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Coupling of complex function theory and finite

element method for crack propagation through

energetic formulation: conformal mapping approach

and reduction to a Riemann-Hilbert problem

Dmitrii Legatiuk∗ Daniel Weisz-Patrault†

Abstract

In this paper we present a theoretical background of a coupled analytical-numerical approach to
model a crack propagation process in two-dimensional bounded domains. The goal of the coupled
analytical-numerical approach is to obtain the correct solution behaviour near the crack tip by help
of the analytical solution constructed by using tools of the complex function theory and couple it
continuously with the finite element solution in the region far from singularity. In this way, crack
propagation could be modelled without using remeshing. Possible directions of crack growth can be
calculated through the minimization of the total energy composed of the potential energy and the
dissipated energy based on the energy release rate. Within this setting, an analytical solution of
a mixed boundary value problem based on complex analysis and conformal mapping techniques is
presented in a circular region containing an arbitrary crack path. More precisely, the linear elastic
problem is transformed into a Riemann-Hilbert problem in the unit disk for holomorphic functions.
Utilising advantages of the analytical solution in the region near the crack tip, the total energy could
be evaluated within short computation times for various crack kink angles and lengths leading to a
potentially efficient way of computing the minimization procedure. To this end, the paper presents a
general strategy of the new coupled approach for crack propagation modelling. Additionally, we also
discuss obstacles on the way of practical realisation of this strategy.

1 Introduction

Methods of complex function theory provide various tools to construct exact solutions to differential
equations, especially in the case of singularity, such as e.g. crack tip problem in linear elastic fracture
mechanics. Particularly, with the introduction of famous Kolosov-Muskhelishvili formulae, methods of
complex function theory became indispensable to handle problems of linear elasticity [23]. The classical
Kolosov-Muskhelishvili formulae enable us to represent displacements and stresses of a two-dimensional
elastic body in terms of two holomorphic functions Φ(z) and Ψ(z), z ∈ C. Because of obvious advantages
of the function-theoretic approach, such as exact singular behaviour near the crack tip and preservation of
all basic physical assumptions, methods of complex function theory constituted the foundation of classical
fracture mechanics [20, 28].

A known disadvantage of function-theoretic methods is the fact that a complete boundary value prob-
lem can be solved explicitly only for some elementary (simple) domains, such as e.g. the unit disk or
half-plane. Considering that domain coming from real-world engineering problems have generally more
complicated geometry, numerical methods, such as e.g. extended finite element method [21], are fre-
quently used to solve static and dynamic fracture mechanics problems nowadays. The idea of modern
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numerical methods used in fracture mechanics application is to enrich classical finite element shape func-
tions with known analytical solution, e.g. Westergaard solution and partition of unity [21], to obtain
correct asymptotic behaviour near the crack tip. The drawback of such methods is the lost continuity
between enriched and standard elements, since the modified shape functions do not satisfy the interpola-
tion conditions. Thus, the methods obtained in this way do not satisfy basic assumptions of the classical
theory of finite element method [6], and therefore, it is difficult to perform a rigorous convergence analysis.

In this context, utilising advantages of both function-theoretic methods and finite element method,
coupled analytical-numerical methods could be alternative approaches towards higher accuracy of solu-
tions in the region near the singularity. While a coupling between the analytical solution obtained by
function-theoretic methods and the finite element solution can be introduced in several ways (see e.g.
[25, 26]), we focus on a continuous coupling in this paper. The idea of a continuous analytical-numerical
coupling is to introduce a special interpolation operator preserving C0 continuity of the displacement field
on the interface between function-theoretic solution and the classical finite elements. Construction of such
an interpolation operator has been presented in [12, 13], and convergence analysis of the coupled method
has been performed in [14, 18], where the coupling error has been also estimated explicitly. However,
only problems of fracture mechanics with static cracks have been considered so far. Therefore, in this
paper, we present an extension of the coupled approach to crack propagation problems in two-dimensional
domains.

The crack propagation approach presented in this paper is within the framework of linear elastic
fracture mechanics. The main result of this theory of fracture is that linear elastic calculations are suffi-
cient to estimate the fracture energy release rate, or equivalently the stress intensity factor, to determine
whether a crack propagates or not. However, a prediction of the crack propagation path with bifurcation
points cannot be obtained only by considering the fracture energy release rate. Therefore, additional
bifurcation criteria have been introduced for computing the crack propagation path, e.g. the maximum
hoop stress criterion [9], the maximum-energy-release-rate criterion [29] or an asymptotic expansion of
the stress intensity factor [17]. Moreover, one of the most elegant and physically consistent approaches
is the variational formulation proposed in [10]. In this approach, at each time, and for any boundary
condition, the crack propagation path is obtained by finding the global minimum of the total energy,
which is the sum of potential energy and dissipated energy, under the constraint of the irreversibility
of the crack growth. One of the main advantages of the energetic formulation is its correspondence to
a quasi-static evolution of the crack, implying that a succession of stable states is simulated without
referring to the detailed mechanisms arising between two stable states. Thus, the energetic approach
authorises discontinuous evolutions, practically meaning that, for instance, the crack length increase is
not infinitesimal but may be finite between two time steps. However, the minimisation procedure may be
time-consuming as numerical methods (that should be sufficiently refined to obtain acceptable accuracy)
are repeatedly used to minimise the total energy.

In this paper, an approach combining coupled analytical-numerical method and energetic approach
in order to model crack propagation is proposed. The expected advantage of such an approach is a
reduced computation time on the finite element side, since the analytical solution near the crack tip
is used. However, since the original coupled analytical-numerical method is limited to cracks without
bifurcation points [14], the analytical solution at first must be extended to the case of kinked cracks. This
extension is done by using a conformal mapping approach, and therefore, the linear elastic problem in
the region near the crack tip is reduced to a Riemann-Hilbert problem for holomorphic functions in the
unit disk. Therefore, our aim here is to extend the conformal mapping approach to the case of coupled
analytical-numerical method. As it will be discussed in the paper, practical (numerical) realisation of
this approach still needs to be addressed properly due to known difficulties with numerical conformal
mappings. Therefore, this paper aims at presenting a general strategy for modelling crack propagation
based on a continuous coupling of function-theoretic methods and the finite element method. Moreover,
we present an explicit solution of the Riemann-Hilbert problem and provide a detailed discussion on
future steps for practical realisation of the proposed method along with first numerical calculations for
the Riemann-Hilbert problem.
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2 Modelling crack propagation via the coupling of function-
theoretic and finite element methods

In this section we present a general description of the method to model crack propagation via a continuous
coupling of complex function theory and finite element method. To support the reader, we start with a
general overview of the coupled method underlying only essential steps relevant for the crack propagation
modelling. After that, we discuss the mechanical point of view on the propagation process and outline
the idea to use conformal mapping approach leading to the formulation of a Riemann-Hilbert problem,
which is discussed in details in the upcoming sections.

2.1 Continuous analytical-numerical coupling for static cracks

Let G ⊂ C be a simply connected bounded domain containing a crack. Further, let Γ be a boundary
of G, and it is assumed to be sufficiently smooth except the turning point given by a crack tip, which
causes a well-known crack-tip singularity. We consider now the classical boundary value problem of linear
elasticity formulated as follows −µ∆u− (λ+ µ) grad divu = f in G,

u = g0 on Γ0,
σ · n = g1 on Γ1,

(1)

where λ and µ are classical Lamé constants, and f is the density of volume forces, u is the unknown
displacement vector, σ is the Cauchy stress tensor, n is the unit outer normal vector, and Γ0 and Γ1 are
parts of the boundary with Dirichlet and Neumann boundary conditions (g0 and g1), respectively.

To provide an exact description of the solution behaviour near the singularity, we introduce a local
coupling region surrounding the crack tip (see Fig. 1, left). The right side of Fig. 1 illustrates the
coupling region with more details. Particularly, the coupling region is further subdivided into analytical
domain ΩA circled by curved triangular elements Ti (8 in Fig. 1), which are called coupling elements.
The interface ΓAD between ΩA and coupling elements is called the coupling interface. The remaining
part of the domain G is triangulated by standard finite elements.

Introducing the coupling region enables us to couple continuously the exact solution to the differential
equation of linear elasticity in ΩA with finite element solution in the remaining part of the domain. This
continuous coupling is provided by help of a special interpolation operator, which is based on the analytical
solution. A detailed construction of such an interpolation operator and its invariance property have been
discussed in [12, 13]. Because of the continuous coupling, a variational problem as in the classical finite
element method (FEM) theory, see [6] for details, can be formulated in our case. Since the goal of this
paper is not to discuss finite element aspects of the coupled method, but rather focus on function-theoretic
tools to model crack propagation, we omit all further technical details on the FEM part of the method
and refer to [19] for a complete construction.

Analytical solution to the differential equation in ΩA is constructed by the Kolosov-Muskhelishvili
formulae [23]; in polar coordinates these formulae allow us to represent components of the displacement
field and stress tensor in the following form

2µ(ur + i uϕ) = e−iϕ
(
κΦ(z)− zΦ′(z)−Ψ(z)

)
,

σrr + σϕϕ = 2
[
Φ′(z) + Φ′(z)

]
,

σϕϕ − σrr + 2i σrϕ = 2e2i ϕ [z̄Φ′′(z) + Ψ′(z)] ,

where Φ(z) and Ψ(z) are two holomorphic functions, and κ ∈ (1, 3) is the Kolosov’s constant. For static
cracks, the holomorphic function Φ(z) and Ψ(z) have been written in terms of power series expansion
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Figure 1: Left: domain G containing a crack and the coupling region. Right: further subdivision of the
coupling region into analytical domain ΩA and coupling elements Ti, i = 1, . . . , 8.

[12]

Φ(z) =

∞∑
k=0

akz
λk , Ψ(z) =

∞∑
k=0

bkz
λk , with ak, bk ∈ C, λk ∈ R.

Using these series expansions in the Kolosov-Muskhelishvili formulae and applying traction free boundary
conditions on the crack faces, exponents λk = k

2 , k = 1, 2, . . . are found, which correspond to the classical
crack tip singularity, see [20] for details. Moreover, relations between complex coefficients ak and bk are
also identified, and therefore, the displacement field can be written now as follows

2µ(u1 + i u2) =

∞∑
n=0,2,...

r
n
2

[
an
(
κ eiϕ

n
2 + e−iϕ

n
2

)
+

+
n

2
ān

(
e−iϕ

n
2 − e−iϕ( n

2−2)
)]

+

+

∞∑
n=1,3,...

r
n
2

[
an
(
κ eiϕ

n
2 − e−iϕn

2

)
+

+
n

2
ān

(
e−iϕ

n
2 − e−iϕ( n

2−2)
)]
,

(2)

where unknown coefficients an are still to be identified by solving the global boundary value problem (1)
via the coupled finite element procedure.

Finally, the continuity of displacement field through the entire coupling interface ΓAD in the finite
element procedure is preserved by constructing finite element basis functions based on the truncated
exact solution (2). Let us consider n nodes on the interface ΓAD belonging to the interval [−π, π], then
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the interpolation function fn(ϕ) restricted to ΓAD, i.e. r = rA, has the following form

fn(ϕ) =

N1∑
k=0,2,...

r
k
2

A

[
ak

(
κ eiϕ

k
2 + e−iϕ

k
2

)
+
k

2
āk

(
e−iϕ

k
2 − e−iϕ( k

2−2)
)]

+

+

N2∑
k=1,3,...

r
k
2

A

[
ak

(
κ eiϕ

k
2 − e−iϕ k

2

)
+
k

2
āk

(
e−iϕ

k
2 − e−iϕ( k

2−2)
)]
,

(3)

where the numbers of basis functions N1 and N2 are related to n as follows:

N1 =

{
n− 2 for even n,
n− 1 for odd n,

N2 =

{
n− 1 for even n,
n− 2 for odd n.

The basis functions for finite element approximation are then obtained by interpolating the unknown
displacements Uj , j = 0, . . . , n− 1 on the coupling interface ΓAD, see [14, 18, 19] for all further details.

In summary, this paper aims at extending this coupling strategy to crack propagation, which implies
to consider more complex crack paths and therefore to develop an adapted analytical solution in the
analytical domain ΩA.

2.2 Strategy to model crack propagation

A typical approach to model crack propagation by help of the finite element method is based on the
idea of a local or global remeshing at each step of crack propagation. Although this approach can
be immediately adapted to our setting, it is well-known that remeshing is computationally costly and
inefficient. Alternatively, we prefer to utilise the advantage of the coupled method enabling us to work
with a fixed size of the analytical domain ΩA without involving a global refinement. In this case, we
allow the crack to propagate only inside the analytical domain that should be taken as large as possible,
while performing refinement on the mesh around ΩA.

Let us now consider more precisely the analytical domain ΩA. At the initial moment, the crack tip
is located inside ΩA, and the crack faces are going along the negative direction of x1-axis of a Cartesian
coordinate system. After the first loading step, the crack is allowed to propagate inside the analytical
domain. We assume that the crack propagates with a finite length at one loading step, i.e. the crack
tip moves along the propagation direction defined by the angle θi for a finite length di with i = 1, 2, . . .
denoting the loading step, see Fig. 2. To evaluate the angle θi and the length di we have to solve a
minimisation problem according to [10], and therefore, to construct an analytical solution to the crack
tip problem in ΩA.

ΩA

d1

ΩA

θ1
d1

d2

θ1

ΩA

θ2

· · ·

1Figure 2: Development of the crack inside the analytical domain ΩA for first few loading steps

As already mentioned, the analytical solution (2) cannot be used to calculate the displacement field for
next loading steps, since the basic assumptions of the model are not satisfied any more due to the presence
of a kinked crack. This problem can be solved by application of a conformal mapping, which allows us
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to map the analytical domain after several loading steps (see Fig. 2) to the unit disk. The solution of a
boundary value problem in the unit disk can be obtained again by the Kolosov-Muskhelishvili formulae.
According to [23], these the Kolosov-Muskhelishvili formulae under a conformal mapping are written as
follows

σrr + σϕϕ = 2
[
Φ(ζ) + Φ(ζ)

]
,

σrr + i σrϕ = Φ(ζ) + Φ(ζ)− ζ̄2

r2ω′(ζ)

[
ω(ζ)Φ′(ζ) + ω′(ζ) Ψ(ζ)

]
,

2µ|ω′(ζ)|(ur + i uϕ) =
ζ̄

r
ω′(ζ)

[
κ η(ζ)− ω(ζ)Φ(ζ)− χ(ζ)

]
,

(4)

where r, ϕ denote polar coordinates in the unit disk, ζ = r exp(iϕ), Φ(ζ) and Ψ(ζ) are two holomorphic
functions defined on the unit disk and, and η(ζ) and χ(ζ) are functions related to Φ(ζ), Ψ(ζ) by help of
the expressions

η′(ζ) = Φ(ζ)ω′(ζ), χ′(ζ) = Ψ(ζ)ω′(ζ), (5)

and ω(ζ) is a mapping from the original geometry to the unit disk. Solution of a boundary value in the
unit disk and construction of a mapping ω(ζ) is described in detail in Section 3.

In addition, if 1, 2 denote Cartesian directions in the original geometry, displacements u1, u2 read
according to [23] as follows

2µ(u1 + i u2) = κ η(ζ)− ω(ζ)Φ(ζ)− χ(ζ). (6)

3 Conformal mapping for a cracked disk and the Riemann-
Hilbert problem

In this section, we discuss the application of conformal mapping to construct an analytical solution for a
crack disk and formulation of the corresponding Riemann-Hilbert problem in the unit disk. Moreover, to
keep construction general, we do not specify the corresponding conformal mapping explicitly, although
the classical Schwarz-Christoffel mapping is the first candidate [8]. We come back to this point later
during the discussion in Section 5.

3.1 Application of the conformal mapping to a cracked disk

The idea of using conformal mapping for studying crack propagation within domain ΩA is motivated by
several facts: (i) analytical solution (2) is not valid for the case of a propagated crack, since the distance
between the crack tip and the kinking point is too small to validate the assumptions of the classical crack
tip solution; (ii) remeshing is not necessary if propagating crack does not intersect the coupling interface
ΓAD; (iii) analytical constructions are expected to provide higher flexibility and accuracy in calculating
mechanical quantities of interest relevant for propagation process [28].

Looking at the crack propagation process from the mechanical point of view, it is known that de-
pending on specific loading conditions the crack can propagate in different directions controlled by the
angle θi with the propagation length di, where i is the number of loading step. Practically it implies,
that conformal mappings need to be calculated for all possible directions and lengths, which is a compu-
tationally expensive operation to perform online. However, considering that the crack propagates only

inside ΩA, conformal mappings can be pre-calculated for different values of the angle θ
(k)
i ∈

[
−π2 , π2

]
with

i denoting propagation step and k = 0, . . . , N being the number of a specific angle with parameter N
controlling the angular discretisation, and having the lengths d as a free parameter in the mapping, see
Fig. 3. Note that the crack tip is located at the centre of ΩA in Fig. 3 only for clarity reasons. In practice,
it is better to place the crack tip sufficiently close to the boundary of ΩA (taking into that traction-free
assumptions on the crack faces must be still satisfied) for addressing more propagation steps inside ΩA

without remeshing.
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x1

x2

r

ϕ
D

ΩA

θ
(0)
1

θ
(1)
1

θ
(2)
1

d · · ·

θ
(N−1)
1

θ
(N)
1

Kinking point

New crack tip
ω−1(ζ, d)

ω(z, d)

1
Figure 3: Mapping between the unit disk and a cracked disk with different possible directions for crack
propagation

3.2 Boundary value problem of linear elasticity as a Riemann-Hilbert prob-
lem

Now we will show how a boundary value problem of elasticity can be transformed into a Riemann-Hilbert
problem for a piecewise holomorphic function. Let now D = {ζ ∈ C : |ζ| < 1} be the unit disk with the
boundary γ = {ζ ∈ C, |ζ| = 1}, and as a positive direction we choose the counter-clockwise direction, as
usual. Let S be a finite domain in the complex z plane bounded by a simple smooth closed contour L,
and let

ω : ζ ∈ D 7→ z = ω(ζ) ∈ S
be a mapping, which maps S onto D in the plane ζ. The function ω(ζ) is a holomorphic function inside
of γ.

By taking complex conjugation of the second equation in Kolosov-Muskhelishvili formulae (4), the
following relation is obtained:

σrr − i σrϕ = Φ(ζ) + Φ(ζ)− ζ2

r2ω′(ζ)

[
ω(ζ)Φ′(ζ) + ω′(ζ) Ψ(ζ)

]
. (7)

For transforming the boundary value problem of linear elasticity in the unit disk of the ζ-plane into
a Riemann-Hilbert boundary value problem for a holomorphic function, discontinuities of holomorphic
functions defined on C \ γ need to be described. Therefore, we consider the exterior of the unit disk
E := C \ D, and we introduce holomorphic reflections as follows

lR : ζ ∈ E 7→ l

(
1

ζ

)
, (8)

where the index R stays for reflection of a function and will be used in the sequel. The function lR(ζ) is
holomorphic in E, if the function l(ζ) is holomorphic in D.

Let now t = eiϕ ∈ γ be a point of the unit circle, and let t+ and t− tend to t from the interior and
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exterior of the unit disk, respectively. Thus, t+ and t− can be defined as follows
t+ := r+eiϕ ∈ D for r+ →

r+<1
1,

t− :=
1

t+
∈ E.

(9)

Let now γσ denotes the part of boundary γ, where traction boundary conditions are defined. Note
that γσ can be a union of several disjoint arcs, see [22, 23] for details. Considering relations l(t+) =

l(1/t−) = lR(t−), equation (7) can be now rewritten for a point t ∈ γσ as follows

ω′(t)
[
σ∗rr − i σ∗rϕ

]
= ω′R(t−)ΦR(t−) + ω′R(t−)Φ(t+)

−t2
[
ωR(t−)Φ′(t+) + ω′(t+) Ψ(t+)

]
,

(10)

where ω′R is the reflection of the derivative function, and the left-hand side represents a known stress
function on the boundary γσ with σ∗rr and σ∗rϕ being imposed stresses on γσ.

To formulate a classical Riemann-Hilbert problem for a holomorphic function we need to rewrite
equation (10) in terms of only one holomorphic function, rather than a combination of several functions
as it is written at the moment. For that we need to introduce an additional assumption: the conformal
mapping has to be holomorphic on the entire complex plane C and not only on the unit disk D

ω : ζ ∈ C 7→ ω(ζ).

Consequently, ωR(ζ) is also defined on the entire complex plane and, in particular, in the interior of the
unit disk D. Hence, ωR(t−) and ω′R(t−) can be replaced by ωR(t+) and ω′R(t+) in (10), respectively.
It should be noted that if ω(ζ) has a pole at infinity of order not higher than N , then the asymptotic
expansion ω(ζ) at the infinity can be written as follows

ω(ζ) =
|z|→+∞

N∑
k=0

ωkζ
k.

In addition, if ω(ζ) has a pole at infinity, then ωR(ζ) has a pole at zero and the asymptotic expansion
have the form

ωR(ζ) =
|z|→0

N∑
k=0

ωk
ζk
. (11)

Let us consider the following holomorphic function on C \ γ

Ω : ζ ∈ C \ γ 7→

 ω′R(ζ)Φ(ζ)− ζ2 [ωR(ζ)Φ′(ζ) + ω′(ζ) Ψ(ζ)], if |ζ| < 1,

−ω′R(ζ)ΦR(ζ), if |ζ| > 1,
(12)

where the origin has been removed from the domain for the case if ωR(ζ) has a pole at zero. However, if
ωR(ζ) does not have a pole at the origin, then the origin should be added to the domain. The boundary
condition (10) can now be written as

ω′(t)
[
σ∗rr(t)− i σ∗rϕ(t)

]
= Ω(t+)− Ω(t−). (13)

Similar to γσ, we denote by γu the part of γ, where displacements are prescribed. Again, γu can be
a union of several disjoint arcs. From (6) and by help of variables t+ formula for displacement boundary
condition for a point t ∈ γu can be written as follows

2µ(u∗1 − iu∗2) = κη(t+)− ω(t+)Φ(t+)− χ(t+),

8



where u∗1 and u∗2 are known displacements along Cartesian directions in the original domain S imposed
on γu considered as a function of ϕ. Finally, we need a formula for (u∗1)

′ − i (u∗2)
′

with

(u∗1)
′

=
∂u∗1
∂ϕ

, (u∗2)
′

=
∂u∗2
∂ϕ

.

Differentiating the previous formula we obtain

−2µit
[
(u∗1)

′ − i (u∗2)
′]

= ω′(t+)Φ(t+)− κω′(t+)Φ(t+)

−t2
(
ω(t+)Φ′(t+) + ω′(t+)Ψ(t+)

)
,

(14)

where the relations η′(ζ) = ω′(ζ)Φ(ζ) and χ′(ζ) = ω′(ζ)Ψ(ζ) have been used. Taking into account the
assumption that ω(ζ) is defined on C, we finally get

−2µit
[
(u∗1)

′ − i (u∗2)
′]

= ω′R(t+)Φ(t+)− κω′R(t−)ΦR(t−)

−t2
(
ωR(t+)Φ′(t+) + ω′(t+)Ψ(t+)

)
,

or in terms of function (12),

−2µit
[
(u∗1)

′ − i (u∗2)
′]

= Ω(t+) + κΩ(t−). (15)

Thus, we get the following Riemann-Hilbert problem for the holomorphic function Ω{
Ω(t+)− Ω(t−) = f(t) on γσ,

Ω(t+) + κΩ(t−) = f(t) on γu,
(16)

with boundary function f(t) defined by

f(t) :=

 ω′(t)
[
σ∗rr − i σ∗rϕ

]
on γσ,

−2µit
[
(u∗1)

′ − i (u∗2)
′]

on γu.
(17)

It should be noted that the imposed normal and tangential stresses σ∗rr and σ∗rϕ on γσ correspond to polar
directions in the ζ-plane, although the imposed displacements u∗1 and u∗2 on γu correspond to Cartesian
directions in the z-plane. However, both imposed stresses and displacements are seen as functions of ϕ,
or equivalently t, in the ζ-plane.

3.3 Solution of the Riemann-Hilbert boundary value problem in the unit
disk for a general case

In this section we describe at first the solution of Riemann-Hilbert problem (16) for a general case,
and later we specify it for the considered problem. Consider that γu is the union of n arcs such as
γu = ∪nk=1(ak, bk). Let us consider the following holomorphic function on C \ γu

X0 : ζ ∈ C \ γu 7→
n∏
k=1

(ζ − ak)−
1
2 +iβ(ζ − bk)−

1
2−iβ , with β =

log κ

2π
. (18)

Taking into account displacement and traction boundary conditions given on γu and γσ, it is well known
that the following classical relations hold [22]:

X0(t+)

X0(t−)
= −κ on γu and

X0(t+)

X0(t−)
= 1 on γσ.

9



Thus, mixed boundary value problem (16) can be reduced to the following problem for Ω(ζ)
X0(ζ)

Ω(t+)

X0(t+)
− Ω(t−)

X0(t−)
=

f(t)

X0(t+)
on γ = γσ ∪ γu. (19)

Solution of (19) requires describing asymptotic behaviour of Ω(ζ)
X0(ζ) . For that, we recall that function Φ(ζ)

is holomorphic in D, and therefore, we have
Φ(ζ) =

+∞∑
k=0

Akζ
k, if |ζ| < 1,

ΦR(ζ) =

+∞∑
k=0

Ak
ζk
, if |ζ| > 1,

whereAk, k = 0, 1, . . . are unknown coefficients of the decomposition. Next, using the fact that ω′R(ζ) →
|ζ|→+∞

ω′(0) and definition of Ω(ζ), we obtain the following asymptotic expansion

Ω(ζ) =
|ζ|→+∞

B0 +
B1

ζ
+
B2

ζ2
+ · · · ,

where B0, B1, . . . are unknown coefficients. The asymptotic expansion of 1/X0(ζ) is obtained from (18)
as follows

1

X0(ζ)
=

|ζ|→+∞
ζn +Dn−1ζ

n−1 + · · ·+D1ζ +D0 +
D−1

ζ
+ · · · , (20)

where Dn−1, . . . , D0, . . . are known coefficients obtained by an asymptotic expansion of 1
X0(ζ) . Finally, it

is evident that there exists a polynomial of degree not higher than n

Pn(ζ) = Ĉ0 + C1ζ + . . .+ Cnζ
n, (21)

such that
Ω(ζ)

X0(ζ)
− Pn(ζ) →

|ζ|→+∞
0. (22)

If ωR(ζ) has a pole at the origin, then the asymptotic expansion of Ω(ζ)
X0(ζ) at the origin has to be

determined. If the order of this pole of ωR(ζ) is not higher than N , as it has been shown in (11), then the
pole of ω′R(ζ) at the origin is not higher than N − 1. Considering that the value of X0(ζ) at the origin is
a non-zero constant, it follows from (12) that there exists a function QN (ζ) of the form

QN (ζ) = C̃0 +
C−1

ζ
+ · · ·+ C−(N−1)

ζN−1
,

such that
Ω(ζ)

X0(ζ)
−QN (ζ) →

|ζ|→0
0. (23)

Introducing a new constant C0 := Ĉ0 + C̃0, we finally obtain:

R(ζ) = Pn(ζ) +QN (ζ) = Cnζ
n + · · ·+ C0 +

C−1

ζ
+ · · ·+ C−(N−1)

ζN−1
.

Thus, the general solution of (16) is given now by

Ω(ζ) = Ω0(ζ) +X0(ζ)R(ζ) with Ω0(ζ) =
X0(ζ)

2iπ

∫
γ

f(t)dt

X0(t+)(t− ζ)
, (24)
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where the integration is taken over the whole boundary γ. The coefficients C−(N−1), · · · , C0, · · · , Cn
should be identified by ensuring displacement continuity at ends of the arcs ak and bk and by ensuring
that there is no stress and displacement singularities at zero.

Finally, holomorphic functions Φ(ζ) and Ψ(ζ) can be easily derived from (24) and therefore displace-
ments and stresses are obtained in S.

3.4 Solution of the Riemann-Hilbert boundary value problem in the unit
disk for the considered crack configuration

Next, we discuss the construction of an explicit solution of the Riemann-Hilbert problem for the crack
propagation process shown in Fig. 2. Domain ΩA with a kinked crack can be considered as a circular-arc
polygon with vertices wi, i = 1, . . . n, which are located along the crack path, and we keep the convention
that vertex wn+1

2
is located at the crack tip. Since according to the coupling idea, displacements are

interpolated on the whole coupling interface ΓAD, no extra vertices are required on ΓAD, and the fact
of having several coupling elements will be addressed in a piecewise definition of boundary function f(t)
in (16). Thus, vertices wi, i = 1, . . . n are mapped to the corresponding pre-vertices at the unit circle γ
denoted by zi, i = 1, . . . n, see Fig. 4.

x1

x2

r
ϕ

DΩA

ΓAD

w2

wn−1

w1

wn w3

wn−2
· · ·

z1
z2

z3

· · · zn−1

zn

ω−1(ζ, d)

ω(z, d)

1

Figure 4: Vertices and pre-vertices for the mapping between the unit disk and a cracked disk during the
crack propagation process

Thus, in the case of analytical-numerical coupling the unit circle γ is subdivided into arcs γu = znz1

with unknown displacement boundary conditions given by the interpolation function (3), and γσ =
∪n−1
i=1 zizi+1 with traction-free conditions on the crack faces. Therefore, considering that only one arc

with displacement boundary conditions is given and assuming that ωR(ζ) has no pole at the origin, a
general solution (16) can be written as follows

Ω(ζ) =
X0(ζ)

2πiκ

∫
γ

f(t)dt

X+
0 (t)(t− ζ)

+X0(ζ) [C0 + C1ζ] , (25)

where

X0(ζ) = (ζ − z1)−
1
2−iβ(ζ − zn)−

1
2 +iβ , with β =

log κ

2π
.
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Applying displacement boundary conditions on ΓAD and traction-free conditions on the crack faces, the
following system of equations for unknown coefficients is obtained

(κ+ 1)

∫
znz1

Ω0(t0)ω′(t0)dt0

+(κ+ 1)

∫
znz1

ω′(t0)X0(t0)(C0 + C1t0)dt0 = 2µ[f(z1)− f(zn)],

X0(0)

2π iκ

∫
γ

f(t)

X+
0 (t)

dt

t
+ C0X0(0) + C1 = 0,

(26)

with

Ω0(t0) =
X0(t0)

2π iκ

∫
γ

f(t)dt

X+
0 (t)(t− t0)

,

and
X0(0) = lim

ζ→0

[
(ζ − z1)−

1
2−iβ(ζ − zn)−

1
2 +iβ

]
= e−iπe−i

ϕ1+ϕn
2 e−β(ϕn−ϕ1),

where the fact that ln |z1| and ln |zn| are zero on the unit disk has been taken into account. Denoting by
ϕ0 the argument of the middle of the arc znz1, and by ω0 its central angle, the expression for X0(0) can
be simplified to

X0(0) = −e−iϕ0−βω0 .

To identify constants C0 and C1, system (26) can be transformed into its real form and solved explicitly.
To avoid bulky expressions, we omit the presentation of the explicit solution of the corresponding real 4 by
4 system here. Nonetheless, the whole procedure remains the same on each step of the crack propagation
process as long as boundary conditions of the Riemann-Hilbert problem kept as described in this section.
The main computational complexity is related to numerical calculation of the conformal mapping.

4 Energetic approach to crack propagation

In this section, the mechanical point of view on the crack propagation based on the energetic formulation
proposed in [10] is described. Similar to previous sections, we describe a general setting of the energetic
approach at first, and after that, we specify it for the problem considered in the paper.

Consider now time-dependent Neumann boundary conditions F(t) given on Γ1, then for any time t,
the crack geometry Γc(t) is obtained by finding the global minimum of the total energy Etot under the
assumption of irreversibility of the crack growth, i.e. the crack can only grow. The total energy for
Neumann boundary conditions F∗ on Γ1 and for any crack geometry Γ∗c is expressed as follows

Etot(F∗,Γ∗c) := E(F∗,Γ∗c)−W(F∗,Γ∗c) +D(Γ∗c),

where the stored elastic energy E(F∗,Γ∗c), the work of external forces W(F∗,Γ∗c), and the dissipated
energy D(Γ∗c), are given by

E(F∗,Γ∗c) =
1

2

∫
G

σ(F∗,Γ∗c) : ε(F∗,Γ∗c)dV,

W(F∗,Γ∗c) =

∫
Γ1

F∗ · u(F∗,Γ∗c)dS, D(Γ∗c) = Gc

∫
Γ∗
c

dl,
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where σ is the stress tensor, ε the strain tensor and u the displacement vector. Based on the above
consideration, the energetic criterion can now be formulated as follows [10]:

(a) : ∀ s < t, Γc(s) ⊂ Γc(t),

(b) : ∀Γc(t) ⊂ Γ∗c , Etot(F(t),Γc(t)) ≤ Etot(F(t),Γ∗c),

(c) : ∀ s < t, Etot(F(t),Γc(t)) ≤ Etot(F(t),Γc(s)).

(27)

Let us make some remarks regarding the criterion: condition (a) corresponds to the constraint of irre-
versibility of the crack growth; the condition (b) ensures that the total energy for the actual crack is lower
than for any longer crack; and condition (c) ensures that the total energy of the actual crack is lower
than for any previous real crack considering the actual boundary conditions.

Energetic criterion (27) is formulated for a continuous time, in practice, however, a time discretisation
t1 < · · · < tn is introduced with t1 corresponding to the initial configuration. Thus, according to (27),
knowing the crack geometry Γc(tj−1) at the time step j − 1, the crack geometry Γc(tj) at the time step
j (with 1 ≤ j ≤ n) is determined as follows

Γc(tj) = argmin
Γc(tj−1)⊂Γ∗

c

[
Etot(F(tj),Γ

∗
c)
]

(28)

Indeed, for any time discretisation, (28) clearly implies (27).
In general, the total energy Etot(F(tj),Γ

∗
c) depends on the stress and displacement field in the whole

domain Ω. However, under the assumption that the crack can propagate only inside the analytical domain
ΩA, minimisation problem (28) can be formulated locally. In this case of local formulation, Neumann
boundary conditions FA on the coupling interface ΓAD are considered. These Neumann boundary condi-
tions are obtained on each step of propagation j and for each trial of new crack geometry by solving the
continuous coupling with finite element method. Indeed, as the crack growth tends to relax strain and
stress, the Neumann boundary conditions FA needs to be re-computed for any tested evolution of the
crack geometry. However, as the analytical domain ΩA is chosen to cover the largest possible area in the
elastic body, the computational cost is expected to be reduced. Such a local formulation would not be
possible in the classical finite element setting without using elements of higher regularity, since traces of
generalised derivatives of basis functions are needed in order to obtain Neumann data on ΓAD. However,
this problem does not appear in the case of analytical-numerical coupling described in previous sections,
since a strong solution to the differential equation in ΩA is constructed. Thus, Neumann data on ΓAD

can be obtained straightforwardly.
So, to formulate the minimisation problem, we consider Neumann boundary conditions FA, which are

formally determined as a function of F(t) and Γ∗c , on the coupling interface ΓAD for any crack Γ∗c . Then,
minimisation problem (28) can be reduced to:

Γc(tj) = argmin
Γc(tj−1)⊂Γ∗

c

[
Etot

A (FA [F(tj),Γ
∗
c ] ,Γ

∗
c)
]
, (29)

where the local total energy Etot
A (F∗A,Γ

∗
c) is given by

Etot
A (F∗A,Γ

∗
c) = EA(F∗A,Γ

∗
c)−WA(F∗A,Γ

∗
c) +D(Γ∗c),

with the elastic energy EA(F∗A,Γ
∗
c) stored in the analytical domain ΩA, and the work of forcesWA(F∗A,Γ

∗
c)

on the coupling interface ΓAD are given by

EA(F∗A,Γ
∗
c) =

1

2

∫
ΩA

σ(F∗A,Γ
∗
c) : ε(F∗A,Γ

∗
c)dV,

WA(F∗A,Γ
∗
c) =

∫
ΓAD

F∗A · u(F∗A,Γ
∗
c)dS.

(30)
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Thus, formulation (29) presents the advantage that the analytical solution of the Riemann-Hilbert prob-
lem described in Section 3 is used to compute at each time step j the total energy Etot

A . Indeed, for all
F∗A and Γ∗c one can compute analytically σ(F∗A,Γ

∗
c), ε(F

∗
A,Γ

∗
c) and u(F∗A,Γ

∗
c) involved in (30).

5 First example towards a complete numerical scheme

The aim of this section is two-fold: at first, we briefly discuss the difficulties related to practical implemen-
tation of the complete solution strategy presented in this paper, and recall some of possible approaches to
overcome these difficulties, which will constitute the future work; after that, we present a small numerical
example focusing only on the use of conformal mapping and Riemann-Hilbert problem, since these are
the crucial parts of the complete algorithm to model crack propagation in elastic bodies. Moreover, we
underline openly all problems related to the numerical stability of the method, since overcoming these
problems constitute the major part of future work.

The analytical domain ΩA containing a crack is a circular-arc polygon, with crack-faces representing
the polygonal part and the coupling interface ΓAD being the circular arc. The idea of the method presented
in this paper is to map the circular-arc polygon to the unit disk, because Riemann-Hilbert problems in
the unit disk are well studied in the context of linear elasticity, see for example [11, 22]. While there are
several classical works studying conformal mappings of circular arc-polygon regions, see for example [4, 8]
and references therein, it is well-known that an explicit representation of a mapping function between
a circular-arc polygon and the unit disk does not exist. The classical approach to construct a mapping
function for such type of domains is to work with the Schwarz-Christoffel differential equation.

Because the Schwarz-Christoffel differential equation is ill-posed due to nonlinear constrains for the
parameters of the map, it is known that its numerical solution is a challenging task, although some
methods for numerical calculations of such mappings exist [2, 5, 16]. An alternative approach would be
to use directly algorithms for numerical conformal mapping, such as for example the osculation algorithms
[15, 27]. However, the main obstacle for the use of numerical conformal mapping in the context of coupled
method is the fact, that not only the geometry must be mapped, as typically addressed in the field of
numerical conformal mappings, but the differential equation and its solution procedure as well. Thus, it
must be studied how the solution of Riemann-Hilbert problem in our case will behave under numerical
conformal mapping.

Because of difficulties discussed above on the way of implementing the complete numerical procedure
presented in this paper, we present an illustrative example focusing only on the crack propagation based on
the solution of Riemann-Hilbert problem. Thus, instead of considering a global boundary value problem
in a domain G, we consider a boundary value problem formulated directly in the analytical domain ΩA

and boundary conditions on the coupling interface ΓAD. Additionally, to avoid a circular-arc polygon
mapping, we consider a square domain centred at the crack tip of the initial configuration.

Let us consider an infinite plane containing a single crack of a length 2a with constant stresses p
applied at infinity (Fig. 5, left). To formulate a boundary value problem, we consider a square domain
of length L located around one of the crack tips (Fig. 5, right) representing the analytical domain ΩA.
To keep the illustrative example closer to the setting discussed in Section 3, displacement boundary
conditions are considered on the interface ΓAD and traction-free conditions on the crack faces Γc. Thus,
we consider the following boundary value problem −µ∆u− (λ+ µ) grad divu = 0, in ΩA,

u = u1 + iu2, on ΓAD,
σ · n = 0, on Γc,

where the displacements components u1 and u2 are chosen according to the well-known analytical solution,
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see for example [20], and are given by the following formulae:

u1 =
p
√

2ra

8µ

[
(2κ− 1) cos

(ϕ
2

)
− cos

(
3ϕ

2

)]
,

u2 =
p
√

2ra

8µ

[
(2κ+ 1) sin

(ϕ
2

)
− sin

(
3ϕ

2

)]
,

with r, ϕ being polar coordinates with the coordinate origin located at the crack tip, and κ and µ being
material parameters.

2a

p

p

ΓAD

ΓAD

ΓAD

ΓAD

ΓAD

Γc

Γc

ΩA

L

1Figure 5: Setting for the illustrative example: crack in an infinite body (left), representation of the
analytical domain ΩA with the coupling interface ΓAD as a square (right)

For a numerical conformal mapping of the domain ΩA, in general, the classical Schwarz-Christoffel
toolbox for Matlab developed by T.A. Driscoll [7] can be used. However, using this toolbox implies
the necessity to work with the inverse Schwarz-Christoffel mapping in all constructions presented in
Section 3, which complicates the numerical part. Therefore, instead of the Schwarz-Christoffel toolbox,
the PlgCirMap Matlab toolbox will be used, which has been introduced recently in [24]. The PlgCirMap
toolbox allows mapping of polygonal multiply connected domains onto circular domains by using Koebe’s
iterative method. Fig. 6 shows the domain ΩA and the unit disk together with the conformal grid
calculated by the PlgCirMap toolbox.

The advantage of using the PlgCirMap toolbox is the fact that the direct mapping from the polygonal
domain ΩA to the unit disk can be used in all constructions presented in Section 3, which significantly
simplifies all related calculations. Nonetheless, although the PlgCirMap toolbox provides a lot of useful
functions for numerical conformal mapping, it is also not free of geometrical restrictions: polygonal
domains with slits and cusps are not allowed. To overcome this restriction, we model the crack in a
domain as a cut with width of order 10−4. In this case, the conformal mapping to the unit disk can be
calculated with the relative residual of order 10−5. The vertices calculated during the conformal mapping,
as well as pre-vertices of the original domain, are listed in Table 1. Because some vertices are located
very close to each other, we list the coordinates of vertices in a long format provided by Matlab.

Let us now outline the general procedure for constructing a solution of the Riemann-Hilbert problem:

Step 1. Map the domain ΩA to the unit disk.

Step 2. Map boundary conditions from ΩA to the unit disk.
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Figure 6: Domain ΩA together with the conformal grid (left), and the unit disk with the conformal grid
obtained after calculating the conformal mapping from ΩA by using the PlgCirMap toolbox

Number Pre-vertices Vertices
1 −10 + 0.0001i 0.955417215003076 + 0.295259115482937i
2 0.0001i 0.955422389606861 + 0.295242370668431i
3 −0.0001i 0.955391244897614 + 0.295343138015746i
4 −10− 0.0001i 0.955396421837903 + 0.295326390861588i
5 −10− 10i 0.825604379631623 + 0.564249420321443i
6 10− 10i −0.171634834630707 + 0.985160638444964i
7 10 + 10i 0.414173847997492− 0.910197793688246i
8 −10 + 10i 1

Table 1: Vertices and pre-vertices for the conformal mapping

Step 3. Create and solve linear system of equations (26).

Step 4. Compute the general solution of Riemann-Hilbert problem in the unit disk by help of formula (25).

Fig. 7 shows the solution of Riemann-Hilbert problem in the unit disk with respect to ϕ ∈ [−π, π] and
for r = 1

2 . It is also important to remark, that the solution of a linear system on Step 3 can be written
explicitly in our case, implying that no numerical procedure is necessary to solve the linear system.
Nonetheless, computing the solution is still numerically difficult, because several singular integrals need
to be calculated on Step 3, since they appear in the coefficients of the system and in the right-hand side.
Thus, the quality of the solution of Riemann-Hilbert problem (and further computations with it) strongly
depends on calculation of these singular integrals. However, because four of the eight vertices are located
very close to each other, see Table 1, they cause numerical stability issues during computing the singular
integrals. In the example presented in this section, the singular integrals could be computed only with
the accuracy of order 10−1 by using built-in Matlab adaptive quadratures. Evidently, this accuracy is
not sufficient for further calculations of stresses and displacements. Therefore, one of the tasks for future
work is finding a numerical quadrature for computing singular integrals with the accuracy of the same
order as provided by numerical conformal mapping.

6 Summary and outlook

In this paper, we have presented the theoretical background of a coupled analytical-numerical approach to
model a crack propagation process in two-dimensional bounded domains. The main idea of the method is
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Figure 7: Domain ΩA together with the conformal grid (left), and the unit disk with the conformal grid
obtained after calculating the conformal mapping from ΩA by using the PlgCirMap toolbox

to obtain the correct solution behaviour near the crack tip by help of the analytical solution constructed
by using tools of the complex function theory and couple it continuously with the finite element solution
in the region far from singularity. To calculate possible directions of crack growth, the idea is to utilise
the conformal mapping techniques and to transform a problem of linear elasticity into a Riemann-Hilbert
problem in the unit disk for holomorphic functions. In the paper, we have presented the analytical
solution of the Riemann-Hilbert problem, as well as discussed numerical stability issues appearing on the
way of practical realisation of the method, proposed in this paper.

As it has been discussed in Section 5, the main difficulty of the method is related to the need of having a
conformal mapping between a circular-arc polygon and the unit disk. Unfortunately, this mapping cannot
be expressed explicitly by help of known conformal mappings. Therefore, we have considered a simplified
version of a problem in Section 5, where a circular domain has been replaced by a rectangular domain.
Nonetheless, even in that case, further studies are necessary for finding a numerical quadrature enabling
calculating of singular integrals with a higher accuracy, which is necessary for calculating stresses and
displacements.

In summary, this paper presents a work-in-progress, rather than a final result. The scope of future work
consists in studying of different approaches for practical calculations of circular-arc polygon mappings
in the context of coupling method, as well as analysing of different advanced methods for computing
singular integrals. Additionally, further theoretical studies of the method, such as for example unique
solvability of the interpolation problem under conformal mapping, must be also made.

Finally, it is worth to mention, that some recent works dealing with analysis of kinked cracks proposed
to work with a mapping from a half-space [1, 3]. Considering that different conformal mappings can be
used on different propagation steps, as well as a composition of several conformal mappings can also be
helpful in practice, the use of the mapping from a half-space needs also to be studied in the context of
coupled method, presented in this paper. Perhaps a new setting for the complete methods can be found
on this way.
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Birkhäuser, Basel, 2014.

[13] K. Gürlebeck, U. Kähler, D. Legatiuk, Interpolation problem arising in a coupling of finite element
method with holomorphic basis functions. AIP Conference proceedings, Volume 1648, 2015. DOI:
10.1063/1.4912655.

[14] K. Gürlebeck, U. Kähler, D. Legatiuk, Error estimates for the coupling of analytical and numerical
solutions. Complex Analysis and Operator Theory, 11(5), pp. 1221-1240, 2017.

[15] P. Henrici, A general theory of osculation algorithms for conformal mapping. Linear Algebra and its
Applications, 52/53, pp. 361-382, 1983.

[16] L.H. Howell, Numerical conformal mapping of circular arc polygons. Journal of Computational and
Applied Mathematics, 46, pp. 7-28, 1993.

[17] J.B. Leblond, Crack paths in plane situations—I. General form of the expansion of the stress intensity
factors. International Journal of Solids and Structures, 25(11), pp. 1311-1325, 1989.

[18] D. Legatiuk, H.M. Nguyen, Improved convergence results for the finite element method with
holomorphic functions. Advances in Applied Clifford Algebra, 24(4), pp. 1077-1092, 2014.

[19] D. Legatiuk, Evaluation of the coupling between an analytical and a numerical solution for boundary
value problems with singularities. PhD Thesis, Bauhaus-Universität Weimar, 2015. ISBN: 978-3-
95773-193-7

18



[20] H. Liebowitz, Fracture, an advanced treatise. Volume II: Mathematical fundamentals. Academic
Press, 1968.
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