follows. The notion of
transitivity, which goes back to Bichon’s paper [44], can be introduced as follows:

DEFINITION 14.1. Let G C S¥ be a closed subgroup, with magic unitary u = (u;;),
and consider the equivalence relation on {1,..., N} given by i~ j <= w;; # 0.

(1) The equivalence classes under ~ are called orbits of G.
(2) G is called transitive when the action has a single orbit.

In other words, we call a subgroup G C Sy transitive when u;; # 0, for any i, j.

This transitivity notion is standard, coming in a straightforward way from the orbit
theory. In the classical case, we obtain of course the usual notion of transitivity.

We will need as well the following result, once again coming from [44]:

THEOREM 14.2. For a closed subgroup G C S5, the following are equivalent:

(1) G is transitive.
(2) Fiz(u) = CE, where & is the all-one vector.

(3) fyus = %, Jor any i, .
Proor. This is well-known in the classical case. In general, the proof is as follows:

(1) <= (2) We use the standard fact that the fixed point space of a corepresentation
coincides with the fixed point space of the associated coaction:

Fizx(u) = Fix(®P)

As explained in chapter 13 above, the fixed point space of the magic corepresentation
u = (u;;) has the following interpretation, in terms of orbits:

Fiz(u) = {g €CX)li~j = &(i) = S(j)}

In particular, the transitivity condition corresponds to Fiz(u) = C&, as stated.

321
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(2) <= (3) This is clear from the general properties of the Haar integration, and
more precisely from the fact that ([, u;;);; is the projection onto Fiz(u). O

Here is now a list of basic examples of transitive quantum groups, that we already
know, coming from the various constructions from the previous chapters:

THEOREM 14.3. The following are transitive subgroups G C Sy :

(1) The quantum permutation group Sy itself.

(2) The transitive subgroups G C Sy. These are the classical examples.

(3) The subgroups GcC Sia|, with G abelian. These are the group dual examples.

(4) The quantum groups F C Sy which are finite, |F| < oo, and transitive.

(5) The quantum automorphism groups of transitive graphs G*(X), with | X| = N.
(6) In particular, the hyperoctahedral quantum group H, C S}, with N = 2n.

(7) We have as well the twisted orthogonal group O,* C S}, with N = 2".

In addition, the class of transitive quantum permutation groups {G C S3|N € N} is stable
under direct products X, wreath products ! and free wreath products .

ProOOF. All these assertions are well-known. In what follows we briefly describe the
idea of each proof, and indicate a reference. We will be back to all these examples,
gradually, in the context of other questions, to be formulated later on.

(1) This comes from the fact that we have an inclusion Sy C S¥. Indeed, since Sy is
transitive, so must be S5, because its coordinates u;; map to those of Sy. See [32].

(2) This is again trivial. Indeed, for a classical group G C Sy, the variables u;; =
X(o € Sy|o(j) = 1) are all nonzero precisely when G is transitive. See [32].

(3) This follows from the general results of Bichon in [44], who classified there all the
group dual subgroups I' C S};. For a discussion here, we refer to [32].

(4) Here we use the convention |F| = dimc C'(F'), and the statement itself is empty,
and is there just for reminding us that these examples are to be investigated.

(5) This is trivial, because X being transitive means that G(X) ~ X is transitive,
and by definition of G*(X), we have G(X) C GT(X). See [7].

(6) This comes from a result from [18], stating that we have H = G*(1,,), where I,
is the graph formed by n segments, having N = 2n vertices.

(7) Once again this comes from a result from [18], stating that we have O, ! = GT(K,,),
where K, is the n-dimensional hypercube, having N = 2" vertices.

Finally, the stability assertion is clear from the definition of the various products
involved, from [43], [94]. This is well-known, and we will be back later on to this. O
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Summarizing, we have a substantial list of examples. We will see that there are several
other interesting examples, coming from the matrix models.

Let us study now the arbitrary transitive subgroups G C Sj;. As a first result here,
in the classical case the situation is very simple, as follows:
PROPOSITION 14.4. Let G be a finite group.
(1) Assuming that we have a transitive action G ~ {1,..., N}, by setting
H = {O’ € G‘O’(l) = 1}

we have an identification as follows:

G/H = {1N}
(2) Conversely, any subgroup H C G produces an action as follows

G~ G/H
g(hH) = (gh)H
and so a morphism as follows, with N =[G : H|:
G — Sy
(3) This latter morphism is injective when the following condition is satisfied:
hgh™' € HVYhe G = g=1

Proor. All the above assertions are well-known and standard, coming from the defi-
nition of the quotient space G/H, as being the space of cosets gH. O

In the quantum case now, it is quite unclear how to generalize the above structure
result, to the transitive subgroups G C S};.. To be more precise, the various examples
from [12], involving for instance group duals, show that we cannot expect to have an
elementary generalization of the above G/H = {1,..., N} isomorphism.

However, we can at least try to extend the obvious fact that G = N|H| must be a
multiple of N. And here, we have the following result, from [22]:

THEOREM 14.5. If G C S}, is finite and transitive, then N divides |G|. Moreover:

(1) The case |G| = N comes from the classical finite groups, of order N, acting on
themselves.

(2) The case |G| = 2N is possible, in the non-classical setting, an example here being
the Kac-Paljutkin quantum group, at N = 4.
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PROOF. In order to prove the first assertion, we use the coaction of C'(G) on the
algebra CY = C(1,..., N). In terms of the standard coordinates w;;, the formula is:

d:CYN - CV e @)

61‘—>Z€j®u]‘i
J

For a € {1,..., N} consider the evaluation map ev, : C¥ — C at a. By composing ®
with ev, ® id we obtain a C'(G)-comodule map, as follows:
I,: CYN = C(G)
€; = Uiq

Our transitivity assumption on G ensures that this map I, is injective. In other words,
we have realized CV as a coideal subalgebra of C(G).

We recall now that a finite dimensional Hopf algebra is free as a module over a coideal
subalgebra A provided that the latter is Frobenius, in the sense that there exists a non-
degenerate bilinear form b: A ® A — C satisfying:

b(zy, 2) = b(z,yz)

We can apply this result to the coideal subalgebra I,(CY) C C(G), with the remark
that C" is indeed Frobenius, with bilinear form as follows:

W) = v S0l

Thus C(G) is a free module over the N-dimensional algebra CV, and this gives the
result. Regarding now the remaining assertions, the proof here goes as follows:

(1) Since C(G) =< u;; > is of dimension N, and its commutative subalgebra < u;; >
is of dimension N already, C'(G) must be commutative. Thus G must be classical, and
by transitivity, the inclusion G C Sy must come from the action of G on itself.

(2) The closed subgroups G C S are fully classified, and among them we have indeed
the Kac-Paljutkin quantum group, which satisfies |G| = 8, and is transitive. U

Summarizing, we have many interesting examples of transitive subgroups G C S},
but at the level of the general theory, many things that we know from the classical case,
regarding the structure of the usual transitive subgroups G C Sy, do not have obvious
quantum extensions. We will however in what follows that there are some other techniques
that can be developed, as for instance certain matrix modelling techniques, in order to
deal with the study of the transitive subgroups G C Sy, in the non-classical case.
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14b. Higher transitivity
Let us discuss now the notion of double transitivity. We have here:

DEFINITION 14.6. Let G C S¥ be a closed subgroup, with magic unitary u = (u;;),
and consider the equivalence relation on {1,... N}* given by:
(i, k) ~ (4,1) <= wjun #0
(1) The equivalence classes under ~ are called orbitals of G.
(2) G is called doubly transitive when the action has two orbitals.
In other words, we call G C S doubly transitive when u;juy # 0, for any i # k,j # 1.
To be more precise, it is clear from definitions that the diagonal D C {1,..., N}* is

an orbital, and that its complement D¢ must be a union of orbitals. With this remark in
hand, the meaning of (2) is that the orbitals must be D, D¢.

Among the results established in [75] is the fact that, with suitable definitions, the
space Fix(u®?) consists of the functions which are constant on the orbitals. We have:

THEOREM 14.7. For a doubly transitive subgroup G C Sy, we have:
% ifi==kj=1
/uijukl: 0 iti=kj#lori#k j=1
¢ v M iF kAl
Moreover, this formula characterizes the double transitivity.

PROOF. We use the standard fact, from [98], that the integrals in the statement form
the projection onto Fiz(u®?). Now if we assume that G is doubly transitive, Fiz(u®?)
has dimension 2, and therefore coincides with Fix(u®?) for the usual symmetric group
Sy. Thus the integrals in the statement coincide with those for the symmetric group Sy,
which are given by the above formula. Finally, the converse is clear as well. U

Let us discuss the notion of k-transitivity, at £ € N. We begin our study by recalling
a few standard facts regarding the symmetric group Sy, and its subgroups G' C Sy, from
a representation theory/probabilistic viewpoint. We first have the following result:

PROPOSITION 14.8. Consider the symmetric group Sy, together with its standard ma-
triz coordinates u;; = x(0 € Sylo(j) =1). We have the formula

N—|keril)l . , ,
/ Uiyj (TP— % if ker@:ker‘]
sy T 0 otherwise

where ker i denotes as usual the partition of {1,. .., k} whose blocks collect the equal indices
of i, and where |.| denotes the number of blocks.
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PROOF. According to the definition of u,;, the integrals in the statement are given by:

/s uiljl...uikjk:]\ln#{aeSN‘ (j )—2'1,---,0(%):%}

Since the existence of ¢ € Sy as above requires i,,, = 7,, <= Jj;, = Jn, this integral
vanishes when keri # ker j. As for the case keri = ker j, if we denote by b € {1,...,k}
the number of blocks of this partition, we have N — b points to be sent bijectively to N —b
points, and so (N — b)! solutions, and the integral is (N b) , as claimed. U

We recall now that each action G ~ {1,..., N} produces an action G ~ {1,..., N}*
for any k € N, and by restriction, G acts on the following set:

j= {(il,...,ik) {1, NYlin, .. distinct}
We have the following well-known result:

THEOREM 14.9. Given a subgroup G C Sy, with standard matrixz coordinates denoted
ui; = x(olo(j) = 1), and a number k < N, the following are equivalent:

G is k-transitive, in the sense that G ~ I% is transitive.
Fiz(u®*) is minimal, i.e. is the same as for G = Sy.

1)
2)
3) dim Fix(u®*) = By, where By, is the k-th Bell number.
)
)

N—k
4) fg iy, - i, = S, for any i, j € T,

) quiljl'”uikjk 7£ 0, fO’I“ any i,j € Ik
) Uigjy - - Uiy, # 0, for any i, j € Iy

(
(
(
(
(
(6
Proor. All this is well-known, the idea being as follows:

(1) = (2) This follows from the fact that u®* comes by summing certain actions
G ~ Iy with » < k, and the transitivity at & implies the transitivity at any r < k.

(2) = (3) This comes from the well-known fact that for the symmetric group Sy,
the multiplicity #(1 € u®*) equals the k-th Bell number By, for any k < N.

(3) = (4) We can use the fact that P; ., j,.j, = [q Ui - - - Ui,j, is the orthogonal
projection onto Fiz(u®*). Thus we can assume G = Sy, and here we have:

. . . . N —k)!
/ Uzljluzk]k :/ X(O-‘O'(jl) :Zla"'7o-(jk> :Zk> = %
SN SN |

(4) = (5) This is trivial.
(5) = (6) This is trivial too.

(6) == (1) This is clear, because if w;, j, ... u;,;, = x(c|lo(j1) =i1,...,0(jk) = ix) is
nonzero, we can find an element o € G such that o(js) = s, Vs. O
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Summarizing, we have now a complete picture of the notion of k-transitivity for the
usual permutation groups G C Sy, from a probabilistic viewpoint.

Let us discuss now the quantum permutation group analogue of the above results.
Each magic unitary matrix u = (u;;) produces a corepresentation u®* = (u;,j, ... u;j,. ),
and so a coaction map, constructed as follows:

d: (CN)®F — (CM)** 2 O(G)

(I)(eh...ik) = E €j1..5k ® Ugyig « -« Ugpiy,

J1---Jk
The problem is that span(I¥) is no longer invariant, due to the fact that the variables
u;; no longer commute. We can only say that span(.J¥) is invariant, where:

J]’f[:{(z’l,...,z’k)e{l,...,N}kil#iQ#...#ik}

Indeed, by using the fact, coming from the magic condition on u, that a # ¢,b = d
implies uq g = 0, we obtain that for ¢ € J ]’f, we have, as desired:

(I)(eh---ik) = E €1 @ Wjpiy -+ - gy
J1#jeF - FIk

We can study the transitivity properties of this coaction, as follows:

PROPOSITION 14.10. Given a closed subgroup G C S}, consider the associated coac-
tion map, constructed as above:

® : span(J%) — span(Jy) @ C(G)

The following conditions are then equivalent:

(1) The following fixed point space is 1-dimensional:

Fia(®) = {¢e(e) = ¢ @1}
(2) We have Fiz(®) = Cn, with n being the following vector:
n= Z €i1.. iy
ieJk
(3) We have the following formula, valid for any multi-indez j:
Z / WUiyiq - - - Ugpiy, = 1
icJk ¢

If these conditions are satisfied, we say that the coaction ® is transitive.
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PROOF. The equivalences are elementary, the idea being as follows:

(1) <= (2). Here we just have to check that we have indeed ®(n) = n ® 1, with n
being as in the statement. By definition of ®, we have:

@(77) = E : § : €1y © Wiy - - - Ujpiy
i Fia . Fig 1Fj2F - F ik
Let us compute the middle sum S. When summing over indices i # 75 we obtain:
(1 - uj2i1>uj2i2 oo Wiy, = WUgoidg - - - Wiy,
Then when summing over indices iy # i3 we obtain:
(1 - uj3i2>uj37ls s Uiy = Ugsig - - - Wy,

And so on, up to obtaining at the end:
i

Thus we have S = 1, and so the condition ®(n) =n ® 1 is satisfied indeed.

(1) <= (3) This comes from the following general formula, where y is the character
of the corepresentation associated to ®:

dim Fiz(P) = / X
a

Indeed, in the standard basis {e;|i € J%} we have:

X = Z ui1i1 Ce uikik

ieJ¥
But this gives the result, by integrating. O
We have the following partial analogue of Theorem 14.9 above:
PROPOSITION 14.11. Given a closed subgroup G C S§;, with N > 4, with matriz
coordinates denoted u;;, and a number k € N, the following conditions are equivalent:

(1) The action G ~ span(J%) is transitive.

(2) Fiz(u®*) is minimal, i.e. is the same as for G = S5;.

(3) dim Fix(u®*) = Cy, where Cy is the k-th Catalan number.
(4) fG Uiy jy - - - Wiy, 18 the same as for G = ST, for anyi,j € J&.

Proor. This follows as in the first part of the proof of Theorem 14.9, by performing
changes where needed, and by using the general theory from [23], as an input:

(1) = (2) This follows from the fact that u®* comes by summing certain actions
G ~ Jy with » < k, and the transitivity at &k implies the transitivity at any r < k.
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(2) = (3) This comes from the well-known fact that for the quantum group Sy
with N > 4, the multiplicity #(1 € u®*) equals the k-th Catalan number Cj.

(3) = (4) This comes from the well-known fact that P i ji..j0 = [ Wirj, - - - irj
is the orthogonal projection onto Fiz(u®*), coming from [97].

(4) = (1) This follows by taking i = j and then summing over this index, by using
the transitivity criterion for G ~ span(J%) from Proposition 14.10 (3). O

Now let us compare Theorem 14.9 and Proposition 14.11. We conclude that the notion
of k-transitivity for the subgroups G C Sy extends to the quantum group case, G C Sy,
depending on the value of k, as follows:

(1) At k = 1,2 everything extends well, due to the results in [43], [75].
(2) At k = 3 we have a good phenomenon, P; = NCj, and a bad one, I3 # J&.

(3) At k > 4 we have two bad phenomena, namely P, # NCj, and I% # J%.

Summarizing, our study suggests that things basically stop at k£ = 3. So, as a conclu-
sion, let us record the definition and main properties of the 3-transitivity:

THEOREM 14.12. A closed subgroup G C S5 is 3-transitive, in the sense that we have
dim(Fiz(u®?)) = 5, if and only if, for any i, k,p distinct and any j,1,q distinct:

1
Ui iUkl Upg =
/G / P N(N —1)(N - 2)
In addition, in the classical case, we recover in this way the usual notion of 3-transitivity.

ProOOF. We know from Proposition 14.11 that the 3-transitivity condition is equiva-
lent to the fact that the integrals of type fG UijUkiUpg With 7 # k # p and j # | # ¢ have
the same values as those for S3;. But these values are computed by Proposition 14.8 and
the Weingarten formula, and the 3-transitivity condition follows to be equivalent to:

/ Ui Uk Upg = —N(J\lf—l) if ker(ikp) = ker(jlq) =
G ) . .
0 if {ker(ikp),ker(jlq)} = {|||,M}

Now observe that the last formula is automatic, by using the traciality of the integral
and the magic assumption on u, and that the middle formula follows from the first one,
by summing over 7, j. Thus we have are left with the first formula, as stated.

Finally, the last assertion follows from Theorem 14.9, applied at k = 3. O
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14c. Classification results

Let us discuss now classification results at small values of N.

In order to discuss the case N = 4, we will need a very precise result, stating that S;
is a twist of SO3. Let us start with the following definition, from [12]:

DEFINITION 14.13. C(SO3 ") is the universal C*-algebra generated by the entries of a
3 x 3 orthogonal matriz a = (a;;), with the following relations:
(1) Skew-commutation: a;jay = Laga;;, with sign + if i # k,j # 1, and — otherwise.
(2) Twisted determinant condition: ¥,cs,015(1)020(2)030(3) = 1.

Normally, our first task would be to prove that C(SO;"') is a Woronowicz algebra.
This is of course possible, by doing some computations, but we will not need to do these
computations, because the result follows from the following result, from [12]:

THEOREM 14.14. We have an isomorphism of compact quantum groups
S;=850;"
given by the Fourier transform over the Klein group K = Zy X Zs.

ProoOF. Consider indeed the following matrix, corresponding to the standard vector
space action of SO; ! on C*:
10
+_
=0 1)

We apply to this matrix the Fourier transform over the Klein group K = Zy X Zs:

11 1 1 1 0 0 O 11 1 1
1 1 -1 -1 1 0 ay; a1 a13 1 -1 -1 1
4 1 -1 1 -1 0 21 A929 A23 1 -1 1 -1
1 1 -1 -1 0 a31 agg ass 1 1 -1 -1
It is routine to check that this matrix is magic, and vice versa, i.e. that the Fourier

transform over K converts the relations in Definition 14.13 into the magic relations. Thus,
we obtain the identification from the statement. U

u =

We have the following classification result, also from [12]:

THEOREM 14.15. The closed subgroups of S; = SOz are as follows:
1) Infinite quantum groups: Sy, Oy *, 1300.

2) Finite groups: Sy, and its subgroups.

3) Finite group twists: S;*', A5'.

4) Series of twists: Dyt (n > 3), DCy,' (n > 2).

(5) A group dual series: l/jn, with n > 3.

(
(
(
(

Moreover, these quantum groups are subject to an ADFE classification result.
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PROOF. The idea here is that the classification result can be obtained by taking some
inspiration from the McKay classification of the subgroups of SOs. See [12].

To be more precise, with the convention that prime denotes twists, all unique in the
cases below, and double prime denotes pseudo-twists, the ADE classification is:

(A) Zy, Zy, Zs, K, Dy, (n=2,3,...,00), S

(D) Z4, Dl2n? Dgn (TL = 2,3, . .), H2+, Dl, S3.

(E) A47 547 4/17 Ai’)

There are many comments to be made here, regarding our various conventions, and

the construction of some of the above quantum groups, as follows:

(1) The 2-element group Zs = {1,7} can act in 2 ways on 4 points: either with 7
acting without fixed point, and we use here the notation Z,, or with 7 acting with 2 fixed
points, and we use here the notation D;.

(2) Similarly, the Klein group K = Zs X Zs can act in 2 ways on 4 points: either with
2 non-trivial elements having 2 fixed points each, and we use here the notation K, or with
all non-trivial elements having no fixed points, and we use here the notation Dy = Ds.

(3) We have D} = Dy, and D] = Gy, the Kac-Paljutkin quantum group. Besides
being a pseudo-twist of Dy, the quantum group D} with n > 2 is known to be as well
a pseudo-twist of the dicyclic, or binary cyclic group DCs,,.

(4) As explained below, the definition of D}, , DJ can be extended at n = 1, 00, and

2n»
we formally have D) = D) = K, and D’ = D” = H,, but these conventions are not

very useful. Also, as explained in [12], the groups Dy, Ss are a bit special at (D).

We refer to [12] for the construction and various properties of the various twists and

pseudo-twists in the above ADE list. In what follows we will just explain the construction
of D!

oy Doy which is of particular interest for us. The idea here is as follows:
(1) Consider the subgroup H,  C O given by the “cubic” relations, namely:
VijVik = VjiUk = 0 Vj#k
The following are then projections, producing a 4 x 4 magic matrix of “sudoku” type:
B vfj =+ v
ij B
Thus, we obtain an embedding as follows:
Hf c S

It is known that we have Hy = Zy 1, Sy, that we have Hy = G*(] |) = G™(0), and
also that we have Hy = O},
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(2) Given k € {1,2,...,00} we define a subgroup G= C H, by imposing the following
relations, with everywhere alternating words, of length n:
V11U22U11 ... = U22U11V22 . . .
V12U21V12 ... = j:l)gﬂ)lgvgl .
This subgroup is then as follows:
(1) At n = 1 we obtain the Klein group, Gf = K.

(2) At n > 2 we obtain the unique twist G;} = D), and a pseudo-twist G,, = D} of
the dihedral group Dy, with the remark that at n = 2 we obtain respectively D) = D,
and D) = G, and also with the remark that D} is as well a pseudo-twist of the dicyclic,
or binary cyclic group DCYy,.

(3) At n = oo the above relations dissapear by definition, and we have G = HS. O

We refer to [12] for more on the above result.

We will be back to these subgroups later, with a study of them by using matrix
modelling techniques.

By restricting now the attention to the transitive case, we obtain:

THEOREM 14.16. The small order transitive quantum groups are as follows:
(1) At N =1,2,3 we have {1}, Zs, Z3, Ss.
(2) At N =4 we have Zy x Ly, Ly, Dy, Ay, Sy, O34, S and S;*, A

Proor. This follows from the above result, the idea being as follows:
(1) This follows from the fact that we have Sy = Sy at N < 3, from [95].

(2) This follows from the ADE classification of the subgroups G C S, from [11], with
all the twists appearing in the statement being standard twists. See [11]. U

As an interesting consequence of the above result, we have:

PROPOSITION 14.17. The inclusion of compact quantum groups
S, C Sf
1s maximal, in the sense that there is no quantum group in between.
ProOF. This follows indeed from the above classification result. See [12]. O

It is conjectured in fact that Sy C Sj; should be maximal, for any N € N. We will
be back to this.

Let us study now the quantum subgroups G C S5

We first have the following elementary observations, regarding such subgroups:
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PROPOSITION 14.18. We have the following examples of subgroups G C S5 :
(1) The classical subgroups, G C Ss. There are 16 such subgroups, having order:
1,2,3,4,4,5,6,6,8,10,12,12, 20, 24, 60, 120

(2) The group duals, G = Tc S, These appear, via a Fourier transform construc-
tion, from the various quotients I' of the following groups:

Z4, Zg * ZQ, ZQ * Zg

In addition, we have as well all the ADE quantum groups G C S C S5 from Theorem
14.15 above, embedded via the 5 standard embeddings Sy C S= .

PROOF. These results are well-known, the proof being as follows:

(1) This is a classical result, with the groups which appear being respectively:
— The cyclic groups {1}, Zo, Z3, Z4.

— The Klein group K = Zy X Zo.

— The groups Zs, Zg, S3, D4, D5, Ay4.

— A copy of S3 X Zs.

— The general affine group GA;(5) = Zs X Zy.

— And finally Sy, As, Ss.

(2) This follows from Bichon’s result in [44], stating that the group dual subgroups
G =T C S}, appear from the various quotients Zy, *. . .*Zy, — [, with Ny+...+N, = N.
At N =5 the partitions are 5 =1+ 4,1+ 2+ 2,2 4 3, and this gives the result. U

Summarizing, the classification of the subgroups G C S5 is a particularly difficult
task, the situation here being definitely much more complicated than at N = 4.

Consider now an intermediate compact quantum group, as follows:
Sy C GCSE

Then G must be transitive. Thus, we can restrict the attention to such quantum
groups. Regarding such quantum groups, we first have the following elementary result:

PROPOSITION 14.19. We have the following examples of transitive subgroups G C Si :

(1) The classical transitive subgroups G C Ss. There are only 5 such subgroups,
namely Zs, D5, GA1(5), As, Ss.

(2) The transitive group duals, G = T c S There is only one example here, namely
the dual of I' = Zs, which is Zs, already appearing above.

In addition, all the ADE quantum groups G C S} C S& are not transitive.
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PRrROOF. This follows indeed by examining the lists in Proposition 14.18:

(1) The result here is well-known, and elementary. Observe that GA;(5) = Zs X Zy,
which is by definition the general affine group of F5, is indeed transitive.

(2) This follows from the results in [44], because with Zy, * ... % Zy, — I' as in the
proof of Proposition 14.18 (2), the orbit decomposition is precisely N = Ny + ... + Ny.

Finally, the last assertion is clear, because the embedding S} C S& is obtained pre-
cisely by fixing a point. Thus S;” and its subgroups are not transitive, as claimed. U

In order to prove the uniqueness result, we will use the recent progress in subfactor
theory [71], concerning the classification of the small index subfactors.

For our purposes, the most convenient formulation of the result in [71] is:

THEOREM 14.20. The principal graphs of the irreducible index 5 subfactors are:

(1) Aw, and a non-extremal perturbation of AD.
(2) The McKay graphs of Zs, Ds, GA1(5), As, Ss.
(3) The twists of the McKay graphs of As, Ss.

PRrOOF. This is a heavy result, and we refer to [71] for the whole story. The above
formulation is the one from [71], with the subgroup subfactors there replaced by fixed
point subfactors [3], and with the cyclic groups denoted as usual by Zy. U

In the quantum permutation group setting, this result becomes:

THEOREM 14.21. The set of principal graphs of the transitive subgroups G C Si
coincide with the set of principal graphs of the following subgroups:

Z57 D57 GA1(5)7 A57 557 S;

ProoF. We must take the list of graphs in Theorem 14.20, and exclude some of the
graphs, on the grounds that the graph cannot be realized by a transitive subgroup G C S5 .
We have 3 cases here to be studied, as follows:

(1) The graph A., corresponds to Si itself. As for the perturbation of Ag}), this
dissapears, because our notion of transitivity requires the subfactor extremality.

(2) For the McKay graphs of Zs, D5, GA;(5), As, S5 there is nothing to be done, all
these graphs being solutions to our problem.

(3) The possible twists of As, S5, coming from the graphs in Theorem 14.20 (3) above,
cannot contain S5, because their cardinalities are smaller or equal than |S;| =120. O

In connection now with our maximality questions, we have:

THEOREM 14.22. The inclusion Ss C S5 is mazimal.
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PrOOF. This follows indeed from Theorem 14.21, with the remark that S5 being
transitive, so must be any intermediate subgroup S5 C G C S5 O

With a little more work, the above considerations can give the full list of transitive
subgroups G C S5". To be more precise, we have here the various subgroups appearing in
Theorem 14.21, plus some possible twists of As, S5, which remain to be investigated.

14d. Maximality questions

In general, the maximality of Sy C Sy is a difficult question. The only known general
result here is in the easy case, as follows:

THEOREM 14.23. There is no intermediate easy quantum group as follows:
Sy C GCSE

Proor. This follows by doing some combinatorics. To be more precise, the idea is to
show that any m € P — NC has the following property:

<m>=P

And, in order to establish this formula, the idea is to cap m with semicircles, as to
preserve one crossing, chosen in advance, and to end up, by a recurrence procedure, with
the standard crossing. We refer to [28] for full details here.

We can actually prove this at easiness level 2, as follows. Our first claim is that,
assuming that G C H comes from an inclusion of categories of partitions D C E, the
maximality at order 2 is equivalent to the following condition, for any 7, ¢ € E, not both
in D, and for any «, 8 # 0:

< span(D), oI, + BT, >= span(FE)

Consider indeed a category span(D) C C' C span(FE), corresponding to a quantum
group G C K C H having order 2. The order 2 condition means that we have C' =< C'N
spany(P) >, where spany denotes the space of linear combinations having 2 components.
Since we have span(E) N spans(P) = spany(FE), the order 2 formula reads:

C =< CnNspany(E) >

Now observe that the category on the right is generated by the categories C%’ con-
structed in the statement. Thus, the order 2 condition reads:

C={c

W,UGE,&,B€C>

Now since the maximality at order 2 of the inclusion G C H means that we have
C € {span(D), span(E)}, for any such C, we are led to the following condition:

Co8 ¢ {span(D), span(E)} , Vm,o€ E,a,fcC
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Thus, we have proved our claim. In order to show now that Sy C S¥ is maximal at
order 2, we can use the old “semicircle capping” method. That method shows that any
m € P— NC has the property < m >= P, and in order to establish this formula, the idea
is to cap 7™ with semicircles, as to preserve one crossing, chosen in advance, and to end
up, by a recurrence procedure, with the standard crossing.

In our present case now, at level 2, the statement that we have to prove is as follows:
“form€ P— NC,o € P and «, 5 # 0 we have < o1, + BT, >= span(P)”.

In order to do this, our claim is that the same method as at level 1 applies, after some
suitable modifications. We have indeed two cases, as follows:

(1) Assuming that 7, o have at least one different crossing, we can cap the partition
7 as to end up with the basic crossing, and ¢ becomes in this way an element of P(2,2)
different from this basic crossing, and so a noncrossing partition, from NC(2,2). Now by
substracting this noncrossing partition, which belongs to Csfv = span(NC'), we obtain
that the standard crossing belongs to < aT; + ST, >, and we are done.

(2) In the case where m,0 have exactly the same crossings, we can start our descent
procedure by selecting one common crossing, and then two strings of m,0 which are
different, and then joining the crossing to these two strings. We obtain in this way a
certain linear combination o1, + 'T, €< o1, + T, > which satisfies the conditions
in (1) above, and we can continuate as indicated there. U

The corresponding orthogonal quantum group questions are somehow easier, and our
purpose in what follows will be that of discussing all this. We first have:

THEOREM 14.24. There 1s only one proper intermediate easy quantum group
On C G C O}
namely the half-classical orthogonal group O} .

ProoFr. We must compute here the categories of pairings NCy C D C P,, and this
can be done via some standard combinatorics, in three steps, as follows:

(1) Let m € P, — NC%, having s > 4 strings. Our claim is that:

—If m € P, — Py, there exists a semicircle capping ©’ € P, — Pj.

—If m € Py — NCs, there exists a semicircle capping ' € Py — NCs.

Indeed, both these assertions can be easily proved, by drawing pictures.

(2) Consider now a partition m € Py(k, 1) — NCy(k,l). Our claim is that:

—If 7 € Py(k,l) — Py(k,l) then < 7 >= P5.

—If m € Py(k,l) — NCy(k,l) then < m >= Pj.

This can be indeed proved by recurrence on the number of strings, s = (k +1)/2, by
using (1), which provides us with a descent procedure s — s — 1, at any s > 4.
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(3) Finally, assume that we are given an easy quantum group Oy C G C Oy, coming
from certain sets of pairings D(k,l) C Pa(k,l). We have three cases:

~If D ¢ Py, we obtain G = Oy.

~Ift DC P, D¢ NC,, we obtain G = Oj,.

~If D € NCy, we obtain G = O};.

Thus, we are led to the conclusion in the statement. U

We have as well the following result, from [18], going beyond easiness:

THEOREM 14.25. The following inclusions are mazimal:
(1) TON C Uy.
(2) POy C PUy.
(3) On C Oy .

PROOF. In order to prove these results, consider as well the group TSOpy. Observe
that we have TSOx = TOy if N is odd. If N is even the group TOpy has two connected
components, with TSOpx being the component containing the identity.

Let us denote by son,uy the Lie algebras of SOx,Uy. It is well-known that uy
consists of the matrices M € My(C) satisfying M* = —M, and that soy = uy N My (R).
Also, it is easy to see that the Lie algebra of TSOy is soy @ iR.

Step 1. Our first claim is that if N > 2, the adjoint representation of SOy on the
space of real symmetric matrices of trace zero is irreducible.

Let indeed X € My(R) be symmetric with trace zero. We must prove that the
following space consists of all the real symmetric matrices of trace zero:

V = span {UXUt Ue SON}

We first prove that V' contains all the diagonal matrices of trace zero. Since we may
diagonalize X by conjugating with an element of SOy, our space V' contains a nonzero
diagonal matrix of trace zero. Consider such a matrix:

D= dz’ag(dl, dg, c. ,dN)

We can conjugate this matrix by the following matrix:

0 -1 0
1 0 0 € SON
0 0 In_o

We conclude that our space V' contains as well the following matrix:
D = diag(d2, dl, d3, R 7dN)

More generally, we see that for any 1 < 7,7 < N the diagonal matrix obtained from
D by interchanging d; and d; lies in V. Now since Sy is generated by transpositions, it
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follows that V' contains any diagonal matrix obtained by permuting the entries of D. But
it is well-known that this representation of Sy on the diagonal matrices of trace zero is
irreducible, and hence V' contains all such diagonal matrices, as claimed.

In order to conclude now, assume that Y is an arbitrary real symmetric matrix of
trace zero. We can find then an element U € SOy such that UY U is a diagonal matrix
of trace zero. But we then have UYU? € V', and hence also Y € V, as desired.

Step 2. Our claim is that the inclusion TSOy C Uy is maximal in the category of
connected compact groups.

Let indeed G be a connected compact group satisfying TSOy C G C Uy. Then G is
a Lie group. Let g denote its Lie algebra, which satisfies:

soy iR CgCuy

Let adg be the action of G on g obtained by differentiating the adjoint action of G on
itself. This action turns g into a G-module. Since SOy C G, g is also a SOy-module.

Now if G # TSOy, then since G is connected we must have soy @ iR # g. It follows
from the real vector space structure of the Lie algebras uy and soy that there exists a
nonzero symmetric real matrix of trace zero X such that:

1X €g

We know that the space of symmetric real matrices of trace zero is an irreducible
representation of SOy under the adjoint action. Thus g must contain all such X, and
hence g = uy. But since Uy is connected, it follows that G = Uy.

Step 3. Our claim is that the commutant of SOy in My(C) is as follows:

(1) SO, — {(_‘3‘5 g) o, € c}.
(2) If N >3, SOy = {aly|a € C}.

Indeed, at N = 2 this is a direct computation. At N > 3, an element in X € SO
commutes with any diagonal matrix having exactly N — 2 entries equal to 1 and two
entries equal to —1. Hence X is a diagonal matrix. Now since X commutes with any even
permutation matrix and N > 3, it commutes in particular with the permutation matrix
associated with the cycle (4,7, k) for any 1 < i < j < k, and hence all the entries of X
are the same. We conclude that X is a scalar matrix, as claimed.

Step 4. Our claim is that the set of matrices with nonzero trace is dense in SOy.

At N = 2 this is clear, since the set of elements in SO, having a given trace is finite.
So assume N > 2, and let T € SOy ~ SORY) with Tr(T) = 0. Let £ C RY be a
2-dimensional subspace preserved by 7', such that 17| € SO(E).
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Let ¢ > 0 and let S. € SO(E) with ||Tjg — S:|| < ¢, and with Tr(T|g) # Tr(S:), in
the N = 2 case. Now define 7. € SO(RY) = SOy by:
Tgp =25 , Typr=Tpg:
It is clear that ||T"— T¢|| < ||Tjg — S:|| < € and that:
Tr(T:) =Tr(S:) +Tr(Tigr) #0
Thus, we have proved our claim.

Step 5. Our claim is that TOy is the normalizer of TSOy in Uy, i.e. is the subgroup
of Uy consisting of the unitaries U for which U7'XU € TSOy for all X € TSOy.

It is clear that the group TOx normalizes TSSOy, so in order to prove the result, we
must show that if U € Uy normalizes TSOpx then U € TOy.

First note that U normalizes SOy. Indeed if X € SOy then U XU € TSOy, so
U™'XU = \Y for some A € T and Y € SOy. If Tr(X) # 0, we have A € R and hence:

\Y =U'XU € SOy

The set of matrices having nonzero trace being dense in SOy, we conclude that
U~'XU € SOy for all X € SOy. Thus, we have:

X eSOy = UXUHY(UXUY=Ix
— X'WU'UX =U'U
= U'U € SOy

It follows that at N > 3 we have U'U = aly, with a € T, since U is unitary. Hence
we have U = o!/?(a~Y/2U) with a='/2U € Oy, and U € TOy. If N = 2, (U'U)! = U'U
gives again that U'U = aly, and we conclude as in the previous case.

Step 6. Our claim is that the inclusion TOy C Uy is maximal in the category of
compact groups.

Suppose indeed that TOy C G C Uy is a compact group such that G # Uy. It is a
well-known fact that the connected component of the identity in G is a normal subgroup,
denoted (Gy. Since we have TSSOy C Gy C Uy, we must have Gy = TSOp. But since G
is normal in G, the group G normalizes TSOy, and hence G C TOy.

Step 7. Our claim is that the inclusion POy C PUy is maximal in the category of
compact groups.

This follows from the above result. Indeed, if POy C G C PUy is a proper interme-
diate subgroup, then its preimage under the quotient map Uy — PUy would be a proper
intermediate subgroup of TOyN C Uy, which is a contradiction.

Step 8. Our claim is that the inclusion Oy C O} is maximal in the category of compact
compact groups.
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Consider indeed a sequence of surjective Hopf x-algebra maps as follows, whose com-
position is the canonical surjection:

C(0y) -1 A% c(Ow)
This produces a diagram of Hopf algebra maps with pre-exact rows, as follows:

C—— C(PO}) — C(O) —= C(Zs) ——C

fi f
C PA A O(ZQ) —C
9| g

C—— PC(Oy) ——C(On) ——=C(Zy) ——C

Consider now the following composition, with the isomorphism on the left being some-
thing well-known, coming from [46], that we will explain in chapter 15 below:

C(PUx) =~ C(POY) <5 PA 25 PC(Oy) ~ C(POx)

This induces, at the group level, the embedding POy C PUy. Thus f| or g, is an
isomorphism. If f is an isomorphism we get a commutative diagram of Hopf algebra
morphisms with pre-exact rows, as follows:

C—— C(PO%) — C(O4) —= C(Zy) —=C
|
C—— C(POY%) A C(Zy) — C

Then f is an isomorphism. Similarly if g is an isomorphism, then g is an isomorphism.
For further details on all this, we refer to [18]. O

Given an exotic quantum permutation group Sy C G C Sj;, we can expect all the
combinatorics of G to be invariant under Sy, due to the embedding Sy C G. In order to
establish some concrete results in this direction, we use the following known formula:

PROPOSITION 14.26. Assuming Sy C G C S§;, consider the quotient map 7 : C'(G) —
C(Sy), and set evy(a) = 7w(a)(o), for any a € C(G). Then with

Por = EUs—1 % QO * €U,
we have the following formula,

or(Uirjy - - - Wipj,) = P(Ug(in)r(ir) - - - Uo(ip)r(iy))

walid for any p € N, and any indices i1, ...,%, and j1,..., Jp.



14D. MAXIMALITY QUESTIONS 341

PRrROOF. We have indeed the following computation:

g0m—<ui1j1 e uipjp)

= (6"00*1 KXY GUT)A(Q)(uiljl . ‘uipjp)

= Z Z V1 (Uiy oy - - - Uiy )P (Ut - - - Uk, )€V (U, - Uy 5,)

ki..kply..0p

= Z Z 50’(i1)k1 e 5g(ip)kp<p(uklll P ukplp)57(jl)ll e 6T(jp)lp

Freokp ool
= PlUo(i)r() - - - Uoin)r(ii))
Thus, we obtain the formula in the statement. See [78]. O

As a first application, we can apply this to the existence problem for the algebraic
k-orbitals. We obtain somehow “half” of the proof of that, as follows:

PROPOSITION 14.27. Assuming Sy C G C S§;, the relation
(Zl,lk) ~ (jl,,jk) < Wgy gy - - - Uiy, 7&0
depends only on keri,ker j € P(k), and not of the particular multi-indices i, j.

ProoF. By using Proposition 14.26 and Hahn-Banach we obtain, for any o,7 € Sy:

WUy gy« - - Ugg g 7A 0 — Ug(i1)r (1) - - - Uo (i) T () 7A 0

Thus, we are led to the conclusion in the statement. Il

In short, the conjectural algebraic k-orbitals are invariant under Sy, and the problem
now is if the above relation ~ is transitive on the partitions of P(k).

As another application, we have the following result:

PROPOSITION 14.28. Given an exotic quantum permutation group Sy C G C S¥, we
have

[wij, up] # 0
for any indices i # k and j # l. More generally, the following algebra

< Ugj, Uy >C O(G)
does not depend on the choice of i # k and j # l. Even more generally, the algebra
< Ujyjgys e vv s Uipgp, > C C(G)

depends only on the relative position of the indices (i,,j.) inside the standard square
{1,...,N}?, and not on the precise value of these indices.

Proo¥r. This is similar to the proof of Proposition 14.27, by using Proposition 14.26
applied to commutators, or more general quantities, and then using Hahn-Banach. U
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As an interesting consequence of Proposition 14.28, we have:

PROPOSITION 14.29. Given an exotic quantum permutation group Sy C G C S§;, the
corresponding diagonal algebra, which is by definition given by

D(G) =< U11,...,Uunny >C C(G)

when regarded as a quotient of C*(Z3N) is invariant under the action of Sy.

PROOF. According to Proposition 14.28, we have an isomorphism as follows, between
subalgebras of D(G), for any indices i # j and any k # [

< Uggy Ujj >2< Uk, Ugg >

More generally, still according to Proposition 14.28, we have such isomorphisms in
higher length 3,4,5, ..., and at lenght N we obtain the result. U

The above result has some potentially interesting consequences. Indeed, since we have
Sy C G C Sf;, at the level of diagonal algebras we have quotient maps as follows:
D(Sy) = D(G) = D(S)

Thus, Proposition 14.29 suggests that D(G) should come from a certain uniform in-
termediate quotient Z3Y — T' — Z&. This would be very interesting, first in order to
understand the structure of C'(G) itself, which is not that much bigger than D(G), and
also for making the link with the quantum reflection groups.

We discuss here a number of freeness questions regarding the algebra C'(S};), or rather
its dense subalgebra C(S3) C C(S5) generated by the entries of u = (u;;). The problem
is that of understanding which are the polynomial relations relating the variables u;;:

P({uij}) =0
That is, we would like to understand what is the kernel of the following map:
C < {X;;} >— C(Sy)
Xij — i
We know that this kernel is the ideal generated by the magic relations, and the con-

jecture would be that at N > 4 the relations P({u;;}) = 0 could only appear for “trivial
reasons”. However, it seems difficult to formulate a precise conjecture in this sense.

Let us look instead at the monomial case. Here we would simply like to understand
which are the monomials in the variables w;; which vanish, and we have:

CONJECTURE 14.30. For the quantum group S3; with N > 4, an equality of type
Wiyjy - - Wiy, = 0

can only appear “for trivial reasons”, due to an occurrence inside this relation of a can-
cellation formula of type pg = 0, with p,q € {u;;}.
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Here is an equivalent form of Conjecture 14.30, using the orbital formalism:

CONJECTURE 14.31. The relation i ~ j <= u;j, ... U, , 7 0 is given by:

i =1y <= J1=1J2
(i1, v i) ~ (G, J) = BTl 2
-1 =k <= Ji-1 = Jk

In particular ~ is transitive, and we have 2¥~1 equivalence classes, or orbitals.

Here the first assertion is a reformulation of Conjecture 14.30, and the transitivity

assumption and the orbital count are trivial consequences of it.

As before, the cases k = 3,4 are of particular interest, but this time not in view of
their potential doability, but rather in view of their potential applications.
In relation with this latter conjecture, we have the following useful result:
PROPOSITION 14.32. Given a quantum permutation group G C S, the relation
(il,...,ik) ~ (]1,,jk) < Wsygy - - - Uiy, 75 0

is in fact a relation between the k-orbitals of Geass C Sn. In particular, with G = S;,
what we have is a relation on the set P(k) of partitions of {1,... k}.

PRrOOF. This is explained above, the idea being that any linear form ¢ € C(G)* can
be suitably modified by permutations o,7 € G . as to take the same values on the
quantities u;,;, ... u;, ., under the action of Ggqass on the indices. As explained there,
together with Hahn-Banach, this gives the result. Finally, in the case of G = S}; we have
Gass = Sy, and the orbits here are {1,..., N}*/ ~ = P(k), as claimed. a0

Finally, getting back now to the general freeness questions formulated in the beginning,
an interesting question, which is complementary to the above “orbital” ones, regards the
diagonal coefficients u;;. We have here the following conjecture:

CONJECTURE 14.33. For the quantum group Sy, with N > 4, the variables
u; € C(SY)
are algebrically free. In particular, the diagonal algebra
D(S%) =< uii,...,unn >C C(S¥)

is isomorphic to the group algebra C*(Z3N).
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Observe that this is indeed complementary to the above orbital questions, because we
are dealing here with linear products of type w;,;, ... u;,,, and their linear combinations,
which are “trivial” from the point of view of the orbital theory.

As before, it is very unclear on how to prove such things. In relation now with the
“exotic” case, Sy C G C Sy, we would like such things to be understood, because the
orbitals for G, if well-defined indeed, should lie between those for Sy and for S, and
the same should happen for the diagonal algebra. Thus, the exotic quantum permutation
groups Sy C G C Sy would lead to “exotic” relations on P(k), and also to “exotic”
quotients of Z3Y, and with a bit of luck, such exotic things could not really exist.

14e. Exercises

Things have been fairly technical in this chapter, and as a unique exercise on all this,
in connection with the questions at the end, we have:

EXERCISE 14.34. Prove that the diagonal algebra of the free symmetric group
D(SE) =< U11,...,UNN >C C(S;G)
is isomorphic to the group algebra C*(Z3N).

This is something that we already discussed in chapter 6 above, in relation with the
quantum partial permutations and of their diagonal algebras, and of the related functional
analysis problematics of constructing a quantum group of type St . In view of the above
considerations, making the link with the exotic quantum groups Sy C G C S}, this
appears to be an increasingly interesting problem, related to many things.



CHAPTER 15

Matrix models

15a. Matrix models

One interesting method for the study of the subgroups G C Sy, that we have not
tried yet, consists in modelling the coordinates u;; € C(G) by concrete variables U;; € B.
Indeed, assuming that the model is faithful in some suitable sense, that the algebra B
is something quite familiar, and that the variables U;; are not too complicated, all the
questions about G would correspond in this way to routine questions inside B.

We discuss here these questions, first for the arbitrary quantum groups G C U}, and
then for the quantum permutation groups G C S%. Regarding the choice of the target
algebra B, some very convenient algebras are the random matrix ones, B = Mg (C(T)),
with K € N, and T" being a compact space. These algebras generalize indeed the most
familiar algebras that we know, namely the matrix ones My (C), and the commutative
ones C(T'). We are led in this way to the following general definition:

DEFINITION 15.1. A matriz model for G C Uy, is a morphism of C*-algebras
m:C(G) - Mg(C(T))
where T 1s a compact space, and K > 1 is an integer.
There are many examples of such models, and will discuss them later on. For the
moment, let us develop some general theory. The question to be solved is that of under-

standing the suitable faithfulness assumptions needed on 7, as for the model to “remind”
the quantum group. As we will see, this is something quite tricky:.

The simplest situation is when 7 is faithful in the usual sense. This is of course
something quite restrictive, because the algebra C(G) must be of type I in this case.
However, there are many interesting examples here, and all this is worth a detailed look.
Let us introduce the following notion, which is related to faithfulness:

DEFINITION 15.2. A matriz model m : C(G) — Mg (C(T)) is called stationary when

fr= (e f)r

where fT 15 the integration with respect to a given probability measure on T'.

345
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Here the term “stationary” comes from a functional analytic interpretation of all this,
with a certain Cesaro limit being needed to be stationary, and this will be explained later.
Yet another explanation comes from a certain relation with the lattice models, but this
relation is rather something folklore, not axiomatized yet. We will be back to this.

As a first result now, which is something which is not exactly trivial, and whose proof
requires some functional analysis, the stationarity property implies the faithfulness:

THEOREM 15.3. Assuming that a closed subgroup G C Uy, has a stationary model,
m:C(G) = Mg(C(T))
it follows that G must be coamenable, and that the model is faithful. Moreover, m extends
into an embedding of von Neumann algebras, as follows,
L%(G) € My(L=(T))
which commutes the canonical integration functionals.

PROOF. Assume that we have a stationary model, as in the statement. By performing
the GNS construction with respect to fG, we obtain a factorization as follows, which
commutes with the respective canonical integration functionals:

m:C(G) = C(GQ)rea € Mg (C(T))
Thus, in what regards the coamenability question, we can assume that 7 is faithful.
With this assumption made, we have an embedding as follows:
C(G) € Mg(C(T))
Now observe that the GNS construction gives a better embedding, as follows:
L*(G) € Mg(L>(T))

Now since the von Neumann algebra on the right is of type I, so must be its subalgebra
A = L*(G). This means that, when writing the center of this latter algebra as Z(A) =
L*>(X), the whole algebra decomposes over X, as an integral of type I factors:

In particular, we can see from this that C ) C L>(G) has a unique C*-norm, and so
(G is coamenable. Thus we have proved our ﬁrst assertion, and the second assertion follows
as well, because our factorization of m consists of the identity, and of an inclusion. O

We refer to [23], [32] for more on this. Summarizing, what we have is a slight strength-
ening of the notion of faithfulness. We will see later that are many interesting examples
of such models, while remaining of course in the coamenable and type I setting.

Let us discuss now the general, non-coamenable case, with the aim of finding a weaker
notion of faithfulness, which still does the job, of “reminding” the quantum group. The
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idea comes by looking at the group duals G = . Consider indeed a general model for
the associated algebra, which can be written as follows:

71 C*(D) — My (C(T))

The point now is that such a representation of the group algebra must come by lin-
earization from a unitary group representation, as follows:

p:I'—= C(T,Uk)

Now observe that when p is faithful, the representation 7 is in general not faithful,
for instance because when T' = {.} its target algebra is finite dimensional. On the other
hand, this representation “reminds” I'; so can be used in order to fully understand T'.

Summarizing, we have an idea here, basically saying that, for practical purposes, the
faithfuless property can be replaced with something much weaker. This weaker notion is
called “inner faithfulness”, and the general theory here, from [13], is as follows:

DEFINITION 15.4. Let 7 : C(G) — Mg (C(T)) be a matriz model.

(1) The Hopf image of m is the smallest quotient Hopf C*-algebra C(G) — C(H)
producing a factorization as follows:
7:C(G) = C(H) — Mg(C(T))
(2) When the inclusion H C G is an isomorphism, i.e. when there is no non-trivial
factorization as above, we say that w is inner faithful.

These constructions work in fact for any C*-algebra representation = : C'(G) — B,
but here we will be only interested in the random matrix case, B = Mg (C(T)). As a first

example, motivated by the above discussion, in the case where G = Tisa group dual, 7
must come from a group representation, as follows:

p:I'—= C(T,Uk)
Thus the minimal factorization in (1) is obtained by taking the image:
p:I'=ACC(T,Uk)
Thus, as a conclusion, 7 is inner faithful precisely when:
I'c C(T,Uk)

Dually now, given a compact Lie group G, and elements g¢q,...,9x € G, we have a
diagonal representation m : C(G) — Mg (C), appearing as follows:

f(g1)
f—

f9x)
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The minimal factorization of this representation 7, as in (1) above, is then via the
algebra C'(H), with H being the following closed subgroup of G:

H=<g,...,9x>
Thus, as a conclusion, 7 is inner faithful precisely when we have:
G=H

In general, the existence and uniqueness of the Hopf image comes from dividing C(G)
by a suitable ideal. In Tannakian terms, as explained in [13], we have:

THEOREM 15.5. Assuming G C Uy, with fundamental corepresentation u = (u;;), the
Hopf image of a model m : C(G) — Mg(C(T)) comes from the Tannakian category

Cr = Hom(U®* U
where U;; = m(u;;), and where the spaces on the right are taken in a formal sense.

PROOF. Since the morphisms increase the intertwining spaces, when defined either in
a representation theory sense, or just formally, we have inclusions as follows:

Hom(u®*, u®") ¢ Hom(U®*, U®")

More generally, we have such inclusions when replacing (G, u) with any pair producing
a factorization of m. Thus, by Tannakian duality, the Hopf image must be given by the
fact that the intertwining spaces must be the biggest, subject to the above inclusions.

On the other hand, since u is biunitary, so is U, and it follows that the spaces on the
right form a Tannakian category. Thus, we have a quantum group (H,v) given by:

Hom(v®* v®) = Hom(U®* U®")
By the above discussion, C'(H) follows to be the Hopf image of 7, as claimed. O

Regarding now the study of the inner faithful models, a key problem is that of com-
puting the Haar integration functional. The result here, from [31], [96], is as follows:

THEOREM 15.6. Given an inner faithful model m : C(G) — Mg(C(T)), the Haar

integration over G is given by
1o [T
= lim —

with the truncations of the integration on the right being given by

/GTI(@O?T)*T

with ¢ x 1 = (¢ @ )A, and with ¢ = tr ® fT being the random matrix trace.
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PROOF. As a first observation, there is an obvious similarity here with the Woronowicz
construction of the Haar measure, explained in chapter 1 above.

In fact, the above result holds more generally for any model 7 : C(G) — B, with
¢ € B* being a faithful trace.

With this picture in hand, the Woronowicz construction simply corresponds to the
case m = 1d, and the result itself is therefore a generalization of Woronowicz’s result.

In order to prove now the result, we can proceed as in chapter 1. If we denote by fé
the limit in the statement, we must prove that this limit converges, and that we have:

Iy

It is enough to check this on the coefficients of corepresentations, and if we let v = u®*
be one of the Peter-Weyl corepresentations, we must prove that we have:

(iae [Jo=(iae [ )

We already know, from chapter 1 above, that the matrix on the right is the orthogonal

projection onto Fix(v):
<id ® /) v = Proj [anc(v)}
a

Regarding now the matrix on the left, the trick in [98] applied to the linear form pm
tells us that this is the orthogonal projection onto the 1-eigenspace of (id ® @m)v:

(id ® /G/) v = Proj [1 € (id ® gmr)v]

Now observe that, if we set V;; = m(v;;), we have the following formula:
(id @ pm)v = (id @ p)V

Thus, we can apply the trick in [98], or rather use the same computation as there,
which is only based on the biunitarity condition, and we conclude that the 1-eigenspace
that we are interested in equals Fiz (V).

But, according to Theorem 15.5, we have:
Fix(V) = Fiz(v)

Thus, we have proved that we have [ é = fG, and this leads to the conclusion in the
statement. O

Regarding now the law of the main character, we have the following result:
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PROPOSITION 15.7. Assume that a model 7 : C(G) — My (C(T)) is inner faithful, let

= law(y)
and let p" be the law of x with respect to [, = (¢ o m)*", where ¢ = tr @ [,
(1) We have the following convergence formula, in moments:

k
1 .
e fim g3
(2) The moments of u" are the numbers cZ = Tr(T7), where:

(Ta)il...ip,j1...jp = <t7“ (024 /T) (Uflljl Ce Uf:jp)

PROOF. These formulae are both elementary, by using the convergence result estab-
lished in Theorem 15.6, the proof being as follows:

(1) This follows from the limiting formula in Theorem 15.6.
(2) This follows from the definition of T, by summing over equal indices, i, = j,. O
In order to detect the stationary models, we have the following criterion, from [14]:

THEOREM 15.8. For a model  : C(G) — Mg (C(T)), the following are equivalent:
(1) Im(m) is a Hopf algebra, and the Haar integration on it is:

¢=(ﬁ®£)w

(2) The linear form ¢ = (tr ® [,)m satisfies the idempotent state property:
Y =1p
(3) We have T> =T,, Vp € N, Ve € {1, x}?, where:

T = (tr o [ ) e, U

If these conditions are satisfied, we say that w is stationary on its image.

PROOF. Given a matrix model 7 : C(G) — Mg(C(T')) as in the statement, we can
factorize it via its Hopf image, as in Definition 15.4 above:
7:C(G)— C(H) — Mg(C(T))
Now observe that (1,2,3) above depend only on the factorized representation:
v:C(H)— Mg(C(T))
Thus, we can assume in practice that we have G = H, which means that we can

assume that 7 is inner faithful. With this assumption made, the integration formula in
Theorem 15.6 applies to our situation, and the proof of the equivalences goes as follows:
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(1) = (2) This is clear from definitions, because the Haar integration on any
compact quantum group satisfies the idempotent state equation:

VxY =1
(2) = (1) Assuming 9 x 1) = 1, we have ¢*" =9 for any r € N, and Theorem 15.6
gives fG = 7). By using now Theorem 15.3, we obtain the result.

In order to establish now (2) <= (3), we use the following elementary formula, which
comes from the definition of the convolution operation:

w*r<uz¢11j1 T ) = (TeT>i1~~-ip:J'1~~jp

* VipJp
(2) = (3) Assuming v * ¢ = 1), by using the above formula at r = 1,2 we obtain
that the matrices T, and T2 have the same coefficients, and so they are equal.

(3) = (2) Assuming T? = T, by using the above formula at r = 1,2 we obtain that

the linear forms v and v * v coincide on any product of coefficients u* u;”. . Now

T Ui
since these coefficients span a dense subalgebra of C'(G), this gives the result. O

15b. Flat models

As a first illustration, we can apply the above criterion to certain models for Oy, Uy .
We first have the following result, coming from the work in [15], [29], [46]:

PROPOSITION 15.9. We have a matriz model as follows,
C(Oy) = My(C(Un))

Ui 0 'Uij
* Tjij 0

where v is the fundamental corepresentation of C(Uy), as well as a model as follows,

C(Ux) = My(C(Uy x Un))

N 0 Uij
UZJ wij 0

where v, w are the fundamental corepresentations of the two copies of C(Uy).

PROOF. It is routine to check that the matrices on the right are indeed biunitaries,
and since the first matrix is also self-adjoint, we obtain in this way models as follows:

O(O]J’\_]) — My (C(Uy))
C(UY) = My(C(Ux x Uy))

Regarding now the half-commutation relations, this comes from something general,
regarding the antidiagonal 2 x 2 matrices. Consider indeed matrices as follows:

0 xT;
h= (y 0)
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We have then the following computation:

0 x; 0 =z 0 ap 0 TiYiTh
XZXX = J — J
JEH (yz 0) (yj 0) (yk 0) (yil’jyk 0 )

Since this quantity is symmetric in ¢, k, we obtain X;X;X; = X;X,;X;. Thus, the
antidiagonal 2 x 2 matrices half-commute, and so our models factorize as claimed. |

We can now formulate our first concrete modelling theorem, as follows:
THEOREM 15.10. The above antidiagonal models, namely

C(Oy) — My(C(Un))

C(Uxn) = My(C(Uy x Un))
are both stationary, and in particular they are faithful.

PROOF. Let us first discuss the case of O}. We will use Theorem 15.8 (3). Since the
fundamental representation is self-adjoint, the various matrices 7, with e € {1, *}? are all
equal. We denote this common matrix by 7,,. We have, by definition:

R — 0 Vi 0 Vipjp
(Tp)’ll--.’bp,]l---]p - (tT®/I;) |:<U21]1 O ) ““““ (Uipjp O ):|

Since when multipliying an odd number of antidiagonal matrices we obtain an atidi-
agonal matrix, we have T, = 0 for p odd. Also, when p is even, we have:

) o ' _ Uiljl e @ipjp O
1 _ _
= 5 Viyjp « - - Uipjp + Viyjy « - - Uipjp
H H

= / Re(viljl ce /l_]ipjp>
H

We have Tp2 =T, = 0 when p is odd, so we are left with proving that for p even we
have sz = T,. For this purpose, we use the following formula:

Re(a)Re(y) = 5 (Re(xy) + Re(x7)
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By using this identity for each of the terms which appear in the product, and multi-
index notations in order to simplify the writing, we obtain:

(T7)ss
= > (Tiipiry(Tp)kripiis.ody

k.. kp

= / / E Re(Viyg, - - - Uik, ) Re(wryj, - - - Wy, j,)dvdw
HJH,
1---Kp
1 o _ _
= 3 E Re (Vi 5, Wy, - - - Vipky Whyj, ) + Re(Vi o Whyjy - - - Uik Whyj, ) dvdw
HJH
kyo.k

= % /H /H Re((vw)iyj, - - (00)i,5,) + Re((vD)ij, - . . (Dw)s,, )dvdw

Now since vw € H is uniformly distributed when v, w € H are uniformly distributed,
the quantity on the left integrates up to (7,);;. Also, since H is conjugation-stable, w € H
is uniformly distributed when w € H is uniformly distributed, so the quantity on the right
integrates up to the same quantity, namely (7},);;. Thus, we have:

(T3)i = %((Tp)ij + (Tp)z‘j) = (Tp);

Summarizing, we have obtained that for any p, we have Tg = T,. Thus Theorem
15.8 applies, and shows that our model is stationary, as claimed. As for the proof of the
stationarity for the model for Uy, this is similar. See [15]. O

As a second illustration, regarding Hy, K}, we have:

THEOREM 15.11. We have a stationary matrix model as follows,
C(HY) — Ma(C(Kn))

N 0 Uij
i 7\ oy 0

where v is the fundamental corepresentation of C(Ky), as well as a stationary model

C<KJ>:7) — Mg(C(KN X KN))

N 0 ’Uij
4 wij 0

where v,w are the fundamental corepresentations of the two copies of C'(Ky).

Proor. This follows by adapting the proof of Proposition 15.9 and Theorem 15.10
above, by adding there the H};, K% relations. All this is in fact part of a more general
phenomenon, concerning half-liberation in general, and we refer here to [15], [46]. U
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Let us go back now to the general problem of modelling a given quantum permutation
group G C Sj;. The “simplest” matrix models that we can use are as follows:

DEFINITION 15.12. Given a subgroup G C S5, a random matriz model of type
m:C(G) - Mg(C(T))
is called flat when the fibers Pf; = m(ug;) () all have rank 1.

1,

Observe that we must have N = K in this case. Also, the quantum permutation group
G C S, to be modelled must be transitive, in order for such a model to exist.

Following [32], let us formulate as well a second definition, which is a bit more general,
covering many interesting examples of quantum permutation groups G C S} which are
not transitive, such as the quasi-transitive ones discussed in the previous section:

DEFINITION 15.13. Given a subgroup G C S5, a random matriz model of type
m:C(G) - Mg(C(T))
is called quasi-flat when the fibers Pg = w(u;;)(z) all have rank < 1.

Observe that the functions @ — rf; = rank(F;;) are locally constant over T', so they
are constant over the connected components of X. Thus, when T is connected, our
assumption is that we have rj; =r;; € {0,1}, for any = € T, and any ¢, j.

As a first result now, regarding the quasi-flat models, we have:

PROPOSITION 15.14. Assume that we have a quasi-flat model m : C(G) — Mg (C(T)),
mapping u;; — Py, and consider the matriz r;; = rank(P;;).
(1) r is bistochastic, with sums K.
(2) We have r;; < g5, for any i, 7.
(3) If G is quasi-transitive, with orbits of size K, then r;; = €;; for anyi,j.
(4) If m is assumed to be flat, then G must be transitive.
PRrROOF. These results are all elementary, the proof being as follows:
(1) This is clear from the fact that each P* = (P}) is bistochastic, with sums 1.
(2) This simply comes from u;; =0 = P,; = 0.
(3) The matrices r = (1) and € = (g;;) are both bistochastic, with sums K, and they
satisfy r;; < &;;, for any 4, j. Thus, these matrices must be equal, as stated.
(4) This is clear, because rank(P;;) = 1 implies u;; # 0, for any 1, j. 0

In order to construct now universal quasi-flat models, it is convenient to identify the
rank one projections in My (C) with the elements of the complex projective space P(év -1
We first have the following observation, which goes back to [33]:
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PROPOSITION 15.15. The algebra C(S%) has a universal flat model, given by
C(S¥) = My(C(Xy))
7TN(UU) [P — Pyl
where Xy is the set of matrices P € My (P ") which are bistochastic with sums 1.
PROOF. This is clear from definitions, because any flat model C(S};) — My(C) must
map the magic corepresentation u = (u;;) into a matrix P = (P,;) belonging to Xy. O
Regarding now the general quasi-transitive case, we have here:

THEOREM 15.16. Given a quasi-transitive subgroup G C Sy, with orbits of size K,
we have a universal quasi-flat model 7 : C(G) — Mg (C(X)), constructed as follows:

(1) For G = St ... %S} with N = KM, the universal model space is Xy =
— ——

M terms

X X ... x Xg, and with u = diag(ut, ..., uM) the modelling map is:
M ;grms

TN () = (pP,...,PM) — Pl

(2) In general, the model space is the submanifold X¢ C Xy obtained via the
Tannakian relations defining G.

Proor. This is standard by using Tannakian duality, as follows:

(1) This follows from Tannakian duality, by using Proposition 15.14 (3), which tells
us that the 0 entries of the model must appear exactly where v = (u;;) has 0 entries.

(2) Assume that G C Sy is quasi-transitive, with orbits of size K. We have then an
inclusion G C St % ... %S}, and in order to construct the universal quasi-flat model for
—_——

M terms
C(G), we need a universal solution to the following factorization problem:

—_———

} )
C(@) - Mg(C(Xq))

But, the solution to this latter question is given by the following construction, with
the Hom-spaces at left being taken as usual in a formal sense:

O(Xg) = C(Xnx) / (T € Hom(P®*, P, Vk,1 € N,VT € Hom(u®*, u®l)>

With this result in hand, the Gelfand spectrum of the algebra on the left is then an
algebraic submanifold Xo C Xy x, having the desired universality property. U
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As an illustration, let us discuss now the classical case. With the convention that
we identify the rank one projections in My (C) with the corresponding elements of the
complex projective space PX !, we have the following result, from [32]:

THEOREM 15.17. Given a quasi-transitive group G C Sy, with orbits having size K,
the associated universal quasi-flat model space is Xg = Ex X L]C{V,,K, where:

By = {Pl,...,PK e PX1p, L Pj,‘v’i,j}

L%’K:{0-1;7O-K€G

01(i),...,0x(1) distinct, Vi € {1,. .. ,N}}

In addition, assuming that we have L% x 7 0, the universal quasi-flat model is stationary,
with respect to the Haar measure on Eyc times the discrete measure on L .

PRroOF. This result is from [32], the idea being as follows:

(1) Let us call “sparse Latin square” any matrix L € My(*,1,..., K) whose rows and
columns consists of a permutation of the numbers 1, ..., K, completed with * entries.

(2) Our claim is that the quasi-flat representations 7 : C'(Sy) — Mg (C) appear as
follows, where Py, ..., Px € Mg(C) are rank 1 projections, summing up to 1, and where
L € My(x,1,...,K) is a sparse Latin square, with the convention P, = 0:

Ujj — PLij
Indeed, assuming that 7 : C(Sy) — Mg(C) is quasi-flat, the elements P; = 7(u;;)
are projections of rank < 1, which pairwise commute, and form a magic unitary.
Let Pp,...,Px € Mg(C) be the rank one projections appearing in the first row of

P = (P,;). Since these projections form a partition of unity with rank one projections,
any rank one projection () € Mg (C) commuting with all of them satisfies:

Qe{P,...,Px}

In particular we have P;; € {Py,..., Px} for any 4, j such that P,; # 0. Thus we can
write u;; — Pr,;, for a certain matrix L € My(x,1,..., K), with the convention P, = 0.

In order to finish, the remark is that w;; — Pr, defines a representation m : C'(Sy) —
Mg (C) precisely when the matrix P = (P, ); is magic. But this condition tells us
precisely that L must be a sparse Latin square, as desired.

(3) In order to finish, we must compute the Hopf image. Given a sparse Latin square
L € My(x,1,...,K), consider the permutations oy, ...,0x € Sy given by:

Our claim is that the Hopf image associated to a representation 7 : C'(Sy) — Mg(C),
ui; — Ppr,; as above is then the algebra C'(Gp), where:

G =<o01,...,05 >C Sy
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Indeed, the image of m being generated by Pi,..., Pk, we have an isomorphism of
algebras a: Im(w) ~ C(1,...,K) given by P; — §;. Consider the following diagram:

C(Sy) —— Im(m)

Mg (C)

Here the map on the right is the canonical inclusion and ¢ = am. Since the Hopf
image of 7 coincides with the one of ¢, it is enough to compute the latter. We know that
¢ is given by op(u;) = dr,;, with the convention d, = 0. By Gelfand duality, ¢ must come
from a certain map o : {1,..., K} — Sy, via the transposition formula:

p(f)(@) = floz)
With the choice f = u;;, we obtain dr,(x) = u;;(0,). Now observe that:

1 if L =
5Lij($): { 1 ’ !

0 otherwise

We have as well the following formula:

w(o) = {1 if 0,(j) =i

0 otherwise

We conclude that o, is the permutation in the statement. Summarizing, we have
shown that ¢ comes by transposing the map x — o,, with o, being as in the statement.
Thus the Hopf image of ¢ is the algebra C'(Gp), with:

G =< O1,..., 0 >
Thus, we are led to the conclusion in the statement. Il

There are many other explicit computations in the quasi-flat case, especially in the
group dual case, and we refer here to [22], [32].

15c. Quasi-flatness

As an illustration, let us discuss the following types of models:
7: C(S}) = My(C)

In order to to this, let us that a model 7 : C(G) — My(C) for a quantum permutation
group G C S} is called flat if N = K, and the projections p;; = 7(u;;) are all of rank
1, and quasi-flat is the projections p;; = m(u;;) are all of rank 0 or 1. Up to a simple
manipulation, we are in this latter situation, of quasi-flat models:
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PROPOSITION 15.18. Up to substracting an identity diagonal block, which won’t change
the image of the model, any model of type

m: C(SE) = My(C)

can be assumed to be quasi-flat, in the sense that the projections p;; = m(u;j), belonging
to the matriz algebra My(C), are all of rank 0 or 1.

PRrROOF. We know that the matrix p = (p;;) formed by the projections p;; = m(u;;) is
a K x K magic matrix having as entries projections r € My(C). The point now is that
these latter projections r € My(C) can be of rank 0, 1,2, and up to a permutation of the
indices, we can isolate the rank 2 projections in a matrix block, so that our magic matrix
p = (pi;) looks as follows, with only rank 0, 1 projections in the lower block ¢:

()

Thus, we are led to the conclusion in the statement. Il

In view of the above result, we can assume that our model is quasi-flat. Now in order
to classify such models, let us first recall from [32] that we have:

DEFINITION 15.19. A “sparse Latin square” is a square matrix
L e MK<*,1,...,R)

having the property that each of its rows and columns consists of a permutation of the
numbers 1,..., R, completed with % entries.

In the case R = N, where there are no * symbols, we recover the usual Latin squares.
In general, however, the combinatorics of these matrices is more complicated than that
of the usual Latin squares. Here are a few examples of such matrices, at R = 2:

1 . 1 2 % x
2 % 1 %
* 1]
. 1 9 * 1 % 2
* *x 2 1
1 9 % x 1 2 % % %
2 x 1 % x
2 1 * %
* 1 2 % x
* x 1 21 7
‘% 9 1 * *x x 1 2
* x x 2 1

We will be back to this, with some structure and classification results.

With this notion in hand, the first result that we need, also from [32], is as follows:
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PROPOSITION 15.20. The quasi-flat representations w : C(Sk) — Mg(C) appear as
uij — Pr,;
where Py, ..., Pr € Mg(C) are rank 1 projections, summing up to 1, and where
L e Mg(x,1,...,R)
15 a sparse Latin square, with the convention P, = 0.

PROOF. Assuming that 7 : C'(Sx) — Mg(C) is quasi-flat, the elements P;; = m(u;;)
are projections of rank < 1, which pairwise commute, and form a magic unitary.

Let Py,...,Pr € Mg(C) be the rank one projections appearing in the first row of
P = (P;). Since these projections form a partition of unity with rank one projections,
any rank one projection ) € Mg(C) commuting with all of them satisfies:

Qe€{P,...,Pr}

In particular we have P,; € {Py,..., Pg} for any 4, j such that P;; # 0. Thus we can
write ui; — Pp,;, for a certain matrix L € My(x,1,..., K), with the convention P, = 0.
In order to finish, the remark is that u;; — P, defines a representation 7 : C(Sk) —
Mpg(C) precisely when the matrix P = (P, );; is magic. But this condition tells us
precisely that L must be a sparse Latin square, in the sense of Definition 15.19. U

In the case R = 2, that we are interested in, this result reads:
PROPOSITION 15.21. The quasi-flat representations m : C(Sk) — My(C) appear as
Ujj — PL”,

where Py, Py € My(C) are rank 1 projections, satisfying Py + Py = 1, and where L €
Mk (*,1,2) is a sparse Latin square, with the convention P, = 0.

Proor. This follows indeed from Proposition 15.20 above. U
In what regards now the models of Sj. that we are interested in, we have:

THEOREM 15.22. The matrix models of the following type, assumed as in Proposition
15.18 to be quasi-flat, up to substracting an identity matriz block,

m:C(S}) = My(C)
appear, via a permutations of the rows and columns, in the following way,

by making a direct sum of sparse Latin square models, as in Proposition 15.21.



360 15. MATRIX MODELS

Proor. With notations from Proposition 15.18 and its proof, we know that the square
matrix p = (p;;) formed by the projections p;; = m(u;;) is a K x K magic matrix having
as entries projections r € My(C), having rank 0 or 1. We must prove that, up to a per-
mutation of the rows and columns, this matrix becomes block-diagonal, with commuting
entries in each block. But this can be done as follows:

(1) Up to a permutation of the indices, we can assume that r = pj; has rank 1. But
then, in order for the sum on the first row to be 1, this first row must consist of r, or
s =1 —r, and of 0 projections. The same goes for the first column. Now by permuting
the rows and columns, in follows that our matrix must be as follows:

s 0
*

S »w 3

If the * entry is r, we have our first block, and we can proceed by recurrence.

(2) If the * entry is 0, we need a copy of r both in the second row and second column,
and so by permuting the rows and columns, our matrix must be as follows:

r s 0 0
s 0 r O
0 0

Now if the *x entry is s, we have our first block, and we can proceed by recurrence.

(3) And so on, and we end up with a block decomposition of our representation, as
in the statement. As for the precise quantum group formulation of the factorization that
we obtain, as in the statement, this follows from Proposition 15.21. U

Observe that the various manipulations in the above proof classify as well the possible

sparse Latin squares L € Mg (*,1,2) that we are interested in. To be more precise, there
is one such square for each K € N, as follows:

1 9 1 2 %
21,2>|<1
* 1 2
19 & x 1 2 % % %
2 x 1 * *
2 % 1 %
* 1 % 2 %
* 1 % 2|
‘% 9 1 * *x 2 % 1
* % x 1 2
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In order to compute now the image of the representation in Theorem 15.22, we will
need the following result, which is once again from [32]:

PROPOSITION 15.23. Given a sparse Latin square L € My (x,1,..., R), consider the
permutations oy, ...,0r € Sk given by:

The Hopf image associated to a representation 7 : C(Sk) — Mg(C), u;; — Pr,; as above
is then the algebra C(Gp), where:

G =< 01y...,0R >C Sk
Proor. This follows by using a well-known method, see [32]. O
We are led in this way to the following conclusion:

PROPOSITION 15.24. The matriz models of the following type, assumed as in Propo-
sition 15.18 to be quasi-flat, up to substracting an identity matrix block,

w1 O(SE) = M(C)

appear, via a permutations of the rows and columns, by making a direct sum of sparse
Latin square models, as in Proposition 15.21, and factorize as follows,

71 C(SE) = C(Gg, % ... ¥Gr,) — My(C)

with the groups G; C Sk, being constructed from the sparse Latin squares as in Proposition
15.23, and with the algebra in the middle being the Hopf image.

PRroor. This follows indeed from the above results. O

Now recall from the comments after the proof of Theorem 15.22 that the sparse Latin
squares that we are interested in are classified, with 1 such square, that we will denote
Lk, at any K > 2. With the convention L; = (1), which is technically not a sparse Latin
square, we can convert Proposition 15.24 into a final result, as follows:

THEOREM 15.25. The matriz models of the following type,
7: C(S}) = My(C)

appear, via a permutations of the rows and columns, by making a direct sum of sparse
Latin square models, and factorize as follows,

with Dy, being dihedral groups, and with the algebra in the middle being the Hopf image.

PROOF. In view of of the above discussion, it is enough to prove that the group
associated to the unique sparse Latin square Lx € Mpg(*,1,2) is the dihedral group
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Dy C Sy. For this purpose, observe that the permutations ¢ = o and 7 = 05 constructed
in Proposition 15.23 are the following two involutions of Sk:

o= (1)(23)(45)(67) ...
7 = (12)(34)(56)(78).. ..
Since Gy =< 0,7 > is generated by two involutions, we have:
Gy =<1,0,7,07,T0,0T0,TOT,...>

On the other hand since the permutation o7 € Sk is generically given by ¢ — ¢ + 2,
with the sign depending on the parity of i, we have:

(o) =1

Thus, the above sequence defining our group Gy by enumerating its elements stops
after 2N = | Dy| steps. With a bit more care, by using the quotient map Dy, = Zg*Zgy —
G, we conclude that we have Gy = Dy, as claimed. O

Summarizing, we have a good understanding of the models 7 : C'(S}) — M(C). As a
basic example for the above, we have the “sudoku” construction. Given rank 1 projections
satisfying r + s = 1, " + ¢’ = 1, consider the following matrix, which is sudoku magic:

r 0 s O
10 7 0 ¢
P=1s 0 r 0

0 s 0 o

By permuting rows and columns, we obtain the following matrix, which is still magic,
and which appears as above, from two 2 x 2 Latin squares:

r s 0 O
s r 0 O
P=10 0 + ¢

00 s o

Following now [22], [33] and related papers, we have the following result:

PROPOSITION 15.26. Assuming that a model 7 : C(G) — Mg (C(X)) is inner faithful
and quasi-flat, mapping ui; — Proj(&f;), with ||£5]| € {0,1}, we have

1, = / T,(§")dx
b
where the matriz T,(£) € My»(C), associated to an array & € My(CX) is given by

1
Tp(§)i1---ip7j1---jp = ? < §i1j17§i2j2 >< §i2j27 §i3j3 > < gipjpa §i1j1 >

with the scalar product being the usual one on C¥, taken linear at right.
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Proor. We have the following well-known computation, valid for any vectors &, ..., &,
having norms ||&;|| € {0, 1}, with the scalar product being linear at right:
Proj(&)a =< &, > &, Vi
=  Proj(&)...Proj(&,)(x) =<&,6% > ... ... <&po1,&p >< & > &
= Tr(Proj(&)...Proj(&)) =< &,6 > ... <&po1,6p >< &6 >

Thus, the matrices 7, can be computed as follows:

Bhivciies, = [ 17 (Proq(et, ) Proj(€s,). . Proj(€y,)) do
X

1 T T T T T T
- K /X i1 Sings =< S Siggy > - < Sipgpr Singy > AT
[ Gl
b
We therefore obtain the formula in the statement. See [22], [33]. O

An even more conceptual result, from [14], [22], [33], is as follows:
THEOREM 15.27. Given an inner faithful quasi-flat model
m: C(G) = Mkg(C(X))
Uiy — Proj(gfj)
with [|€5]| € {0,1}, the law of the normalized character x /K with respect to the truncated
integral fé coincides with that of the Gram matriz of the vectors

. 1
i1ty \/E

with respect to the normalized matrix trace, and to the integration functional on X".

‘fifl ®€T2 ®®€Ir

1192 1213 Tri1

PROOF. The moments C), of the measure that we are interested in are given by:

1" g
Op = E/G <;Uu>

1 \
= ﬁ ( p)il.“ip,i]_.../[:p
i1.ip
1 r
= ﬁ * TT(Tp)

The trace on the right is given by the following formula:
Tr(Ty;) = Z (Tp)z’;{...i},,i%..ig ~~~~~~ (Tp)if...ig,i%...ill)

1 e
7‘1"'7’p
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In view of the formula in Proposition 15.26, this quantity will expand in terms of the
matrices T),(§) constructed there. To be more precise, we have:

x
/ E T 21 AL Tp(§ T)zl Argit.il dx
" 21 Ap

By using now the explimt formula of each T},(£), from Proposition 15.26, we have:

Tr( <§12, 1§> ------ 5127512>
er 17"
<£T1, T1> ...... 5 1,5 >dx
By changing the order of the summation, we can write this formula as:
Tr(T, e > <£,«1, T1>
” 2%
zl zT
52 22,512> ...... <§ml,§?”{i%>dx
But this latter formula can be written as follows:
Tr(Ty) = Kpr/rz—d - Ol L © O Gy >
7,1 zT
1 T1 X1 X d
K < gz‘;,ig - ® gml v Sili2 ®...Q giqi} > ax
In terms of the vectors in the statement, and of their Gram matrix G¥, we obtain:
Tr(T)) = / D <ER > <ER i iy > d

T
'Lll

X
/ E Zl 21712 R (G )Il) Zr Z% a7 dl‘
™

T
’Lll

_ g / TG )

Summarizing, the moments of the measure in the statement are given by:

G = = /X TGy

= <tr®/7l) (GP)

This gives the formula in the statement of the theorem. O




15D. UNIVERSAL MODELS 365

15d. Universal models

Following [33], let us study now the universal flat model for C'(S¥). Given a flat magic
unitary, we can write it, in a non-unique way, as w;; = Proj(§;;). The array £ = (&) is
then a “magic basis”, in the sense that each of its rows and columns is an orthonormal
basis of CV. We are therefore led to two spaces, as follows:

DEFINITION 15.28. Associated to any N € N are the following spaces:

(1) Xy, the space of all N x N flat magic unitaries u = (u;;).
(2) Ky, the space of all N x N magic bases & = (&;).

Let us recall now that the rank 1 projections p € My(C) can be identified with the
corresponding 1-dimensional subspaces £ C CV, which are by definition the elements
of the complex projective space P2 ~'. In addition, if we consider the complex sphere,
SHt = {2 € CY|Y, |2i|? = 1}, we have a quotient map 7 : S¢~' — PY™! given by
z — Proj(z). Observe that m(z) = 7(2’) precisely when 2z’ = wz, for some w € T.

Consider as well the embedding Uy C (SF™ 1Y given by  — (x1,...,7y), where
x1,...,xy are the rows of x. Finally, let us call an abstract matrix stochastic/bistochastic
when the entries on each row/each row and column sum up to 1.

With these notations, the abstract model spaces Xy, Ky that we are interested in,
and some related spaces, are as follows:

PROPOSITION 15.29. We have inclusions and surjections as follows,
Ky C Ujj\y C MN(Sévil)

3 3 \

Xy C Yy C My(PNTY
where Xy, Yn consist of bistochastic/stochastic matrices, and Ky is the lift of Xy.

Proor. This follows from the above discussion. Indeed, the quotient map Sév "
PY~! induces the quotient map My (SE ') — My (PY ") at right, and the lift of the space
of stochastic matrices Yy C My (P2 ™') is then the rescaled group UY, as claimed. U

In order to get some insight into the structure of Xy, Ky, we can use inspiration
from the Sinkhorn algorithm. This algorithm starts with a N x N matrix having positive
entries and produces, via successive averagings over rows/columns, a bistochastic matrix.

In our situation, we would like to have an “averaging” map Yy — Yy, whose infinite
iteration lands in the model space Xy. Equivalently, we would like to have an “averaging”
map UY — UY, whose infinite iteration lands in K.
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In order to construct such averaging maps, we use the orthogonalization procedure
coming from the polar decomposition. First, we have the following result:

PrRoPOSITION 15.30. We have orthogonalization maps as follows,

(S e (52N

(PE7)Y (P

where a(x); = Pol([(x:);]i;), and B(p) = (P~Y?p,P~Y%), with P =", pi.

PRrROOF. Our first claim is that we have a factorization as in the statement. Indeed,
pick pi1,...,py € P!, and write p; = Proj(w;), with ||z;|| = 1. We can then apply a,
as to obtain a vector a(x) = («});, and then set 3(p) = (p}), where p, = Proj(z}).

Our first task is to prove that 3 is well-defined. Consider indeed vectors z;, satisfying
Proj(z;) = Proj(z;). We have then z; = \x;, for certain scalars \; € T, and so
the matrix formed by these vectors is M = AM, with A = diag(\;). It follows that

Pol(M) = APol(M), and so &, = A\;x;, and finally Proj(z}) = Proj(z}), as desired.

It remains to prove that g is given by the formula in the statement. For this purpose,
observe first that, given zy,..., 2y € SY 1, with p; = Proj(z;) we have:

Zpi = Z[(@)k(ﬂh)z]kz

i

= Z(Mszzl>kl

= ((M"M)g)
= MM
We can now compute the projections p; = Proj(x;). Indeed, the coefficients of these
projections are given by (p})x = UpU; with U = MP~12 and we obtain, as desired:

(P = Z Mo Pyl My Py
ab

ab
~1/2 —1/2
- Z Pra / (Pi)ab Py /
ab

(Pil/zpipflm)kl



15D. UNIVERSAL MODELS 367

An alternative proof uses the fact that the elements p; = P~'/?p; P~1/2 are self-adjoint,
and sum up to 1. The fact that these elements are indeed idempotents can be checked
directly, via p; P~'p; = p;, because this equality holds on ker p;, and also on ;. U

As an illustration, here is how the orthogonalization works at N = 2:

PROPOSITION 15.31. At N = 2 the orthogonalization procedure for (Proj(z), Proj(y))
amounts in considering the vectors (x £ y)/v/2, and then rotating by 45°.

PROOF. By performing a rotation, we can restrict attention to the case x = (cost,sint)
and y = (cost, —sint), with ¢ € (0,7/2). Here the computations are as follows:

2cos’t 0 )

0 2sin’t

__(cost sint
" \cost —sint

) = e

—_— p—1/2:|M|—1:i($ ?)
V20 5

_ 1 /1 1
— U:M|M\1:E(1 _1>

Thus the orthogonalization procedure replaces (Proj(z), Proj(y)) by the orthogonal
projections on the vectors (\%(1, 1), \%(—1, 1)), and this gives the result. O

With these preliminaries in hand, let us discuss now the version that we need of the
Sinkhorn algorithm. The orthogonalization procedure is as follows:

THEOREM 15.32. The orthogonalization maps o, B induce maps as follows,

Uy —2 - yN
Yy — 2 oYy

which are the transposition maps on Ky, Xy, and which are projections at N = 2.

PROOF. It follows from definitions that ®(x) is obtained by putting the components
of x = (x;) in a row, then picking the j-th column vectors of each z;, calling M, this
matrix, then taking the polar part x; = Pol(M;), and finally setting ®(z) = 2’. Thus:

®(x) = Pol((xi):);
U(w) = (P Puy P %),

Thus, the first assertion is clear, and the second assertion is clear too. Il

Our claim is that the algorithm converges, as follows:
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CONJECTURE 15.33. The above maps @,V increase the volume,
vol : U — Yy — [0,1],  wol(u) = [ ]| det((us;):)]
J

and respectively land, after an infinite number of steps, in Ky/Xn.

As a main application of the above conjecture, the infinite iteration (®2)* : UY — Ky
would provide us with an integration on Ky, and hence on the quotient space Ky — Xy
as well, by taking the push-forward measures, coming from the Haar measure on UY. In
relation now with the matrix model problematics, we have:

CONJECTURE 15.34. The universal N x N flat matriz representation
mn  C(SY) = My (C(Xn)),  mv(wyg) = (u— ugy)
18 faithful at N =4, and is inner faithful at any N > 5.

We refer to [33] and related papers for further details regarding this conjecture, and
also for other applications of the Sinkhorn algorithm philosophy to modelling questions
for the quantum permutation groups.

15e. Exercises

The matrix modelling problematics is something quite exciting, and we have several
exercises here. In relation with the notion of stationarity, we have:

EXERCISE 15.35. Work out the details for the fact that the stationarity of a model
m:C(G) — Mg(C(T))
implies its faithfulness.

This is something that we already discussed in the above, but with some standard
functional analysis details missing. The problem is that of working out these details.

In relation with the notion of inner faithfulness, we have:
EXERCISE 15.36. Find an example of an inner faithful model
m:C(G) —» Mg(C(T))
which is not faithful, not coming from a classical group, or a group dual.

This is something quite tricky, and it is of course possible to cheat a bit here, by using
product operations. The exercise asks for a high-quality counterexample.



CHAPTER 16

Weyl and Fourier

16a. Weyl matrices

Following [25], [33], let us discuss now some more subtle examples of stationary mod-
els, related to the Pauli matrices, and Weyl matrices, and physics. We first have:

DEFINITION 16.1. Given a finite abelian group H, the associated Weyl matrices are
Wia ey =< 1,0 > eqpyp
where 1 € H, a,b € ﬁ], and where (i,b) =< 1,b > is the Fourier coupling H X H—T.

As a basic example, consider the cyclic group H = Z, = {0,1}. Here the Fourier
coupling is given by < i,b >= (—1)%, and so the Weyl matrices act via:

b
Wo :ep — e, , Wig:ep— (—1)

. b .
Wiiiey = (=1)e1 , Woriey — eppn

Thus, we have the following formulae:

10 1 0
WOO = (O 1) ) WIO = (0 _1>

0 —1 01
(0 3) (1)

We recognize here, up to some multiplicative factors, the four Pauli matrices. Now
back to the general case, we have the following well-known result:

PROPOSITION 16.2. The Weyl matrices are unitaries, and satisfy:

(1) Wt =<i,a>W_; .

(2) WigWi, =< 0,0 > Wigjats.
()VVwa—<j—Z b>Wi_jap.
(4) WxWi =<i,a—b>W;_;p_,.

PROOF. The unitarity follows from (3,4), and the rest of the proof goes as follows:
369
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(1) We have indeed the following computation:

VV;;L - (Z < 7:7 b> Ea+b,b>
b
= Z < —i,0 > Epayp
b

= Z< —i,b—a>Eb_a7b
b

= <i,a> W_i,_a

(2) Here the verification goes as follows:

WiaWip = (Z <i,b+d> Ea+b+d,b+d> <Z < Jj,d > Eb+d,d>
d d

— Z<z’,b><i+j,d>Ea+b+d,d
p

= <1,b> Wigjab
(3,4) By combining the above two formulae, we obtain:
WilWs = <j,b>WiW_;
= <J,b><i,=b>Wi_j.
We obtain as well the following formula:
WiWiy = <i,a>W_;, Wy
= <t,a><—=i,b>W;_;,,
But this gives the formulae in the statement, and we are done. O

With n = |H|, we can use an isomorphism [2(H) ~ C" as to view each Wj, as a usual
matrix, W, € M, (C), and hence as a usual unitary, W;, € U,,. Also, given a vector £, we
denote by Proj(§) the orthogonal projection onto C¢. Following [33], we have:

PROPOSITION 16.3. Given a closed subgroup E C U,, we have a representation
7y 2 C(SY) = My(C(E))
Wia,jo — [U — Proj(Wi,UW},)]
where n = |H|, N = n?, and where W;, are the Weyl matrices associated to H.
ProoF. The Weyl matrices being given by W;, : e, =< 1,0 > e,1p, we have:

{1 if (,a) = (0,0)
tr(Wi)_{o if (4,a) # (0,0)
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Together with the formulae in Proposition 16.2, this shows that the Weyl matrices are
pairwise orthogonal with respect to the following scalar product on M, (C):

<x,y >=tr(zy”)

Thus, these matrices form an orthogonal basis of M,,(C), consisting of unitaries:

W= {W

ieH,aeﬁ}

Thus, each row and each column of the matrix &, ;5 = Wi U Wfb is an orthogonal basis
of M,,(C), and so the corresponding projections form a magic unitary, as claimed. U

We will need the following well-known result:
PROPOSITION 16.4. With T = Proj(z;) ... Proj(z,) and ||z;|| = 1 we have
<TEn>=<Exp ><Tp,Tp_q > ... < To, 1 >< T1,1) >
for any &, m. In particular, we have:
Tr(T) =< x1,xp >< Tp, Tp_1 > ... < To, T3 >
PRrROOF. For ||z|| = 1 we have Proj(z)§ =< £, x > x. This gives:

T¢ = Proj(xy)...Proj(z,)¢
= Proj(z1)...Proj(x,_1) <& x, >
= Proj(z1)... Proj(xp_2) < & xp >< xp, Tp_1 > Tp_q

= <&1p><xp, Ty > ... < T, T > T4

Now by taking the scalar product with 7, this gives the first assertion. As for the
second assertion, this follows from the first assertion, by summing over £ =7 = e;. O

Now back to the Weyl matrix models, let us first compute 7;,. We have:

PRrROPOSITION 16.5. We have the formula

(Ty)iagb
1

= N <z'1,a1—ap> <ip,ap—ap,1 ><j1,b1—b2 > .. <jp,bp—b1 >
/EtT(VVil—lé,al—aQ UW]'2—j17b2—b1 U*) SR tr(w/ip—il,ap—al Ule_jpybl_bp U*)dU

with all the indices varying in a cyclic way.
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PROOF. By using the trace formula in Proposition 16.4 above, we obtain:
(Tp)iab

= (t?“ ® /) <PT’0j(VVi1a1 UVV]*1b1) T Proj(Wipap UVV;;I’P)>
E

1 * * * *
— N/E < Winad UWS s Wi UWS > s < Wing, UWSy  Wio, UWS, > dU
In order to compute now the scalar products, observe that we have:

< Wil UWh W UWg > = tr(WaU Wi W, UWp)
= tr(WWiUWgWU”)
= <i,a—c>< l, d—0b> tT’(Wk_LC_aUVVj_l’b_dU*)

By plugging these quantities into the formula of T},, we obtain the result. U

Consider now the Weyl group W = {W,,} C U,, that we already met in the proof of
Proposition 16.3 above. We have the following result, from [33]:

THEOREM 16.6. For any compact group W C E C U,, the model
7y C(SY) = My(C(E))
Wia,jb — [U — P?“Oj(WmU ]ka)]
constructed above is stationary on its image.

PROOF. We must prove that we have 77 = T,,. We have:
2

(Tp )i%jb

= Z(Tp)iaka(Tp)kc,jb
1 , .
= mz:<zl,a1—ap> <,y — Ay >< ki, —ca > < kp,cp—c >
kc
<ki,cro—cp> .. <kpcp—cpo1 ><Ji,b —by> ... <jp, b, — b >

/ tr(vvilfig,alfag UWkgfkl,chl U*> S tr(mpfil,apfal UWklfkp,clfch*>dU
E

/ Wiy —kaer—es VWin i o0 V) oot Wiy by ep—er VWi —jp b1 -,V ) AV
E
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By rearranging the terms, this formula becomes:

(T7)ia,jb

1 ) . .
= <21,a1 ap > ... < lp,Gp— ap_1 >< J1,b0 —by > ... < jp, b, — b1 >

// —kp,cr—cp > .. <ky—kp1,cp—cp1 >
FE
( 11—12,01 —a2 Usz k1,c2—c1 U*)tr(Wklka,q CQVVVJQ —Jj1,b2—b1 V*)

tr(Wip_ihap_al UWkl—kp,cl —cp U*)tr<Wkp—k1,cp—cl Vle —jipsb1—bp V*)dUdV

Let us denote by I the above double integral. By using W}, =< k,c > W_j _. for
each of the couplings, and by moving as well all the U* variables to the left, we obtain:

// 21 12,01 — azUsz k1,c2— Cl)tr(sz k1,cg—c1VVVj2—j1,b2—b1v*)
E
tr(U*Wip_ihap_al UWkl_kpycl_Cp)tr<W];kl—]€p,Cl—CPVW]1 ]p b1— bpv*)dUdV

In order to perform now the sums, we use the following formula:

1
t?”(Ach)t'r(lecB) == N Z Aqr(ch)rq<W]:c>stBts

qgrst

1
—= N ZAqT < k,q > 57’—(1’5 < k, —S > 5t—S,CBt$

qrst

1
= Z <k, q—5>Agq+cBstcs

qs
If we denote by A,, B, the variables which appear in the formula of I, we have:
I
= Np//E <I€2—k?1,ql—81> ]{7 kp,qp—8p>
keqs
(Al)q17q1+02 61(31)S1+02 —C1,81 * ** (Ap)qpvqp-i-q—cp(Bp)sp+61—cp,sp
- Np//Ekz:<k17Qp _QI+31> <kp>Qp1 qp+sp
cqs
(Al)q1,q1+02761 (Bl>81+02701,51 s (Ap)qp,qurqfcp (Bp)sp+61fcp,sp

Now observe that we can perform the sums over ki, ..., k,. We obtain in this way a
multiplicative factor n?, along with the condition:

ql—81:...:qp—5p
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Thus we must have ¢, = s, + a for a certain a, and the above formula becomes:

/ / Z Al 51+a s1+co2— cl+a(Bl)S1+02 —C1,81 * * (Ap)sp'i‘aysp'i'cl_Cp'i‘a(Bp)Sp'i'Cl_vasp

csa

Consider now the variables r, = ¢,+1 — ¢,, which altogether range over the set Z of
multi-indices having sum 0. By replacing the sum over ¢, with the sum over r,, which
creates a multiplicative n factor, we obtain the following formula:

= np—1 / / ZZ Al 81+a 81+r1+a(Bl>81+r1781 s (Ap>sp+a,sp+rp+a(Bp)serrp,sp

reZ sa

For an arbitrary multi-index r we have:
1 , .
05 ri0 = EZ <t,ry > <4,y >
(2

Thus, we can replace the sum over r € Z by a full sum, as follows:

/ / Z < Z 1 > >31+a,sl+r1+a(B1)81+'r1,Sl

rsia

< 1, Ty > (Ap)sp+a,sp+rp+a(Bp)serrp’sp

In order to “absorb” now the indices i, a, we can use the following formula:

VViZAWia

= (Z <1,—b> Eb,a+b> (Z Ea+b,a+cAa+b,a+c> (Z <1i,c> Ea+c,c)
b c

be
= Z < i? c—b> EbcAa+b,a+c

be
Thus we have:
(W;Ama)bc =< iv c—b> Aa+b,a+c

Our formula becomes:

= / / Z W* Al ia 81,81+7"1(Bl)81+7“1 s1 0t (M/;ZApmfia)sp,sp-i-rp (Bp)sp-i-rp,sp

rsia

= //Ztr(WGZAlmaBl) ...... tr(W; A, Wi, B,)
EJE 44
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Now by replacing A,, B, with their respective values, we obtain:

I = / / Z tr(sz*WiI*iQ;G«l*GQ UWiaVWjQ*jl,bQ*bl V*)
EJE
tr(M/;U*I/VZ-p_ihap_alUWwVle_jpybl_pr*)dUdV
By moving the W} U* variables at right, we obtain, with S;, = UW;,V:

L= Z /E /E tr(Wiy—iz,a1-a2 SiaWia—js ba—b1 Sia)

tr(Wi,—ir.ap—ar SiaWji—jp b1 —b, S50 )AU AV

Now since S, is Haar distributed when U,V are Haar distributed, we obtain:
I= N/ / 2fra/vil—2'2,01—!12UVij—jhbz—IH U*) . 'tT(VVip—il,ap—al UVI/jl_jpubl—pr*)dU
EJE

But this is exactly N times the integral in the formula of (7},);q b, from Proposition
16.5 above. Since the N factor cancels with one of the two N factors that we found in
the beginning of the proof, when first computing (sz)m,jb, we are done. O

As an illustration for the above result, going back to [25], we have:
THEOREM 16.7. We have a stationary matriz model
m: C(S) C My(C(SUy))
giwen on the standard coordinates by the formula
7(u;j) = [z = Proj(c;xc;)]
where x € SUs,, and cq, ¢, c3, ¢4 are the Pauli matrices.

PROOF. As already explained in the comments following Definition 16.1, the Pauli
matrices appear as particular cases of the Weyl matrices:

10 1 0
WOO = (O 1) ) Wl() - (0 _1)

0 -1 01
Wll = <1 0 ) 9 WOl = (1 0>

By working out the details, we conclude that Theorem 16.6 produces in this case the

model in the statement. O

Observe that, since the projection Proj(c;xc;) depends only on the image of = in the
quotient SU, — SOs3, we can replace the model space SU; by the smaller space SOs.
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This can be used in conjunction with the isomorphism S} ~ SO; ', and as explained
in [12], our model becomes in this way something more conceptual, as follows:

m: C(SO3Y) € My(C(S0s))

As a philosophical conclusion, to this and to some previous findings as well, no matter
what we do, we always end up getting back to SUs,, SO3. Thus, we are probably doing
some physics here. This is indeed the case, the above computations being closely related to
the standard computations for the Ising and Potts models. The general relation, however,
between quantum permutations and lattice models, is not axiomatixed yet.

16b. Cocyclic models

Let us discuss now some generalizations of the Weyl matrix models.

We will need the following standard definition:
DEFINITION 16.8. A 2-cocycle on a group G is a function o : G x G — T satisfying:
o(gh,k)o(g,h) = o(g,hk)o(h, k)
o(g,1) = o(l,g) =1
The algebra C*(G), with multiplication given by
g-h=o0o(g,h)gh

and with the involution making the standard generators g € C(G) unitaries, is denoted

Cx(G).
As explained in [33], we have the following general construction:
PROPOSITION 16.9. Given a finite group G = {g1,...,gn} and a 2-cocycle
c:GxG—T
we have a matriz model as follows,
m: C(Sy) = My(C(E))
wi; — [v — Proj(gixg;)]
for any closed subgroup E C Uga, where A = C%(G).

PRroOOF. This is clear from definitions, because the standard generators {gi,...,gn}
are pairwise orthogonal with respect to the canonical trace of A. See [33]. g

In order to investigate the stationarity of 7, we use:
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PRrROPOSITION 16.10. We have the formula

(Ty)iripijrgy = 0(t1,97 Yig) ... o(iy,i i i) - o (j2,j3 ") - -0 (G1s 41 )
N / tr(g;m15,09715,) - tr(g;-1;,29;-1; «*)dx
with all the indices varying in a cyclic way.

PROOF. According to the definition of 7},, we have the following formula:
(Tp)is.ccipivovdo

- (tr ® /) (Proj(gilxg;) . Proj(gipxg;p)) dx
E

= %/E < 91 %G5, 91,295, > - - < Gi, %95, Gi TGy, > dx
We have the following formula:
9igi-1i = 0(i,1 k) gi
Thus, we have the following formula:
9i gk = 0 (6,17 k) gir
We therefore obtain:
< gixg;, grrg; > = tr(g;x"g; grry;)
= tr(g; grrg; gja")
= o(i,17%k) - o(l,171g) - tr(gi-1grgi-1j27)
By plugging these quantities into the formula of 7},, we obtain the result. O

We have the following result, which generalizes some previous computations:

THEOREM 16.11. For any intermediate closed subgroup G C E C Uya, the matrix
model

7 C(S) = My(C(E))

constructed above is stationary on its image.

PROOF. We use the formula in Proposition 16.10. Let us write (7},):; = p(i, j)(1}))ij,
where p(i, j) is the product of o terms appearing there. We have:

(T = Y ()T
k
= > pli, k)plk, 5)(T5)in(T3);
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Let us first compute the p term. We have:
pli, k)p(k, j)
= a(zl,zl Yia) .. (z'p,z';lz'l)-a(l@,k;lkl)...a(kl,kflkp)
ok, ki ke) o (kp by hn) - 0 (2, 53 1) - - 0 (G, v )
(i,7) - o ko, k3 ') - o (R by o) e o(ky, ki hy) - o (ky, by Thy)

Now observe that by multiplying o(i,i'k)gfgx = gi—1 and o(k, k™) g;9; = gr—1; We
obtain:

= 01

o(i,i 'k)o(k, k) = o(i 'k, k1)
Thus, our expression further simplifies:
pi.k)p(k,j) = a(i,j) - o(ky ko by ha) oo (ky ke, Ky h)

On the other hand, the T° term can be written as follows:

(T)a(T))k; = NQ//W 3 L1y T (11,9952,

tr(gi;lilxgkl_lklpx*)tr(gk;1k1ygjl_ljpy*)dxdy
We therefore conclude that we have the following formula:
(T2 )i

o (ky 'k, by k)t (i1, 051, TN (941995515, 97
Ek1 Ky

a(krl_lkp, kzjlkl)tr(grlila:gkflk :B*)tr(gkflklyg.fl. Y )dzdy
j

By using now g = a(z i~1)g;-1, and moving as well the 2* variables at left, we obtain:

(T3)is

p

x g’L 112xgk 1k‘1>tr(gk 1k1yg]2 le*)
B k:
tr(x*gi;lilfvgk;lkp)tr(g,:;lkpygjl—ljpy*)dfcdy
We can compute the products of traces by using the following formula:
tr(Age)tr(g;B) = Z < 9g: Agr >< gs, g.B >

qs
= > tr(g;Ag)tr(g:giB)
qs

Thus are left with an integral involving the variable 2z = zy, which gives T7. O
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Let us discuss now the relationship with the Weyl matrices. We have:

PROPOSITION 16.12. Given a finite abelian group H, consider the product G = H X ﬁI,
and endow it with its standard Fourier cocycle.

(1) With E = U,, where n = |H|, the model w : C(Sy) — Mx(C(U,)) constructed
above, where N = n?, is the Weyl matriz model associated to H.

(2) When assuming in addmon that H is cyclic, H = Z,,, we obtain in this way the
matriz model for C(Sy%) coming from the usual Weyl matrices.

(3) In the particular case H = Z,, the model m : C(S]) — My(C(Us)) constructed
above is the matriz model for C(S}) coming from the Pauli matrices.

PrOOF. All this is well-known. The general construction in Proposition 16.9 above
came in fact by successively generalizing (3) — (2) — (1), and then by performing one

more generalization, with G = H x H with its standard Fourier cocycle being replaced
by an arbitrary finite group G, with a 2-cocycle on it. For full details here, see [33]. O

Regarding now the associated quantum permutation groups, in the general context of
Proposition 16.9, we have the following result:

THEOREM 16.13. For a generalized Weyl matriz model, as in Proposition 16.9 above,
the moments of the main character of the associated quantum group are

&= Z / tr(g;,vg;,v*) . .tr(gjpxg;px*)dx
J--dp
where o means that the indices are subject to the condition j; ... J, = 1.

PRrROOF. According to Proposition 16.9 and to Proposition 16.10 above, the moments
of the main character are the following numbers:

& = Z o(ir, iy in) ... 0 (ipy iy bir) - 0 iz, iy i) . .. o (i, i7 L)

11...0p
/ tr(gi-1;, 91, @7) tr(g;-15, 29,71, %" )da
E
We can compact the cocycle part by using the following formulae:

(i i Vipi1) 0 (ipr1sintyip) = 0 (ipp1, iy iyip - i) ipir)o (i yip, ) Hipi)
0 (ipr1, 1)o (i, i iprn)

= U(Z’;ilim igjlip—irl)
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Thus, in terms of the indices j; = iy 4, ... JIp = 21, which are subject to the
condition j; ...7, = 1, we have the following formula:

l - — X x
&= 3 Z (i) - o(it gp) /Etr(gjlxgjllx )..-tr(gj,xg;-12")dx
Ji---Jp
Here the o symbol above the sum is there for reminding us that the indices are subject
to the condition j;...j, = 1. We can use now:

g =0o(i71 j)g
We therefore obtain:

&= 5 Z / tr(gpxg;, ") ... tr(g;,xg; x*)dx
J1---p
Thus, we have obtained the formula in the statement. Il

It is quite unclear whether the above formula further simplifies, in general.

In the context of the Fourier cocycles, as in Proposition 16.12, it is possible to pass to
a plain sum, by inserting a certain product of multiplicative factors c(ji) ... c(j,), which
equals 1 when j;...j, = 1, and the computation can be finished as follows:

p
¢ = N/( Jitr(gjrgix )) dx
= N/Etr(mc*)dx

Thus, the law of the main character of the corresponding quantum group coincides
with the law of the main character of PE. All this suggests that the quantum group
associated to a Weyl matrix model, as above, should appear as a suitable twist of PFE.

In addition, we believe that in the case where FE is easy these examples should be
covered by a suitable projective extension of the Schur-Weyl twisting procedure.
16c. Hadamard matrices

Following [8], [14], [19], [45], [34] and related papers, let us discuss now the Hadamard
matrix models, which are of particular importance as well. Let us start with:

DEFINITION 16.14. A complex Hadamard matrix is a square matrix
H e MN((C)

whose entries are on the unit circle, and whose rows are pairwise orthogonal.
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Observe that the orthogonality condition tells us that the rescaled matrix U = H/vV N
must be unitary. Thus, these matrices form a real algebraic manifold, given by:

Xy = My(T) NV NUy

The basic example is the Fourier matrix, Fiy = (w”) with w = >N, With indices
i,j7€4{0,1,..., N — 1}, this matrix is as follows:

1 1 1 . 1
1 w w? oowNt
Fy = 1 w? wt LoD

N—1 2(&—1) (N.—l)g

1 w w w

More generally, we have as example the Fourier coupling of any finite abelian group

G, regarded via the isomorphism G ~ G as a square matrix, Fg € Mg(C):
Fo=<1i,j >icG,jel

Observe that for the cyclic group G = Zy we obtain in this way the above standard
Fourier matrix Fly. In general, we obtain a tensor product of Fourier matrices Fly.

There are many other examples of Hadamard matrices, some being elementary, some
other fairly exotic, appearing in various branches of mathematics and physics. The idea
is that the complex Hadamard matrices can be though of as being “generalized Fourier
matrices”, and this is where the interest in these matrices comes from.

For more on all this, we refer here to [88].

In relation with the quantum groups, the starting observation is as follows:

ProposITION 16.15. If H € My(C) is Hadamard, the rank one projections

H;
Piy; = Proj (F)
J

where Hy, ..., Hy € TV are the rows of H, form a magic unitary.

PRrooOF. This is clear, the verification for the rows being as follows:

<@ &> _ oyt B
H;' Hy — Hy H,
- Hy
- X,

= Nojy
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The verification for the columns is similar, as follows:

<Hi Hk> B Hy Hjy

H;' H; Hy Hy

H;
B ; Hy,
= Ny,

Thus, we have indeed a magic unitary, as claimed. U

We can proceed now in the same way as we did with the Weyl matrices, namely by
constructing a model of C(S};), and performing the Hopf image construction:

DEFINITION 16.16. To any Hadamard matriz H € My(C) we associate the quantum
permutation group G C S} given by the fact that C(G) is the Hopf image of

7:C(SY) = My(C)

[ H,
Ujj — PT’O] (-])
where Hy,...,Hy € TV are the rows of H.

Summarizing, we have a construction H — G, and our claim is that this construction
is something really useful, with G encoding the combinatorics of H. To be more precise,
our claim is that “H can be thought of as being a kind of Fourier matrix for G”.

This is of course quite interesting, philosophically speaking. There are several results
supporting this, with the main evidence coming from the following result, coming from
[19], [34], which collects the basic known results regarding the construction:

THEOREM 16.17. The construction H — G has the following properties:

(1) For a Fourier matrix H = Fg we obtain the group G itself, acting on itself.
(2) For H & {F¢}, the quantum group G is not classical, nor a group dual.
(3) For a tensor product H = H' ® H" we obtain a product, G = G' x G".

Proor. All this material is standard, and elementary, as follows:

(1) Let us first discuss the cyclic group case, where our Hadamard matrix is a usual
Fourier matrix, H = Fy. Here the rows of H are given by H; = p’, where:

p=(Lww? . . . ¥

Thus, we have the following formula, for the associated magic basis:
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It follows that the corresponding rank 1 projections P;; = Proj(H;/H;) form a cir-
culant matrix, all whose entries commute. Since the entries commute, the corresponding
quantum group must satisfy G C Sy. Now by taking into account the circulant property
of P = (P,;) as well, we are led to the conclusion that we have:

G =17y

In the general case now, where H = F, with G being an arbitrary finite abelian
group, the result can be proved either by extending the above proof, of by decomposing
G =Zn, X ... X Ly, and using (3) below, whose proof is independent from the rest.

(2) This is something more tricky, needing some general study of the representations
whose Hopf images are commutative, or cocommutative. For details here, along with a
number of supplementary facts on the construction H — G, we refer to [34].

(3) Assume that we have a tensor product H = H' ® H”, and let G,G’,G” be the
associated quantum permutation groups. We have then a diagram as follows:

C(Sy) ® C(Syn) —= C(G") @ C(G") —= My/(C) ® Mp»(C)

(S5 C(Q) My(C)

Here all the maps are the canonical ones, with those on the left and on the right
coming from N = N'N”. At the level of standard generators, the diagram is as follows:

!/ " / " / /!
Usj & Ugy Wi; @ Wy Pij ® Py,

Uia,jb Wia,jb Pm,jb

Now observe that this diagram commutes. We conclude that the representation asso-
ciated to H factorizes indeed through C(G') ® C'(G”), and this gives the result. O

Generally speaking, going beyond the above result, with explicit computations of
quantum permutation groups associated to explicit complex Hadamard matrices, is a
quite difficult task. The main results which are known so far concern the deformations of
the Fourier matrices, and we refer here to [8], [14], [45] and related papers.

At a more abstract level, one interesting question is that of abstractly characterizing
the magic matrices coming from the complex Hadamard matrices. We have here:
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PROPOSITION 16.18. Given an Hadamard matriz H € My(C), the vectors

on which the magic unitary entries P;; project, have the following properties:
(1) & = & is the all-one vector.
(2) &ii&jk = ik, for any i, j, k.
(3) &ijém = Sulkj, for any i,5,k, 1.
PRrROOF. All these assertions are trivial, by using the formula §;; = H;/H;. O

Let us call now magic basis of a given Hilbert space H any square array of vectors
¢ € My(H), all whose rows and columns are orthogonal bases of H. With this convention,
the above observations lead to the following result, at the magic basis level:

THEOREM 16.19. The magic bases & € MN(S(]CV_l) coming from the complex Hadamard
matrices are those having the following properties:

(1) We have &; € TV, after a suitable rescaling.
(2) The conditions in Proposition 16.18 are satisfied.

PROOF. By using the multiplicativity conditions (1,2,3) in Proposition 16.18, we con-
clude that, up to a rescaling, we must have §; = &;/&;, where &, ..., &y is the first row
of the magic basis. Together with our assumption &; € TV, this gives the result. U

At the general level now, we have the following result, from [19]:

THEOREM 16.20. The Tannakian category of the quantum group G C Sy associated
to a complex Hadamard matriz H € My(C) is given by

T € Hom(u®" u®) <= T°G*?* = G'T°
where the objects on the right are constructed as follows:
(1) T°=id®T ®id.
(2) Gly = 32y Hix Hjx Hop .
k — IkIk—1 ¥
(3) Gil---ikajl---jk - Gi:ilil T Gzzzljj

PROOF. We use the Tannakian result for the Hopf image of a representation, discussed
in chapter 15 above. With the notations here, we have the following formula:

Hom(u®", u®) = Hom(U®* U®")

The vector space on the right consists by definition of the complex N! x N* matrices
T, satisfying the following relation:

TU®* = U®'T
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If we denote this equality by L = R, the left term L is given by:

Lij = (TU®M),
k
= > Tl

= Z TiaUayj, - - - Uayjy

As for the right term R, this is given by:
Ry = (U®'T)y
= D) Uiy,

b
— E Uilbl e UilblTbj
b

Consider now the vectors &;; = H;/H;. Since these vectors span the ambient Hilbert
space, the equality L = R is equivalent to the following equality:

< Lz’jquafrs >=< Rijgpqafrs >

We use now the following well-known formula, expressing a product of rank one pro-
jections Py, ..., Py in terms of the corresponding image vectors &, ..., &:

<P1...ka,y>:<x,§k><£k,§k_1> ...... <§2,fl ><§1,y>
This gives the following formula for L:
< Lijgpm frs > = Z Ea < Pa1j1 s Pakjkgpqa grs >
a
== ZTia < quagakjk > ... < £a1j17£rs >
a
pag — agag—1 azai — air
- ZEGG]:;;%SM
a

= (T°G"*)ripsjq

— E TmGthk GPkik=1 (201 (s
a
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As for the right term R, this is given by:
< Rijgpqagrs > = Z < Pi1b1 - -Pilblgpqvgrs > Tbj
b

= Z < gpqvfilbl >...< flebl,frs > Tbj
b

= D GUGGENGIT,

i~ iii—1 igi1 T agT

b
1+2
= Z Gr—z!_p,squbj
b
= (GHQTO)MP,SJQ
Thus, we obtain the formula in the statement. See [19]. O

We will be back to the above result later on, with several interpretations of the formula
found there, which reminds computations from statistical mechanics.

16d. Spin models

Let us discuss now the relation with subfactor theory, and with planar algebras. As a
starting point, we have the following basic observation of Popa [82]:

PROPOSITION 16.21. Up to a conjugation by a unitary, the pairs of orthogonal MASA
in the simplest factor, namely the matriz algebra My (C), are as follows,

A=A
B =HAH"
with A C My (C) being the diagonal matrices, and with H € My (C) being Hadamard.

PROOF. Any maximal abelian subalgebra (MASA) in My(C) being conjugated to A,
we can assume, up to conjugation by a unitary, that we have, with U € Uy:

A=A
B =UAU*
Now observe that given two diagonal matrices D, E € A, we have:

1
tr(D-UEU") = > (DUEU");
1 _
= NZD%U@'jEﬁUij

J
1
= v > Diskj|U
i
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Thus, the orthogonality condition A 1 B reformulates as follows:
1 1
N > DiEylUyl* = e > DikEj
ij ij

Thus, we must have the following equality, for any ¢, 5:

1
Uyl = ——
U] VN

But this tells us that the matrix H = v/ NU must be Hadamard, as claimed. U

Along the same lines, but at a more advanced level, we have:

THEOREM 16.22. Given a complex Hadamard matric H € My (C), the diagram formed
by the associated pair of orthogonal MASA, namely

A My (C)
C HAH*

is a commuting square in the sense of subfactor theory, in the sense that the expectations
onto A, HAH* commute, and their product is the expectation onto C.

PROOF. The expectation Ex : My (C) — A is the operation M — Ma which consists
in keeping the diagonal, and erasing the rest. Consider now the other expectation:

Eyap+ : My(C) - HAH®

It is better to identify this with the following expectation, with U = H/v/N:
Eyau-: My(C) — UAU

This latter expectation must be of the form M — UXAU*, with X satisfying:

<M, UDU* >=< UXAU*,UDU* > , VDeA
The scalar products being given by < a,b >= tr(ab*), this condition reads:
tr(MUD*U*) =tr(XaD*) , VDeA
Thus X = U*MU, and the formulae of our two expectations are as follows:

Ex(M) = Ma
Eyav-(M) = U(U*MU)AU*

With these formulae in hand, an elementary computation gives the result. U
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The point now is that any commuting square C' produces a subfactor of the Murray-
von Neumann hyperfinite II; factor R. Consider indeed such a square:

Cor

Cll

C100 CIO

Under suitable assumptions on the inclusions Cyy C Cig, Co1 C C11, we can perform
the basic construction for them, in finite dimensions, and we obtain in this way a whole
array of commuting squares, as follows:

Ag Ay As

A A :
Cro——n Cro—C Iy
Cor Ch Clyp v - B,
Coo Cho Clg e > By

Here the various A, B letters stand for the von Neumann algebras obtained in the
limit, which are all isomorphic to the hyperfinite II; factor R, and we have:

THEOREM 16.23. In the context of the above diagram, the following happen:

(1) Ap C Ay is a subfactor, and {A;} is the Jones tower for it.
(2) The corresponding planar algebra is given by Al N Ax = Cf; N Co.
(3) A similar result holds for the “horizontal” subfactor By C Bj.

Proor. This is something very standard, the idea being as follows:

(1) This is something quite routine.

(2) This is a subtle result, called Ocneanu compactness theorem.

(3) This follows from (1,2), by flipping the diagram. O

Getting back now to the Hadamard matrices, we can extend our lineup of results,
namely Proposition 16.21 and Theorem 16.22, with an advanced result, as follows:



16D. SPIN MODELS 389

THEOREM 16.24. Given a complex Hadamard matriz H € My (C), the diagram formed
by the associated pair of orthogonal MASA, namely

A My(C)
C HAH*

1s a commuting square in the sense of subfactor theory, and the associated planar algebra
P = (Py) is given by the following formula, in terms of H itself,

T € P, — T°G*=GF?T°
where the objects on the right are constructed as follows:
(1) 1° =id®T ®1d.
(2) Go =) HuHji Hop Hyp.
(3) G = G GRI

01Tk J1 - Jk Il —1 1211
PrOOF. We have two assertions here, the idea being as follows:

(1) The fact that we have indeed a commuting square is something that we already
know, from Theorem 16.22 above.

(2) The computation of the associated planar algebra is possible thanks to the Ocneanu
compactness theorem, corresponding to the formula in Theorem 16.23 (2). To be more
precise, by doing some direct computations, which are quite similar to those in the proof
of Theorem 16.20 above, we obtain the formula in the statement. See [68]. U

The point now is that all the above is very similar to Theorem 16.20. To be more
precise, by comparing the above result with the formula obtained in Theorem 16.20, which
is identical, we are led to the following result:

THEOREM 16.25. Let H € My (C) be a complex Hadamard matriz.

(1) The planar algebra associated to H is given by P, = Fix(u®*), where G C Sy, is
the associated quantum permutation group.

(2) The corresponding Poincaré series f(z) = >, dim(Py)z" equals the Stieltjes

transform fG ﬁ of the law of the main character x =), u;.

PRrooF. This follows by comparing the quantum group and subfactor results:

(1) As already mentioned above, this simply follows by comparing Theorem 16.20 with
the subfactor computation in Theorem 16.24. For full details here, we refer to [19].

(2) This is a consequence of (1), and of the Peter-Weyl type results from [97], which
tell us that fixed points can be counted by integrating characters. U
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Summarizing, we have now a clarification of the various quantum algebraic objects
associated to a complex Hadamard matrix H € My(C), the idea being that the central
object, which best encodes the “symmetries” of the matrix, and which allows the com-
putation of the other quantum algebraic objects as well, such as the associated planar
algebra, is the associated quantum permutation group G C Sj;.

Regarding now the subfactor itself, the result here is as follows:
THEOREM 16.26. The subfactor associated to H € My(C) is of the form
A% c (CV ® A)C
with A = R X @, where G C Sy is the associated quantum permutation group.

Proor. This is something more technical, the idea being that the basic construction
procedure for the commuting squares, explained before Theorem 16.23, can be performed
in an “equivariant setting”, for commuting squares having components as follows:

D¢ E=(Do(ExG))°

To be more precise, starting with a commuting square formed by such algebras, we ob-
tain by basic construction a whole array of commuting squares as follows, with {D;}, { E;}
being by definition Jones towers, and with D, F., being their inductive limits:

Dy ®¢ Ex Dy ®¢ Ex Dy ®¢ Ex

A ) )
Dy ®G E, Dy ®G E, D, ®G Eog s > Do @ Fy
Dy ®¢ F; D, ®¢ Fr Dy ®@g Ey e > Do ®c B
Do ®¢ Ey Dy ®¢ Ey Dy @ Ey ~ Do, @ Eo

The point now is that this quantum group picture works in fact for any commuting
square having C in the lower left corner. In the Hadamard matrix case, that we are
interested in here, the corresponding commuting square is as follows:

C®q CcN CcN e CcN

C®eC CN ®¢ C
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Thus, the subfactor obtained by vertical basic construction appears as follows:
C®g Eyx C (CN®GEOO

But this gives the conclusion in the statement, with the II; factor appearing there
being by definition A = E,, X G, and with the remark that we have E,, ~ R. See [1]. O

Summarizing, we have some interesting mathematics here. In practice now, a first
problem is that of getting beyond Theorem 16.17, with explicit computations, and we
refer here to [8], [14], [45] and related papers. Another problem is that of unifying all
this with the Weyl matrix models, and we refer here to [25], [33] and related papers.
Finally, in relation with the work of Jones [66], [67], [68], [69], and of Connes as well
[53], [54], we have the question of understanding the physical meaning of all this.

Getting back now to Theorem 16.17, going beyond it is a quite delicate task. The next
simplest models appear by deforming the Fourier matrices, or rather the tensor products
of such matrices, Foxyg = Fg ® Fy, via the following construction, due to Dita:

PROPOSITION 16.27. The matriz Faxg € Maxu (T given by
(Fax)iaip(Q) = Qi(Fa)ij(Fr)ab
is complex Hadamard, and its fiber at Q = (1) is the Fourier matriz Fayxp.

PRrROOF. The fact that the rows of Fz ®¢g Fn = Faxu(Q) are pairwise orthogonal
follows from definitions. With 1 = (1,;) we have (Fg ®1 F)iajp = (F&)ij(Fi)ap, and we
recognize here the formula of Fowg = Fg ® Fy, in double index notation. |

We have the following result, coming from [15]:

THEOREM 16.28. When the deformation matrixz Q) is generic, the minimal factoriza-
tion for the representation mg coming from Proposition 16.27 is

C(SEn) ~ Me(C)

C*(Ten) x C(G)
where the discrete group on the bottom is
Ty = 20D o by
with canonical action of G on it.
PROOF. This is something quite technical, and we refer here to [15]. O

At the level of the spectral measures, the result is as follows:
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THEOREM 16.29. With M = |G|, N = |H| we have the formula
1 1
law(x) = (1 - N) do + Nlaw(A)

where the matrix
A e C(TYN, My (C))
is given by A(q) = Gram matriz of the rows of q.

PROOF. As before, this is something quite technical, and we refer here to [15]. O

When working out the asymptotics, we are led to Poisson laws. We have in fact the
following result, coming from [8], [15] and related papers:

THEOREM 16.30. Given two finite abelian groups G, H, with |G| = M,|H| = N,
consider the main character x of the quantum group associated to Foxu. We have then

law (%) = (1—%) 50—1—%@

in moments, with M =tN — oo, where m; is the free Poisson law of parametert > 0. In
addition, this formula holds for any generic fiber of Foxm-

ProOF. This is something quite heavy, with the algebraic study of the quantum group
and corresponding subfactor being done in [15] in the case of the generic fibers, and with
the probabilistic aspects being worked out in [15] for the generic fibers, and in [8] for
the parametric model, by using a purely probabilistic approach. The proofs use various
algebraic and analytic methods, and free probability from [81], [93] in order to reach to
the free Poisson law 7, which is the same as the Marchenko-Pastur law [77]. O

16e. Exercises

Things have been quite technical in this chapter, and as an instructive exercise, coming
as a complement to the various questions raised above, we have:

EXERCISE 16.31. Dewvelop of theory of matriz models for the ADE subgroups
GcCSf
by suitably restricting the parameter space of the Pauli representation.

To be more precise, assuming that G = H' comes as a twist of a subgroup H C SOs,
the problem is that of proving that when restricting to H the model space of the Pauli
representation, the Hopf image of the representation that we obtain is C'(G).
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