

Bioturbation and soil resistance to wind erosion in Southern Tunisia

Pascal Jouquet, Thierry Henry-Des-Tureaux, Christel Bouet, M. Labiadh, Sandrine Caquineau, Hanane Aroui Boukbida, F. Garcia Ibarra, Vincent Hervé, Angélique Bultelle, Pascal Podwojewski

▶ To cite this version:

Pascal Jouquet, Thierry Henry-Des-Tureaux, Christel Bouet, M. Labiadh, Sandrine Caquineau, et al.. Bioturbation and soil resistance to wind erosion in Southern Tunisia. Geoderma, 2021, 403, pp.115198. 10.1016/j.geoderma.2021.115198. hal-03319692

HAL Id: hal-03319692

https://hal.science/hal-03319692

Submitted on 24 May 2023

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Bioturbation and soil resistance to wind erosion in Southern

Tunisia 2

1

3

6

18

20

21

22

- P. Jouquet^a, T. Henry-des-Tureaux^a, C. Bouet^{a,b}, M. Labiadh^c, S. Caquineau^d, H. Aroui 4 Boukbida^a, F. Garcia Ibarra^a, V. Hervé^e, A. Bultelle^a, P. Podwojewski^a
- 5
- Addresses 7
- ^a Sorbonne Université, UPEC, CNRS, IRD, INRAe, Université de Paris, Institute of Ecology 8 9 and Environmental Sciences of Paris, iESS Paris, Centre IRD, 93143 Bondy, France
- 10 ^b LISA (Laboratoire Interuniversitaire des Systèmes Atmosphériques), UMR CNRS 7583, Université Paris Est Créteil - Université de Paris, Institut Pierre Simon Laplace, 94010 11 Créteil, France 12
- 13 ^c Institut des Régions Arides (IRA), El Fié, 4119 Medenine, Tunisia
- d LOCEAN (Laboratoire d'Océanographie et du Climat), IRD-CNRS-Sorbonne Université-14 MNHN, IRD France-Nord, 93143 Bondy cedex, France 15
- ^e Institut de Recherche sur la Biologie de l'Insecte, UMR7261, CNRS-University of Tours, 16 17 Parc Grandmont, 37200 Tours, France
- Corresponding author: P. Jouquet, pascal.jouquet@ird.fr 19

ABSTRACT

Wind erosion is a major threat to the sustainability of arid and semi-arid ecosystems. In these environments, biological soil crusts positively impact soil resistance to erosion. Less is known, however, on the impact of soil bioturbation by animals. In Southern Tunisia, bioturbation is mainly carried out by termites, ants and rodents which deposit mineral and organic components on the soil surface in the form of soil sheetings for termites or as soil heaps for ants and rodents. We here question the properties of these soils and measure their resistance to wind erosion. We showed that soil sheetings are made of sand grains linked together by bridges of organic matter, clay particles and other small size minerals such as carbonates and gypsum. The stability of these aggregates is comparable to that of biological soil crusts, despite their very different organizations. Conversely, the soil excavated by ants and rodents mainly consists in individual sand grains, which are impoverished in organic carbon and prone to wind erosion. In conclusion, this study highlights the importance of termites, as key soil bioturbator, on the dynamics of soil aggregates in Southern Tunisia. It also shows that they have an opposite effect than that of ants and rodents on the resistance of soil to erosion.

- Keywords: soil biological crusts, termites, sheetings, ants, rodents, aggregation, clay, organic
- 41 matter

1. Introduction

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

To 'soil bioturbation' corresponds the ecological processes associated to the production of soil from saprolite, its movement from belowground to the ground and/or downslope, as well as its mixing and modification of properties by soil fauna (Wilkinson et al., 2009). Therefore, soil bioturbation can significantly impact numerous ecological functions and ecosystem services such as those associated to the dynamics of nutrients, water or plant and animal diversity, as well as the resistance of soil to physical degradation (e.g., compaction and erosion) (Lavelle et al., 1997; Wilkinson et al., 2009).

Soil bioturbation can be performed by many digging animals and a gradient of soil bioturbation has been proposed, from the 'soil bioturbators sensu stricto', 'soil aggregate reorganizers' to the 'soil weathering agents' categories (Bottinelli et al., 2015). To the first group corresponds animals that only translocate soil aggregates or particles without changing their internal organization. This group typically includes ants, beetles and other arthropods (Lobry and Conacher, 1990; Eldridge and Pickard, 1994), as well as mammals such as rodents, moles and wild boars (Whitesides and Butler, 2016; Anzah and Butler, 2017; Clark et al., 2018; Don et al., 2019; Eldridge and Koen, 2021). The second and third groups include animals that, in addition to the translocation of soil, modify the internal organization of soil aggregates and fasten the weathering of soil minerals. They mainly include earthworms and termites. The impact of earthworms is important in temperate and tropical humid environments where they produce galleries and organo-mineral aggregates called casts (Van Groenigen et al., 2019). When the environment gets drier, this role is mainly restricted to termites, which produce galleries as well as subterranean chambers and aboveground organomineral structures, commonly named termitaria or mounds, with specific soil physical, chemical and biological properties (Jouquet et al., 2011). Some species also produce protective covers (i.e. sheetings or sheaths) made of soil aggregates glued the one the other on the ground, mostly to cover the litter that they consume (Harit et al., 2017). The impact of termites is the most significant in arid and semiarid environments where they are the main decomposers. For instance, termites consume as much as 10-30% and sometimes 50% of the net primary production in the Chihuahuan desert, and they are responsible for most of the organic matter turnover and nutrient cycling in soil (e.g., Schaefer and Whitford, 1981; Whitford, 1991; Zaady et al., 2003; da Costa et al., 2019). In the Sahel, their activity has significant impacts on soil porosity and they significantly reduce water runoff while increasing water infiltration (Mando et al., 1999; Leonard and Rajot, 2001). Their activity can also be at the core of agricultural practices aiming at optimizing the nutrient and water dynamics through the decomposition of litter and the production of tunnels that increase water infiltration (e.g., Kaiser et al., 2017).

In South-Eastern Tunisia, soils are sandy with very limited clay and organic matter contents. Precipitations are scarce and the vegetation sparse. These environmental conditions provide, therefore, very harsh living conditions for soil fauna. Moreover, the mechanization of agriculture with the tillage of soil using more destructive tools (such as the disc plough or the tiller) than the traditional ones (e.g., mouldboard plough) has deleterious impacts on soil biodiversity, soil structure and wind erosion (e.g., Akrimi et al., 1993; Labiadh et al., 2011, 2013). Indeed, wind erosion is known to be a major threat to soil conservation in Southern Tunisia, which is also one of the main pathways for air masses coming from the Sahara to the central Mediterranean basin (e.g., Bergametti et al., 1989; Guerzoni et al., 1997; Moulin et al., 1998; Israelevitch et al., 2012). Information on soil fauna and soil bioturbation is very limited in this region and how they influence soil resistance to wind erosion totally unknown. However, the accumulation of soil on the ground by soil fauna can either positively or negatively impact soil properties and therefore wind erosion, depending on the amount and stability of soil deposited on the ground by soil fauna. Understanding the functional impacts

of soil organisms is, therefore, a real challenge for the definition of soil conservation practices (Ortiz et al., 2021) and for the sustainability and adaptation of south Tunisian agriculture dominated by olive orchards and cereal fields in particular (Labiadh et al., 2011). Therefore, the objective of this study was to determine the diversity of bioturbation agents adapted to the harsh environmental conditions of this region and to quantify their impacts on soil dynamics and soil resistance to wind erosion.

99

100

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

93

94

95

96

97

98

2. Materials and methods

101 *2.1. Study site*

The study was carried out in the Dar Dhaoui Experimental Range (54 ha) (33°17′41″N, 10°46′57″E), in the arid coastal Jeffara plain belonging to the governorate of Medenine. Annual precipitation is low ($\approx 200 \text{ mm y}^{-1}$) irregular in space with a very strong annual and monthly variability, with most precipitation falling from September to May. This area is protected from grazing and other disturbances since the late seventies, and the natural vegetation is dominated by Retama raetam, Rhanterium suaveolens, Artemisia campestris, and Aristida pungens (Akrimi et al., 1993). The surrounding fields are intensively cultivated by olive tree orchards, with strong evidence of sand movements in small dunes over bare surfaces regularly tilled. The major soil type in the Jeffara plain area is classified as Arenic Calcisol in the IUSS WRB (2014) classification with the occurrence at a depth between 0.60 to 1.0m of a calcic horizon sometimes indurated in a discontinuous petrocalcic horizon. The occurrence of the calcic layer is probably due to capillary rise from deeper calcaric or limestone layers. The soil has a low soil organic matter (SOM) content (< 0.3% in the topsoil) and it is dominated by aeolian quartz (~80% of sand) (Labiadh et al., 2013). Over 50% of the sandy fraction is ranging between 75 and 100µm. The experiment was carried out during the summer in June-July 2019, during which precipitation and wind erosion events are rare

(Labiadh et al., 2013). In this area, soil bioturbation is mainly realized by termites, ants and rodents, although other animals (e.g., scorpions, beetles and lizards) can also locally impact soil structure. Bioturbation by termites is easily identifiable on the ground by the production of sheetings, which correspond to soil aggregates glued to each other and anchored to the soil, while ants and rodent bioturbation consists in the production of soil heaps on the ground (Figure 1). Only one termite species belonging to the Hodotermitidae family, most likely *Microhodotermes maroccanus*, was found in the study field. Conversely, several ant species were identified in the area but only the most dominant ant species *Monomorium* sp. was considered in this study. Rodents were represented by species of the genus *Meriones*.

2.2. Quantification of soil bioturbation and soil sampling

Soil bioturbation was measured in 10 randomly selected plots of 2×5 m. For each plot, the surface and volume of soil mobilized by soil fauna were visually assessed according to the field method proposed by Casenave and Valentin (1992) and in differentiating the soil brought to the surface by rodents, ants and termites. A fourth unknown category included soil for which the origin of the soil could not be visually determined.

Soil samples consisted in soil sheetings produced by termites, soil excavated on the ground by rodents and ants (n = 4). Their properties were determined as explained below. Since soil crust is the most dominant soil surface feature in this area, crusts (0-1 cm depth) were sampled and considered as control (n = 4, Figure 1C).

2.3. Soil physical and chemical properties

Physical and chemical properties were measured from soil samples previously air-dried during four days. The organic carbon concentrations (Corg) were measured with an elemental analyser (Thermo Flash HT, Thermo Fisher Scientific Inc., Waltham, USA) and after

decarbonation using diluted HCl at 2%. Soils were sieved in water after SOM destruction with H_2O_2 . Complete dispersion was achieved with Na-hexametaphosphate (20 g L^{-1}) and ultrasonication during 30 min. Five soil particle size classes were considered: clay (< 2 μ m), fine silt (2 - 20 μ m), coarse silt (20 - 50 μ m), fine sand (50 - 200 μ m) and coarse sand particles (200 - 2000 μ m). Soil pH and electrical conductivity (EC) were determined in soil/water suspension (soil:solution = 1:5).

Scanning electron microscope (SEM Zeiss EVO LS15) observations were performed at 15 kV on gold or carbon coated soil samples. Since no difference in soil physical and chemical properties could be measured between ants and rodent soils, only termite sheetings, soil excavated by ants and the soil crust (composite samples) were considered. Identification of particles was achieved from their elemental spectrum with an energy dispersive X-ray microprobe (EDX, Oxford Instruments, INCA Energy 350) coupled to the microscope.

2.4. Soil resistance to wind erosion

As a proxy of soil resistance to wind erosion, soil structural stability was first measured by dry sieving using a vibratory sieve shaker (Retsch AS 200). Samples (~10g, n = 10 per treatment) were differentiated according to their sizes (> 2mm, 2-1mm, 1-0.5mm, 0.5-0.2mm, 0.2-0.1mm, 0.1-0.05mm and < 0.05mm) after 1 min of shaking with an amplitude of 50%. The percentage of soil > 0.1 mm was used as a proxy of soil resistance to erosion since the optimum grain size for wind erosion is measured at \approx 80 μ m (Bagnold, 1941; Chepil, 1951).

Soil resistance to wind velocity was also measured through a laboratory experiment. Soil samples (\sim 1g, n = 10 per treatment) were aspired by a Dyson V11 vacuum placed at the vertical of the samples. Three distances were recorded: (i) when particles started to set in motion (h₀), (ii) when the smallest particles started to be aspired into the vacuum (h₁), and (iii) when the full sample was aspired (h_f). The distance (mm) was thereafter converted in velocity

(m sec⁻¹) after calibration using an anemometer (Dorsmann TA 888 Hot Wire). Termite sheetings are very fragile in the field and can rapidly be broken into smaller elementary macro-aggregates ~2 mm in size. To test the impact of this fragmentation of sheetings into smaller size aggregates, the simulation experiment was carried out from five soil aggregate types: the control soil (i.e. the soil crust), intact termite sheetings, aggregates ~2mm in size obtained by carefully fragmenting sheetings, and soil excavated by ants and rodents.

2.5. Statistical analyses

One-way analysis of variance (ANOVA) and least significant difference (LSD) tests were performed to assess differences between means. Prior to the ANOVAs, data were log-transformed (when required) to achieve homogeneity of variances and normality, which were confirmed using Levene and Shapiro-Wilk tests. Pairwise comparisons were made with Kruskal-Wallis tests with a false discovery rate correction when ANOVA assumptions were not met. Principal component analysis (PCA) and Monte Carlo permutation tests (999 permutations) were also carried out from soil physical and chemical properties (i.e., electrical conductivity, organic C content, particle size distribution and % of soil > 100 µm). Differences among treatments were declared significant at the < 0.05 probability level. All statistical calculations were carried out using R version 3.5.1 (https://www.r-project.org/) and using "ade4", "car", "ggplot2" and "factoextra" packages.

3. Results

- *3.1. Soil bioturbation and surface features*
- 190 In average, 9.75% of the soil surface was influenced by soil bioturbation (i.e., 975 cm² m⁻²,
- 191 Standard error SE: 329) and the quantity of bioturbated soil reached 1524 cm³ m⁻² (SE: 752).
- Despite an apparent higher surface and volume of soil impacted by the activity of rodents, no

significant differences could be measured between rodents, ants and termites (P > 0.05 between treatments, surface = 325 cm² m⁻² and volume = 504 cm³ m⁻² in average per treatment), while the area and volume of soil impacted by the activity of unknown organisms were significantly lower than for the other treatments (Kruskal-Wallis Chi² = 9.18 and 12.15, P-values = 0.027 and 0.007, for the area and volume, respectively) (Figure 2).

3.2. Soil physical and chemical properties

The PCA shown in Figure 3 differentiated three groups from their soil chemical and physical properties (Monte Carlo permutation tests, P-value = 0.001). The overlap between ants and rodents evidenced similar properties (see Appendix 1). Conversely, the soil crust and termite sheetings were differentiated from their specific properties. Termite sheetings were differentiated from the soil excavated by ants and rodents along the first and second axis, which explained ~39 and 21% of the total variability, respectively. Termite sheetings had a higher electrical conductivity, percentage of soil > 100 μ m (dry sieving), and higher clay (wet sieving) and organic C contents than the soil excavated by ants and rodents (P < 0.05, see Appendix 1). Termites sheetings were also differentiated from the soil crusts along the first axis, mainly because of the higher electrical conductivity, clay and C contents of sheetings in comparison with soil crusts. Finally, soil crusts had very similar properties than the soil excavated by ants and rodents with the exception of the percentage of soil > 100 μ m which was significantly higher in soil crusts.

SEM micrographs of the soil surface features are presented in Figures 4, 5 and 6. The soil crust was characterized by sand grains embedded in a dense matrix of organic matter and clay particles (Figures 4A and B). Bryophytes, plant residues and numerous filaments covered by clay particles were observed and sealed the soil surface (Figure 4 B, C and D). Soil excavated by ants (Figures 5) were made of individualized sand particles of varying sizes but

usually < 100 µm with coatings of clay minerals (Figure 5A). The few soil aggregates observed were made of sand grains associated to each other by biotic filaments and clay particles (Figures 5B, C and D). Smaller tubular pores surrounded by clay particles were also observed. Finally, SEM micrographs of termite sheetings (Figures 6) displayed a very specific organization with aggregates made of sand grains < 100 µm bounded together with clay particles (Figure 6B). Filaments and small size minerals, displaying chemical composition of carbonates and gypsum (See Appendix 2), were also observed associated with quartz grains.

3.3. Soil resistance to wind erosion

The dry sieving of soil evidenced large differences in term of soil aggregate fractions between treatments (Figure 7). With the exception of the smallest particle size fraction (< 0.05 mm), which constituted only ~5% of the soil, significant differences were measured for all the other fractions (Table 1). Crusts were highly stable and dominated by large aggregates > 2 mm (47% of the soil, in average), while the soil excavated by rodents and ants was mainly of small size between 0.05-0.1 mm (60% of the soil). Termite sheetings had intermediate properties between those of the crust and those of ants or rodents. While no difference was measured between termites, ants and rodents for the 0.1-0.2 soil fraction (27% of the soil, P > 0.05 between treatments), termite sheetings were enriched in particles > 0.2 mm but impoverished in particles < 0.1 mm in comparison with the soil excavated by ants and rodents (P < 0.05 in all cases).

Figure 8 shows that the soil motion occurred only for broken sheetings, and soil excavated by ants and rodents (i.e. no soil motion was evidenced for crusts and termite sheetings). Soil motion (h_0) occurred at a lower wind velocity for ant and rodent soils, without significant difference between them, in comparison with broken sheetings (1.5 vs. 2.2 m s⁻¹, for ants and rodents vs. broken sheetings, P < 0.05). The same trend was measured for h_1 with

first particles visually vacuumed for 1.9 m s⁻¹ for ant and rodent soils (P > 0.05 between both) while broken sheetings were vacuumed at 3.0 m s⁻¹ (P < 0.05 between broken sheetings and the other treatments). Finally, broken sheetings, and soil excavated by ants and rodents (P > 0.05 between them) were entirely vacuumed (h_f) at lower velocity than crusts and sheetings with 6.3 against 25.7 m s⁻¹, respectively (P > 0.05 between crust soil and termite sheetings).

4. Discussion

- 4.1. Bioturbation and soil translocation
- Because soil bioturbation is season-dependent, its snapshot quantification has to be considered with cautious. In our study, soil bioturbation was measured before the summer when temperature and soil moisture allowed soil fauna activity while the presence of plant residues provided a substantial amount of resources for soil decomposers, amongst which termites. As expected, soil bioturbation mainly resulted from the activity of rodents, termites and ants while other organisms (e.g., scorpions, spiders, lizards) had only a limited impact. Despite an apparent higher activity of rodents, the high variability measured between plots did not allow measuring significant differences between bioturbation types in terms of surface and volume of soil impacted by bioturbation.

- 4.2. Bioturbation and soil properties
- The PCA carried out from the soil physical and chemical properties clearly differentiated the soil excavated by ants and rodents from termite sheetings and to a lesser extent from the crust soil. Soil structural and biological crusts constitute a key elements of arid and semi-arid ecosystems and their dynamics and microstructure have been largely described (e.g., Bresson and Valentin, 1994; Belnap and Lange, 2003; Zhang et al., 2006; Seppelt et al., 2016). Surprisingly, soil crusts had very similar properties as the soil excavated by ants and rodents (i.e., no significant differences between variables, Appendix 1), with the exception of their

organization and stability. Indeed, SEM images showed that crusts consisted in sand grains embedded in an organic matrix made of organic fragments and filaments, and most likely polysaccharides excreted by filamentous cyanobacteria (Mazor et al., 1996; Lan et al., 2010) or endolithic micro-organisms formed in saline conditions (Stivaletta and Barbieri, 2009) such as in the close evaporitic Sebkhet el Melah depression, and transported by the wind. Conversely, the soil exposed on the surface by ants and rodents mainly consisted in individual sand grains. Only a few soil aggregates were observed with the SEM. The origin of these aggregates is unknown but we assume that their presence could be explained by the fragmentation of the surface crust and/or by the rise of belowground aggregates resulting from the interaction between clay particles and roots and/or biotic filaments. Biological soil crusts play a major role in the cycling of C through the fixation of CO₂ (Grote et al., 2010). Consequently, higher organic C contents are usually measured in biological soil crusts in comparison with the surrounding topsoils (Chamizo et al., 2012). In our study, no difference in C content between crust soils and soils excavated by ants and rodents could be evidenced. We assume that this lack of significant difference can be explained by our sampling design and the fact that the majority of microbes and C peaks in biological soil crust are located in the first mm (Garcia-Pichel and Belnap, 1996; Garcia-Pichel et al., 2003; Raanan et al., 2015; Jung et al., 2018) while we sampled the soil crust plus the 0-1 cm soil layer below the crust. As observed in West-Africa and Asia, termite sheetings were enriched in clay in

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

comparison with the other soil surface features (Appendix 1, Harit et al., 2017), then confirming the importance of these minerals for termites as a construction element. The selection of clay and its enrichment in termite constructions is usually explained by the higher stability it confers to aggregates (Jouquet et al., 2002, 2004), as confirmed in our study with the similar percentage of soil > 100 μ m between termite sheetings and soil crusts. Termite sheetings were also differentiated from the other soil surface features because of their higher

electrical conductivity. This higher electrical conductivity is controlled by the occurrence of fine crystals of gypsum, slightly soluble in water ($\approx 2.5 \text{ g L}^{-1}$) with an electrical conductivity close to 2 mS cm⁻¹ at soil-water saturation with a 1/5 dilution. Therefore, since gypsum and carbonates are concentrated in deeper layer, these findings suggest a translocation of soil from the deep soil layers to the surface by termites. Images obtained from SEM showed that bridges between sand particles were mainly made of clay (most likely illite or smectite), carbonate and gypsum, then explaining the increase in electrical conductivity in termite sheeting in comparison with the other treatments. Termites do not only select soil particles and minerals for the construction of termite sheetings. It is likely that bridges between sand particles can also be explained by the incorporation of organic matter, as evidenced by the higher organic C content in termite sheetings than in the other treatments (almost two-fold increase; see Appendix 1). Indeed, the production of stable soil aggregates involves the transportation of soil and its humidification by saliva, which contains water and organic molecules (Contour-Ansel et al., 2000). More research are clearly now needed to both understand the mechanisms associated to the organization of soil aggregates and to determine the fate of this organic matter exposed on the soil surface to the wind.

310

311

312

313

314

315

316

317

318

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

4.3. Consequences in term of soil resistance to wind erosion

In our study site, the wet and dry sieving of soil showed that it is dominated by fine sand particles between 50 and 100 μ m, which corresponds to the optimum grain size for wind erosion (i.e., 80 μ m) (Bagnold, 1937; Chepil, 1951). This finding confirms the high vulnerability of the soil in this area (Labiadh et al., 2013). In arid and semi-arid environments, accelerating biological soil crust development provides a credible alternative for stabilizing sand particles and reducing the susceptibility of soil to wind erosion (Eldridge and Leys, 2003; Fattahi et al., 2020; Kheirfam and Asadzadeh, 2020). Our study confirmed the high

stability of biological crusts in comparison with the other treatments. While no difference in particle size fractions was measured between soil crusts and the soil excavated by ants and rodents, the dry sieving of soil showed that most of the crust resisted to the dry sieving procedure (> 50% of soil in the > 2 mm size fraction) while ant and rodent soils broke down and were mainly found in the 50-100 μ m size fraction against < 1% in the > 2 mm size fraction. These results were confirmed by the wind erosion experiment which showed that soil motion was rapidly detected for ant and rodent soils followed by their exportation while soil crust remained stable until they are exported at a velocity higher than 20 m s⁻¹.

The higher clay and C contents and amount of gypsum (as evidenced by the measure of the electrical conductivity) of soil sheetings in comparison with the other soil types and their organization into small size macro-aggregates improved their resistance to wind erosion. This was evidenced by both the dry sieving method and the soil erosion experiment, which showed that intact soil sheetings had a resistance to wind almost equivalent to crust and therefore significantly higher than the soil excavated by ants and rodents. The life-time of sheetings is unknown in the field. If their specific organization can be observed when they are recently built, sheetings are also very fragile in the field and they can be broken into smaller size aggregates. The simulation experiment showed that once broken these aggregates become more susceptible to erosion than intact sheetings although their stability, evidenced during the dry sieving of soil aggregates, and large size and weight make them more resistant to wind erosion than the soil excavated by ants and rodents.

5. Conclusion

Two types of soil bioturbation could be measured in this study. Termites, as soil aggregate organizers (*sensu* Bottinelli et al., 2015), had a comparable effect to that of biological soil crusts by their ability to form stable soil aggregates enriched in organic C and clay. Conversely, rodents and ants only displaced soil, mainly sand grains, thus confirming their

opposite effects on the resistance of soil to wind erosion. Termites are comparable to biological crusts and protect the soil against wind erosion through the production of stable aggregates, while ant and rodent bioturbation leads to the deposition of sand grains on the ground that can easily be transported by the wind. This information is especially important for cultivated lands in the South of Tunisia where intense soil tillage hinders the activity of termites but only slightly reduce those of rodents and ants.

Acknowledgments

This project was supported by the French national Institute for Research for Development (IRD). SEM observations and TOC analyses were performed on the ALYSES facility (IRD-UPMC) which was supported by grants from the Région Ile de France. We thank the staff of the Institut des Régions Arides of Médenine for their support, and especially Saad Sefraki for his valuable help in the field. Finally, we also acknowledge the technical assistance of Féthiyé Cetin and Magloire Madeng-Yogo.

362

References

- 363 Akrimi, N., Kardous, M., Taamallah, H., 1993. Mouvements de sables en relation avec la
- nature et la vitesse de certains outils de travail sur sol en zone aride (étude d'un cas
- pratique). Revue des Régions Arides (Tunis) 5, 35-37.
- Anzah, F., Butler, D.R., 2017. Revisiting an early classic on gopher bioturbation and
- geomorphology: Joseph Grinnell (1923) The burrowing rodents of California as agents in
- soil formation. J. Mammal. 4, 137–149. https://doi.org/10.1177/0309133317720836
- Bagnold, R.A., 1941. The physics of blown sand and desert dunes. London: Methuen, 256 pp.
- Belnap, J., Lange, O.L., 2013. Biological soil crusts: structure, function, and management
- 371 (Vol. 150). Springer Science & Business Media.
- Bergametti, G., Gomes, L., Remoudaki, E., Desbois, M., Martin, D., Buat-Ménard, P., 1989.
- Present transport and deposition patterns of African dusts to the north-western
- Mediterranean. In Paleoclimatology and paleometeorology: Modern and past patterns of
- global atmospheric transport (pp. 227-252). Springer, Dordrecht.
- Bottinelli, N., Jouquet, P., Capowiez, Y., Podwojewski, P., Grimaldi, M., Peng, X., 2015.
- Why is the influence of soil macrofauna on soil structure only considered by soil
- ecologists? Soil Till. Res. 146, 118-124. https://doi.org/10.1016/j.still.2014.01.007
- 379 Bresson, L.M., Valentin, C., 1994. Soil surface crust formation: contribution of
- micromorphology, in: Ringrose-Voase, A.J., Humphreys, G.S. (Eds.), Soil
- Micromorphology Studies in Management and Genesis, Developments in Soil Science.
- Elsevier (Amsterdam, The Netherlands), pp. 737–762.
- Casenave, A., Valentin, C., 1992. A runoff capability classification system based on surface
- features criteria in the arid and semi-arid areas of West Africa. J. Hydrol. 130, 213–249.
- 385 https://doi.org/10.1016/0022-1694(92)90112-9

- Chamizo, S., Cantón, Y., Miralles, I., Domingo, F., 2012. Biological soil crust development
- affects physicochemical characteristics of soil surface in semiarid ecosystems. Soil Biol.
- 388 Biochem. 49, 96-105. https://doi.org/10.1016/j.soilbio.2012.02.017
- 389 Chepil, W., 1951. Properties of soil which influence wind erosion: III. Effect of apparent
- density on erodibility. Soil Sci. 71, 141-154.
- Clark, K.L., Branch, L.C., Farrington, J., 2018. Bioturbation by mammals and fire interact to
- alter ecosystem-level nutrient dynamics in longleaf pine forests. PloS One 13, e0201137.
- 393 https://doi.org/10.1371/journal.pone.0201137
- Contour-Ansel, D., Garnier-Sillam, E., Lachaux, M., Croci, V., 2000. High performance
- liquid chromatography studies on the polysaccharides in the walls of the mounds of two
- species of termite in Senegal, Cubitermes oculatus and Macrotermes subhyalinus: their
- origin and contribution to structural stability. Biol. Fert. Soils 31, 508-516.
- 398 https://doi.org/10.1007/s003740000201
- da Costa, R.R., Hu, H., Li, H., Poulsen, M., 2019. Symbiotic plant biomass decomposition in
- fungus-growing termites. Insects, 10, 87. https://doi.org/10.3390/insects10040087
- 401 Don, A., Hagen, C., Grüneberg, E., Vos, C., 2019. Simulated wild boar bioturbation increases
- 402 the stability of forest soil carbon. Biogeosciences, 16, 4145-4155.
- 403 https://doi.org/10.5194/bg-16-4145-2019
- 404 Eldridge, D.J., Koen, T.B., 2021. Temporal changes in soil function in a wooded dryland
- following simulated disturbance by a vertebrate engineer. Catena, 200, 105166.
- 406 https://doi.org/10.1016/j.catena.2021.105166
- 407 Eldridge, D.J., Leys, J.F., 2003. Exploring some relationships between biological soil crusts,
- 408 soil aggregation and wind erosion. J. Arid Environ. 53, 457–466.
- 409 https://doi.org/10.1006/jare.2002.1068

- Eldridge, D.J., Pickard, J., 1994. Effects of ants on sandy soils in semi-arid eastern Australia.
- 2. Relocation of nest entrances and consequences for bioturbation. Soil Res. 32, 323-333.
- 412 https://doi.org/10.1071/SR9940323
- 413 Fattahi, S.M., Soroush, A., Huang, N., 2020. Biocementation control of sand against wind
- erosion. J. Geotech. Geoenviron. 146, 04020045.
- 415 Garcia-Pichel, F., Belnap, J., 1996. Microenvironments and microscale productivity of
- cyanobacterial desert crusts. J. Phycol. 32, 774–782.
- 417 Garcia-Pichel, F., Johnson, S.L., Youngkin, D., Belnap, J., 2003. Small-scale vertical
- distribution of bacterial biomass and diversity in biological soil crusts from arid lands in
- the Colorado Plateau. Microb. Ecol. 46, 312–321. https://doi.org/10.1007/s00248-003-
- 420 1004-0
- 421 Guerzoni, S., Molinaroli, E., Chester, R., 1997. Saharan dust inputs to the western
- Mediterranean Sea: depositional patterns, geochemistry and sedimentological implications.
- Deep-Sea Res. Pt II 44, 631-654. https://doi.org/10.1016/S0967-0645(96)00096-3
- 424 Grote, E.E., Belnap, J., Houseman, D.C., Sparks, J.P., 2010. Carbon exchange in biological
- soil crust communities under differential temperatures and soil water contents: implications
- for global change. Glob. Change Biol. 16, 2763-2774. https://doi.org/10.1111/j.1365-
- 427 2486.2010.02201.x
- 428 Harit, A., Shanbhag, R., Chaudhary, E., Cheik, S., Jouquet, P., 2017. Properties and
- functional impact of termite sheetings. Biol. Fert. Soils 53, 743-749.
- 430 https://doi.org/10.1007/s00374-017-1228-7
- 431 Israelevich, P., Ganor, E., Alpert, P., Kishcha, P., Stupp, A., 2012. Predominant transport
- paths of Saharan dust over the Mediterranean Sea to Europe. J. Geophys. Res. 117(D2).

- Jouquet, P., Lepage, M., Velde, B., 2002. Termite soil preferences and particle selections:
- strategies related to ecological requirements. Insect. Soc. 49, 1-7.
- 435 https://doi.org/10.1007/s00040-002-8269-z
- Jouquet, P., Tessier, D., Lepage, M., 2004. The soil structural stability of termite nests: role of
- clays in *Macrotermes bellicosus* (Isoptera, Macrotermitinae) mound soils. Eur. J. Soil Biol.
- 438 40, 23-29. https://doi.org/10.1016/j.ejsobi.2004.01.006
- Jouquet, P., Traoré, S., Choosai, C., Hartmann, C., Bignell, D., 2011. Influence of termites on
- ecosystem functioning. Ecosystem services provided by termites. Eur. J. Soil Biol. 47, 215-
- 222. https://doi.org/10.1016/j.ejsobi.2011.05.005
- Jung, P., Briegel-Williams, L., Simon, A., Thyssen, A., Büdel, B., 2018. Uncovering
- biological soil crusts: carbon content and structure of intact Arctic, Antarctic and alpine
- biological soil crusts. Biogeosciences 15, 1149-1160. https://doi.org/10.5194/bg-15-1149-
- 445 2018
- 446 IUSS Working Group WRB. 2014. World reference base for soilresources 2014. International
- soil classification system for naming soils and creating legends for soil maps. World Soil
- ResourcesReports No. 106. FAO, Rome.
- Kaiser, D., Lepage, M., Konaté, S., Linsenmair, K.E., 2017. Ecosystem services of termites
- 450 (Blattoidea: Termitoidae) in the traditional soil restoration and cropping system Zaï in
- northern Burkina Faso (West Africa). Agr. Ecosyst. Environ. 236, 198-211.
- 452 https://doi.org/10.1016/j.agee.2016.11.023
- Kheirfam, H., Asadzadeh, F., 2020. Stabilizing sand from dried-up lakebeds against wind
- erosion by accelerating biological soil crust development. Eur. J. Soil Biol. 98, 103189.
- 455 https://doi.org/10.1016/j.ejsobi.2020.103189

- Labiadh, M., Bergametti, G.X., Attoui, B., Sekrafi, S., 2011. Particle size distributions of
- South Tunisian soils erodible by wind. Geodin. Acta 24, 37-47.
- 458 https://doi.org/10.3166/ga.24.37-47
- Labiadh, M., Bergametti, G., Kardous, M., Perrier, S., Grand, N., Attoui, B., Sekrafi, S.,
- Marticorena, B., 2013. Soil erosion by wind over tilled surfaces in South Tunisia.
- Geoderma 202-203, 8-17. https://doi.org/10.1016/j.geoderma.2013.03.007
- Lan, S.B., Wu, L., Zhang, D.L., Hu, C.X., Liu, Y.D., 2010. Effects of drought and salt
- stresses on man-made cyanobacterial crusts. Eur. J. Soil Biol. 46, 381-386.
- 464 https://doi.org/10.1016/j.ejsobi.2010.08.002
- Lavelle, P., Bignell, D., Lepage, M., 1997. Soil function in a changing world: the role of
- invertebrate ecosystem engineers. Eur. J. Biol. 33, 159-193.
- Leonard, J., Rajot, J.L., 2001. Influence of termites on runoff and infiltration: quantification
- and analysis. Geoderma 104, 17-40. https://doi.org/10.1016/S0016-7061(01)00054-4
- 469 Lobry de Bruyn, L.A., Conacher, A.J., 1990. The role of termites and ants in soil
- 470 modification: a review. Aust. J. Soil. Res. 28, 55-93. https://doi.org/10.1071/SR9900055
- 471 Mando, A., Brussaard, L., Stroosnijder, L., 1999. Termite- and mulch-mediated rehabilitation
- of vegetation on crusted soil in West Africa. Restor. Ecol. 7, 33-41.
- 473 Mazor, G., Kidron, G.J., Vonshak, A., Abeliovich, A., 1996. The role of cyanobacterial
- exopolysaccharides in structuring desert microbial crusts. FEMS Microbiol. Ecol. 21, 121–
- 475 130. https://doi.org/10.1111/j.1574-6941.1996.tb00339.x
- 476 Moulin, C., Lambert, C.E., Dayan, U., Masson, V., Ramonet, M., Bousquet, P., Legrand, M.,
- Balkanski, Y.J., Guelle, W., Marticorena, B., Bergametti, G., Dulac, F., 1998. Satellite
- climatology of African dust transport in the Mediterranean atmosphere. J. Geophys. Res.
- 479 103(D11), 13137-13144.

- Ortiz, A.M.D., Outhwaite, C.L., Dalin, C., Newbold, T., 2021. A review of the interactions
- between biodiversity, agriculture, climate change, and international trade: research and
- policy priorities. One Earth 4, 88-101. https://doi.org/10.1016/j.oneear.2020.12.008
- Raanan, H., Felde, V.J.M.N.L., Peth, S., Drahorad, S., Ionescu, D., Eshkol, G., Treves, H.,
- Felix-Henningsen, P., Berkowicz, S.M., Keren, N., Horn, R., Hagemann, M., Kaplan, A.,
- 485 2016. Three-dimensional structure and cyanobacterial activity within a desert biological
- soil crust. Environ. Microbiol. 18, 372-383. https://doi.org/10.1111/1462-2920.12859
- 487 Schaefer, D.A., Whitford, W.G., 1981. Nutrient cycling by the subterranean termite
- 488 Gnathamitermes tubiformans in a Chihuahuan desert ecosystem. Oecologia 48, 277-283.
- 489 https://doi.org/10.1007/BF00347977
- 490 Seppelt R.D., Downing A.J., Deane-Coe, K.K., Zhang, Y., Zhang, J., 2016. Bryophytes
- within biological soil crusts. In: Weber B., Büdel B., Belnap J. (eds) Biological Soil
- Crusts: An Organizing Principle in Drylands. Ecological Studies (Analysis and Synthesis),
- vol 226. Springer, Cham. https://doi.org/10.1007/978-3-319-30214-0_6
- 494 Stivaletta, N., Barbieri, R., 2009. Endolithic microorganisms from spring mound evaporite
- deposits (southern Tunisia). J. Arid Environ. 73, 33-39.
- 496 https://doi.org/10.1016/j.jaridenv.2008.09.024
- Traba, J., Casals, P., Broto, F., Camprodon, J., Giralt, D., Guixé, D., Mechergui, R., Rios, A.,
- Sales, S., Taull, M., Ammari, Y., Solano, D., Bota, G., 2016. Coexistence and habitat
- 499 partitioning at micro- and macro-scales of rodent species in a North African desert (Bou-
- 500 Hedma National Park, Tunisia). J. Arid Environ. 131, 46-58.
- 501 http://dx.doi.org/10.1016/j.jaridenv.2016.04.002
- Van Groenigen, J.W., Van Groenigen, K.J., Koopmans, G.F., Stokkermans, L., Vos, H.M.J.,
- Lubbers, I.M., 2019. How fertile are earthworm casts? A meta-analysis. Geoderma 338,
- 504 525-535. https://doi.org/10.1016/j.geoderma.2018.11.001

- Whitesides, C.J., Butler, D.R., 2016. Bioturbation by gophers and marmots and its effects on
- 506 conifer germination. Earth Surf. Proc. Land. 41, 2269-2281.
- 507 https://doi.org/10.1002/esp.4046
- Whitford, W., 1991. Subterranean termites and long-term productivity of desert rangelands.
- 509 Sociobiol. 19, 235-244.
- Wilkinson, M.T., Richards, P.J., Humphreys, G.S., 2009. Breaking ground: Pedological,
- geological, and ecological implications of soil bioturbation. Earth-Sci. Rev. 97, 257-272.
- 512 https://doi.org/10.1016/j.earscirev.2009.09.005
- Zaady, E., Groffman, P.M., Shachak, M., Wilby, A., 2003. Consumption and release of
- nitrogen by the harvester termite Anacanthotermes ubachi navas in the northern Negev
- desert, Israel. Soil Biol. Biochem., 35, 1299-1303. https://doi.org/10.1016/S0038-
- 516 0717(03)00200-1
- 517 Zhang, Y.M., Wang, H.L., Wang, X.Q., Yang, W.K., Zhang, D.Y., 2006. The microstructure
- of microbiotic crust and its influence on wind erosion for a sandy soil surface in the
- Gurbantunggut Desert of Northwestern China. Geoderma 132, 441-449.
- 520 https://doi.org/10.1016/j.geoderma.2005.06.008

- Figure 1. Pictures showing the main soil surface features: termite sheetings (T), soil excavated by ants (A) and rodents (R), and biological crusts (C).
- Figure 2. Boxplots showing the area (cm² m⁻²) and volume of soil (cm³ m⁻²) impacted by soil bioturbation. Comparison is made between soil influenced by rodents, ants, termites and unknown soil fauna. Boxes with similar letters have similar values at P > 0.05.
- Figure 3. Biplot showing the principal components analysis (PCA) from variables describing the soil physical and chemical properties of the termite sheetings (termites), soil excavated by ants, rodents and unknown fauna, and the surrounding control soil. Variables are the organic C content (Corg), the clay, fine and coarse silt and sand fractions obtained after dispersion by wet sieving, electrical conductivity (EC), and proportion of soil > 100 μm obtained by dry sieving.
- Figure 4. SEM micrographs of soil crust with quartz grains (q) embedded in a matrix of clay (c), organic matter [A] made of filaments (f) and unidentified organic (org) and plant debris (pl) [B, C]. Note the presence of bryophytes (b) associated to the crust [D].
- Figure 5. SEM micrographs of soil excavated by ants with well individualized quartz grains (q) [A] and soil aggregates [B, C, D] with tubular pores (t) and filaments associated to clay minerals (c).
- Figure 6. SEM micrographs of termite sheetings with aggregates made of quartz grains (q) associated the one to the others [A, C] and covered by clay minerals (c) [B]. Bridges between quartz grains made of a mixture of clay, carbonates (Ca), organic filaments (f) and gypsum (gy) [B, D].
- Figure 7. Barplots showing the proportion (in %) of soil obtained from the dry sieving of soil crust, termite sheetings and soil excavated by ants and rodents. Soil size fractions are > 2, 2-1, 1-0.5, 0.5-0.2, 0.2-0.1, 0.1-0.05 and < 0.05 mm. For each soil fraction, similar letters indicate similar values at P > 0.05.
- Figure 8. Boxplots showing the velocity needed to produce soil motion (h_0) , to vacuum the first soil particles (h_1) and the entire soil samples (h_f) . Similar letters indicate similar values at P = 0.05.

Table 1. Results of the statistical analyses ($F_{3,20}$ and P-values) testing differences in soil aggregate size fractions obtained after dry sieving between termite sheetings, soil excavated by ants and rodents, and the surrounding crust soil (expressed in %).

Aggregate size fractions	$F_{3,20}$	<i>P</i> -values
>2 mm	68.69	< 0.001
2-1 mm	13.71	< 0.001
1-0.5 mm	29.29	< 0.001
0.5-0.2 mm	11.86	< 0.001
0.2-0.1 mm	20.22	< 0.001
0.1-0.05 mm	46.05	< 0.001
< 0.05 mm	1.63	0.213

Appendix 1. Soil physical and chemical properties (pH, electrical conductivity EC, clay, silt and sand contents, C content and % of soil > $100\mu m$) of termite sheetings (termites), soil excavated by rodents and ants, and the surrounding soil crust. Results of the statistical analyses (ANOVA or Kruskal-Wallis rank sum test) are displayed. Values with similar letters are significantly similar at P < 0.05.

	pН	$EC (\mu S cm^{-1})$	Clay (%)	Fine silt (%)	Coarse silt (%)	Fine sand (%)	Coarse sand (%)	C (%)	%>100µm
Crust	7.2	45.56 ^b	7.88^{b}	1.30	3.66	85.88	1.29	0.22^{b}	69.94 ^a
	(0.2)	(8.05)	(0.24)	(0.24)	(0.94)	(1.64)	(0.20)	(0.04)	(4.73)
Rodents	7.6	34.99 ^b	$7.78^{\rm b}$	1.62	5.90	82.49	2.22	0.24^{b}	32.59^{b}
	(0.1)	(2.67)	(0.63)	(0.30)	(1.03)	(1.78)	(0.27)	(0.03)	(1.90)
Ants	8.0	$30.27^{\rm b}$	8.73^{ab}	1.67	3.57	84.55	1.49	0.14^{b}	38.73 ^b
	(0.2)	(0.55)	(0.35)	(0.30)	(0.29)	(0.55)	(0.11)	(0.07)	(1.26)
Termites	7.6	174.20 ^a	12.31 ^a	1.94	2.63	81.14	1.98	0.38^{a}	58.71 ^a
	(0.2)	(42.12)	(2.24)	(0.17)	(0.79)	(2.29)	(0.68)	(0.05)	(4.55)
$F_{3,12}$	1.81	119.7		1.04	2.89	1.56		7.54	19.08
<i>P</i> -values	0.151	< 0.001		0.41	0.079	0.251		0.004	< 0.001
Chi ²			7.96				4.85		
P-values			0.047				0.183		

Appendix 2. Examples of energy dispersive X-ray results showing the presence of illite or smectite-type clay (a), clay and carbonate (b) and gypsum (c).

Figure 1

Figure 2

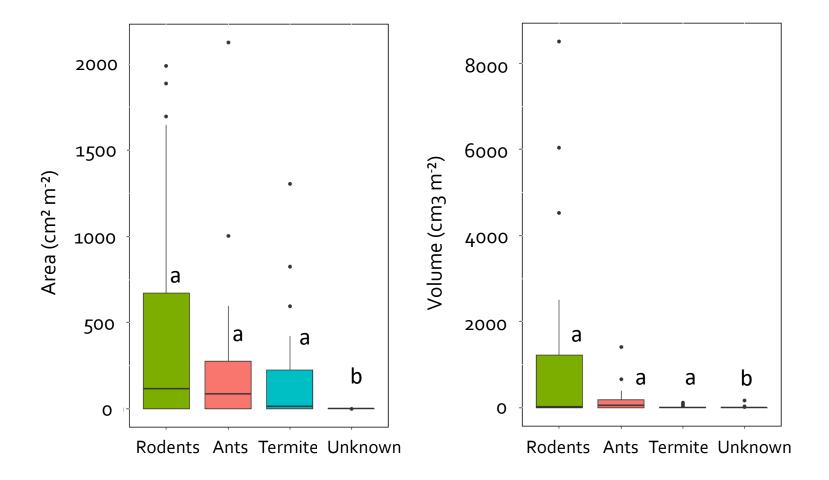


Figure 3

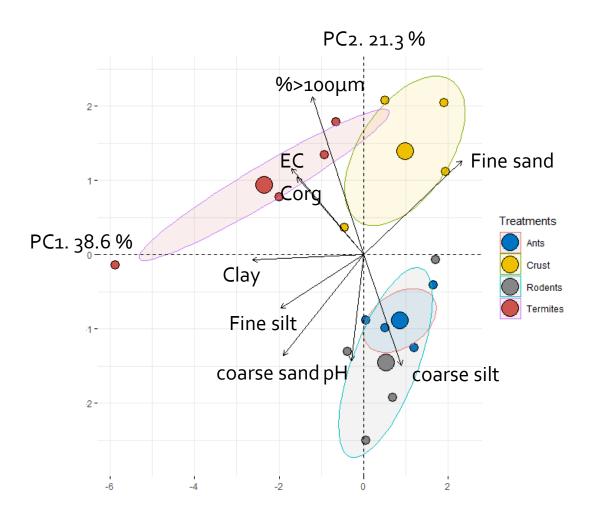


Figure 4

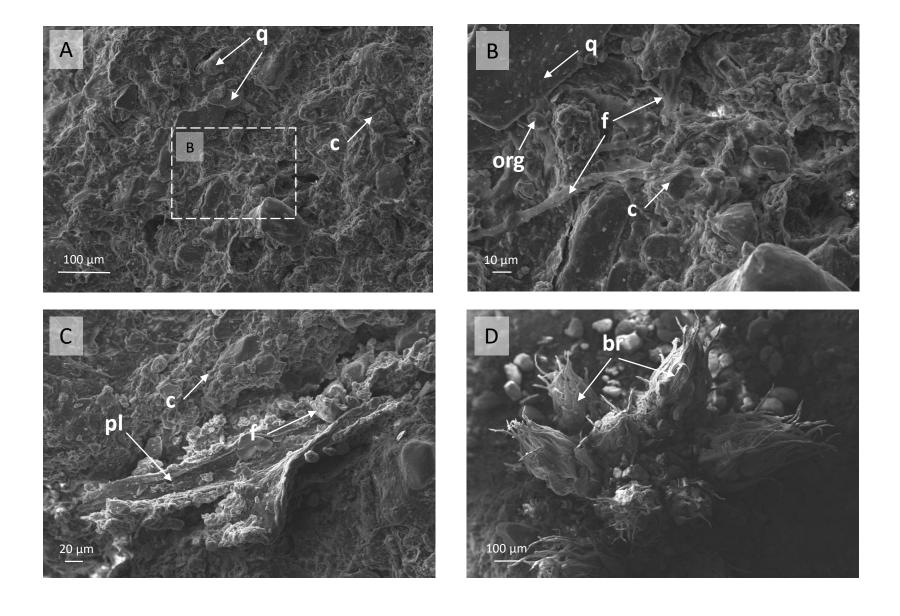


Figure 5

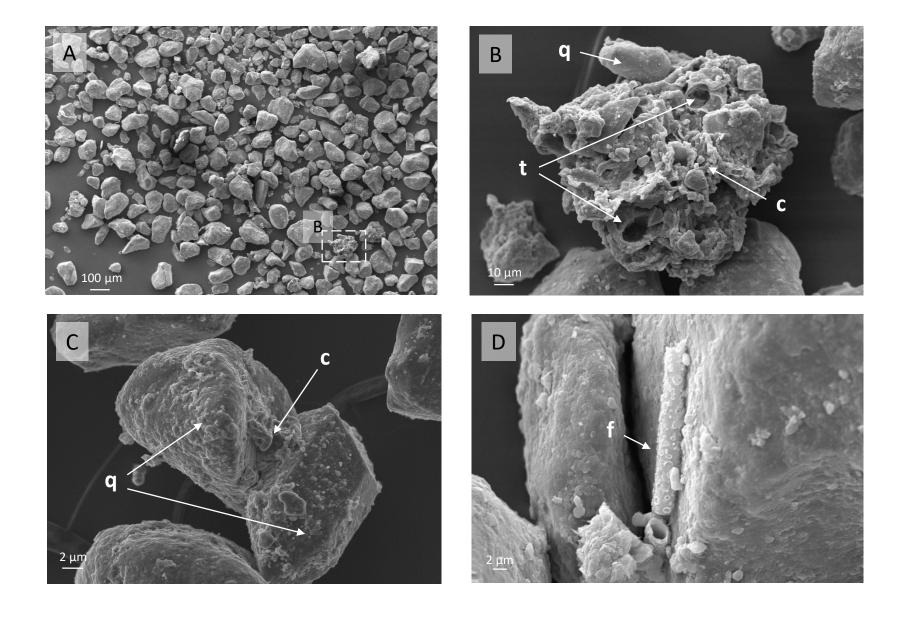


Figure 6

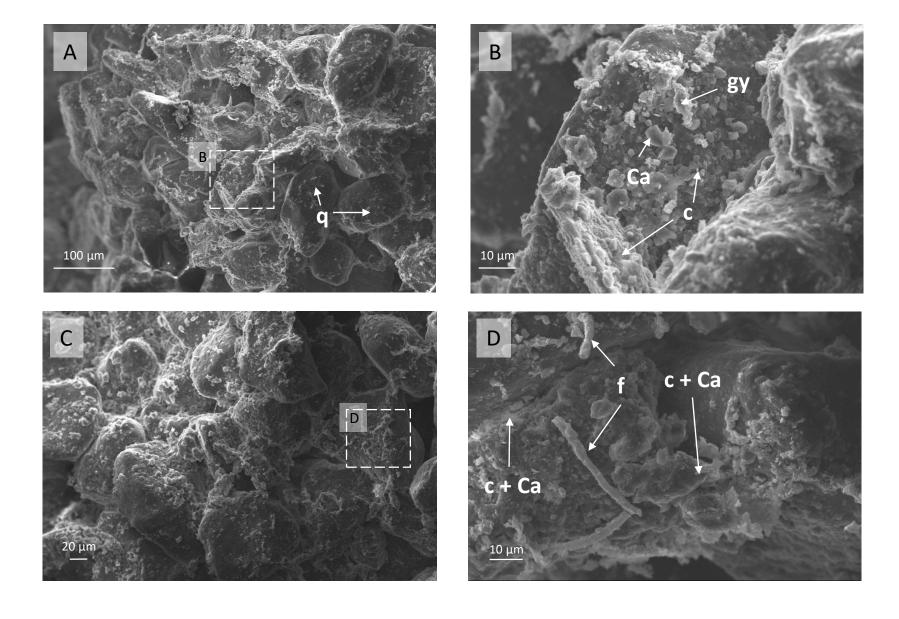
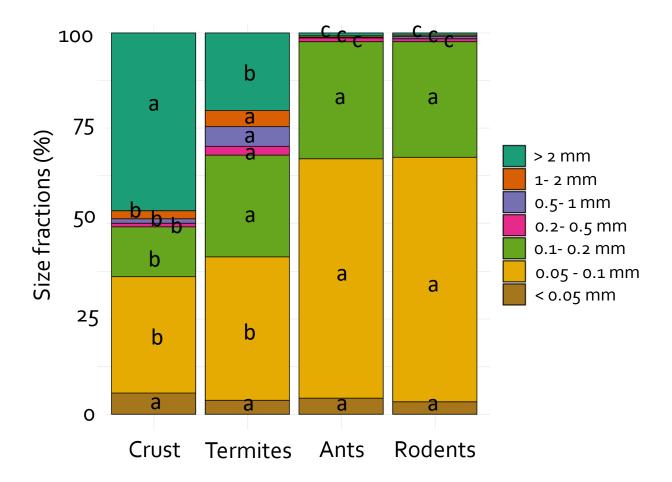
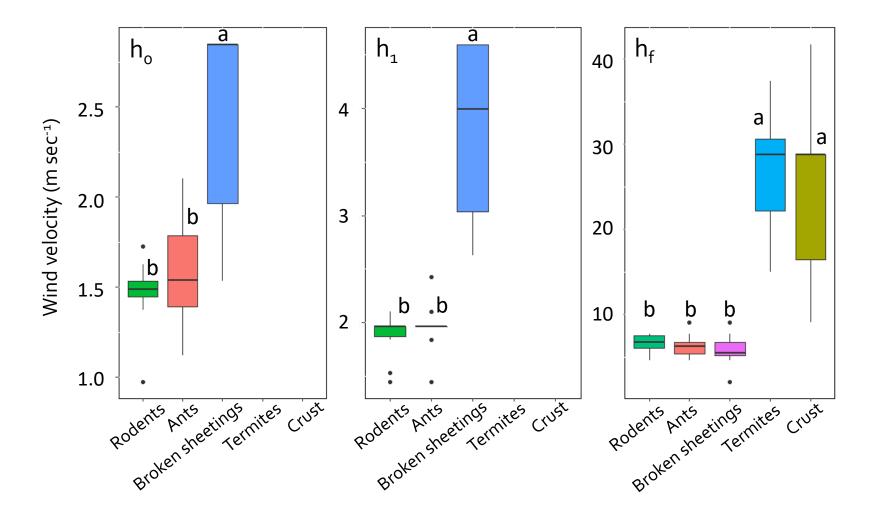
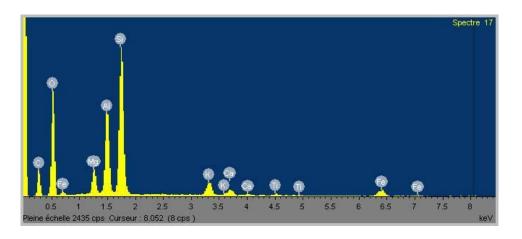
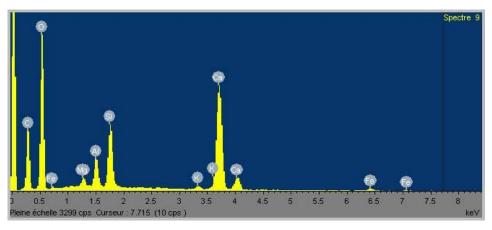
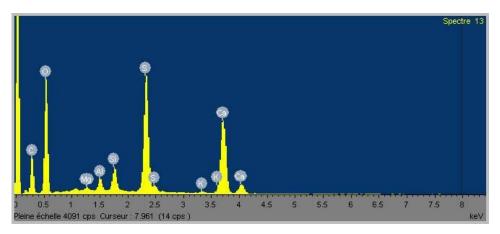


Figure 7


Figure 8

Appendix 2

